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SPICELib is an object-oriented model library, written in the Modelica language, that
implements some of the modeling and analysis capabilities of the circuit simulator PSpice. A
novel approach has been adopted in the SPICELib design. It arises from considering that the
reasons behind the success of PSpice include: the quality of the device models, the variety of
supported analyses and the good performance of the numerical simulation. As a consequence,
SPICELib is conceived to mimic not only the PSpice device models, but in addition PSpice
capability to perform a variety of circuit analyses and the PSpice algorithms to calculate the
circuit bias point, which is the most problematic analysis from the numerical standpoint.
The fundamental hypotheses and the architecture of SPICELib library are discussed, in

addition to the modeling of the supported analyses and devices. A case study is fully developed,
in order to illustrate SPICELib use and validation. SPICELib version 1.1 (release October
2003) is free software, and it can be retrieved from the website: http://www.modelica.org/
Conference2003/papers.shtml.
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1. Introduction

Modelica is a freely available, object-oriented modeling language, which has been
designed by the developers of the object-oriented modeling languages Allan, Dymola,
NMF, ObjectMath, Omola, SIDOPS+ and Smile, and a number of modeling
practitioners in different fields. The Modelica language is intended to serve as a
standard format for the model external representation, so that models arising in
different domains can be exchanged between tools and users [1].

As a general-purpose modeling language, Modelica has the important advantage of
allowing the physical modeling of multi-domain systems, supporting several
formalisms [2]: ordinary differential equations (ODE), differential-algebraic equations
(DAE), bond graphs, finite state automata, Petri nets, etc.
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However, one of the main obstacles to spread the use of Modelica throughout the
industrial and academic environments was the lack of truly-reusable model libraries
written in the Modelica modeling language. The recognition of this situation drives the
strong interest within the Modelica modelers community in developing well-tested and
well-documented libraries of reusable models in different application domains (see [1]
for a relation of the available libraries).
The Modelica Standard Library [1] has an electrical sub-library, developed by Clauß

et al. [3], which contains models for transient analysis of some simple analog
components, such as independent and controlled sources, passive and semiconductor
devices, and ideal elements. The electric circuits, built up connecting these analog
device models, are capable of interacting with the components of other sub-libraries of
the Modelica Standard Library.
The approach adopted by the SPICELib designers is different. It arises from

considering that the reasons behind the success of PSpice [4], as an essential computer-
aid for circuit design and analysis, include:

1. The quality of the device models. PSpice implements different levels of detail in
the device description. For instance, OrCAD PSpice version 9. provides seven
different models of the MOSFET device [4].

2. The variety of supported analyses. They include operating point (.OP), DC sweep
(.DC), AC sweep (.AC), transient (.TRAN), Fourier (.FOUR), Monte Carlo
(.MC) and noise (.NOISE) analyses [4].

3. The good performance of the numerical simulation. It is achieved by [4,5,6]: (1)
imposing that all the device equations must be continuous; (2) re-designing those
device models ‘‘problematic’’ from the numerical point of view, in order to
facilitate their numerical solution; and (3) implementing different algorithms for
the bias point calculation, which is the most problematic analysis from the
numerical standpoint.

As a consequence, SPICELib is conceived to mimic not only the PSpice device models,
but in addition its capability to perform a variety of circuit analyses and the PSpice
algorithms to calculate the bias point of the circuit. SPICELib version 1.1 implements
the following [7,8]:

. Device models, such as independent and controlled sources, passive devices
(resistor, capacitor and inductor), and semiconductor devices (PSpice PN-
junction diode and LEVEL1 n-channel and p-channel MOSFET). In addition,
IC1 and IC2 pseudo-components have been implemented for setting the initial
conditions.

. Three types of circuit analysis: operating point calculation (.OP), AC sweep
(.AC) and transient (.TRAN).

. The three algorithms supported by PSpice for bias point calculation and, in
addition, a fourth algorithm proposed by Cellier [9].

In addition, SPICELib is well suited to build the electric part of multi-domain physical
models. The circuit models composed using SPICELib can be interfaced to models
built using other Modelica libraries. However, in this case, only the transient analysis
of the multi-domain model is supported.
The design and implementation of SPICELib is a long-term, academic project. Its

main goal is to develop open-source models of the PSpice devices and analyses, so that
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they can be freely reviewed, modified and extended. As SPICELib is completely written
in the Modelica language, this greatly facilitates its code comprehension, maintenance
and extension.

Four key points of the SPICELib design are discussed in this contribution: the
fundamental modeling hypotheses, the library architecture, the modeling of the circuit
analyses, and some relevant aspects of the device ‘‘atomic’’-models (i.e., voltage and
current sources, resistor, capacitor and inductor models). These atomic-models are of
paramount importance: in addition to being used in the modeling of user-defined
electric circuits, they are the only components of the SPICELib semiconductor-device
models. The modeling of semiconductor devices is not addressed in this manuscript (it
is discussed in [8]).

A complete case study, including circuit modeling, analysis and validation of the
results is used to illustrate SPICELib use, and device and analysis modeling. SPICELib
validation is accomplished by comparing the analysis results obtained with SPICELib
and OrCAD PSpice version 9.1 [4]. Finally, the modeling of multi-domain system for
transient analysis, by combined use of SPICELib and other Modelica libraries, is
discussed.

Additional examples of circuit modeling, analysis and validation can be found in
[7,8], and a tutorial description of SPICELib use in [8]. The SPICELib accompanying
documentation contains a detailed description of model implementation. It can be
downloaded, together with SPICELib 1.1 source code, from the website: http://
www.modelica.org/Conference2003/papers.shtml.

2. Fundamental modeling hypotheses

To support the implementation of the OP, AC and TRAN circuit analyses, SPICELib
device models contain three different device descriptions: static, AC small-signal and
large-signal. Each of these three descriptions has its own set of equations and variables,
and its own contribution to the device-model interface (the details can be found in
[7,8]). As a consequence, when connecting SPICELib device models to compose a
circuit model, these three descriptions of the circuit (i.e., static, AC small-signal and
large-signal) are obtained.

While the on-going circuit analysis does not require the use of a circuit description,
SPICELib sets its bias conditions to zero (i.e., the description is ‘‘disabled’’).
Therefore, the equations of this description can be trivially solved, and the simulation
performance is not unnecessarily degraded. For instance, SPICELib disables the large-
signal description of the circuit by setting to zero the value of the independent sources
and the energy stored in capacitors and inductors.

SPICELib implementation of the OP, AC and TRAN analyses require the combined
use of the three circuit descriptions:

. SPICELib uses the static description of the circuit to calculate its bias point at
the beginning of the AC sweep analysis. The obtained voltage and current values
allow calculating the parameter values of the AC small-signal (i.e., linearized at
the operating point) description. Then, SPICELib disables the static formulation
of the circuit, and it completes the AC sweep analysis using the AC small-signal
description.

. SPICELib model of transient analysis constitutes a second example. SPICELib
supports two different initialization conditions of the circuit for transient
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analysis: performing the bias point calculation or skipping the bias point
calculation. If the bias point needs to be calculated, then SPICELib obtains the
operating point of the circuit static description. These calculated values are
imposed to be the initial condition for transient analysis of the circuit large-signal
description. SPICELib device models are designed to allow this transfer of
information from the static to the large-signal description. Once the large-signal
description of the circuit has been initialized, it is used to simulate the circuit
transient behavior, and the static description is disabled.

. SPICELib implementation of Cellier’s algorithm [9] for bias point calculation
(‘‘dynamic model ramping’’ in SPICELib terminology) is a third example. In this
case, the initial condition to iterate the static description is calculated by
simulating the large-signal description of the circuit. SPICELib implementation
of this algorithm requires the combined use of the circuit large-signal and static
descriptions.

SPICELib analysis models are formulated in terms of equations, and they are
completely written in the Modelica language: the implementation of algorithms for bias
point calculation, in addition to the OP, AC and TRAN analyses, do not include calls
to external functions written in any programming language (C, Fortran, etc.).
Information is transmitted, from the analysis models to the device models, by

variables common to both model types. These variables are called control-signals in
SPICELib terminology, and they are modeled taking advantage of the Modelica
capability to describe physical fields [10,11]: control-signals are inner variables of the
analysis models and outer variables of the device models.
Analysis models describe the sequence of control-signal value transitions required to

perform the analyses. Control-signals trigger instantaneous changes in the device
model state-variables and in the mathematical structure of the device descriptions.
These changes facilitate setting the initial conditions of the analyses, enabling and
disabling the different circuit descriptions, and the information exchange among them.
A list of SPICELib control-signals, and a description of their function, can be found
in [7].

3. SPICELib architecture

The SPICELib sub-libraries (‘‘packages’’ in Modelica terminology) have been
organized in order to facilitate their use and maintenance. The package hierarchy is
shown in Figure 1a (the modeling environment is Dymola [12]). The SPICELib
architecture has a clear separation between those libraries to be used by SPICELib
users and those libraries to be used only by SPICELib designers [8]:

. The SPICELib models describing the structure and behavior of parts and
analyses are gathered in the SPICELib.src package (see Figure 1a). This sub-
library is intended to be used and modified only by SPICELib designers. Its
documentation is oriented to the designers, explaining implementation details
which are not of interest to SPICELib users.

. Two sub-libraries are defined, SPICELib.parts and SPICELib.analyses (see
Figure 1a), in order to gather the models that SPICELib users need to compose
and analyze their circuits. The models of these two sub-libraries are sub-classes of
a reduced set of SPICELib.src library models, inheriting the structure and the
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behavior, and adding the documentation oriented to the library users. The
SPICELib.parts package is composed of three sub-libraries: breakout (see Figure
1b), special (see Figure 1c) and source (see Figure 1d).

. The SPICELib.tutorial package (see Figure 1a) contains some tutorial examples,
explaining in detail how to use the parts-library models to compose the circuit
schematic, and how to use the analyses-library models to analyze this previously
defined circuit.

The architecture of the SPICELib.src package is outlined in Figure 2a (further details
can be found in [7]). An arrow from A-package to B-package means that B-package
models inherit from A-package models. The INIT package contains the declaration of
the control-signals, other global variables and the global parameters. These
declarations are inherited by the analysis models of the ANALYSES package, and
by the device models of BREAKOUT (passive and semiconductor device models),
SOURCE (source models) and SPECIAL (pseudo-component models) packages. The
device models of these three packages inherit their interface definitions (i.e., the
description of the device pins) from the INTERFACE package. The WAVEFORMS
package contains the models of the waveforms used to define the transient behavior of
the independent sources.

The SPICELib.src.ANALYSES package contains the models of the OP, AC and
TRAN analyses. Bias point calculation is a part of the OP and AC analyses, and it is an
option of the TRAN analysis. Therefore, SPICELib algorithms for bias point

Figure 1. (a) SPICELib sub-libraries; (b), (c) and (d) Device models in SPICELib.parts sub-library.

Figure 2. (a) Sub-libraries of SPICELib.src package; (b) Models in SPICELib.src.ANALYSES package.
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calculation are modeled in a separate partial model, called BiasPointCalculation, which
is inherited by the OP, AC and TRAN models (see Figure 2b).

4. Circuit modeling and analysis with SPICELib

Circuit analysis using SPICELib requires two pieces of information: (1) the circuit-
schematic model, defined instantiating and connecting the required SPICELib device
models; and (2) the analysis specification, defined instantiating the correspondent
SPICELib analysis model. These SPICELib analysis models contain a parameter
whose value specifies the name of the circuit model to analyze. The user needs to
specify this parameter value as a part of the analysis definition.
The steps to building the circuit model and defining the analysis, using SPICELib

with the Dymola modeling environment [12], are the following [7,8]:

Step 1.Define a new partialmodel: the circuit schematic. Drag and drop the required
circuit components from SPICELib.parts sub-library to the model window, connect
them and set the value of the device model parameters.
Step 2. Define a new model: the analysis. Drag and drop the required analysis model
from SPICELib.analyses sub-library to the model window, and set the value of the
analysis parameters. One of this parameters is the name of the circuit model defined
in Step 1.
Step 3. Simulate the analysis model defined in Step 2.

5. Setting initial conditions

SPICELib supports the same procedures as PSpice for setting the initial operating
point of the circuit [7]: (1) IC1 and IC2 pseudo-components (also called IC symbols);
and (2) IC property of capacitors and inductors. These ways of specifying the initial
conditions substitute the model initialization procedures of Modelica (which are
discussed in [13]).
The IC property allows the association of the initial condition with a device, while IC

symbols (see Figure 1c) allow the association to be with a circuit node or a node pair.
IC1 is a one-pin symbol that allows setting the initial voltage on a circuit node. IC2 is a
two-pin symbol that allows setting the initial voltage between two nodes. The capacitor
IC property sets the initial voltage-drop across the capacitor. The inductor IC property
sets the initial current through the inductor.
The IC symbols clamp the voltage for the entire bias point calculation. SPICELib

attaches a voltage source with a 0.0002 ohm series resistance (R_EPS) at each circuit
node to which an IC1 symbol is connected, and between the two nodes to which an IC2
symbol is connected. The SPICELib static description of IC1 symbol is represented in
Figure 3a. The implementation of IC2 symbol is analogous: the ground connection in
IC1 model is replaced by a second pin: n (7 ).
The capacitor IC property is implemented by SPICELib using an IC2 symbol in

parallel with the capacitor (see Figure 3b). The implementation of the inductor IC
property is analogous: SPICELib attaches a current source with a 1 Gohm parallel
resistance (R_BIG) in series with the inductor (see Figure 3c).
Asterisks in Figure 3 (i.e., (*) and (**)) represent control-signals. The arrow from the

control-signal indicates the device controlled by the control-signal. For instance, while
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the control-signal represented by (*) equals true, the switches are closed, and while (*)
equals false they are open. In addition, the value of (**) control-signal sets the value of
the voltage and current sources. The implementation details are discussed in [7,8].

6. Bias point calculation

SPICELib implements four algorithms for calculating the bias point of the circuit
[7]. Only three of these are supported by PSpice [4,5] and the fourth algorithm is
‘‘dynamic model ramping’’ [9]. SPICELib allows the user to choose among these
four algorithms in order to perform the OP analysis, calculate the operating point
prior to the AC sweep analysis, and evaluate the steady-state initial condition of the
transient analysis. The algorithm selection is made by setting the value of a
parameter of the BiasPointCalculation model [7]. If the selected algorithm fails to
converge, then the analysis run aborts, and the user has to re-start the analysis run,
setting different values of the analysis model parameters or selecting a different
algorithm.

Two control-signals, biasPoint and biasPointCalculated [7], are used to synchronize
the bias point calculation with other analysis operations. The OP, AC or the TRAN
model triggers the transition of the biasPoint control-signal from false to true when the
calculation of the bias point is required to start. This change in biasPoint control-signal
triggers the execution of the selected algorithm, which is carried out by the
BiasPointCalculation model.

Once the algorithm execution is completed, BiasPointCalculation model saves the
bias point values to a text file and changes the value of biasPointCalculated control-
signal from false to true. This change indicates to the OP, AC or TRAN model that the
bias point calculation is finished.

OP analysis requires no more actions in addition to the calculation of the bias point.
As a consequence, when the biasPointCalculated control-signal becomes true, the OP
analysis switches the value of terminate control-signal from false to true. The action
associated to this event is a call to a Modelica function (terminate Modelica function
[11]), which forces the simulation end.

AC and TRAN analyses contain more steps, in addition to the bias point
calculation. When the biasPointCalculated control-signal becomes true, these analysis
models start the next analysis step. Once all the steps of the analysis are complete, the

Figure 3. Static descriptions of: (a) IC1 symbol; (b) Cbreak capacitor; (c) Lbreak inductor.
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analysis model (i.e., AC or TRAN model) changes the value of terminate control-signal
from false to true.
The fundamentals of the SPICELib algorithms for the bias point calculation are

discussed next. The implementation details of these algorithms can be found in [7].

6.1 ‘‘Static model iteration’’ algorithm

PSpice first tries to solve the static formulation of the circuit using the Newton-
Raphson algorithm. ‘‘Static model iteration’’ algorithm constitutes the SPICELib
implementation of this approach. The time-evolution of the control-signals implement-
ing this algorithm are represented in Figure 4. When the bias point calculation starts
(i.e., biasPoint control-signal becomes true), BiasPointCalculation model triggers the
changes in the control-signals required to: (1) enable the static formulation of the
circuit (ctrl_DC control-signal); (2) clamp the voltages and currents to their initial
values (ctrl_IC_clampDC control-signal, which was represented by an asterisk in
Figure 3); and (3) save the calculated bias point in a text file (ctrl_log_DC control-
signal). In addition, the BiasPointCalculation model triggers the change of the
biasPointCalculated control-signal from false to true (see Figure 4). The CLOCK time-
interval shown in Figure 4 is a model parameter representing the time elapsed between
two consecutive control-signal transitions.
Therefore, the ‘‘static model iteration’’ algorithm leaves the solution of the static

circuit completely in charge of the modeling environment solver. In this case, the user
should provide the initial values to iterate the static circuit model, using the
experiment-definition capabilities of Modelica and the modeling environment [12].
SPICELib 1.1 does not support the PSpice NODESET1 and NODESET2 symbols,
which are intended to provide an initial guess for the Newton-Raphson algorithm [4].
A parameter of the BiasPointCalculation model allows the user to specify the

required detail level at saving the results [7]. In addition, the device atomic-models
contain a parameter in order to classify the circuit devices into two types: those whose
variables have to be saved always, and those whose variables have to be saved only in
special cases. By default, SPICELib considers that the atomic-models composing the
semiconductor device models belong to this second group.

Example 1. The model of the AC to DC octupler circuit shown in Figure 5 has been
built connecting the SPICELib.parts package components. This circuit creates a DC
output at eight times the AC value [14]. The results of OP analysis using ‘‘static model
iteration’’ algorithm are compared in Figure 6 with the results obtained using OrCAD
PSpice. The percentage error is smaller than 0.02%.

Figure 4. SPICELib control-signals implementing the ‘‘static model iteration’’ algorithm.
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6.2 ‘‘GMIN stepping’’ algorithm

If the Newton-Raphson algorithm does not converge and ‘‘GMIN stepping’’ is
enabled, then PSpice applies the ‘‘GMIN stepping’’ algorithm. It attempts to facilitate
the convergence of the Newton-Raphson algorithm by modifying the value of the
circuit GMIN conductance [4,5].

GMIN conductance is included in the PSpice (and SPICELib) models of PN-
junction diodes and other semiconductor devices containing PN-junctions. It is
intended to address the convergence problems experienced when the voltage-drop
needs to be calculated from the diode constitutive relation, and the diode is operating

Figure 5. SPICELib model of an AC to DC octupler circuit.

Figure 6. OP analysis results: (a) Using OrCAD PSpice; (b) Using SPICELib.
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in the reverse-bias region [5]. In this region of operation, the current through the diode
is virtually constant (i.e., independent of the voltage). In other words, the diode
conductance (i.e., the slope of the device’s I-V plot) is very close to zero. As a
consequence, the Newton-Raphson algorithm significantly overshoots the correct
solution voltage, and a large number of algorithm iterations are required to work back
to the correct solution voltage [5]. Worse yet, if the conductance value reaches zero, the
next Newton-Raphson iteration will cause a floating divide-by-zero error.
This problem is addressed by PSpice (and consequently by SPICELib) including a

shunt resistor with conductance GMIN in the diode model [4,5]. Consequently, the
diode conductance under reverse-bias conditions is equal to GMIN. A GMIN resistor
has a by-default conductance value of GMIN=10–12 mhos [4]. However, the GMIN
value should be set as large as possible without affecting the accuracy of the simulation
output. Indeed, the larger the GMIN value, the faster the Newton-Raphson algorithm
will converge to a solution. Recommendations to choose a GMIN value appropriate to
a particular circuit are provided in [5].
The SPICELib implementation of ‘‘GMIN stepping’’ algorithm is represented in

Figure 7. It takes advantage of the device equation continuity with respect to GMIN
parameter. When biasPoint control-signal becomes true, the BiasPointCalculation
model: (1) enables the static formulation of the circuit (by changing the value of
ctrl_DC control-signal from false to true); (2) clamps the voltages and currents to their
initial values (by switching from false to true ctrl_IC_clampDC control-signal); and (3)
sets a large value of GMIN: initially 1010 times the nominal value. In the SPICELib
implementation (see Figure 7), scaleGMIN control-signal is the scale factor applied to
GMIN.
If a solution is found at this setting, the BiasPointCalculation model reduces GMIN

by a factor of 10 and a new solution is found. This continues until GMIN is back to the
nominal value, or the repeated cycle fails to converge. Once GMIN has reached the
nominal value (i.e. the value of scaleGMIN control-signal equals one), then the
BiasPointCalculation model saves the results in a text file (i.e., ctrl_log_DC control-
signal is switched to true), and finally it changes the value of the biasPointCalculated
control-signal from false to true.

Example 2. The OP analysis of the circuit shown in Figure 5 is performed using
SPICELib ‘‘GMIN stepping’’ algorithm. The evolution of the decimal logarithm of the
ratio between GMIN and the nominal value of GMIN is shown in Figure 8a. The

Figure 7. SPICELib control-signals implementing the ‘‘GMIN stepping’’ algorithm.
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BiasPointCalculation model reduces this ratio by a factor of ten every 10– 4 seconds
(this time value is a model parameter). When the nominal value of GMIN is reached (in
this case, at time equals 10– 3 seconds), the BiasPointCalculation model saves the
analysis results in a text file. These are equal to the results shown in Figure 6b. The
evolution of the voltage drop across the load resistor is shown in Figure 8b. The
BiasPointCalculation model triggers the simulation end at time equals 126 10– 4

seconds.

6.3 ‘‘Static model ramping’’ algorithm

If the ‘‘GMIN stepping’’ algorithm fails to converge or it is not enabled, then PSpice
tries to solve the static circuit ramping the independent sources from almost zero to
their desired initial value [4]. The process relies heavily on the continuity of PSpice
device models with respect to the power supplies. First, PSpice cuts back the power
supplies of the static description to almost zero (0.001%), so that all the non-linearities
are turned off. In this situation, the static description of the circuit is linear, and a
solution can be found. The initial condition of this first step is zero for all voltages.
Then, PSpice works its power supplies back up to 100% using a variable step size [4].

The ‘‘static model ramping’’ algorithm constitutes the SPICELib implementation of
this approach. When the biasPoint control-signal becomes true, the BiasPointCalcula-
tion model triggers the changes in the control-signals required to ramp up the value of
the independent sources and the value of the IC clamping sources (i.e., vClampDC and
iClampDC in Figure 3), from zero to their desired initial values. The SPICELib models
of independent sources support this capability. Finally, the BiasPointCalculation model
saves the results in a text file, and it switches the value of the biasPointCalculated
control-signal from false to true. The implementation details can be found in [7].

Example 3. The OP analysis of the circuit shown in Figure 5 is performed again, this
time applying the ‘‘static model ramping’’ algorithm. The BiasPointCalculation model
ramps the power supplies and the IC symbols and properties from zero up to their
nominal values. The ramping of the IC-symbol value and the evolution of the voltage
drop across the load resistor are plotted in Figure 9a. Once the nominal value is reached
(in this case, at time equals 10– 4 seconds, the BiasPointCalculationmodel saves the bias
point in a text file. The obtained results are equal to the ones shown in Figure 6b.

Figure 8. OP analysis applying ‘‘GMIN stepping’’ algorithm: (a) log10 GMIN
nominal GMIN

� �
; (b) Voltage drop across

the load resistor.

Design of SPICELib 53



6.4 ‘‘Dynamic model ramping’’ algorithm

This algorithm for the bias point calculation was proposed by F. Cellier in [9]. In this
case, the initial condition to iterate the static description of the circuit is obtained by
simulating its large-signal description. The independent sources are ramped from zero
to their desired initial value, and these values are held for some time to allow the node
voltages to stabilize. These voltages, obtained by simulating the circuit large-signal
description, are used as the initial condition to iterate the circuit static description.
In order to implement this algorithm, IC-like clamping circuits have been included in

the large-signal description of SPICELib capacitors and inductors (see Figure 10). The
SPICELib implementation of the algorithm is as follows. When the biasPoint control-
signal becomes true, the BiasPointCalculation model triggers the changes in the
control-signals required to perform a simulation of the large-signal description of the
circuit, ramping the independent sources and the initial conditions of the circuit
(vClampTran and iClampTran in Figure 10) from zero to their desired initial values.
These values are held for some time to allow the circuit to stabilize.
Next, the BiasPointCalculation model enables the static description of the circuit,

with the power supplies disconnected, and the node voltages of the large-signal
description are transferred to the static description. The BiasPointCalculation model
accomplishes this by attaching a voltage source with a 0.0002 ohm series resistance to
each node of the static circuit. Next, the power supplies of the static description are
connected to the circuit: the equations of the static description of the circuit are
iterated, using as initial condition the bias point calculated from the large-signal

Figure 9. OP analysis applying: (a) ‘‘Static model ramping’’ algorithm; (b) ‘‘Dynamic model ramping’’
algorithm.

Figure 10. Large-signal descriptions of: (a) Cbreak capacitor; (b) Lbreak inductor.
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description simulation. Finally, the BiasPointCalculation model saves the results in a
text file and switches the BiasPointCalculated control-signal from false to true. The
implementation details can be found in [7].

Example 4. The operating point of the circuit shown in Figure 5 is calculated applying
‘‘dynamic model ramping’’ algorithm (see Figure 9b). First, a transient analysis is
performed: the power supplies and the IC symbols and properties are ramped from
zero up to their nominal values. In this case, the ramping takes 10– 4 seconds (this time
value is a model parameter). Then, these values are held during another 10– 4 seconds
to allow the circuit to stabilize. The dotted line in Figure 9b represents the evolution of
the voltage drop across the load obtained from solving the circuit large-signal
description.

At time equals 26 10– 4 seconds, the large-signal description voltages are transferred
to the static description. The continuous line in Figure 9b represents the evolution of
the voltage drop across the load resistor calculated from the static description of the
circuit. 10 – 4 seconds later (at time equals 36 10– 4), the power supplies of the static
description are connected: the circuit static formulation is solved. In the same instant,
the large-signal formulation of the circuit is disabled. The OP analysis results are
logged out at time= 46 10– 4 seconds, and terminate control-signal is switched from
false to true at time=56 10– 4 seconds.

7. AC sweep analysis

The AC sweep analysis starts with the bias point calculation: the AC model changes the
value of the biasPoint control-signal from false to true (see Figure 11). When the
biasPointCalculated control-signal becomes true, the AC model switches ctrl_AC
control-signal from false to true. This switching triggers the calculation of the small-
signal model parameters from the voltage and current values at the bias point. Next,
AC model ramps the frequency value (freq variable in Figure 11) from its starting value
up to its final value. SPICELib supports two types of frequency sweep: linear and
logarithmic by decades.

Every time ctrl_log_AC control-signal changes from false to true, the solution of the
circuit small-signal description is saved in a text file (see Figure 11). The transitions in
the value of this control-signal are synchronized with the frequency sweep, so that the

Figure 11. SPICELib control-signals implementing the AC-sweep analysis.
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analysis results are obtained at the selected frequency values. When the final frequency
is reached, the AC model changes the value of terminate control-signal from false to
true. Further details of the SPICELib AC sweep analysis can be found in [7].

Example 5. SPICELib is used to perform the AC sweep analysis of the circuit shown in
Figure 5. The integration algorithm is Dassl, with a tolerance equal to 10– 4. The results
are shown in Figures 12a and 12b, and they are compared with the results obtained
using OrCAD PSpice (see Figures 12c and 12d). However, a significant improvement in
the error is not achieved by reducing to 10– 7 the Dassl tolerance.
In general, the analysis CPU-time using SPICELib is greater than using OrCAD

PSpice. SPICELib performs a continuous sweep from the initial value of the frequency
up to its final value (see the freq variable in Figure 11). As a consequence, although the
analysis results are saved to a text file only at the frequencies selected by the user, the
AC small-signal formulation is solved for the intermediate values of the frequency (as
determined by the step-size of the DAE-solver), and the obtained results are saved to
another file (as determined by the communication interval of the DAE-solver). This
second file contains much more detailed information, and it is intended to be used as a
data source for plotting the voltages and currents of the AC small-signal description as
continuous functions of the frequency.

8. Transient analysis

SPICELib implements the two same procedures for transient analysis initialization as
PSpice: bias point calculation and skipping the bias point calculation. The SPICELib
user can select the initialization procedure and, if required, the algorithm for the bias
point calculation to be used, among the four algorithms supported by SPICELib.
The SPICELib transient analysis can be performed on circuit models, composed of

SPICELib.parts sub-library components, and also on multi-domain models, built by

Figure 12. (a) and (b) SPICELib AC sweep analysis; (c) and (d) Difference between SPICELib and PSpice
AC sweep analyses.
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combined use of SPICELib and other Modelica libraries. These topics are discussed
next.

8.1 Initialization with bias point calculation

In this case, the initial bias for transient analysis is the DC bias-point of the circuit,
calculated setting the independent sources to their respective transient-analysis initial
values (which, in general, are different from their DC values [4]). The IC-symbols and
the IC-properties can be used to complete the specification of this initial bias point.

When the transient analysis starts, the TRAN model switches the biasPoint control-
signal value from false to true (see Figure 13a). This change triggers the execution of
the selected algorithm for the bias point calculation. SPICELib models of independent
sources have been designed to support the different initialization strategies. They allow
setting (or ramping up from zero to) their DC value or the initial value of their
transient waveform. Control-signals, whose values are set by the BiasPointCalculation
model, determine the behavior of the independent sources during the bias point
calculation (see [7] for further details).

Once the execution of the selected bias point algorithm is completed, the
BiasPointCalculation model changes the value of the biasPointCalculated control-
signal from false to true. Then, the TRAN model: (1) enables the large-signal
description of the circuit (by switching ctrl_Tran control-signal); and (2) transfers the
bias point values from the static description of the circuit to its large-signal description
(by switching ctrl_CBREAK_Tran2DC control-signal). This is carried out by
initializing the state variables of the circuit large-signal description to the calculated
DC voltage and current values. Next, the TRAN model starts the time-sweep, using the
large-signal description of the circuit.

When the time-sweep starts, the value of the Modelica time variable can be different
from zero. This is the case when the ‘‘GMIN stepping’’, ‘‘static model ramping’’ or the
‘‘dynamic model ramping’’ algorithm is applied for calculating the bias point. For this
reason, a variable is defined in the TRAN model to measure the elapsed simulated-time
during the time-sweep: TIME. Once the stop-time is reached (i.e., TIME equals
TRAN_STOP_TIME), the TRAN model changes the value of terminate control-signal
from false to true.

Figure 13. SPICELib control-signals implementing the transient analysis: (a) With bias point calculation; (b)
Skipping the bias point calculation.
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Example 6. A transient analysis of the circuit shown in Figure 5 has been performed
using SPICELib. In this case, the IC symbol has been removed from the circuit. The
voltage source stimulus is a pulse waveform with the following parameters: v1= – 3
(initial voltage), v2=3 (pulsed voltage), TD=0 (delay), TR=TF= 10– 6 (rise and
fall time), PW= 10– 4 (pulse width), PER=26 10– 4 (period). The time evolution of
the voltage drop across the load resistor is shown in Figure 14a. The DAE-solver used
in this SPICELib analysis is Dassl, with a tolerance value equal to 10– 7.
This analysis result is compared in Figure 14b with the result obtained using

ORCAD Pspice, with a maximum step-size of 10– 7. In this example, the error exhibits
a significant dependence of the Dassl tolerance: the maximum error decreases from 3%
to 86 10– 3% by reducing the Dassl tolerance from 10– 4 to 10– 7. The CPU-time of the
SPICELib transient analysis (with a Dassl tolerance of 10– 7) is approximately two
times greater than the PSpice CPU-time (with a maximum step-size of 10– 7).

8.2 Initialization by skipping the bias point calculation

In this case, IC-symbols are ignored. The initial bias of the large-signal description is
fully determined by the IC-property of capacitors and inductors, which set the initial
value of the description state variables. When the transient analysis starts, the TRAN
model enables the large-signal description of the circuit: (1) independent sources are set
to the initial value of their waveforms; and (2) the voltage across the capacitors and the
current through the inductors is initialized according to their IC-property values. These
two actions are accomplished by switching the value of ctrl_Tran and ctrl_CBREAK_-
Tran2IC control-signals from false to true (see Figure 13b). Next, the time-sweep is
performed until the stop-time (TRAN_STOP_TIME) is reached. Then, the TRAN
model sets terminate control-signal to true, which forces the analysis to end.

8.3 Transient analysis of multi-domain models

SPICELib transient analysis can be performed on Modelica multi-domain models in
any of the following two cases. Case 1: the bias point calculation is skipped. Case 2: the
bias point is calculated using the ‘‘static model iteration’’ algorithm. In both cases, the

Figure 14. (a) SPICELib transient analysis with bias point calculation; (b) Difference between SPICELib and
PSpice transient analyses.
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time-sweep starts at the beginning of the transient analysis. Also, the actions triggered
by the control-signals, which affect only the ‘‘SPICELib part’’ of the model, do not
interfere with the analysis of the complete model.

In Case 1, only one description is enabled during the analysis in the SPICELib part
of the model: the circuit large-signal description. The static and the AC small-signal
descriptions of the circuit are disabled. As a consequence, the components interfacing
between the SPICELib part and the non-SPICELib part of the model have to: (1)
establish the required connections among the variables of the circuit large-signal
description and the variables of the non-SPICELib part of the model; and (2) impose
trivial boundary conditions (if required) to the static and the AC small-signal
description of the circuit, in order to obtain a complete model with the same number of
equations and unknown variables.

In Case 2, the static and the large-signal descriptions of the circuit are enabled during
the analysis. The AC small-signal description is disabled. The interface components
have to: (1) establish the required connections among the variables of the circuit large-
signal description and the variables of the non-SPICELib part of the model; (2) impose
adequate boundary conditions to the circuit static formulation (if required), in order to
allow the bias point calculation; and (3) impose trivial boundary conditions to the AC
small-signal description of the circuit (if required), in order to obtain a complete model
with the same number of equations and unknown variables.

The procedure to build the multi-domain model and to define the transient
analysis, using the Dymola modeling environment, is analogous to the one described in
Section 4:

Step 1. Define a new partial model: the multi-domain model. Drag and drop the
required components from the SPICELib.parts sub-library and from the other
Modelica libraries to the model window, connect them and set the value of the model
parameters.
Step 2. Define a new model: the transient analysis. Drag and drop the TRAN model
from the SPICELib.analyses sub-library to the model window, and set the value of
the analysis parameters. One of these parameters is the name of the model defined in
Step 1. Other parameters define whether the bias point calculation is skipped or
performed, and the algorithm to apply for bias point calculation.
Step 3. Simulate the analysis model defined in Step 2.

9. Conclusions

SPICELib is an object-oriented model library that implements some of the modeling
and analysis capabilities of the circuit simulator PSpice. SPICELib contains device and
analysis models. Device analog models include passive and semiconductor devices,
independent and controlled sources, and IC-symbols. Three analysis models have been
implemented: operating point (OP), AC sweep (AC) and transient (TRAN); in addition
to four algorithms for bias point calculation. The SPICELib device and analysis
models, and the SPICELib algorithms for bias point calculation, are completely
written in the Modelica modeling language.

The fundamental hypotheses and the architecture of the SPICELib library have been
discussed, in addition to the modeling of the circuit analyses and the device atomic-
models. A case study has been fully developed, in order to illustrate the SPICELib use
and validation.
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