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ABSTRACT

The “translation” of the SPICE capabilities into Modelica language would allow
combining the best of each tool: the SPICE expertise at circuit analysis and the
Modelica/Dymola expertise at object-oriented modelling and simulation of hybrid
systems. This contribution intends to be a first step to achieve this goal. A reduced group 
of SPICE device models are translated into Modelica language for OP, AC and TRAN 
analyses. It includes passive components (resistor and capacitor), independent voltage and 
current sources, and the SPICE2 level1 n-channel MOSFET.
 

 
 
 
 
 

 

1. INTRODUCTION

The simulator SPICE is an essential computer-aid for 
circuit design. Originally, SPICE2 was conceived as 
a stand-alone, general purpose, analog circuit
simulator. However, since the development of
SPICE2 at the University of California in 1975,
many commercial and freeware SPICE-compatible
simulators have been developed for a variety of
systems (UNIX, PC, etc). Most of these tools
• run in connection with other simulation

programs used in the circuit design flow,
• support analog, digital and mixed analog/digital 

simulation, and 
• include improved device models, additional

analyses and device model libraries.

They provide some support to the multi-domain
system simulation facilitating the analog behavioral 
modelling (ABM). Behavioral parts allow defining a 
circuit segment as a mathematical expression or a
lookup table. PSpice (OrCAD, 1999) is a
commercial, PC-version, SPICE-compatible
simulator. PSpice ABM library includes math
functions, limiters, Chebyshev filters, integrators,
differentiators, etc. However, the SPICE-based
simulators impose a hard restriction to ABM: the
function continuity (OrCAD, 1999; Kielkowski,
1998).

Device equations built into SPICE are continuous.
For instance, voltage- or current-controlled switches 
are not ideal: they have a finite (very small) “on”
resistance and (very large) “off” resistance. The
switch resistance changes smoothly between the two 

as its control voltage or current changes. Equally, the 
functions available for ABM are also continuous (for 
instance, the int function can not be implemented).
The reason behind this requirement is the heavy use 
that SPICE numerical algorithms make of continuity 
(OrCAD, 1999; Kielkowski, 1998). In consequence, 
SPICE-based simulators are not suited for the
simulation of hybrid models (i.e., combined
continuous/discrete models) due to its inability to
handle discrete events.

On the contrary, general-purpose modelling
languages are intended for the simulation of multi-
domain hybrid models. To this respect, the object-
oriented modelling language Modelica (Modelica,
2000) is intended to serve as a standard format so
that models arising in different domains can be
exchanged between tools and users (Aström,
Elmqvist and Mattsson, 1998). The “translation” of
the SPICE capabilities (device models and analysis
modes) into Modelica language is one of the
Modelica library improvements that have been
suggested (Clauss et al., 2000). It would allow
combining the best of each tool: the SPICE expertise 
at circuit analysis and the Modelica/Dymola
(Elmqvist et al., 2000) expertise at object-oriented
modelling and simulation of hybrid systems. This
contribution intends to be a first step to achieve this 
goal.

An important feature of SPICE device models is their 
variable-structure nature. A model is said to have a 
variable structure when its mathematical description 
changes during the simulation run. A different device 
model is formulated for each analysis mode:
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• static model (DC analysis),
• AC small-signal model (AC analysis), and
• large-signal model (transient analysis).
The transitions among these three device
formulations are carried out in simulation time. A
DC analysis (Massobrio and Antognetti, 1993)
• can be performed prior to a transient analysis to 

determine the transient initial conditions, and 
• it is automatically performed prior to an AC

small-signal analysis to determine the linearized, 
small-signal models for the non-linear devices.

In addition, some DC analysis algorithms require the 
combined use of the three device formulations.

In this contribution three analysis modes are
considered:
• bias point (OP),
• AC sweep (AC), and
• transient analysis (TRAN),
for three analog device types:
• Passive devices: linear resistor and capacitor.
• Independent voltage and current sources.
• Semiconductor device: SPICE2 level1 n-channel

MOSFET. It is composed of linear resistors,
voltage-dependent capacitors and voltage-
controlled current sources.

In addition, IC1 and IC2 pseudo-components are
modelled for setting initial conditions.

Model structuring into libraries and the interaction
between models are discussed in Section 2. The way 
of using the model libraries to analyse the user-
defined circuits is also outlined. Initial condition
setting is described Section 3. Two procedures are
supported: IC symbols and the capacitor IC property. 
The translation into Modelica language of the
passive device and source models is addressed in
Section 4. Device models have a variable structure
and signals are defined to control the model structure 
transitions. Each analysis mode consists on an
ordered sequence of elementary operations implying 
changes in the device model structure. Analysis
models set the control signals in order to accomplish 
the required device-model structure changes.
Analysis models are discussed in Section 5. Bias
point calculation is the most problematic step from
the numerical point of view. Four alternative bias
point calculation algorithms are implemented.
Finally, level1 NMOS model is outlined in Section 6.

For the sake of simplicity, neither parameter
dependence with temperature nor TEMP analysis
have been considered in the present library release.
Temperature is considered a constant variable
intervening in some device constitutive relations (for 
instance, the MOSFET source-substrate pn-junction
model).

2. ARCHITECTURE

A two-level architecture is proposed (see Fig. 1):
• Upper (controller) level is composed of the

analysis models.
• Lower (controlled) level is composed of the

device models.

• Unidirectional control signals (arrow in Fig. 1)
and global variables transmit the information
from analysis models to device models. In
addition, global parameters sets properties
common to both analysis and device models.

Controller level: analysis models

ANALYSES package contains the OP, TRAN and
AC models. Bias point calculation is a part of OP and 
AC analyses and it is an option of TRAN analysis.
Therefore, the bias point calculation algorithms are
programmed in a separate partial model, called
BiasPointCalculation, inherited by the analysis
models (see Fig. 1). Control signals (see Table 1) and 
global variables (see Table 2) are evaluated in the
analysis models.

Control signal T W R
Ctrl_AC B * S
Ctrl_CBREAK_resetTran B BPC C
Ctrl_CBREAK_Tran2DC B * C
Ctrl_CBREAK_Tran2IC B * C
Ctrl_DC B BPC S
Ctrl_IC_clampDC B BPC C, IC
Ctrl_IC_clampTran B BPC C, IC
Ctrl_IC_mode I BPC C, IC
Ctrl_IS_inhibit B BPC S
Ctrl_IS_TranOP B BPC S
Ctrl_log_AC B * S, R
Ctrl_log_DC B BPC S, R
Ctrl_OP_mode I BPC S
Ctrl_OP_value I * S
Ctrl_RBREAK_Tran2DC B BPC R
Ctrl_Tran B * S

Table 1. Control signals.
T: Variable type. (B): Boolean. (I): Integer (0,1)
W: Control signal written during the… 

(BPC): bias point calculation. (*): other steps of the analyses.
R: Control signal read by …

(S): source. (C): capacitor. (R): resistor. (IC):IC symbols

scaleGMIN Scale factor of the “GMIN stepping”
algorithm for bias point calculation.

Freq AC small-signal frequency.

Temp Analysis temperature. 

Table 2. Global variables.

Controlled level: device models

Device models are grouped in three packages:
• BREAKOUT,
• SOURCE, and
• SPECIAL.
The models of BREAKOUT and SOURCE packages 
allow the composition of user-defined circuits, while 
the SPECIAL’s provide one way to specify the
simulation initial conditions. In addition, a fourth
package containing the device model interfaces has
been defined: INTERFACE.
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Figure 1. Two-level architecture.

Initialisation file

The initialisation file, init.mo, contains:
• Type definitions. Types conform to the Modelica 

SIunits package. However, they are redefined for 
the sake of conciseness when used. For instance:

type Voltage   = 
Modelica.SIunits.Voltage;

• INIT package. The control signals, the global
variables and the global parameters are defined 
in the INIT package. It contains two partial
models (see Fig. 1):
• Analysis, inherited by the analysis models.
• Part, inherited by the device models.
The same set of control signals, variables and
parameters is defined in both partial models:
Analysis model variables are inner ones, while
Part variables are outer ones.

Global parameters

Two global parameters have been defined (see Table 
3). TIME_SCALE is used for setting the length of the
source-ramping processes of some bias point
calculation algorithms. In addition, it is used for
establishing the time elapsed between consecutive
control signal transitions (conceptually similar to the 
system clock period). To this end, the integer
parameter TIME_SLOT is defined in the analysis
models. It represents a percentage (1 to 100). The

time between consecutive events, CLOCK, is defined
as follows:

CLOCK = TIME_SLOT * TIME_SCALE / 100

TIME_SCALE It is intended for providing an (rough) 
approximate value of the circuit time-
constant.

LOG_RESULTS It determines the amount of
information to be logged during the
bias point calculation and the AC
small-signal analysis.

Table 3. Global parameters

TIME_SCALE parameter plays another important role
(not implemented in the current release of the
libraries): redefine the units of the time variable in 
order to allow the adequate numerical solution of the 
system. Circuit simulation for microelectronics
applications requires very small time values in
comparison with the by-default time-related DAE-
solver parameters. For this reason, it is best to
include a scale factor between the circuit time and
the DAE-solver time (i.e., the time variable). 

Similar considerations will be made when discussing 
the pn-junction model. The use of the international
system of units for the current is inadequate, because 
it leads to numerical problems. Large differences in 
the order of magnitude of the variables (for instance, 
the current and the voltage) makes impossible to set 

model VSource

partial model BiasPointCalculation
extends INIT.Analysis;
replaceable model Circuit = NULL;
extends Circuit;

model OP
extends BiasPointCalculation;

package ANALYSES (analyses.mo)

partial model Part
outer...

package INIT
type ...

(init.mo)

function …

(functions.mo)

package INTERFACE    (interface.mo)

partial model Analysis
inner…

model Tran
extends BiasPointCalculation;

model AC
extends BiasPointCalculation;

model IC1
extends INTERFACE…
extends INIT.Part;

package SPECIAL  (special.mo)

model IC2
extends INTERFACE…
extends INIT.Part;

model Ground
extends INTERFACE…

model Rbreak
extends INTERFACE…
extends INIT.Part;

model Cbreak
extends INTERFACE…
extends INIT.Part;

model MOST
extends INTERFACE…
extends INIT.Part;

package BREAKOUT  (breakout.mo)

package SOURCE 

model ISource

package WAVEFORMS 

(source.mo)

…
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adequate values for the numerical algorithm
tolerances, the Dymola eveps parameter for event
detection (Elmqvist, Cellier and Otter, 1993), etc.
This fact is taken into account by re-formulating the 
model constitutive relations. In order to keep the
compatibility with Modelica standard libraries, the
international system of units is used for all the model 
terminal variables.

Performing circuit analyses

Two pieces of information are needed to perform a
circuit analysis: the analysis model and the circuit
model. The analysis models inherit (as a replaceable
model, called Circuit) the circuit model (see
BiasPointCalculation in Fig 1). The analysis model 
instantiations have to contain the redeclaration of the 
Circuit model. Consider the following example:

(File: my_circuit.mo)
model my_circuit
…
end my_circuit;

model circuitAnalysis_OP =
ANALYSES.OP ( redeclare model Circuit =
              my_circuit);

model circuitAnalysis_Tran =
ANALYSES.Tran ( redeclare model Circuit =
                my_circuit);

model circuitAnalysis_AC =
ANALYSES.AC ( redeclare model Circuit =

         my_circuit);

The analysis to perform (only one per run) is selected 
in the script file. For instance, AC analysis:

(File: my_circuit.mos)
openModel("pspice.mo");
openModel("my_circuit.mo");
checkModel(problem="circuitAnalysis_AC");
translateModel(problem=

"circuitAnalysis_AC");

The file pspice.mo:
• imports the library files (see Table 4), and
• defines the graphic windows containing the

model icons.

File Package
analyses.mo ANALYSES
breakout.mo BREAKOUT
functions.mo
init.mo INIT
interface.mo INTERFACE
pspice.mo PSPICE
source.mo WAVEFORMS

SOURCE
special.mo SPECIAL

Table 4. Complete list of files and packages.

3. SETTING INITIAL CONDITIONS

Adopting the PSpice methodology (OrCAD, 1999),
two equivalent procedures are provided to specify
the analysis initial conditions:
• Setpoint pseudo-components: IC1 and IC2 (see

Fig. 1, SPECIAL package). IC1 is a one-pin
symbol that allows setting the initial voltage on a 
node. IC2 is a two-pin symbol that allows setting 
the initial voltage between two nodes.

• The IC property of capacitors (inductor model is 
not included in this library release).

IC property allows associating the initial condition
with a device, while the IC symbols allow the
association to be with a node or a node pair. Note
that these ways of specifying the simulation initial
condition substitute the Dymola standard procedures 
to set the initial value of the state variables.

Two operations require the static model solution: 
• bias point calculation (during OP and AC), and
• transient initial condition calculation.
When the transient initial condition calculation is
skipped (a Boolean parameter controls this option),
the devices with the IC property defined start with
the specified value. However, all other such devices 
have an initial state of zero. IC symbols are ignored.

IC symbols clamp the voltage for the entire bias
point calculation. PSpice attaches a voltage source
with a 0.0002 ohm series resistance (R_EPS) at each 
net to which an IC symbol is connected. This is the 
set-up of the IC-symbol Modelica model. The model 
of the capacitor IC-property depends on whether the 
bias point is calculated or the calculation is skipped:
• During the bias point calculation, the capacitor

IC property is implemented using an IC2 symbol 
in parallel with the capacitor. The capacitor
model contains this voltage-clamp circuit.

• When the initial transient solution is skipped, the 
capacitor voltage is initialised to its IC value
using a “when clause”.

Control signals have been defined to set the state
(open/close) of the IC symbols switches, initialise the 
capacitor voltage drop, etc.

4. DEVICE MODELS

Resistor, capacitor and independent source models
are discussed.

4.1. Interface

Device models are composed of three formulations:
static, AC small-signal and large-signal. Each model 
formulation is described by its own set of equations 
and variables. Pin model is conceived to allow the
simultaneous connection of the three formulation
terminal variables. AC small-signal currents and
voltages (complex numbers) are represented in
rectangular coordinates (i.e., real and imaginary).
The current is positive when flows into the pin.

The interface of the two-pin devices is composed of 
two Pin connectors. PSpice sign criterion for current 
is adopted: positive current flows from the (+) node 
through the device to the (-) node.

(File: interface.mo)
connector Pin
  Voltage      vDC    "Static model”;
  Voltage      vTran  "Large-signal model";
  Voltage      vAC_Re "AC small-signal";
  Voltage      vAC_Im "AC small-signal”;

flow Current iDC    "Static model”;
flow Current iTran  "Large signal”;
flow Current iAC_Re "AC small-signal";
flow Current iAC_Im "AC small-signal";

…
end Pin;



Urquía A., Dormido S. DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ...

The Modelica Association 103 Modelica 2002, March 18−19, 2002

partial model TwoPin
   Pin      p   "(+) node";
   Pin      n   "(-) node";

…

4.2. Linear resistor

Resistor static model is shown in Fig 2. The purpose 
of the IC1-like circuits (switches, R_EPS resistors and 
voltage sources) is clamping the DC-formulation
voltage at the pins. The bias point calculation
algorithm “dynamic model ramping” requires the
following operation: clamping the DC-formulation
voltage to the instantaneous value of the large-signal
formulation. The ctrl_RBREAK_Tran2DC signal
controls this information transfer between
formulations. When ctrl_RBREAK_Tran2DC becomes 
true:
• The source voltages (vDCclampP and vDCclampN)

are set to the instantaneous value of the transient 
voltage at the correspondent pin. Then source
voltages are held constant.

• The switches are closed. They remain closed
only while the signal is true.

The large-signal and AC small-signal models do not 
include these IC1-like circuits.

When Then
ctrl_RBREAK_Tran2DC vDCclampP = p.vTran;

vDCclampN = n.vTran;

Figure 2. Resistor static model.

4.3. Capacitor

Linear and voltage-dependent capacitors have to be
modelled. The partial model Capacitor describes all 
the capacitor behavior except its large-signal and AC 
small-signal capacitance. Cbreak model (linear
capacitor) and MOS1 capacitors extend Capacitor.

Capacitor static-formulation is shown in Fig. 3. The 
implementation of the IC property requires the IC2-
like circuit (switch, R_EPS resistor and vClampDC
source). Large-signal formulation is shown in Fig. 4. 
IC2-like circuit is also included because the
“dynamic model ramping” algorithm uses the large-
signal formulation during the bias point calculation. 
The Boolean signals
• ctrl_IC_clampDC, and
• ctrl_IC_clampTran.
controls the static and large-signal model switches
respectively.

The capacitor parameter IC_ENABLED enables or
disables the IC property. It allows distinguishing
between the cases when IC is intentionally set to zero 
and those cases when the IC property is not enabled 
(and its by-default value is also zero).

The signal ctrl_IC_mode controls vClampDC and
vClampTran voltages. Some bias point calculation
algorithms need the independent sources ramping
from zero up to their nominal initial values. When
implementing these algorithms, the voltage clamping 
sources of the IC symbols and the capacitor IC
property need also be ramped from zero to their
respective IC values. Two cases are distinguished:
• ctrl_IC_mode==0, the clamping voltage

(vClampDC or vClampTran) is constant and
equal to the IC value.

• ctrl_IC_mode==1, the clamping voltage is
ramped from zero up to its IC value.

In addition, control signals trigger instantaneous
changes in the capacitor large-signal voltage drop
(see Fig. 4).

Figure 3. Capacitor static model.

When then
ctrl_CBREAK_Tran2IC
and IC_ENABLED

reinit(vTran, IC);

ctrl_CBREAK_Tran2DC reinit(vTran, vDC);

ctrl_CBREAK_resetTran reinit(vTran, 0);

Figure 4. Capacitor large-signal model.

4.4. Independent sources

There are a lot of similarities between the models of 
the voltage and the current independent sources:
• the interface,
• the DC and transient analysis signals, etc.
The elements in common are defined in the partial
model Stimulus (SOURCE package) and the source
models (VSource and ISource, see Fig. 1) inherit it.

Source model parameters allow defining the DC and 
AC characteristics of the source:
• DC analysis: DC_VALUE.
• AC analysis: AC_MAG and AC_PHASE.
Time-dependent waveforms used in the transient
analyses are defined in the WAVEFORMS package 
(see Fig. 1): EXP, PULSE and PWL. PSpice standard 
has been adopted for waveform parameter names.
The Stimulus model inherits the waveform model as

ctrl_RBREAK_Tran2DC

p (+) n (-)

R_EPS

vDCclampN

R_EPS

vDCclampP

R

ctrl_IC_clampDC
and IC_ENABLED

ctrl_IC_mode

p (+)

n (-)

vDC

+

-

R_EPS

vClampDC

ctrl_IC_clampTran
and IC_ENABLED

ctrl_IC_mode

p (+)

n (-)

vTran

+

-

R_EPS

vClampTran

C
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a replaceable model. Therefore, the waveform model 
can be declared when instantiating the source model 
(no waveform is selected by default). Some examples 
are provided in Table 5.

DC and AC specifications:
SOURCE.VSource  V1(
   DC_VALUE=3, AC_MAG=10, AC_PHASE=45 );

EXP waveform:
SOURCE.VSource  V1(
   DC_VALUE=3, AC_MAG=10, AC_PHASE=45,
   redeclare model
   TransientSpecification = 

    WAVEFORMS.EXP( S1=1,S2=2,TD1=1,TC1=1,
                   TD2=3,TC2=1 ));

PULSE waveform:
SOURCE.VSource  V1(
   DC_VALUE=3, AC_MAG=10,

redeclare model
    TransientSpecification =
    WAVEFORMS.PULSE( S1=1,S2=2, TD=1,TR=1,
                     PW=3,TF=1, PER=8 ));

PWL waveform:
SOURCE.VSource  V1(
   DC_VALUE=3, AC_MAG=10, AC_PHASE=30,

redeclare model
    TransientSpecification =
    WAVEFORMS.PWL(
      signalCorners = { 1, 2, 4, 8, 16 },
      timeCorners   = { 0, 1, 2, 3, 4 } ));

Table 5. Examples of source instantiations.

DC analysis

The control signal ctrl_DC enables or disables the
DC model:
• While ctrl_DC==false, the DC value of all the 

independent sources of the circuit is zero.
• While ctrl_DC==true, the DC value of the

sources is determined by the integer parameters:
• ctrl_OP_mode, and
• ctrl_OP_value.

In order to set the source value when calculating the 
initial transient condition, a parameter is associated 
to each waveform model: TRANS_INITIAL. This
parameter coincides with the waveform initial value.

The parameter ctrl_OP_value determines the source 
value during the static model solution:
• ctrl_OP_value==0: source value is DC_VALUE.
• ctrl_OP_value==1: value is TRANS_INITIAL.

The parameter ctrl_OP_mode determines the mode
of reaching the previous value:
• ctrl_OP_mode==0: the source is hold constant to 

the value.
• ctrl_OP_mode==1: the source value is increased

linearly from zero with a slope equal to the value 
divided by TIME_SCALE.

The “dynamic model ramping” algorithm requires
the cancellation of the independent sources. The
control signal ctrl_IS_inhibit allows this
operation. While it is true:
• voltage independent sources are substituted by

opens (current=0), and
• current independent sources by shorts

(voltage=0).

Transient analysis

The control signal ctrl_Tran determines:
• whether the transient analysis is enabled, and the 

source signal is calculated of its associated
waveform (ctrl_Tran==true),

• or the static bias point calculation is enabled
(ctrl_Tran==false). The algorithm “dynamic
model ramping” requires the circuit large-signal
model simulation in order to calculate a “good” 
initial value for static model iteration.

While ctrl_Tran==false, the source value is
determined by the parameter ctrl_IS_TranOP:
• While ctrl_IS_TranOP==false, the value is

zero.
• While ctrl_IS_TranOP==true, the value

depends on the parameters ctrl_OP_mode, and
ctrl_OP_value. The response associated to these 
parameters is the same than the previously
discussed for the static formulation.

AC small-signal analysis

While the control signal ctrl_AC is true, the AC
small-signal value of the source is set according to
the source parameters AC_MAG and AC_PHASE.
Otherwise, the value is zero. 

Model of the disabled formulations

It is important to notice that while a model
formulation is not enabled, the correspondent values 
of the independent sources are zero. In this situation, 
the circuit node voltages are trivially calculated and 
the simulation computational effort is not
unnecessarily increased. The control signals that
enable each of the three formulations are:
• ctrl_DC,
• ctrl_Tran, and
• ctrl_AC.

Total power dissipation

The bias point calculation includes the evaluation of 
the total power dissipation. It is calculated adding the 
contribution of all the independent voltage sources:

( )∑ −=

sourcesV
indep.all

DCDCDC ivW

The calculation is implemented thanks to the
Modelica capability of describing “physical fields”
(see Table 6). The PowerDisipation connector is
defined. The model of the voltage source contains:
• an instantiation of this connector,
• the declaration of an outer connector of this type,
• the connection between them.
The “environment” (inner) connector is defined in
the BiasPointCalculation model.

4.5. Log of analysis results

The analysis results are logged to the dslog.txt file
using the Dymola’s LogVariable function. Two
parameters control this information log:
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• LOG_RESULTS (global parameter). It allows
specifying the required detail level at logging
results (see Table 7).

• HIDDEN_COMPONENT. This device-dependent
parameter classifies the circuit devices into two
types: those whose variables have to be logged
always (HIDDEN_COMPONENT==false), and those
whose variables have to be logged only in
special cases (HIDDEN_COMPONENT==true).

The complex AC small-signal voltages and currents 
are logged in Cartesian and polar coordinates. In
addition, the polar magnitude is also expressed in
decibels (defined as 20log10(  )).

(File: interface.mo)
connector PowerDisipation

flow Power disipatedPower; 

…
(File: source.mo)
model VSource

…
outer INTERFACE.PowerDisipation

           TotalPowerDisipation;
 INTERFACE.PowerDisipation powerDisipation;

…
equation
when ctrl_log_DC then

  powerDisipation.disipatedPower =
                             vDC*(-iDC);
end when;
connect ( powerDisipation,

           TotalPowerDisipation );

…
(File: analyses.mo)
partial model BiasPointCalculation
   inner INTERFACE.PowerDisipation

TotalPowerDisipation;

…
Table 6. Total power dissipation calculation.

HIDDEN_COMPONENT

False true

Voltage at resistor pins 0, 1, 2 2
Current through 
independent voltage sources

0, 1, 2 2

Total power dissipation 0, 1, 2 2
Voltage drop at resistors 1, 2 2
Current through resistors 1, 2 2
Power dissipation of each 
independent voltage source

1, 2 2

Table 7. LOG_RESULTS values producing the variable 
log as a function of HIDDEN_COMPONENT value.

5. ANALYSES

PSpice OP, AC and TRAN analyses are translated
into Modelica language. Note that analysis models
force the simulation end when they have completed 
their operations (terminate function is used). Large
simulation times should be selected in the Dymola
program window to avoid interfering with analysis
execution.

5.1. Bias point calculation

PSpice provides three alternative algorithms for
solving the circuit static model (OrCAD, 1999): 
• static model iteration, 
• static model ramping, and 
• GMIN stepping.

PSpice first tries to solve the static model of the
circuit using the Newton-Raphson algorithm. If a
solution is not found and “GMIN stepping” is
enabled (using .OPTION STEPGMIN) then GMIN
algorithm is applied. If it also fails or it is not enabled 
then “static model ramping” is applied. In addition to 
these three algorithms, a fourth one is programmed in 
the BiasPointCalculation model: the “dynamic
model ramping” algorithm, proposed in (Cellier,
1991). The SOLVE_STATIC parameter determines
which of the four algorithms to use. 

Two control signals, internal to the analysis models, 
are defined to synchronize the bias point calculation 
with other analysis operations:
• biasPoint. Its transition from false to true

indicates that the static-model solution must
start.

• biasPointCalculated. When the static-model
solution is just finished, it becomes true.

The BiasPointCalculation model reads the value of
biasPoint signal and writes biasPointCalculated.

Next, the four algorithms are briefly discussed. The 
control signal transitions required for algorithm
completion are shown, but for the sake of clarity,
their cause-effect relationships are omitted. Two
additional comments:
• ctrl_OP_value signal is not written by the bias

point calculation algorithms.
• Control signals evaluated at bias point

calculation (see Table 1) and hold to false during 
the whole algorithm, are omitted.

Static model iteration (SOLVE_STATIC:=0)

The solution of the static problem is left in hands of 
the modelling language. PSpice has two symbols to
provide an initial guess for Newton-Raphson
algorithm: NODESET1 and NODESET2 (OrCAD,
1999). These symbols have not been translated into
Modelica language because they do not represent any 
advantage compared to Dymola Initial Calculation
methods (Elmqvist et al., 2001). The Modelica
implementation of the algorithm is shown in Fig. 5.

Figure 5. Static model iteration algorithm.

Static model ramping (SOLVE_STATIC:=1)

PSpice cuts back the power supplies to almost zero
(0.001%) so that all non-linearities are turned off.
When the circuit is linear, a solution can be found
(very near zero, of course). The initial condition of
this first step is zero for all voltages. Then, PSpice
works its way back up to 100% power supplies using 

CLOCK

biasPoint

ctrl_DC

ctrl_log_DC

biasPointCalculated

ctrl_IC_clampDC
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a variable step size (OrCAD, 1999). The process
relies heavily on the equation continuity with respect 
to the power supplies.

This algorithm is translated into Modelica language 
ramping the static-formulation value of the
independent sources from zero up to their target
values. The clamping voltages of the IC symbols and 
the capacitor IC property are also adequately ramped. 
The value of the parameter TIME_SCALE determines
the length of the ramping. The algorithm is
implemented by means of the signal transitions
shown in Fig. 6.

Figure 6. Static model ramping algorithm.

GMIN stepping (SOLVE_STATIC:=2)

GMIN stepping attempts to find a solution for the
static model (with power supplies at 100%) by
starting with a large value of GMIN, initially 1.0e10 
times the nominal value. If a solution is found at this 
setting, PSpice reduces GMIN by a factor of 10 and 
tries again. This continues until either GMIN is back 
to the nominal value, or a repeating cycle fails to
converge. This algorithm makes heavy use of
equation continuity with respect to GMIN model
parameters. The Modelica implementation of this
algorithm is shown in Fig. 7.

Figure 7. GMIN stepping algorithm.

Dynamic model ramping (SOLVE_STATIC:=3)

The initial condition to iterate the static model is
obtained by simulating the large-signal model
(Cellier, 1991). A transient analysis is performed: all 
sources are ramped up from zero to the desired initial 
value for the simulation and this value is held for
some time to allow the circuit to stabilise. Then the 
large-signal formulation voltages are transferred to
the static model (using ctrl_RBREAK_Tran2DC and
ctrl_IS_inhibit). This static-circuit setting is held 
for a clock cycle. Then, the power supplies are
connected to the circuit, the resistor voltage-
clamping circuits are disconnected, and the static
model is solved. The Modelica implementation of the 
algorithm is shown in Fig. 8.

Figure 8. Dynamic model ramping algorithm.

5.2. Bias point analysis (OP)

The OP analysis (see Fig. 9):
• forces the biasPoint signal to become true,
• sets ctrl_OP_value signal to zero, and
• finish the simulation one clock cycle after the

biasPointCalculated signal becomes true.

Figure 9. OP analysis signals.
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Example

Consider the application of the OP analysis
algorithms to the trivial circuit shown in Fig 10.
Dymola’s experiment StopTime variable is set to an 
arbitrary large value: 100. The TIME_SLOT,
TIME_SCALE and LOG_RESULTS parameters are left to 
their by-default values: 10%, 1s and 0 respectively.

Figure 10. Simple example of a RC circuit.

• SOLVE_STATIC:=0. Once finished the simulation
(at T=0.1), dslog.txt file contains the results:
V1_iDC(1e-010) = -2
V1_vDC(1e-010) = 3
R1_n_vDC(1e-010) = 1
ctrlx_0logx_0DC(1e-010) = 1
V1_powerDisipation_disipatedPower(1e-010)=6

• SOLVE_STATIC:=1. The dslog.txt file contains the 
results, logged at T=1. The simulation terminates 
at T=1.1 (see Fig 11).

• SOLVE_STATIC:=2. The circuit does not contain
any device with the GMIN parameter, so this
algorithm is equivalent to SOLVE_STATIC:=0. 
Results are logged at T=1.1 and the simulation
finishes at T=1.2 (see Fig. 12).

• SOLVE_STATIC:=3. Results are logged at T=2.2
and the simulation finishes at T=2.3. Large-
signal and static voltages at R1.n node are shown 
in Fig. 13. At T=2.0: large-signal to static info. 
transfer. At T=2.1: Static model solution.

0 0.4 0.8 1.2

0

2

4
R1.n.vDC V1.vDC

Figure 11. Voltage at circuit nodes.
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Figure 12. GMIN scale factor
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Figure 13. Static and large-signal voltages.

5.3. AC sweep analysis (AC)

The TYPE_AC_SWEEP parameter defines the frequency 
sweep type (LIN and DEC PSpice arguments):
• TYPE_AC_SWEEP==0: frequency linear sweep.
• TYPE_AC_SWEEP==1: the frequency is swept

logarithmically by decades.

AC small-signal analysis (see Fig. 14):
• forces the biasPoint signal to become true, and
• sets ctrl_OP_value signal to zero.
When biasPointCalculated becomes true, the AC
analysis:
• forces ctrl_AC to become true, enabling the AC 

model.
• Starts the frequency sweep. The frequency

variation in time depends on the sweep type. In 
both cases, the required log frequencies are
spaced at regular time-intervals of length
2*CLOCK. Therefore, the ctrl_log_AC signal is a 
pulse train of period 2*CLOCK.

The simulation is finished one clock cycle after the
frequency reaches END_FREQUENCY. An AC analysis
of the Fig 10 circuit is shown in Fig 15.

Figure 14. AC analysis implementation.
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Figure 15. Example of AC small-signal analysis.
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5.4. Transient analysis (TRAN)

When the transient simulation is started, the value of 
the time variable is different of zero. For this reason, 
a variable is defined to measure the transient
simulation time: timeTran. The length of the
transient simulation is set by the TRAN_STOP_TIME
parameter. The transient analysis depends on the
SKIP_INITIAL_TRAN_SOLUTION parameter.

SKIP_INITIAL_TRAN_SOLUTION:=false

When biasPointCalculated becomes true, the
circuit static model contains the transient initial
solution. Then (see Fig. 16):
• ctrl_CBREAK_Tran2DC becomes true. The large-

signal circuit state is initialised to the static-
circuit voltage values.

• ctrl_Tran becomes true. The large-signal device 
models are enabled.

The simulation terminates when timeTran reaches
the value TRAN_STOP_TIME.

Figure 16. Transient analysis with initial calculation.

SKIP_INITIAL_TRAN_SOLUTION:=true

At initial time (see Fig. 17):
• ctrl_CBREAK_Tran2IC becomes true. The large-

signal circuit state is initialised to the IC-
property correspondent values.

• ctrl_Tran becomes true. The large-signal device 
models are enabled.

Figure 17. Transient analysis w/o initial calculation.

6. SPICE2 LEVEL 1 NMOS 

The SPICE2 level1 MOS model is basically the
model proposed by Shichman and Hodges
(Massobrio and Antognetti, 1993). The Dymodraw
diagram of the model is shown in Fig 18. Each
substrate junction is modelled as a voltage-controlled
current source (diode-like icon in Fig. 18) in parallel 
with a voltage-controlled capacitor. DSI  is a non-

linear current source controlled by the voltages DSV ,

GSV  and BSV . The gate capacitance is modelled

using three voltage-controlled capacitors: GBC , GSC

and GDC .

Voltage-controlled capacitors have been modelled
extending the Capacitor model. Expressions for the 
large signal capacitance are provided and the small-
signal capacitance is evaluated at the bias point (i.e., 
when ctrl_AC signal becomes true). Large-signal
and static formulations of controlled current sources 
are equal (of course, each one is described by its own 
set of variables). Their small-signal models
(conductance) are evaluated at bias point.

Figure 18. SPICE2 level1 NMOS

Conclusions

A reduced set of SPICE device models has been
successfully translated into Modelica language for
OP, AC and transient analyses.
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