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Escuela Técnica Superior de Ingenieŕıa Informática
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Introducción

Los laboratorios virtuales son herramientas útiles para la enseñanza del control

automático de procesos. Pueden emplearse para explicar los conceptos básicos

del control, para mostrar los problemas desde nuevas perspectivas, y para ilustrar

cuestiones relativas al análisis y diseño (Johansson et al. 1998, Wittenmark et al.

1998, Dormido 2004).

El laboratorio virtual se compone de un modelo y de una vista. El modelo es la

representación matemática de aquellos aspectos del comportamiento del sistema

que son relevantes para el propósito del estudio. La vista es la interfaz gráfica

entre el usuario del laboratorio virtual y el modelo matemático. Su propósito

es doble: proporcionar una representación visual del comportamiento del modelo

simulado y facilitar la interacción del usuario con el modelo (interactividad).

Atendiendo a la forma en que el usuario puede actuar sobre el modelo, cabe

distinguir entre los dos tipos siguientes de interactividad:

– Interactividad continua. El usuario puede modificar el valor de las entradas,

los parámetros y las variables de estado del modelo en cualquier instante

durante la ejecución de la simulación. De este modo, el usuario percibe

instantáneamente cómo esos cambios afectan a la dinámica del modelo.
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– Interactividad discontinua. El usuario puede fijar el valor de los parámetros

y el estado inicial del modelo, iniciándose entonces automáticamente una ré-

plica de la simulación. Durante la ejecución de la simulación, no se permite

al usuario interactuar con el modelo. Una vez finalizada la simulación, sus

resultados son mostrados y analizados, permitiéndose entonces al usuario

interaccionar de nuevo con el modelo a fin de fijar un nuevo conjunto de

valores para los parámetros y las condiciones iniciales.

Existen varias herramientas software cuyo propósito es facilitar la creación

de laboratorios virtuales. Dos de ellas son Sysquake e Easy Java Simulations

(Ejs). Sysquake (Sysquake 2004, Piguet et al. 1999) es un entorno similar a

Matlab, especialmente concebido para el desarrollo de laboratorios virtuales con

interactividad discontinua. Ejs (EJS 2007, Esquembre 2004) es una herramienta,

de código abierto, para el desarrollo de laboratorios virtuales con interactividad

continua.

Estas herramientas software permiten crear de un modo sencillo la interfaz

gráfica interactiva de usuario (la vista del laboratorio virtual). Sin embargo, las

capacidades para la definición del modelo y los solucionadores numéricos que

proporcionan estas herramientas no se corresponden al estado del arte.

Modelica (Modelica 2005, Modelica 2007) es un lenguaje de modelado gratuito,

orientado a objetos, que facilita el paradigma del modelado f́ısico (Åström et al.

1998). Los modelos se describen matemáticamente mediante ecuaciones difer-

enciales, algebraicas y discretas (modelos DAE h́ıbridos). El lenguaje Modelica

facilita una descripción declarativa (no causal) del modelo, lo cual facilita una

mejor reutilización de los modelos. A consecuencia de todo ello, el uso de Modelica

reduce considerablemente el esfuerzo de modelado.

El lenguaje Modelica está concebido para su aplicación al modelado de sis-

temas multi-dominio (por ejemplo, con una parte eléctrica, otra mecánica, otra

hidráulica, otra termo-fluida, etc), resultando idóneo para describir el tipo de

modelo multi-dominio usado en el control automático.

El desarrollo de libreŕıas de modelos en Modelica es una ĺınea de investigación

muy activa, encontrándose disponibles en la actualidad libreŕıas de componentes,
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tanto comerciales como gratuitas, para el modelado en los dominios eléctrico,

mecánico, termo-fluido, hidráulico, f́ısico-qúımico, etc., aśı como libreŕıas que

soportan el modelado mediante formalismos tales como las redes de Petri, los

grafos de ligadura (bond graphs), etc.

Sin embargo, ni el lenguaje Modelica, ni los entornos de simulación que

soportan Modelica (OpenModelica (OpenModelica 2007, Fritzson et al. 2002,

2006), Dymola (Dynasim 2006), etc.), ofrecen capacidades para la simulación

interactiva. Por tanto, la aplicación de Modelica al desarrollo de laboratorios

virtuales es un campo de investigación abierto, en el cual se ha centrado la

presente tesis.

Objetivos

Se han planteado básicamente cuatro objetivos en el trabajo de investigación

descrito en esta tesis, que son descritos a continuación.

El primer objetivo de esta tesis es explorar la viabilidad de usar el lenguaje

Modelica en el desarrollo de laboratorios virtuales adecuados para la enseñanza

del control automático de procesos. La motivación es conseguir, mediante el

empleo del lenguaje Modelica, reducir el esfuerzo requerido para el desarrollo de

los laboratorios virtuales.

Se plantea como objetivo soportar el desarrollo de laboratorios virtuales con

interactividad continua y con interactividad discontinua, proponiéndose para ello:

1. La implementación de laboratorios virtuales con interactividad discontinua

combinando el uso de Sysquake y Modelica/Dymola. El modelo del labo-

ratorio virtual se describe usando el lenguaje Modelica y se traduce usando

Dymola. La vista del laboratorio virtual se desarrolla usando Sysquake.

Para poner en práctica esta aproximación, se propone el diseño y progra-

mación de una interfaz entre Sysquake y Dymosim. Dymosim es el fichero

ejecutable generado por Dymola para el modelo en Modelica. El propósito
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de esta interfaz es sincronizar la ejecución de la aplicación de Sysquake y

Dymosim.

2. La implementación de laboratorios virtuales con interactividad continua,

primero combinando el uso de Ejs y Modelica/Dymola, y finalmente usando

sólo Modelica/Dymola. Esto implica:

(a) Proponer una clasificación de las magnitudes interactivas y analizar

las restricciones que la formulación del modelo matemático impone en

la selección de las magnitudes interactivas.

(b) Proponer una metodoloǵıa sistemática para adaptar cualquier modelo

escrito en Modelica a una formulación que permita su simulación con

interactividad continua.

(c) Demostrar la viabilidad de combinar el uso de Ejs y Modelica/Dymola,

lo cual se lleva acabo usando las interfaces entre Ejs y Matlab/Simulink

y entre Matlab/Simulink y Dymola que han sido desarrolladas por

otros autores.

(d) Diseñar y programar una libreŕıa en lenguaje Modelica que facilite la

descripción de la vista del laboratorio virtual y que, a partir de dicha

descripción, genere automáticamente el código ejecutable de la vista y

la comunicación entre el modelo y la vista. El uso de esta libreŕıa, que

se denominará VirtualLabBuilder, permitirá describir el laboratorio

virtual usando sólo el lenguaje Modelica.

El segundo objetivo de este trabajo de tesis es traducir al lenguaje Modelica,

y adaptar para la simulación interactiva, la libreŕıa JARA (Urquia 2000). Esta

libreŕıa contiene modelos de algunos de los principios f́ısico-qúımicos que encuen-

tran aplicación en el modelado de procesos de transporte, termo-fluidos, cambios

de fase y qúımicos, etc., en el contexto del control automático. La motivación

detrás de este objetivo es obtener una libreŕıa en lenguaje Modelica que pueda

ser usada en el desarrollo de laboratorios virtuales para la enseñanza del control

automático de procesos qúımicos.
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El tercer objetivo de este trabajo de tesis es desarrollar un conjunto de

laboratorios virtuales para la enseñanza del control automático. Algunos de estos

laboratorios virtuales serán construidos usando modelos de plantas incluidas en la

libreŕıa JARA: un reactor qúımico, un evaporador industrial y un intercambiador

de calor.

Finalmente, el cuarto objetivo es demostrar que la metodoloǵıa propuesta

y el software programado para el desarrollo de laboratorios virtuales usando sólo

Modelica/Dymola se puede aplicar con éxito a:

1. La solución de un problema industrial real. Se desarrollará un laboratorio

virtual con aplicación al diseño y optimización de una lavadora indus-

trial, colaborando para ello con ingenieros del Departamento de Ingenieŕıa

Mecánica del Centro de Investigación Tecnológica IKERLAN (Mondragón,

España).

2. La implementación de un laboratorio virtual basado en un modelo en Mo-

delica complejo, de grandes dimensiones, que ha sido desarrollado por otros

autores. Para este propósito, se usará el modelo del comportamiento ter-

modinámico de una casa solar incluido en la libreŕıa BondLib (Weiner &

Cellier 1993, Cellier & Nebot 2005).

Estructura de la tesis

La tesis se ha estructurado en nueve caṕıtulos y tres apéndices, cuyo contenido

se describe brevemente a continuación.

Caṕıtulo 1. Comienza con una breve introducción, en la cual se discute la

motivación del trabajo de investigación realizado. Se describen los objetivos

y la estructura de la tesis. Finalmente, se enumeran las publicaciones a las

que ha dado lugar este trabajo de investigación, aśı como la participación

en proyectos de investigación subvencionados.

Caṕıtulo 2. Se presenta una breve revisión de los conceptos que juegan un papel

fundamental en la ĺınea de investigación desarrollada en esta tesis. En
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particular, se discute el estado del arte en modelado y simulación, y el

desarrollo de laboratorios virtuales, todo ello en el contexto del control

automático. Además, se describen algunas caracteŕısticas relevantes de la

libreŕıa JARA.

Caṕıtulo 3. Se propone una metodoloǵıa para la implementación de labora-

torios virtuales combinando el uso de Sysquake y Modelica/Dymola, y se

aplica al desarrollo de varios laboratorios virtuales para la docencia del con-

trol automático. En el Apéndice A se proporciona información adicional

sobre el software desarrollado: la libreŕıa de funciones LME denominada

sysquakeDymosimInterface.

Caṕıtulo 4. Se identifican diferentes tipos de magnitudes interactivas y se ana-

lizan las ligaduras que el modelo matemático impone sobre la selección de

las magnitudes interactivas. Sobre la base de esta discusión, se propone

una metodoloǵıa de modelado para adaptar cualquier modelo escrito en

Modelica a una formulación válida para su simulación interactiva continua.

En el Apéndice B se muestra el listado de dos modelos empleados para

ilustrar la aplicación de la metodoloǵıa.

Caṕıtulo 5. Se propone un procedimiento para desarrollar laboratorios virtuales

combinando el uso de Ejs, Matlab/Simulink y Modelica/Dymola, y se aplica

al desarrollo de varios laboratorios virtuales para la docencia del control

automático.

Caṕıtulo 6. Se propone un procedimiento para desarrollar laboratorios virtuales

usando sólo Modelica/Dymola, y se discute la estructura y uso de la her-

ramienta software que ha sido diseñada y programada para aplicarlo: la

libreŕıa en lenguaje Modelica denominada VirtualLabBuilder. Finalmente,

se describe el desarrollo de varios laboratorios virtuales aplicando los pro-

cedimientos propuestos y las herramientas software programadas.
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El Apéndice C contiene el manual de referencia de la libreŕıa VirtualLab-

Builder, tal como ha sido generado por la herramienta Dymola a partir de

la estructura y documentación de la libreŕıa.

Caṕıtulo 7. Se discuten los detalles más relevantes del desarrollo de la libreŕıa

VirtualLabBuilder, proporcionando las claves para la extensión de la misma

con nuevas clases.

Caṕıtulo 8. Se discute el desarrollo, empleando la libreŕıa VirtualLabBuilder,

de un laboratorio virtual del comportamiento termodinámico de una casa

solar.

Caṕıtulo 9. Se presentan las conclusiones del trabajo de investigación y algunas

posibles ĺıneas futuras de investigación.

Publicaciones y proyectos de investigación

El trabajo de investigación descrito en la presente Tesis Doctoral ha dado lugar

a las publicaciones citadas a continuación.

1. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2007): “Implementation

of Interactive Virtual Laboratories for Control Education Using Modelica”,

In: proceedings of European Control Conference 2007, Kos (Greece), paper

#WeA05.1, pp. 2679-2686.

2. Carla Mart́ın-Villalba; Alfonso Urqúıa; Sebastián Dormido (2007): “Desar-

rollo de Laboratorios Virtuales con Aplicación a la Enseñanza del Control

usando Modelica”, In: proceedings of V Jornadas de Enseñanza v́ıa Inter-

net/Web de la Ingenieŕıa de Sistemas y Automática (EIWISA’07), Segundo

Congreso Español de Informática (CEDI), Zaragoza (Spain).

3. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2007): “Virtual-lab of a

Solar House Implemented using VirtualLabBuilder Modelica Library”, In:

proceedings of Conference on Systems and Control (CSC’2007), Marrakech

(Morocco), paper #130.
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4. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2006): “An Approach to

Virtual-Lab Implementation using Modelica”, In: proceedings of European

Simulation and Modelling Conference (ESM’2006), Toulouse (France), pp.

137-141.

5. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2005): “Object-Oriented

Modeling of Virtual Laboratories for Control Education”, In: proceedings

of 16th IFAC World Congress, Prague (Czech Republic), Paper code: Th-

A22-TO/2.

6. Carla Mart́ın; Roćıo Muñoz; Alfonso Urqúıa; Sebastián Dormido (2005): “A

Distance Learning Course on Virtual-lab Implementation for High School

Science Teachers”, In: proceedings of 6th International Conference on Vir-

tual University, Bratislava (Slovak Republic), pp. 3-8.

7. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2005): “Modelado Ori-

entado a Objetos de Laboratorios Virtuales con Aplicación a la Enseñanza

de Control de Procesos Qúımicos”, In: proceedings of IV Jornadas de

Enseñanza v́ıa Internet/Web de la Ingenieŕıa de Sistemas y Automática

(EIWISA’05), Primer Congreso Español de Informática (CEDI), Granada

(Spain), pp. 21-26.

8. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2005): “Modeling of

Interactive Virtual Laboratories with Modelica”, In: proceedings of 4th

International Modelica Conference, Hamburg (Germany), pp. 159-168.

9. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2004): “JARA2i - A Mo-

delica Library for Interactive Simulation of Physical-Chemical Processes”,

In: proceedings of European Simulation and Modelling Conference, Paris

(France), pp. 128-132.

10. Carla Mart́ın; Alfonso Urqúıa; José Sánchez; Sebastián Dormido; Fran-

cisco Esquembre; Jose L. Guzman; Manuel Berenguel (2004): “Interactive

Simulation of Object-Oriented Hybrid Models, by Combined Use of Ejs,
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Matlab/Simulink and Modelica/Dymola”, In: proceedings of 18th European

Simulation Multiconference, Magdeburg (Germany), pp. 210-215.

11. Alfonso Urqúıa; Carla Mart́ın; Sebastián Dormido (2005): “Design of SPICE-

Lib: a Modelica Library for Modeling and Analysis of Electric Circuits”,

Mathematical and Computer Modelling of Dynamical Systems, Vol. 11, No.

1, pp. 43-60.

12. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido (2003): “SPICELib -

Modeling and Analysis of Electric Circuits with Modelica”, In: proceedings

of 3rd International Modelica Conference, Linkoping (Sweden), pp. 161-170.

Trabajos en proceso de revisión

Los siguientes trabajos se encuentran en proceso de revisión:

1. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido: “Object-Oriented Mod-

elling of Virtual-Labs for Education in Chemical Process Control”, submit-

ted for publication in Computer Chemical Engineering, Elsevier.

2. Carla Mart́ın-Villalba; Alfonso Urqúıa; Sebastián Dormido: “An Approach

to Virtual-Lab Implementation using Modelica”, submitted for publication

in Mathematical and Computer Modelling of Dynamical Systems, Taylor &

Francis.

3. Carla Mart́ın; Alfonso Urqúıa; Sebastián Dormido: “Educación a Distancia

del Profesorado de Ciencias en el Desarrollo de Laboratorios Virtuales”, sub-

mitted for publication in Revista Iberoamericana de Educación a Distancia

(RIED), AIESAD.

4. Carla Mart́ın-Villalba; Félix Mart́ınez; Alfonso Urqúıa; Sebastián Dormido:

“Implementation in Modelica of a Virtual-Lab for Testing Washing Machine

Designs”, regular paper submitted for the European Simulation and Mod-

elling Conference 2007.
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Proyectos de investigación

La mayoŕıa de los resultados desarrollados en la tesis doctoral han sido obtenidos

en el marco de diferentes proyectos de investigación:

1. “Control de sistemas complejos en la loǵıstica y producción de bienes y

servicios. Acrónimo: COSICOLOGI-CM”, IV PRICIT 2005-2008. Plan

Regional de Ciencia y Tecnoloǵıa de la Comunidad de Madrid. Ref. S-

0505/DPI/0391, Enero 2005 - Diciembre 2008, Investigador principal: Prof.

Dr. Sebastián Dormido Bencomo.

2. “Herramientas interactivas para el modelado, visualización, simulación y

control de sistemas dinámicos”, CICYT, DPI 2004-01804, Enero 2004 -

Diciembre 2006, Investigador principal: Prof. Dr. Sebastián Dormido

Bencomo.

3. “Laboratorios virtuales y remotos de control automático: análisis, diseño

y desarrollo”, CICYT, DPI 2001-01012, Enero 2002 - Diciembre 2004,

Investigador principal: Prof. Dr. Sebastián Dormido Bencomo.

Conclusiones

Se han propuesto tres enfoques diferentes para el desarrollo de laboratorios vir-

tuales usando el lenguaje Modelica:

1. El desarrollo de laboratorios virtuales con interactividad discontinua, com-

binando el uso de Sysquake y Modelica/Dymola. Este trabajo se encuentra

resumido en (Martin et al. 2005b,c).

2. El desarrollo de laboratorios virtuales con interactividad continua, combi-

nando el uso de Ejs y Modelica/Dymola. El planteamiento y los resultados

obtenidos se resumen en (Martin et al. 2004a,b, 2005a,b,c).
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3. El desarrollo de laboratorios virtuales con interactividad continua, usando

sólo Modelica/Dymola. Este trabajo se encuentra resumido en (Martin

et al. 2006, Martin-Villalba et al. 2007, Martin et al. 2007).

Se han propuesto las metodoloǵıas y desarrollado las herramientas software

necesarias para llevar a la práctica las tres métodos anteriormente expuestos para

el desarrollo de laboratorios virtuales. En concreto:

1. Se ha programado una interfaz entre Sysquake y Dymosim. Esta interfaz

consiste en un conjunto de funciones en el lenguaje LME, que pueden ser

invocadas desde las aplicaciones de Sysquake. Dicha interfaz está disponible

en http://www.euclides.dia.uned.es

2. Se ha propuesto una metodoloǵıa para adaptar cualquier modelo escrito en

Modelica a una formulación válida para la simulación con interactividad

continua. Se han considerado los dos casos siguientes:

(a) Pueden definirse todas las magnitudes interactivas simultáneamente

como variables de estado.

(b) Lo anterior no es posible, con lo cual es necesario soportar simultánea-

mente varias selecciones de las variables de estado.

3. Se ha propuesto un procedimiento para desarrollar laboratorios virtuales

combinando el uso de Ejs y Modelica/Dymola, valiéndose para ello de las

interfaces existentes entre Ejs y Simulink, y entre Dymola y Simulink.

4. Se ha diseñado y programado la libreŕıa en lenguaje Modelica denominada

VirtualLabBuilder, gracias a la cual puede describirse el laboratorio virtual

empleando únicamente lenguaje Modelica. Su documentación on-line está

disponible en http://www.euclides.dia.uned.es

La metodoloǵıa propuesta para adaptar modelos escritos en Modelica a la

simulación interactiva ha sido aplicada con éxito a las dos libreŕıas indicadas a

continuación. Ambas pueden ser descargadas de http://www.euclides.dia.uned.es
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1. La libreŕıa JARA ha sido traducida al lenguaje Modelica y ha sido adaptada

para la simulación con interactividad continua y discontinua. Esta nueva

versión de la libreŕıa JARA, en lenguaje Modelica y adecuada para la

simulación interactiva, se ha denominado JARA 2i.

2. Se ha diseñado y programado en Modelica la libreŕıa tankProcessLAB, y se

ha adaptado para la simulación con interactividad continua y discontinua.

Las metodoloǵıas propuestas y las herramientas software programadas han

sido aplicadas con éxito al desarrollo de los siguientes laboratorios virtuales para

la educación en control de procesos:

– Laboratorios virtuales con interactividad discontinua. Laboratorios vir-

tuales de un controlador de histéresis, un reactor qúımico, un intercam-

biador de calor de doble tubo y un evaporador industrial.

– Laboratorios virtuales con interactividad continua. Laboratorios virtuales

de un sistema de cuatro tanques, un evaporador industrial, un reactor

qúımico y un intercambiador de calor de doble tubo.

Finalmente, el trabajo de investigación realizado para posibilitar la descrip-

ción de los laboratorios virtuales usando únicamente el lenguaje Modelica ha sido

aplicado con éxito:

1. Al desarrollo de un laboratorio virtual para el diseño y análisis de lavadoras

con tambor, con aplicación a un problema de diseño industrial real. La

definición de las especificaciones del laboratorio virtual y la programación

del modelo (en lenguaje Modelica) ha sido realizada por los usuarios del

laboratorio virtual: ingenieros del Departamento de Ingenieŕıa Mecánica

del Centro de Investigaciones Tecnológicas IKERLAN (Mondragón, Spain).

2. Al desarrollo de un laboratorio virtual que ilustra el comportamiento ter-

modinámico de una casa solar. Con ello se demuestra que los resultados

obtenidos son aplicables a modelos de grandes dimensiones y complejidad,

desarrollados además por otros autores.
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Líneas futuras de investigación

Finalmente, se exponen a continuación algunas ideas sobre posibles extensiones

del trabajo de investigación realizado en esta tesis:

– Implementar una herramienta software que permita realizar automática-

mente las adaptaciones al modelo para la simulación interactiva que han

sido propuestas en esta tesis.

– Desarrollar más elementos gráficos interactivos e incluirlos en la libreŕıa

VirtualLabBuilder. Por ejemplo, elementos de dibujo que describan formas

3-D.

– Adaptar las libreŕıas incluidas en la libreŕıa estándar de Modelica a la

simulación interactiva y desarrollar los correspondientes elementos gráficos

interactivos.

– Explorar el uso de VirtualLabBuilder en otros entornos de simulación que

soportan Modelica, tales como OpenModelica y DrModelica (Lengquist

et al. 2003).

– Extender las capacidades de VirtualLabBuilder de modo que la interfaz

gráfica interactiva de los laboratorios virtuales sea un applet de Java.





1
Introduction, Objectives

and Structure

1.1 Introduction

Virtual-labs are useful tools for control education. They can be used to explain

basic concepts, to provide new perspectives of a problem, and to illustrate analysis

and design topics (Johansson et al. 1998, Wittenmark et al. 1998, Dormido 2004).

Virtual-labs are composed of a model and a view. The model is the ma-

thematical model representing the relevant behavior of the system under study.

The view is the graphical user-to-model interface. It is intended to provide a

visual representation of the simulated model behavior and to facilitate the user’s

interactive actions on the model.

Two alternative types of interactivity can be considered:

– Runtime interactivity. The user is allowed to perform actions on the model

during the simulation run. He can change the value of the model inputs,

parameters and state variables, perceiving instantly how these changes

affect to the model dynamic. An arbitrary number of actions can be made

on the model during a given simulation run.

– Batch interactivity. The user’s action triggers the start of the simulation,

which is run to completion. During the simulation run, the user is not
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allowed to interact with the model. Once the simulation run is finished, the

results are displayed and a new user’s action on the model is allowed.

There exist several software tools specifically intended for the implementation

of virtual-labs. Two of them are Sysquake and Easy Java Simulations (Ejs).

Sysquake (Sysquake 2004, Piguet et al. 1999) is a Matlab-like environment for

developing virtual-labs with batch interactivity. Ejs (EJS 2007, Esquembre 2004)

is a software tool for developing virtual-labs with runtime interactivity. These

software tools allow easy creation of the interactive graphical user interface.

However, the model definition capabilities and the numerical solvers provided

by these tools are not the state-of-the-art.

Modelica (Modelica 2005, Modelica 2007) is a freely available, object-oriented

modeling language that facilitates the physical modeling paradigm (Åström et al.

1998). Models are mathematically described by differential, algebraic and discrete

equations. The Modelica language supports a declarative (non-causal) description

of the model, which permits better reuse of the models. As a consequence, the

use of Modelica reduces considerably the modeling effort.

Modelica is intended for multi-domain modeling. Currently, a number of free

and commercial component libraries in different domains are available (Mode-

lica 2007), including electrical, mechanical, thermo-fluid and physical-chemical.

Modelica is well suited for describing the type of multi-domain models used in

automatic control.

However, neither Modelica language nor Modelica simulation environments

(e.g., OpenModelica (OpenModelica 2007, Fritzson et al. 2002, 2006), Dymola

(Dynasim 2006), etc.) support interactive simulation. As a consequence, ex-

tending the Modelica capabilities in order to facilitate the implementation of

virtual-labs is an open research field.
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1.2 Objectives

The first objective of this dissertation is to explore the feasibility of using

Modelica language in the implementation of virtual-labs for control education.

The motivation behind this objective is to reduce the virtual-lab development

effort. Different approaches to this objective are considered:

1. The implementation of virtual-labs with batch interactivity by combining

the use of Sysquake and Modelica/Dymola. The virtual-lab model is pro-

grammed using Modelica language and translated using Dymola. The

graphical user-to-model interface is implemented using Sysquake.

In order to implement this approach, the design and programming of a

Sysquake-to-Dymosim interface is proposed. Dymosim is the executable file

generated by Dymola for the Modelica model. The purpose of this interface

is to synchronize the execution of Dymosim and the Sysquake application.

2. The implementation of virtual-labs with runtime interactivity, firstly com-

bining the use of Ejs and Modelica/Dymola, and finally using only Mode-

lica/Dymola. This implies:

(a) To identify different types of interactive quantities and to analyze the

constraints that the mathematical model imposes on the selection of

the interactive quantities.

(b) To propose a systematic methodology for adapting any Modelica model

to runtime interactive simulation.

(c) To demonstrate the feasibility of combining the use of Ejs and Mode-

lica/Dymola, which is accomplished by using the Ejs-to-Matlab/Simulink

and Matlab/Simulink-to-Dymola interfaces.

(d) To design and program a Modelica library to facilitate the implemen-

tation of the virtual-lab view and the model-to-view communication.

The use of this library will allow to describe the virtual-lab using only

the Modelica language.
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The second objective of this dissertation work is translating into Modelica

language and adapting for interactive simulation the JARA library (Urquia 2000).

This library contains models of some fundamental physical-chemical principles.

Its main application domain is the modeling of transport, thermo-fluid, phase-

change and chemical processes in the context of automatic control. The motiva-

tion behind this objective is to obtain a Modelica library that could be used in

the development of virtual-labs for chemical process control education.

The third objective of this dissertation work is to develop a set of virtual-

labs for process control education. Some of these virtual-labs will be built using

models of process plants included in the JARA library: a chemical reactor, an

industrial boiler and a double-pipe heat exchanger. Other virtual-labs will be

composed by using a Modelica library for modeling basic hydraulic processes

that will be developed as a part of this dissertation work.

Finally, the fourth objective is to demonstrate that the proposed approach

to the implementation of virtual-labs using only Modelica/Dymola can be applied

to:

1. The solution of a real industrial problem. A virtual-lab for aiding in the

design and optimization of a drum-type washing machine will be developed

in cooperation with engineers of the Mechanical Engineering Department

of the IKERLAN Technological Research Center (Mondragón, Spain).

2. The implementation of a virtual-lab based on a complex Modelica model

that has been developed by other authors. The model of a solar house that

is included in the BondLib Modelica library (Weiner & Cellier 1993, Cellier

& Nebot 2005) will be used for this purpose.
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1.3 Structure of the dissertation

This dissertation has been structured as follows:

Chapter 2. A brief review of some concepts that play a fundamental role is this

dissertation is presented. In particular, it is discussed the state-of-the-art

in modeling, simulation, and virtual-lab implementation in the context of

automatic control. Additionally, some relevant characteristics of the JARA

Modelica library are described.

Chapter 3. A methodology for the implementation of virtual-labs by combining

the use of Sysquake and Modelica/Dymola is proposed. The development

of some virtual-labs illustrating this approach is discussed.

Additional information about the developed software (a library of LME

functions called sysquakeDymosimInterface) is provided in Appendix A.

Chapter 4. Different types of interactive quantities are identified and the con-

straints that the mathematical model imposes on the selection of the inter-

active quantities are analyzed. On the basis of this discussion, a modeling

methodology to adapt any Modelica model for runtime interactive simula-

tion is proposed.

The code of two models illustrating the application of the proposed method-

ology is provided in Appendix B.

Chapter 5. A methodology for implementing virtual-labs by combining the use

of Ejs, Matlab/Simulink and Modelica/Dymola is proposed. The develop-

ment of several virtual-labs according to this methodology is described.

Chapter 6. A novel approach to the virtual-lab implementation using only Mo-

delica/Dymola is proposed. The VirtualLabBuilder Modelica library is

presented and some relevant information about its use is provided. The

development of virtual-labs using Modelica language is illustrated by means

of some case studies.
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The Appendix C contains the VirtualLabBuilder user’s reference. It has

been generated by the Dymola tool from the library structure and docu-

mentation.

Chapter 7. The most relevant implementation details of the VirtualLabBuilder

Modelica library are discussed. The extension of the library with additional

classes is addressed in this chapter.

Chapter 8. The implementation of a virtual-lab illustrating the thermodynamic

behavior of a solar house is discussed. This virtual-lab is described using

only the Modelica language.

Chapter 9. The conclusions and the future research are presented.
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servicios. Acrónimo: COSICOLOGI-CM”, IV PRICIT 2005-2008. Plan
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2
Object-Oriented Modeling and

Interactive Simulation

2.1 Introduction

A brief review of the state-of-the-art in modeling, simulation, and virtual-lab

implementation in the context of automatic control is presented. Firstly, the

historical development of continuous-time modeling paradigms and simulation

tools is discussed. Secondly, some relevant features of the object-oriented mo-

deling languages and environments are described. Special attention is paid to

the Modelica language and the Dymola environment, because they play a funda-

mental role in this work. Thirdly, some of the many benefits of virtual-labs for

control education and some key characteristics of four software tools intended for

virtual-lab implementation are discussed. These tools are LabVIEW, Sysquake,

Easy Java Simulations and OOCSMP. Finally, the previous work on virtual-

lab implementation using Modelica that has been developed by other authors is

described.
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Figure 2.1: Evolution of continuous-time modeling and simulation.

2.2 Evolution of continuous-time modeling and

simulation

Graphical block diagram modeling is widely used in control engineering (Kara-

yanakis 1995). Some examples of languages and environments supporting this

paradigm are Matlab/Simulink (Matlab 2007), MATRIXX/SystemBuild (Shah

et al. 1985) and ACSL Graphics Modeller (MGA Software 1996). Block diagram

modeling paradigm might be considered as a heritage of analog simulation (Åström

et al. 1998).

On the other hand, object-oriented modeling languages and compilers sup-

porting the physical modeling paradigm have become available since the 1990’s

decade. This is driven by demands from users to be able to simulate complex

multi-domain models.

In order to put into their historical context these modelling paradigms, some

aspects of the evolution of continuous-time modeling and simulation are outlined

next.



2.2 Evolution of continuous-time modeling and simulation 13

2.2.1 Analog simulation

Analog techniques were predominant from 1920 to 1950 (see Figure 2.1). The

idea is to model a system in terms of ordinary differential equations (ODE) and

then make a physical device that obeys the equations. The physical system is

initialized with proper initial values and its development over time then mimics

the differential equation (Åström et al. 1998).

First analog simulators were mechanical systems. The mechanical differential

analyzer developed by Vanevar Bush at MIT was the first general purpose tool to

simulate dynamical systems (Bush 1931). A major shift in technology occurred

in 1947, when it was demonstrated that simulation could be done electronically

(Ragazzini et al. 1947).

Variables were represented as voltages in the electronic simulators. The

differential equations were represented in terms of the fundamental operations:

addition, multiplication, integration and function generation. Since the analog

computer has limited range and resolution, the variables must be scaled (Jackson

1960). Several manual steps could be required to transform the model equations

into the ODE formulation (i.e., dx
dt

= f (t, x)). These formula manipulations,

which are tedious and error prone, include breaking the algebraic loops, for

instance by including small capacitors (Åström et al. 1998).

2.2.2 The CSSL standard

The use of digital computers in simulation was explored since the advent of

computes in the early 1950’s. This development was triggered by Selfridge, which

showed how a digital computer can emulate a differential analyzer (Selfridge

1955). By 1967, there were more than 23 programs for model simulation.

The simulation paradigm adopted by these programs was the same used

in analog simulators, i.e., to describe the model in terms of ordinary differen-

tial equations (ODE), which were solved using numerical integration techniques.

ODE solvers are based on the idea of replacing the differential equations by

difference equations. Methods well known in the 1960’s include Euler method,
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Runge-Kutta methods and explicit multi-step methods. Important contributions

were given to stability of difference approximations (Dahlquist 1959, Henrichi

1962). The automatic step length adjustment was another important contribution

(Fehlberg 1964). However, ODE solvers well suited for stiff systems were not

available at that time.

The CSSL standard appeared at 1967 (Augustin et al. 1967). A system can

be described in CSSL language in three different ways: (1) as an interconnection

of blocks; (2) by mathematical expressions; and (3) by conventional programming

constructs as in FORTRAN.

CSSL defines a set of operators. For instance, INTEG emulates the integrator

of the analog computer, and IMPL allows breaking the algebraic loops. The user

can define new block types by means of a MACRO definition. Additionally, CSSL

contains sentences to select integration routines and their parameters, control the

simulation and document the results.

Software products based on the CSSL definition appeared. One example is

ACSL (Mitchell & Gauthier 1976), which was for a long time a “de facto” stan-

dard for simulation. Constructors for combining continuous/discrete modeling

were later added to ACSL. ACSL Graphics Modeller was introduced in 1993,

supporting the graphical block diagram modeling.

2.2.3 Graphical block diagram modeling

This modeling paradigm facilitates a hierarchical and modular description of the

model. The model is built from graphical blocks, which have input and output

ports. The connection among the blocks is performed by connecting these ports.

The analog computing paradigm with its requirement of explicit state models

(ODE) is a fundamental limitation of the block diagram modeling (Åström et al.

1998). The blocks have a unidirectional data flow, from input to output. As a

consequence, it is cumbersome to build physics-based model libraries in the block

diagram languages.

Some tools supporting graphical block diagram modeling are Simulink (orig-

inally called Simulab) (Grace 1991), Scicos (Bunks et al. 1999, Chancelier et al.
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a) b) c)

Figure 2.2: RC circuit model implemented using: a) Simulink; b) PSpice;
and c) Modelica/Dymola.

a) b) c)

Figure 2.3: RLC circuit model implemented using: a) Simulink; b) PSpice;
and c) Modelica/Dymola.

2002) and SystemBuild (Shah et al. 1985). These tools are integrated in the

matrix environments Matlab (Matlab 2007), Scilab (Scilab 2007) and MATRIXX

(MATRIXX 2007), respectively.

Two models of electric circuits are used to illustrate how models are described

according to different modeling paradigms. The RC circuit shown in Figure 2.2a

has been implemented using Matlab/Simulink. In order to build this model, the

following steps were taken:

1. The equations for each element of the circuit were derived:

V = pulse(t) (2.1)

vR = i · R (2.2)

C · dvC

dt
= i (2.3)

V = vR + vC (2.4)

2. The computational causality of the model was calculated, and the model

equations were manipulated. The variable on the left side is each equation is



16 2 Object-Oriented Modeling and Interactive Simulation

the variable to be calculated from the equation. The manipulated equations

are the following:

V = pulse(t) (2.5)

dvC

dt
=

i

C
(2.6)

i =
V − vC

R
(2.7)

3. These equations were transformed into the block description shown in Fig-

ure 2.2a.

Connecting in series an inductor, the circuit shown in Figure 2.3 is obtained.

The computational causality of the model needs to be re-calculated. The manip-

ulated model is the following:

V = pulse(t) (2.8)

dvC

dt
=

i

C
(2.9)

di

dt
=

V − i · R − vC

L
(2.10)

The model described using Matlab/Simulink is shown in Figure 2.3a.

2.2.4 Modeling in specific domains

There are modeling environments that allow the user to compose models in spe-

cific domains. A model is assembled simply by connecting components from pre-

defined libraries. Some examples of specific domain simulators are the following:

– PSpice (Nagel & Pederson 1973, Nagel 1975, Kielkowski 1998, OrCAD Inc.

1999) and VHDL-AMS (IEEE 1997) for electronic systems.

– ADAMS (Adams 2007) and SIMPACK (SIMPACK 2007) for mechanical

systems.

– gPROMS (Barton & Pantelides 1994) for energy and process systems.
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The models of the RC and RCL circuits composed using PSpice are shown

in Figures 2.2b and 2.3b. The model description is very similar to the schematic

diagram of the circuit.

2.2.5 Physical modeling

The physical modeling paradigm is based on the modular modeling methodology.

Typically, the basic stages of the physical modeling are (Åström et al. 1998):

1. Definition of the system structure and partition of the system into subsys-

tems.

2. Definition of the interaction among the subsystems.

3. Description of the internal behavior of each subsystem, independently of

each other, in terms of mass, energy and momentum balances and of ma-

terial equations.

The modeling knowledge is represented as differential, algebraic and discrete

equations that may change by being triggered by events (i.e., hybrid models).

A model is considered as a constraint between system variables (Åström et al.

1998).

In order to perform the design of a dynamic system, we have to define the

structure of the system, identify its different parts and the interactions between

them. Then, the internal behavior of each part is defined indepently. A language

that supports object oriented modeling of hybrid dynamic systems require a

syntax suitable for the definition, parametrization, reuse, connection and instan-

tiation of classes. The syntax has to facilitate the information encapsulation.

The first languages supporting physical modeling appeared by the mid 1980’s

(Åström et al. 1998). Among the first languages supporting the physical modeling

paradigm were Dymola (Elmqvist 1978) and Omola (Andersson 1989a,b, 1990,

1994). Other object-oriented modeling languages are ABACUSS II (ABACUSS

II 2007), ASCEND (Piela 1989), Smile (Kloas et al. 1995), gPROMS (Barton

& Pantelides 1994), MODE.LA (MODE.LA 2007, Stephanopoulos et al. 1990),
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ObjectMath (Fritzson et al. 1995), EcosimPro Language (Empresarios Agrupa-

dos 2007a,b,c) and Modelica (Modelica 2005, Modelica 2007). Among the first

publications concerning interactive simulation is (Korn 1989).

The common characteristics of these modeling languages are the object-oriented,

non-causal modeling methodology and the need for automatic symbolic formula

manipulation. Object-oriented modeling is based, among others, on three prin-

ciples: abstraction, encapsulation and modularity. Object-oriented modeling

languages support a declarative description of the model, based on equations (i.e.,

equation-oriented modeling) instead of assignment statements. The information

of what variable to solve for in each equation is not included in the model (i.e.,

non-causal modeling). This permits better reuse of models since equations do not

specify a certain data flow direction. Thus a model can adapt to more than one

data flow context. The software tools supporting these modeling languages im-

plement algorithms to automatically decide which equation to use for calculating

each unknown variable.

The symbolic manipulations that these software tools carry out on the model

can be classified into two types according to their purpose.

1. Manipulations intended to translate the object-oriented description of the

model into the so-called flat model (Fritzson et al. 2002, Fritzson 2004).

The flat model contains the complete set of model equations and functions,

with all the object-oriented structure removed.

2. Manipulations intended to transform the flat model into an efficiently solv-

able from. This second type of manipulations includes (Cellier 1991, Cellier

& Kofman 2006, Fritzson 2004):

– The efficient formulation of the complete-model equations, eliminating

the redundant variables and the trivial equations resulting from the

submodels connections (Elmqvist 1978, Bunus & Fritzson 2002).

– The sorting of the equations (Elmqvist 1978, Cellier & Kofman 2006).

– The symbolic manipulation of those equations in which the unknown

variable appears linearly.
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– The reduction of the system index to zero or one (Brenan et al. 1996,

Mattsson & Soderlind 1992, Pantelides 1988).

The modeling environments need, for simulating hybrid models (i.e., a set of

synchronous differential, algebraic and discrete equations), the following:

1. A simulation algorithm appropriate for hybrid systems (for instance, the

Omola simulation algorithm is described in (Andersson 1994)).

2. An adequate treatment of the discrete events (Elmqvist et al. 1993): the

detection, the accurate determination of the trigger time (Cellier 1979,

Cellier et al. 1993, Elmqvist et al. 1993, 1994) and the re-start problem

solution.

3. Algorithms to carry out the symbolic manipulation of the linear systems of

simultaneous equations and to tear the nonlinear ones (Elmqvist & Otter

1994).

In addition, the modeling environment needs to include at least one DAE-

solver algorithm (Gear 1971, Brenan et al. 1996, Hairer et al. 1989), for instance,

DASSL (Brenan et al. 1996). The simulation efficiency is notably increased with

the use of inline integration algorithms (Elmqvist et al. 1995).

2.3 Modelica language

Modelica is an object-oriented modeling language based on the physical mo-

deling paradigm (Modelica 2005, Modelica 2007). Modelica language has been

designed by the developers of the object oriented languages ALLAN (Jeandel et al.

1997), Dymola (Dynasim 2006), NMF (Sahlin et al. 1996), ObjectMath (Fritzson

et al. 1995), Omola (Andersson 1989a,b, 1990, 1994), SIDOPS+ (Breuneuse &

Broenink 1997), Smile (Kloas et al. 1995) and a number of modeling practitioners

in different domains. Modelica is intended to serve as a standard format so that

models arising in different domains can be exchanged between tools and users.
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Modelica supports multi-domain modeling and several formalisms, such as

ODE, DAE, bond graphs (Karnopp & Rosenberg 1968, Karnopp et al. 1990,

Thoma 1990, Cellier 1991), finite state automata, and Petri nets. In addition,

PDE support in Modelica is an open research field (Saldamli 2002, 2005, 2006).

A number of free and commercial component libraries in different domains

are available (Modelica 2007), including electrical (Clauss et al. 2000, Cellier &

Nebot 2005, Urquia et al. 2005, Martin et al. 2003) mechanical (Otter et al. 2003),

thermo-fluid (Eborn 1998, 2001, Tummescheit 2002, Elmqvist et al. 2003, Casella

& Leva 2003, 2006, Mattsson 1997), physical-chemical (Urquia & Dormido 2003),

bond graph (Cellier & Nebot 2005, Zimmer & Cellier 2006) and state machines

(Otter et al. 2005).

Some features of the Modelica language version 2.2 are described below (Mo-

delica 2007, Modelica 2005, Fritzson 2004, Fritzson & Engelson 1998). The

basic structuring element in Modelica is a class. There are seven restricted class

categories with specific keywords: type, connector, model, package, block, function

and record.

Partial classes. The class prefix partial is used to indicate that a class is incom-

plete and cannot be instantiated. Models are classes of type model or partial

model. Classes of type model describe a complete model, whereas those of

type partial model describe only certain model properties and cannot be

instantiated.

Package. Classes can be grouped in special classes, named package. Packages

contain only constant and classes declarations. The classes contained in the

package can be accessed using the dot notation.

Reuse. Modelica allows class reuse in the two following ways:

• Reusing the classes through composition. New values can be set to its

parameters. There is a type of class, named record, whose purpose is

to group a set of parameters.

• Reusing the classes through inheritance. When a class composed by

other classes is inherited it is possible, unless it is forbidden on purpose,
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to modify the class and the value of the parameters of each submodel

composing the inherited class (redeclare sentence). The new class of

the submodel must be a subtype of the older one (class A is a subtype

of class B if class A includes all the public components of class B).

Modelica support multiple inheritance.

Replaceable classes. Additionally, the class of some submodels (replaceable

model) and/or connectors (replaceable connector) that compose a class can

be declared as parameters that can be redefined when the class is reused.

Information encapsulation. Modelica hides the information contained in the

section protected of a class when it is reused as a submodel. The rest of the

variables can be accessed using the dot notation. The variables contained

in the protected section of a class can be accessed from any other class that

extends this class.

Class interface. Interface variables can be flow (its sum is 0 at the connection

point) or non-flow (are equal at the connection point). These variables are

gathered in special classes named connector. Connector classes can’t contain

equations. Classes that describe models inherit their interface description.

The connection between two submodels is defined by applying the connect

function to a couple of classes of type connector. The computation causality

of the terminal variables can be set by using the prefixes input and output.

Modelica checks that the computational causality is the one set by using

these two prefixes.

Types. The basic predefined built-in types of Modelica are Real, Integer, Boolean,

String and the basic enumeration type. New types can be defined and

extended, with the restriction that type classes cannot include variables

and equations.

Blocks. A specific type of class named block is defined to describe block dia-

grams. The terminal variables of the block diagrams have a fixed compu-

tational causality.
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Regular structures. Set of equations, submodels and connections can be de-

fined using for loops.

Algorithms. Modelica allows to define in a class a sorted sequence of assigna-

tions by including them in a special section (algorithm). The algorithm

section can contain assignations of the type 〈variable〉 := 〈expression〉, for

and while structures.

Functions. There are special classes named function, that can include local and

global variables and an algorithm section. Local variables are defined inside

a protected section. Global variables can only be defined as computational

input or output (these are marked in the code by keywords input and

output). Class of type function can encapsulate calls to functions defined

in other languages.

Built- in operators. Built-in operators of Modelica have the same syntax as a

function call. However, the result of a built-in operator depends not only

on the input arguments but also on the status of the simulation. Some

Modelica built-in operators are the following:

– der(expr): performs the time derivative of the expression expr. The

expression expr need to be a subtype of Real and the expression and

all its sub-expressions must be differentiable. If expr is an array, the

operator is applied to all elements of the array.

– assert(condition,message): allows to show an error message when the

value of the boolean expression condition is false.

– pre(y): returns the “left limit” of variable y(t) at a time instant t.

– reinit(x, expr): reinitializes the value of the state variable x with expr

at an event instant. It can only be applied in the body of a when-clause.

– initial(): returns true during the initialization phase and false other-

wise.

– terminal(): returns true at the end of a successful analysis.

– terminate(message): successfully terminates the current analysis.
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– sample(start, interval): returns true and triggers time events at time

instants start + i ∗ interval, where i = 0, 1, .... During continuous

integration the operator returns always false.

Variable structure and discrete events. Modelica provides the if–then–else

structure to describe variable structure models.

The instantaneous equations are modeled using the when structure. The

expression of a when clause shall be a discrete-time Boolean scalar or vector

expression. The equations and algorithm statements within a when clause

are activated when the scalar or any one of the elements of the vector

expression becomes true.

Inner and outer prefixes. An element declared with the prefix outer refer-

ences an element instance with the same name and the prefix inner. There

shall exist at least one corresponding inner element declaration for an outer

element reference.

Initialization. The model initialization takes place just before the simulation

starts. The initial algorithm and initial equation sections are executed

during the initialization phase. The initial algorithm section can include

any kind of equation except when-statements. The initial equation section

can include any kind of equation except when-equations. The equations

inside a when are included in the initialization equation system only if they

are explicitly enable with the initial() operator. Additionally, it is possible

to specify the initial value of a variable through its start attribute.

Selection of the state variables. Modelica supports the user’s control on the

state variables selection, via the stateSelect attribute of Real variables (Otter

& Olsson 2002). This attribute values include “never” (the variable will

never be selected as state variable) and “always” (the variable will always

be used as a state).

Annotations. Annotations are intended for storing extra information about a

model, such as the model icon representation, the structure of composed
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models and connection between submodels, documentation or versioning,

etc.

2.4 Modelica simulation environments

OpenModelica (OpenModelica 2007, Fritzson et al. 2002, 2006), Dymola (Dynasim

2006) and MathModelica System Designer (MathModelica 2007) are three mode-

ling and simulation environments that support the Modelica language. Open-

Modelica environment is free, and it can be used (from version 1.4.2) together

with the graphical editor MathModelica Lite. On the other hand, Dymola and

MathModelica System Designer are commercial environments.

The simulation environment used in this dissertation is Dymola. Dymola

translates the Modelica description of the model into an executable, Dymosim,

which performs the simulation (Dynasim 2006). Dymosim is a stand-alone pro-

gram without any graphical user interface which reads the experiment description

from an input file, performs one simulation run, stores the results in Matlab binary

format on file, and terminates. Dymosim can be called either from the Dymola’s

graphic user interface or directly by the user.

Dymola provides, since version 5.0, an interface to Matlab/Simulink for ver-

sions above Matlab 5.3 / Simulink 3. Dymola interface to Simulink can be

found in Simulink’s library browser: DymolaBlock block (Dynasim 2006). This

block is an interface to the C-code generated by Dymola for the Modelica code.

DymolaBlock can be connected to other Simulink blocks, and also to other Dymo-

laBlock blocks, in the Simulink’s workspace window. Simulink synchronizes the

numerical solution of the complete model, performing the numerical integration

of the DymolaBlock blocks together with the other blocks.

In order to make the Modelica model useful as a DymolaBlock block, the

computational causality of the Modelica model interface needs to be explicitly set

(Dynasim 2006). The input variables are supposed to be calculated from other

Simulink blocks, while the output variables are calculated from the Modelica

model.
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2.5 JARA library

JARA is a library of dynamic hybrid models of some fundamental physical-

chemical principles (Urquia 2000, Urquia & Dormido 2003). The main appli-

cation of JARA is the modeling of physical-chemical processes in the context

of automatic control. The modeling hypotheses and architecture of JARA are

discussed in this section.

JARA was originally written in the “old” Dymola language (Elmqvist et al.

1996). Later on, as a part of this dissertation work (it will be discussed in

Chapter 4), the library was translated into Modelica language and adapted for

interactive simulation. This new version of the library, called JARA 2i, has been

used to compose three of the virtual-labs discussed through this dissertation:

control of a chemical reactor, control of an industrial boiler and dynamic be-

havior of a heat-exchanger. JARA 2i Modelica library can be downloaded from

http://www.euclides.dia.uned.es

2.5.1 Fundamental modeling hypotheses of JARA

The usual way of enunciating the mass, energy and momentum balances is by

means of the definition of a control volume (CV) (Bird et al. 1975, Incropera

& DeWitt 1996, Himmelblau & Bischoff 1992). The properties of the medium

inside the control volume are considered time-dependent, but independent of the

spatial coordinates. The only exception to this rule is the pressure inside the

liquids. The control volumes exchange mass and energy with their environment

through certain control planes (CPs). The JARA control volumes and the control

planes are considered macroscopic and fixed in the space. All the interactions

among control volumes, and all the interactions of a control volume with itself

(i.e., chemical reactions inside the control volume), are considered transport phe-

nomena in JARA. This system decomposition into control volumes and transport

phenomena suggests that:
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1. The control-volume models should contain the equations describing the

properties of the medium inside the control volume, as a function of the

mass and energy transport through its control planes.

2. The transport-phenomena models should contain equations describing the

flow of mass, energy and momentum through the control planes, as a

function of the medium properties at these control planes.

Three types of control volumes have been modeled in JARA:

1. Control volume containing a homogeneous solid.

2. Control volume containing an ideal mixture of an arbitrary number of semi-

perfect gases.

3. Control volumes containing an ideal, homogeneous liquid mixture, com-

posed of an arbitrary number of components.

The control volumes containing liquid or gaseous mixtures are considered open

systems (i.e., they can exchange mass and heat with their environment), and

chemical reactions can take place inside them. In both cases, the volume of the

control volume is considered a time-dependent property. The control volume

containing a solid is considered a closed system (i.e., it only exchanges energy,

not mass, with its environment). The only modeled characteristic in solids is the

heat conduction (for modeling the walls of reactors, pipes, etc.).

Two kinds of control planes are distinguished in JARA: mass-flow and heat-

flow control planes. An arbitrary number of flows can flow through each control

plane. The hypotheses made about the properties of the medium inside the

control volume determine the nature and number of the control planes:

1. A solid control volume contains only one heat-flow control plane with the

following considerations: (i) the solid properties are spatially homogeneous,

so that all control planes are equivalent; and (ii) the solid control volume

is a closed system, so it has no mass-flow control planes.
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2. A gaseous control volume contains one heat-flow control plane and one

mass-flow control plane: all the gaseous mixture properties are spatially

homogeneous.

3. A liquid control volume has two mass-flow control planes and one heat-

flow control plane: (i) as the liquid properties related with the heat-flow

are spatially homogeneous, all the heat flow control-planes are equivalent;

(ii) as the liquid pressure depends on the position, the simplest and most

general control-plane selection is placing a control plane at the control-

volume bottom and the other at the control-volume top. Any arbitrarily

complex configuration can be modeled by decomposition into this kind of

control volume (Urquia 2000).

The JARA models of transport phenomena can be divided into two main

groups: (1) mass transport due to pressure or concentration gradients, gravita-

tional acceleration, chemical reactions, liquid-vapor phase changes, etc.; and (2)

heat transport due to temperature gradients. The interface variables are grouped

into connectors according to this criterion, so that they describe the transport of

mass and heat independently.

A hypothesis related to the stirred-mixture approximation is to assume that

the fluid going out from a control volume has the same properties that the fluid

contained in it. In JARA, this approximation is applied to the calculus of: (1)

the temperature and the composition of the fluid leaving a control volume by

convection; and (2) the temperature of each mixture component leaving the

control volume by diffusion. All the JARA models of transport phenomena make

the flow direction reversible during the simulation run. As a consequence, the

properties of the flow established between two control planes are calculated from

the appropriate control plane at any time.

An important property associated to the transport phenomena is the trans-

port delay. There are different ways of modeling delays in one-dimensional

geometry systems (EPRI 1984). The way used in JARA is the “energy bal-

ance method” (Incropera & DeWitt 1996). It consists in dividing the flow path
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into multiple control volumes. Adjacent control-volumes are connected by the

transport-phenomena models describing the heat and mass transport between

them. As the number of control volumes increases, the solution gets closer to a

transport delay (EPRI 1984).

2.5.2 JARA architecture

The JARA library has been organized in order to facilitate their use and mainte-

nance. The modeling details and the library design rules can be found in (Urquia

2000, Urquia & Dormido 2003). The package hierarchy is shown in Figure 2.4a.

JARA is composed of seven packages (see Figures 2.4b – 2.4h):

– The connectors are defined in the JARA.cuts package (see Figure 2.4b),

and the model interfaces in JARA.interf package (see Figure 2.4c).

– The JARA.gas package (see Figure 2.4g) gathers models of control volumes

containing gaseous mixtures, of gas transport (i.e., gas-flow by convection

and diffusion, valves, pumps, etc.) and boundary conditions (i.e., gas-flow

and pressure sources).

– Similarly, JARA.liq package (see Figure 2.4e) contains the equivalent mod-

els for liquid mixtures. The mixtures of liquids and gases are considered

ideal and they can be composed of an arbitrary number of components.

– The models related with the heat transport are collected in the JARA.heat

package (see Figure 2.4d): models of control volumes containing solids, ther-

mal resistances and boundary conditions (heat and temperature sources).

– The JARA.phase package (see Figure 2.4f) contains models of vapor-liquid

phase-change: boiling and condensation.

– The models of chemical reactions are in JARA.chReac package (see Figure

2.4h).



a) b)

c) d)

e) f)

g) h)

Figure 2.4: a) JARA packages; b) JARA.cuts package; c) JARA.interf
package; d) JARA.heat package; e) JARA.liq package; f) JARA.phase
package; g) JARA.gas package; h) JARA.chReac package.
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a) b)

Figure 2.5: a) JARA 2i packages; and b) Modelica diagram of the batch
reactor model.

2.5.3 Model of a chemical reactor

The batch reactor model developed by (Urquia 2000), which is based on the

mathematical model described in (Froment & Bischoff 1979), has been translated

into Modelica language and included in the JARA 2i library (see batchReac-

tor.PhysicalModel package in Figure 2.5a).

In a batch reactor having a volume V , an exothermic reaction A → P is

carried out in the liquid phase. The reaction velocity is rA = kCA, where k

depends on the temperature in the following form: k = k01exp(−k02

T
), expressed

in units of second to minus one. The reactor contains a heat exchanger with a

surface A and it can be operated in the following two ways:

1. Using steam with a heat transfer coefficient hTs at a Ts temperature as

heating system.

2. Using cooling water with a heat transfer coefficient hTw at a Tw temperature

as refrigerator.
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a) b)

Figure 2.6: a) JARA 2i packages; and b) Modelica diagram of the boiler
model.

The Modelica diagram of the chemical reactor model is shown in Figure 2.5b.

The model is composed of a CV containing the liquid stored in the reactor, a

TP modeling the reaction inside the reactor, a pump model and the model of the

heat exchanger. The heat exchanger model is composed of a temperature source

and a resistor.

2.5.4 Model of an industrial boiler

The mathematical model of the boiler is found in (Ramirez 1989), and the object-

oriented model written in the “old” Dymola language in (Urquia 2000). It has

been re-written using JARA 2i components and it has been included in the JARA

2i library (see Boiler.PhysicalModel package in Figure 2.6a).

The input of liquid water is placed at the boiler bottom, and the vapor

output valve is placed at the top. The output valve has the following constitutive

equation: Fm = (F 0) ∗
√

(p(p − p0)), where p0 is the valve output pressure. The
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water contained in the boiler is continually heated. The diagram of the boiler

model is shown in Figure 2.6b. Two control volumes are considered:

1. A control volume containing the liquid water stored in the boiler.

2. A gaseous control volume containing the vapor.

The vapor volume is equal to the difference between the boiler-recipient inner

volume and the water volume. The boiling is a transport phenomena represented

by a model connecting both control volumes. The heat-flow into the boiler, the

pressure at the valve output and the water pump are modeled using JARA source

models.

2.5.5 Model of a double-pipe heat exchanger

The model of the heat exchanger described in (Cutlip & Shacham 1999, Urquia

2000) has been re-written using JARA 2i components and it has been included

in the JARA 2i library (see doublePipeHeatExchanger.PhysicalModel package in

Figure 2.7a). The model diagram is shown in Figure 2.7b.

A mixture of carbon dioxide and sulfur dioxide is cooled by water in a double-

pipe heat exchanger (Cutlip & Shacham 1999, Urquia 2000) of length L. The

thermic dynamics of the gas mixture, the water and the wall of the inner pipe

are considered in the model. The following heat flows have been modeled: the

convective heat flow between the gas mixture and the inner wall of the inner pipe,

the convective heat flow between the wall of the inner pipe and the water and,

finally, the conduction heat flow along the wall of the inner pipe.

The heat exchanger has been divided into N = 10 elements to study the

dependence of the temperature on the axial coordinate. The length of the

elements located at the pipe end, L
2(N−1) , is the half of the length of the inner

elements. It is assumed that the gas mixture contained in the elements has

a uniform temperature. The same assumption has been made related to the

temperature of the water and the wall of the inner pipe.

The gas and liquid flow is modeled by pumps that make to flow the established

quantity of matter per unit time between the elements. Two modes of operation
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a) b)

Figure 2.7: a) JARA 2i packages; and b) Modelica diagram of the heat-
exchanger model.

are allowed: cocurrent or parallel flow and countercurrent flow. The convective

heat transfer on both the tube and shell sides are calculated from the Dittus-

Boelter correlation (Cutlip & Shacham 1999). The center heat exchanger tube

is made of copper with a constant thermal conductivity, and the exterior of the

steel pipe shell is supposed to be very well insulated.

2.6 Virtual-labs for control engineering education

A virtual-lab is a distributed environment of simulation and animation tools,

aimed to perform the interactive simulation of a mathematical model. Two types

of interactivity can be distinguished:

– Runtime interactivity. The user is allowed to perform actions on the model

during the simulation run. He can change the value of the model inputs,

parameters and state variables, immediately perceiving how these changes
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affect the model behavior. An arbitrary number of actions can be made on

the model along a simulation run.

– Batch interactivity. The user’s action triggers the start of the simulation,

which is run to completion. During the simulation run, the user is not

allowed to interact with the model. Once the simulation run is finished, the

results are displayed and a new user’s action on the model is allowed.

Virtual-labs provide a flexible and user-friendly way to define the experiments

to be performed on the model (Jimoyiannis & Komis 2001). In particular,

interactive virtual-labs are effective educational resources, well suited for web-

based and distance education (Dormido 2004). Due to the special features of the

automatic control discipline, control education can be strongly benefited by the

use of interactive tools (Navaratna et al. 2001). Some relevant virtual-labs for

control education can be found in (Bodson 2003, Muñoz-Gómez et al. 2003, Diaz

et al. 2005, Guzman et al. 2005, Erenturk 2005, Ugalde-Loo 2005, Mazaeda et al.

2006).

Automatic control is a multi-faceted field. A good control engineer should

master a wide range of topics (Johansson et al. 1998, Wittenmark et al. 1998):

– To have a good understanding of dynamical systems and to know how to

describe them.

– To know how different representations of a system (i.e., equations, time

responses, frequency responses) are related.

– To master control concepts such as feedback, stability, controllability, ob-

servability and to develop an intuition about them.

– To know the interplay between process design and control design. The

process design influences strongly the control design. A good process design

may avoid processes intrinsically difficult to control.

This wide range of topics makes control education a difficult task. Virtual-

labs could be a perfect complement to the traditional labs and lectures. They can
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Figure 2.8: View of the magnetic levitator virtual-lab.

be considered half-way between regular labs and lectures. The main idea is to

have on the computer screen a multiple-view representation of a given dynamic

system, and some of its attributes. These views can then be manipulated directly

while keeping the coherence of the representation (Dormido 2004).

Virtual-labs can be used to explain basic concepts, to provide new perspectives

of a problem, and to illustrate analysis and design topics. An example of a

virtual-lab for control education implemented using Ejs (EJS 2007) is shown in

Figure 2.8 (Dormido et al. 2004). This virtual-lab illustrates the behavior of a

magnetic levitation system. The virtual-lab graphic interface shows the physical

system as realistically as possible. Additionally, it shows diagrams and plots of

some relevant variables. It is possible, by manipulating the graphic interface,

to change the magnets position, the system configuration, the control strategy

(manual o decentralized PID) and the parameters of the two PID controllers.

Several software packages for the interactive learning of automatic control

have been developed (Dormido et al. 2002, Sanchez et al. 2002). Two of them

are ICTools and CCSDemo, from the Automatic Control Department of the

Lund Institute of Technology (Johansson et al. 1998, Wittenmark et al. 1998).
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Control Station (Cooper & Fina 1999, Cooper & Dougherty 2000, Cooper et al.

2003), developed at the Department of Chemical Engineering of the University

of Connecticut, constitutes another good example.

2.7 Interactive simulation tools

The main goal of the interactive simulation tools is to facilitate the virtual-

lab implementation, allowing the lab developer to focus on the concepts to be

illustrated by the virtual-lab, rather than on programming tasks. Next, some

relevant features of the four following interactive simulation tools are discussed:

LabVIEW, Sysquake, Ejs and OOCSMP.

2.7.1 LabVIEW

LabVIEW (Laboratory Virtual Instrumentation Engineering) from National In-

struments is a graphical development environment for creating flexible and scal-

able design, control, and test applications (LabVIEW 2007). The LabVIEW

graphical language, named G, is a dataflow language and cannot be re-interpreted

into a text based language. Currently, there is no alternative program that can

implement any portion of G code. G language, since version 8.2, has object

oriented features.

LabVIEW programs are called virtual instruments (VIs). Each VI has three

components: a block diagram, a front panel and a connector panel. Many

libraries with functions for data acquisition, signal generation, mathematics,

statistics, signal conditioning, analysis and numerous graphical interface elements

are provided in several LabVIEW package options.

LabVIEW can be used to build virtual-labs. Examples can be found in (Kostic

2000, Laterburg 2001)
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2.7.2 Sysquake

Sysquake is a commercial tool developed at the Federal Institute of Technology in

Lausanne (EPFL) by Yves Piguet (Sysquake 2004, Piguet et al. 1999). Sysquake

is a Matlab-like program that has strong support for interactive graphics. It is

based on LME, an interpreter specialized for numerical computation. LME is

widely compatible with the language of MATLAB(R) 4.x and it includes many

features of MATLAB 5 to 7. It implements graphic functions specific to dynamic

systems (such as step responses and frequency responses) and general purpose

functions used for displaying any kind of data. LME provides the following

capacities for modeling systems:

– lti library. This library provides methods to create, combine and analyze

time-invariant dynamical systems (LTI systems). The LTI system can be

defined in three different ways: as a state space model, as a matrix or as a

transfer function.

– ODE solvers. Sysquake contains the following two ODE solvers: ode23

and ode45. Both ODE solvers are based on a Runge-Kutta algorithm with

adaptative time step.

A Sysquake application typically contains several interactive graphical ob-

jects, which are displayed simultaneously. Additionally, it can include docu-

mentation in form of HTML pages. The graphics contain elements that can be

manipulated using the mouse. While one of these elements is being manipulated,

the other graphics are automatically updated to reflect this change. The content

represented by each graphic, and its dependence with respect to the content of

the other graphics, is programmed using LME.

The main goal of Sysquake is the interactive manipulation of graphics. The

user can define functions, called handlers, intended to perform different tasks

managed by Sysquake. These tasks include the model initialization, manipulation

of figures and selection of menus.
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As input and output, the handlers use variables as well as values directly

managed by Sysquake, such as the position of the mouse. Therefore, only the

code necessary for displaying the figures and processing manipulations from the

user is required. This results in small scripts, developed quickly and easy to

maintain.

LME can be extended by libraries, composed of related functions written in

LME, or by extensions developed with standard compilers.

There are several interactive tools developed with Sysquake (Dimmler &

Piguet 2000, Dormido et al. 2002, Diaz et al. 2005, Guzman et al. 2005, Longchamp

2006, Piguet & Longchamp 2006, Guzman et al. 2006). Some applications built

by Sysquake users can be downloaded from (Sysquake 2007).

2.7.3 Easy Java Simulations

Easy Java Simulations (Ejs) is an open source, Java-based software tool intended

to implement virtual-labs (EJS 2007, Esquembre 2004). Ejs has been designed to

be used by students, under the supervision of educators with a low programming

level (Martin et al. 2005d). As a consequence, simplicity was a requirement.

Ejs is based on an original simplification of the “model-view-control” para-

digm, structuring the virtual lab in three parts: introduction, model and view.

– Ejs supports including an introductory part, composed of HTML pages, in

the virtual lab. This introduction is intended to provide information about

the simulation and instructions explaining how to use the virtual lab. This

feature is important for pedagogical reasons.

– The model is the mathematical model describing the system behavior.

– The view is the user-to-model interface. It is intended to provide a visual

representation of the model dynamic behavior and to facilitate the user’s

interactive actions on the model.

The graphical properties of the view elements are linked to the model variables,

producing a bidirectional flow of information between the view and the model.



2.7 Interactive simulation tools 39

Any change of a model variable value is automatically displayed by the view.

Reciprocally, any user interaction with the view automatically modifies the value

of the corresponding model variable.

Ejs guides the user during the model definition process, and it includes a

set of ready-to-use visual elements intended to facilitate the virtual-lab view

implementation. Ejs automatically performs all the tasks required to generate

the virtual lab (i.e., generates the Java source code of the virtual-lab program,

compiles the program and packs the resulting object files into a compressed file),

which can be run as a stand-alone Java application or as an applet within an

HTML page. The user then can readily run the virtual-lab and/or publish it on

the Internet.

Ejs includes ODE solvers and algorithms for event detection. Ejs version

3.3 (release 2004) provides a Ejs to Matlab/Simulink interface (Sanchez et al.

2005a,b). Therefore, Ejs 3.3 supports the option of describing and simulating the

model using Matlab/Simulink: (1) Matlab code and calls to any Matlab function

can be used at any point in the Ejs model; and (2) the Ejs model can be partially

or completely developed using Simulink block diagrams.

A description of how to use Ejs with Matlab and Simulink can be found

in (EJS 2007). In this case, the data exchange between the virtual-lab view

(composed using Ejs) and the model (Simulink block diagram) is accomplished

through the Matlab workspace. The properties of the Ejs’ view elements are

linked to variables of the Matlab workspace, which can be written and read from

the Simulink block diagram.

2.7.4 Object-Oriented Continuous Modeling Program

Object-Oriented Continuous Modeling Program (OOCSMP) is a continuous si-

mulation language conceived in 1997 as an object-oriented extension to the stan-

dard CSMP (Lara & Alfonseca 2003). OOCSMP language is causal and can

handle discrete events. A beta version of the compiler and the libraries for Java

can be freely downloaded (OOCSMP 2007). C-OOL is the compiler for OOCSMP

and it is able to generate three different object languages from the OOCSMP



40 2 Object-Oriented Modeling and Interactive Simulation

models: plain C++, C++/Amulet and Java. C-OOL automatically generates a

user interface that allows the user to control the simulation execution and change

the value of object parameters, global variables and simulation parameters.

2.8 Interactive simulation using Modelica

Some efforts have been carried out by other authors in order to provide Modelica

with visualization and interactive simulation capabilities. MODIC (Modelica

Interactive Control Interface) has been developed for this purpose (Engelson

2000). MODIC allows the user to input and output values via a graphical user

interface (Tcl-Tk based) during the simulation. The interface for input values

allows the user to change the value of input variables during simulation. From the

Modelica side, the communication is performed by using external function calls.

These external functions create or modify graphical windows, output values to

these windows, or read the value of the input variable currently set by the user.

2.9 Conclusions

The background for this dissertation has been examined in this chapter. An

overview of continuous-time modeling and simulation in the context of automatic

control has been presented. Some features of object-oriented modeling languages

have been discussed, with special emphasis in the Modelica language. In relation

to interactive simulation, the concept of virtual-lab and its role in control edu-

cation has been described. Finally, the capabilities of four interactive simulation

tools (i.e., LabVIEW, Sysquake, Ejs and OOCSMP) have been discussed.



3
Batch Interactive Simulation,

by Combining the Use of Sysquake

and Modelica/Dymola

3.1 Introduction

A novel approach to the implementation of virtual-labs supporting batch in-

teractivity is proposed and it is illustrated by means of four case studies. The

virtual-lab models have been programmed using Modelica language and translated

using Dymola. The virtual-lab views (i.e., the user-to-model interfaces) have been

implemented using Sysquake.

This approach allows taking advantage of the best features of each tool. Mo-

delica capability for physical modeling, Dymola capability for simulating hybrid-

DAE models, and Sysquake capability for:

– Building interactive user interfaces composed of graphical elements (i.e.,

sliders, menus, Nichols diagrams, time and frequency plots, etc.), whose

properties can be linked to the model variables.

– Synthesizing control systems and analyzing linear time-invariant systems.

In order to implement this approach, a Sysquake to Dymosim interface has

been programmed. It consists in a set of functions in LME language which can

be called from the Sysquake applications. These functions can be downloaded

from http://www.euclides.dia.uned.es
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dsin.txt dsin1.txt

dslin.txt dsres.txt

dymosim.exelinearize(…) dymosim(…)

[A, B, C,  D,  xN, uN, yN] = tloadlin(‘dslin.txt’) [N, s] = tload(‘dsres.txt’)

setExperiment(…) setValues(…)[p, x0, pN, x0N, In, On] = getInfo

Figure 3.1: Sysquake-Dymosim interface functions.

3.2 Sysquake to Dymosim interface

A Sysquake to Dymosim interface has been implemented. Dymosim (Dynamic

model simulator) is the executable generated by Dymola in order to simulate

the model, and then used to perform simulations and initial value computations.

It contains the code necessary for continuous simulating and event handling.

The above mentioned interface consists of a set of functions written in LME,

which are gathered in a library named sysquakeDymosimInterface. These func-

tions synchronize the execution of the dymosim.exe file and the Sysquake appli-

cation. They perform the following tasks (see Figure 3.1, and Appendix A for

further details):

– setExperiment and setValues functions write the experiment description to

a text file. This text file can be used as input file for Dymosim.

– dymosim and linearize functions execute the dymosim.exe file in order to

simulate and linearize the Modelica model, respectively.

– tload and tloadlin functions perform the following two operations. Firstly,

reading the output file generated by dymosim.exe after a model simulation

or linearization, respectively. Finally, saving these results to the Sysquake

workspace, which then can be used by Sysquake applications.
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3.3 Case study I: hysteresis-based controller

The control loop shown in Figure 3.2 is considered. The constitutive relation

of the hysteresis-based controller is shown in Figure 3.3. The setpoint is the

composition of two signals: a piecewise linear function and a sine function.

The model of the control loop has been programmed using Modelica language

and translated using Dymola. The execution of the dymosim.exe file generated

by Dymola is controlled by the Sysquake application. The view of the virtual-lab

is shown in Figure 3.4:

– The virtual-lab documentation (a set of HTML pages, see Figure 3.5) can

be displayed by pressing the “info” icon.

– The transfer function of the plant can be inserted by writing its numerator

and denominator in a dialog window. This window is displayed by clicking

on the “System” item of the “Settings” menu.

– A new simulation run can be started by clicking on the “Run” item, which

is placed on the “Settings” menu.

The virtual-lab view is composed of four graphics (see Figure 3.4). Three of

them are interactive:

– “Constitutive relation” plot: the position of the {a, b, c, d, e, f} points of the

controller constitutive relation can be changed by dragging the mouse.

– “Roots” plot: the plant’s zeros and poles can be changed by clicking on the

circles and crosses and by dragging the mouse.

– “Reference” plot: the shape of the piecewise linear function, and the ampli-

tude and frequency of the sine function, can be modified by clicking on the

lines and circles that appear in the graphic, and by dragging the mouse.
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Figure 3.4: View of the control loop virtual-lab.
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Figure 3.5: Documentation of the control loop virtual-lab.

3.4 Case study II: control of a chemical reactor

The model of a batch chemical reactor has been composed using JARA 2i Mo-

delica library. The diagram of the reactor model is shown in Figure 3.6a. An

exothermic reaction A → P is carried out in the liquid phase. The reactor

contains a heat exchanger, which can be operated with steam and with cooling

water. The plant model was described in Section 2.5.3.

The diagram of the Modelica model describing the closed-loop system is shown

in Figure 3.6b. It has been used the PID controller model included in the standard

Modelica library (Modelica 2007), which has been designed according to the model

described in (Åström & Hagglund 1995). This model has limited output, anti-

windup compensation and setpoint weightings. It has the following parameters:

Kp Proportional gain.

Ti Integral time constant.

Td Derivative time constant.
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wp Setpoint weight for the proportional term.

wd Setpoint weight for the derivative term.

Ni Anti-windup compensator constant.

Nd Derivative filter parameter.

ymin Lower limit for the output.

ymax Upper limit for the output.

The reactor’s operation policy is the following (Froment & Bischoff 1979):

1. Fill up the reactor with the reacting liquid (the inflow is controlled by a

PID).

2. Preheat to certain temperature (T1), and let the reaction proceed adiabat-

ically.

3. Start cooling when either the maximum allowable reaction temperature

(Tmax) occurs or the desired conversion is reached (xd), and cool down to

the desired temperature (Td).

4. Empty the reactor.

The virtual-lab view is shown in Figure 3.7. It contains sliders to change the

model parameters, the initial value of the state variables and the input variables.

The “Settings” menu allows the user to (see Figure 3.7):

1. Change the parameters of the control policy (i.e., T1, Tmax, xd, Td and PID

parameters).

2. Set the communication interval and the total simulation time.

3. Launch a simulation run.

The view contains an “info” icon that displays the virtual-lab documentation.

Also, it has three plots representing the time-evolution of the relevant process

variables (i.e., the mass of A, P and water, the mixture temperature, and the

pump throughput).



a) b)
Figure 3.6: Diagram of the reactor Modelica model: a) open-loop system;
and b) closed-loop system.

Figure 3.7: View of the chemical reactor virtual-lab.
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3.5 Case study III: control of a double-pipe heat

exchanger

The JARA 2i model of a double-pipe heat exchanger was discussed in Section

2.5.5. The model diagram is shown in Figure 3.8a. The goal of this virtual-lab

is to illustrate the application to the heat exchanger of some linearization and

control techniques.

Three different Modelica models has been composed using the JARA 2i library

and components from the standard Modelica library:

1. The open-loop system (see Figure 3.8a).

2. The heat-exchanger controlled using a PID (see Figure 3.8b).

3. The heat-exchanger controlled using a compensator (see Figure 3.8c).

In addition, a Sysquake application has been programmed. It implements

the virtual-lab view and controls the execution of the three Dymosim files: the

Dymosim file that simulates the open-loop plant, and the two Dymosim files that

simulate the plant controlled using a PID and a compensator respectively.

The features of this Sysquake application, that constitutes the virtual-lab

core, include:

1. The application to the heat-exchanger model of several identification tech-

niques.

2. The design of control strategies (using the linear models previously obtained

by applying the identification techniques).

The challenge is to control the gas exit temperature by manipulating the water

flow. In addition, the virtual-lab view contains an “info” icon that displays the

documentation (see Figure 3.9).
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c...c... c...
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c... c...

a)

b) c)
Figure 3.8: Diagram of the heat-exchanger Modelica model: a) open-
loop plant; b) plant controlled using a PID; and c) plant controlled using
a compensator.

3.5.1 Plant identification

The virtual-lab supports the automatic calculation of the plant linearized model.

This calculation is performed as follows (see Figure 3.9a):

1. The change in the value of the gas exit temperature, in response to a step

in the water flow, is calculated simulating the heat exchanger model.

2. A transfer function (abbreviated: TF) is fitted to this response.

During this identification procedure, the virtual-lab user is allowed to:

1. Change the parameter values and the input variable values of the heat

exchanger model, the simulation communication interval and the total si-

mulation time.



a)

b)
Figure 3.9: View of the double-pipe heat-exchanger virtual-lab: a) plant
linearization; and b) controller synthesis.
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2. Choose among different identification methods, including “first order TF

with delay”, “second order TF with delay” and “non-parametric identifica-

tion”.

3. Modify the obtained TF.

4. Analyze the obtained TF by means of Bode and zero-pole diagrams, and

robustness margins.

5. Start the simulation run.

6. Export the calculated TF to another Sysquake application.

3.5.2 Controller synthesis and analysis

In addition, the virtual-lab automates the controller synthesis and analysis. The

virtual-lab supports the following user’s operations (see Figure 3.9b):

1. To import the TF previously identified.

2. To analyze the TF characteristics using Nyquist, Nichols and Bode dia-

grams.

3. To choose the controller type. Possible options are: PID, lead and lag

compensators.

4. To synthesize the controller (i.e., to set the value of the PID’s parameters).

5. To specify the error and the phase margin of the system controlled by the

lead or lag compensators.

6. To simulate the closed-loop linear and non-linear models.

3.5.3 Example of use

An experience using the heat-exchanger virtual-lab will be described below. The

operation conditions of the heat exchanger are shown in Figure 3.9a. A change

in the value of the the water-flow from 0 to 10−4 kg/s has been applied at time
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150 s to the heat exchanger. A TF has been fitted to the change in the value

of the gas exit temperature in response to the step change in the water-flow. A

first order identification method, that uses the times to reach 28.3% and 63.2%

response, has been applied. The following TF has been obtained:

24064.1s − 10240

33.3s2 + 15.17s + 0.43
(3.1)

A PID to control the plant has been designed. The TF previously obtained has

been used in the design process. The PID controller has the following parameters:

Kp = 0.05, Ti = 1, Td = 0.01, wp = 1, wd = 1, Ni = 0.9, Nd = 10, ymin = 0 and

ymax = 5 · 10−3. The evolution of the gas exit temperature tracking the set-point

is shown in Figure 3.9b.

3.6 Case study IV: control of an industrial boiler

JARA 2i Modelica library has been used to compose the model of an industrial

boiler. that was explained in Section 2.5.4. The input of liquid water is located

at the boiler bottom, and the vapor output valve is placed at the boiler top. The

water contained inside the boiler is continually heated.

The model diagram is shown in Figure 3.10a. It is composed of two control

volumes, in which the mass and energy balances are formulated: (1) a control

volume containing the liquid water stored in the boiler; and (2) a control volume

containing the generated vapor. The model of the boiling process connects both

control volumes. The heat flow from the heater to the water, the pressure at the

valve output and the water pump are modeled using JARA source models.

This virtual-lab is intended to illustrate the identification of the industrial

boiler and the synthesis of the boiler control system. This control system is

composed of two decoupled control loops:

1. The water level inside the boiler is controlled by manipulating the pump

throughput.

2. The output flow of vapor is controlled by manipulating the heater power.
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Figure 3.10: Diagram of the boiler Modelica model composed using JARA:
a) open-loop plant; b) plant controlled using two PID; and c) plant controlled
using a PID to control the water level inside the boiler and a compensator
to control the output flow of vapor.

The identification and synthesis procedures are similar to the one discussed

in Section 3.5. The virtual-lab view contains an “info” icon that displays the

documentation.

Three different Modelica models has been built to identify and control the

system:

1. The open-loop system (see Figure 3.10a).

2. The boiler controlled using two PIDs (see Figure 3.10b).

3. The boiler controlled using a PID to control the water level inside the boiler

and a compensator to control the output flow of vapor (see Figure 3.10c).

The identification and synthesis procedures are briefly described next.

3.6.1 Plant identification

The virtual-lab user is allowed to choose interactively the plant’s operation point.

This is accomplished by setting the value of:

– The mass and temperature of the liquid and the vapor inside the boiler.
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– The valve opening and its downstream pressure.

– The flow and inlet temperature of the water.

Once the operation point has been set, the user can launch the calculation

of the two TF: (1) a TF from the “pump throughput” (input) to the “water level”

(output); and (2) a TF from the “heater power” (input) to the “vapor flow”

(output). These TF are automatically fitted to simulated step responses by the

virtual-lab. The user can choose among the following identification methods (see

Figure 3.11a): “first order TF with delay”, “second order TF with delay” and

“non-parametric identification”.

The virtual-lab supports a set of graphical methods to analyze the fitted

TF, including Bode and pole-zero diagrams, and it automatically computes the

robustness margin. In addition, the virtual-lab allows to export the TF to any

other Sysquake application.

3.6.2 Controller synthesis and analysis

The virtual-lab facilitates the design and analysis of the two controllers (see Figure

3.11b). The water level inside the boiler is controlled using a PID. The gas flow

can be controlled using a PID, a lead or a lag compensator. The user can change

the controller parameters, and the error and phase-margin specifications of the

compensation networks.

3.6.3 Example of use

An experience using the industrial boiler virtual-lab will be described below. The

following TF has been considered to describe the changes in the liquid levels due

to changes in the pump flow:
1.3
s . A change in value of the heat flow from 5.8·105

to 6 ·105 W has been applied to the heat exchanger at time 9000 s. The operation

conditions of the boiler are shown in Figure 3.11a. A TF has been fitted to the

vapor flow by applying a first order identification method. The following TF has

been obtained:



a)

b)
Figure 3.11: View of the boiler virtual-lab: a) plant linearization; and b)
controller synthesis.
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1.96 · 10−5

1114.6s + 1
(3.2)

Two PID controllers have been designed. The PID that controls the liquid

volume inside the boiler has the following parameters: Kp = 1, Ti = 9, Td =

1 · 10−3, wp = 1, wd = 1, Ni = 0.9, Nd = 10, ymin = −0.01 and ymax = 0.01.

The PID that controls the vapor output flow has the following parameters: Kp =

7 · 106, Ti = 1.1, Td = 3 · 10−3, wp = 1, wd = 1, Ni = 0.9, Nd = 10, ymin = 0 and

ymax = 5 · 106.

The time evolution of the set-points, the manipulated variables and the control

variables are shown in Figure 3.11b.

3.7 Conclusions

The feasibility of combining Modelica/Dymola with Sysquake, for implement-

ing virtual-labs with batch interactivity has been demonstrated. Sysquake is a

software tool specifically oriented to develop virtual-labs. The use of Modelica

language considerably reduces the modelling effort and facilitates the model reuse.

In order to implement this software combination approach a Sysquake-to-

Dymosim interface has been programmed. This approach has been successfully

applied to the implementation of virtual-labs intended for control education.



4
Modeling Methodology for Runtime

Interactive Simulation

4.1 Introduction

Two different approaches for implementing virtual-labs with runtime interactivity

have been proposed in this dissertation:

Approach A. Implementing virtual-labs by combining the use of Easy Java Sim-

ulations, Matlab/Simulink and Modelica/Dymola. The virtual-lab model is

described using Modelica and the virtual-lab view is implemented using Ejs.

The model-view communication is carried out through Matlab/Simulink.

This approach will be discussed in Chapter 5.

Approach B. Describing virtual-labs using only Modelica language. The virtual-

lab model is described using Modelica. The virtual-lab view is composed

using VirtualLabBuilder Modelica library, which contains Modelica models

implementing graphic interactive elements, such as containers, animated

geometric shapes and interactive controls. These models allow the virtual-

lab developer: (1) to compose the view; and (2) to link the visual properties

of the virtual-lab view with the model variables. The components of the

library contain the code required to perform the bidirectional communica-

tion between the view and the model. In addition, VirtualLabBuilder library

supports including documentation (HTML pages) in the virtual-lab. The
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design and programming of VirtualLabBuilder is part of the research work

presented in this dissertation. It will be discussed in Chapters 6 and 7.

In both approaches, the virtual-lab model is described using the Modelica

language. A systematic methodology is proposed in this dissertation for adapting

any Modelica model into a description suitable for runtime interactive simulation.

The model modifications required for Approach A and B are slightly different,

due basically to the following two facts:

1. The causality of the Modelica model interface needs to be explicitly set in

Approach A. The reason is that, in Approach A, the Modelica model needs

to be embedded within a Simulink block of DymolaBlock type.

2. The code required to implement the user’s changes in the value of the inter-

active quantities is pre-defined in some components of the VirtualLabBuilder

Modelica library. Therefore, this code does not need to be included in the

virtual-lab model description for Approach B .

The model modification methodologies for Approaches A and B are discussed

in this chapter, and they are applied for adapting JARA Modelica library to

interactive simulation. The adapted library, called JARA 2i, has been used to

compose three of the virtual-labs discussed in Chapters 5 and 6: control of a

chemical reactor, control of an industrial boiler and dynamic behavior of a heat-

exchanger. Finally, support to multiple selections of the model state variables

will be discussed in this chapter and illustrated by means of a case study.

4.2 Model description for interactive simulation

A methodology for transforming any Modelica model into a description suitable

for interactive simulation is proposed in this section. The following terminology

will be used. The original model of the system is called physical model, and its

reformulation for interactive simulation is called interactive model.

The model shown in Figure 4.1 will be used to illustrate the discussion. The

voltage applied to the pump (v) is an input variable (i.e., its value is not calculated
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Figure 4.1: Tank model.

from the model equations). The cross-sections of the tank (A) and the outlet hole

(a), the pump parameter (k) and the gravitational acceleration (g) are parameters

(i.e., time-independent quantities of the model). The liquid volume (V ), the input

and output flows (Fin, F ), and the liquid level (h) are time-dependent variables

of the physical model.

The model of the system shown in Figure 4.1 can be described by the con-

nection of following three components:

1. The pump, modeling the input flow of liquid (Fin = kv).

2. The tank, describing the conservation of the liquid volume (dV/dt = Fin−F )

and the relationship between the volume and the liquid level (V = Ah).

3. The pipe, describing the output flow of liquid (F = a
√

2gh).

4.2.1 Interactive quantities

The virtual-lab design process includes selecting the interactive quantities. These

are the model quantities whose values can be interactively changed by the user

during the simulation run. The virtual-lab goal is to illustrate the dependence

between the model dynamic behavior and the value of those quantities.

Interactive quantities can be parameters, input variables, and time-dependent

variables of the physical model. For instance, some interactive quantities of the

model shown in Figure 4.1 could be the following:

– Parameters: the cross-sections of the tank (A) and the outlet hole (a), and

the pump parameter (k).
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– Time-dependent variables: the liquid level (h).

– Input variables: the voltage applied to the pump (v).

The interactive model combines the dynamic behavior described in the phys-

ical model and the abrupt changes in the value of the interactive quantities

produced by the user’s actions:

1. The evolution in time of the interactive time-dependent quantities is de-

scribed by the physical model equations. In addition, their value can change

abruptly as a result of the user’s interaction.

2. The value of the interactive model parameters can be abruptly changed

by the user’s action, remaining constant between consecutive interactive

changes.

3. The value of the interactive input variables is interactively set by the user.

Their value changes abruptly as a result of the user’s action, remaining

constant between consecutive changes.

Parameters represent time-independent quantities. Input variables repre-

sent boundary conditions which are not calculated from the model equations.

Although they are conceptually different, the dynamic behavior of interactive

parameters and interactive input variables is the same. Their value change

abruptly at the interaction instants, remaining constant between consecutive

changes. As a consequence, both types of interactive quantities are described

in the same manner in the interactive model.

4.2.2 Description of the interactive quantities

In order to support abrupt changes in their values during the simulation run,

interactive quantities need to be state variables of the interactive model. The

interactive model is obtained from the physical model by reformulating (when

required) the declaration and evaluation of the interactive quantities, so that

they become state variables of the interactive model. To this end, the virtual-lab

developer has to perform the following tasks.
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model tank

parameter Real Ainitial "Initial value of the tank section";

Real A (start = Ainitial) "Tank section - Interactive quantity";

...

equation

der(A) = 0;

...

end tank;

Modelica Code 4.1: Tank section (A) redefined as interactive quantity.

– Time-dependent variables need to be selected as state variables. Modelica

and Dymola support the user’s control on the state variables selection, via

the stateSelect attribute of Real variables (Mattsson et al. 2000, Otter &

Olsson 2002, Dynasim 2006, Fritzson 2004). This attribute values include

“never” (the variable will never be selected as state variable) and “always”

(the variable will always be used as a state). This feature allows the user

to select the model state variables without performing any manipulation on

the model equations. The required model manipulations are automatically

performed by Dymola.

– Parameters and input variables are redefined as time-dependent variables

with zero time-derivative, and they are selected as state variables. For

instance, the parameter A of the tank model shown in Figure 4.1 should

be a Real variable of the interactive model, calculated from the equation

der(A) = 0 (see Modelica Code 4.1).

Let’s consider that all the interactive quantities can be simultaneously selected

as state variables. The description of interactive models without this restriction

will be discussed in Section 4.4. Changes in the interactive quantities are per-

formed as state re-initialization events by using the Modelica’s reinit(x, expr)

operator. It re-initializes an state variable (x) with the value obtained by eval-

uating an expression (expr), at the event instant. These changes are triggered

using when clauses.

The required code to implement the user’s changes in the value of the in-

teractive quantities (i.e., re-initialization events triggered using when clauses)
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is pre-defined in the interactive control elements contained in the VirtualLab-

Builder Modelica library. Therefore, in case of virtual-labs implemented using

Modelica/Dymola and the VirtualLabBuilder Modelica library, the virtual-lab

developer does not need to perform any further modification in the model. On the

contrary, in case of virtual-labs implemented by combining Ejs, Matlab/Simulink

and Modelica/Dymola, the code to implement the user’s changes in the value

of the interactive quantities has to be included in the interactive model by the

virtual-lab developer.

Defining the interactive parameters and input variables as state variables

increases the number of state variables. This has an unwanted effect: it slows

down the simulation. We could think of redefining the interactive parameters

and input variables as discrete-time variables or, alternatively, as input variables

whose values are provided by the virtual-lab view. In this way, the number of

state variables would not be increased. However, as it is discussed next, this is

not a valid approach. Dymola automatically performs model manipulations in

order to formulate the model according to the requested state selection. The

problem is that these model manipulations can require differentiating an interac-

tive parameter or input variable, which results in an error being generated. An

example is shown next.

Consider the model shown in Figure 4.1. It is formulated according to the

state selection e1 = {V }. In order for h to be a state variable instead of V , the

model can be manipulated as shown below. The variable to be evaluated from

each equation is written within square brackets.

[F ] = a
√

2gh (4.1)

[Fin] = kv (4.2)

[derV ] = Fin − F (4.3)

[V ] = Ah (4.4)

derV = Ȧh + A
[

ḣ
]

(4.5)
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The time-derivative of the tank cross-section (i.e., Ȧ) appears in Eq. (4.5).

If the interactive quantity A is defined as an input variable, then an error is

produced: Dymola can not differentiate an input variable. The same problem

arises if A is defined as a discrete-time variable. A valid approach is the previously

discussed: defining the interactive parameters and input variables as constant

state variables (i.e., Ȧ = 0). The interactive changes in the value of these

quantities are implemented by re-initializing their values.

The physical models have to be modified as was described in this section. In

case of the model shown in Figure 4.1, the description of the physical components

composing the physical model could be modified as shown below. It is supposed

that h is selected as state variable.

The selection of h as state variable is controlled via the StateSelect attribute.

The interactive parameters (A, a, k) and the input variable (v) have been defined

as constant state variables (see Modelica Code 4.2).



model tank

Real h (stateSelect = StateSelect.always) "Liquid level";

Real V (stateSelect = StateSelect.never) "Liquid volume";

parameter Real Ainitial "Initial value of the tank section";

Real A (start = Ainitial) "Tank section - Interactive quantity";

...

equation

der(A) = 0;

...

end tank;

model pipe

Real F (stateSelect = StateSelect.never) "Liquid flow";

parameter Real aInitial = 1 "Initial value of the pipe section";

Real a (start = aInitial) "Pipe section - Interactive quantity";

...

equation

der(a) = 0;

...

end pipe;

model pump

parameter Real vInitial "Initial value of the applied voltage";

Real v (start = vInitial) "Voltage applied to the pump - Interactive";

parameter Real kInitial "Initial value of the pump parameter";

Real k (start = kInitial) "Pump parameter - Interactive quantity";

...

equation

der(v) = 0;

der(k) = 0;

...

end pump;

Modelica Code 4.2: Tank model with the following interactive quantities:
A, a, v, k.
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4.3 Design of JARA 2i

JARA library (Urquia 2000, Urquia & Dormido 2003) has been translated into

Modelica language and adapted for interactive simulation by applying the method-

ology proposed in Section 4.2. The new version of the library is called JARA

2i. The library code, its on-line documentation and some examples of use are

available at http://www.euclides.dia.uned.es

JARA 2i is intended to be used for batch and runtime interactive simulation.

In order to be adapted for runtime interactive simulation, the model needs to be

modified as described in Section 4.2. These modifications imply the increment of

the number of the state variables, with the unwanted effect of slowing down the

simulation. On the other hand, no model modifications are required for batch

interactive simulation using Sysquake. In consequence, the model modifications

have been coded in a way that they can be conditionally included or removed

from the models.

Two global Boolean parameters have been defined: Ejs and Sysquake. These

two parameters are declared as inner variables to the JARA components and

outer variables to the physical models. if-then-else Modelica clauses are used to

include or remove code from the models depending on the value of these two

variables. An example is shown in Modelica Code 4.3.

If Ejs = true and Sysquake = false, then the equation setting the time

derivative of the tank cross-section to zero is activated. On the other hand, if

Ejs = false and Sysquake = true, then the tank cross-section is calculated

from A = Ainitial. The Ainitial parameter is the initial value of A.
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model tank

inner Boolean Ejs;

inner Boolean Sysquake;

parameter Real Aintial = 1 "Initial value of the tank section";

Real h (stateSelect = StateSelect.always) "Liquid level";

Real V (stateSelect = StateSelect.never) "Liquid volume";

parameter Real Ainitial "Initial value of the tank section";

Real A (start = Ainitial) "Tank section - Interactive quantity";

...

equation

if Ejs then

der(A) = 0;

end if;

if Sysquake then

A = Ainitial;

end if;

...

end tank;

Modelica Code 4.3: Tank model adapted for interactive simulation using
Ejs and Sysquake.

4.4 Supporting several selections of the state variables

As it was discussed in Section 4.2, in some cases all the interactive quantities can

not be selected as state variables. This case is addressed in this section.

4.4.1 Motivating example

The model of a perfect gas is shown in Figure 4.2. The input flow of gas (F ), of

heat (Q) and the input temperature (Tin) are input variables. The gas volume (V )

and the heat capacities (CP , CV ) are parameters, i.e. time-independent properties

of the physical model. The number of gas moles (n), the internal energy (U),

the gas pressure (P ) and the gas temperature (T ) are time-dependent variables

of the physical model.

The evolution in time of the time-dependent quantities is described by the

physical model equations. As was discussed in Section 4.2, the time-dependent

quantities have to be selected as state variables in order to be interactive quanti-

ties, i.e, their value can be changed abruptly as a result of the user’s interaction.
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Figure 4.2: Model of a perfect gas.

In general, different choices of the model state-variables are possible. As the

model of a perfect gas in a fixed volume has two degrees of freedom, only two

variables can be simultaneously selected as state variables. Possible choices in

the model shown in Figure 4.2 include: e1 = {p, T}, e2 = {n, T} and e3 = {n, p};

where ei represents one particular choice of the state variables.

The state variable selection should be made so that it includes all the interac-

tive quantities. If the user wants to interactively change p and T , the appropriate

choice is e1 = {p, T}. This is also the right choice if the user wants to change

p and to keep constant T , or if he wants to change T and to keep constant p.

Likewise, the appropriate choice is e2 if the user wants: (1) to interactively modify

n and T ; or (2) to modify n and to maintain constant T ; or (3) to modify T and

to maintain constant n. An analogous reasoning is applied to e3. In general,

an interactive model is required to support state changes that correspond with

different choices of the state variables.

In addition, interactive changes of the model parameters, i.e. time-independent

properties of the physical model, can have different effects depending on the state

variable choice. Consider an instantaneous change in the gas volume (V ) of the

model shown in Figure 4.2. If the state variables are e1 = {p, T}, then the

change in V produces an instantaneous change in the number of moles (n), while

the pressure (p) and the temperature (T ) remain constant. On the contrary, if

the state variables are e2 = {n, T}, then the change of volume produces a change
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in pressure. In this case, the number of moles (n) and the temperature remain

constant. As a consequence, the interactive model needs to support different

choices of the state variables simultaneously.

4.4.2 Model description

An approach to implement this capability is the following. Building the interac-

tive model as composed of several instances of the physical model, each one with

a different choice of the state variables. When describing an interactive action

on the model, the user selects the adequate state-variable choice according to his

preference. This information is transmitted from the virtual-lab view to the model.

Then, the interactive model uses the adequate physical-model instantiation (the

one with the chosen state selection) for executing the instantaneous change in the

parameters and state variables, and for solving the re-start problem.

Modelica capability for state-selection control allows easy implementation of

this approach (Otter & Olsson 2002). Three instantiations of the perfect-gas

model (i.e., perfectGas) have been defined (see Figure 4.3):

1. perfectGasSS1, with e = {p, T}.

2. perfectGasSS2, with e = {n, T}.

3. perfectGasSS3, with e = {n, p}.

The Modelica code of the perfect-gas model is listed in Appendix B.

View-model connection

The schematic description of the model-view connection is shown in Figure 4.3.

There are seven input signals to the model and one output signal. The function

of these signals is explained below. The perfect gas virtual-lab will be used to

illustrate the discussion.
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model perfectGasInteractive (Modelica)

Iparam[:]
Ivar[:]
CKparam[:]
CKvar[:]

CKstate[:]
Istate[:]

O[:]
.
.
.

.

.

.

Enabled[:]

model perfectGasSS1

Virtual-lab model

Virtual-lab view

model perfectGas

when change(CKparam[1]) then

reinit({V,Cp},Iparam[:]);

end when;

when change(CKvar[1]) then

reinit({F,Tin,Q},Ivar[:]);

end when;

when change(CKstate[1]) then

reinit(p,Istate[2]);

reinit(T,Istate[3]);

end when;

e = { p , T }

model perfectGasI

when change(CKparam[3]) then

reinit({V,Cp},Iparam[:]);

end when;

when change(CKvar[3]) then

reinit({F,Tin,Q},Ivar[:]);

end when;

when change(CKstate[3]) then

reinit(n,Istate[1]);

reinit(p,Istate[2]);

end when;

model perfectGasI

model perfectGasSS3

model perfectGas
e = { n , p }

Figure 4.3: Schematic description of the model-view connection.

Interactive state variables

Two input variables to the model are used to carry out the interactive changes

in the state: Istate[:] and CKstate[:] (see Figure 4.3).

– The array Istate[:] contains the values used to re-initialize the model state.

In the perfect-gas model: Istate [:] = {n, p, T}.

– The array CKstate[:] is used to trigger the state re-initialization events,

which are performed using the Modelica operator reinit. Each variable of
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the array CKstate[:] is used to trigger the events in a different instantiation

of the physical model.

The perfect-gas model contains three instantiations of the physical-model:

perfectGasSS1, perfectGasSS2 and perfectGasSS3. Consequently, the array CK-

state[:] has three components. CKstate[1] triggers the change in the state-

variables of perfectGasSS1. CKstate[2] and CKstate[3] trigger the change in the

state-variables of perfectGasSS2 and perfectGasSS3 respectively (see Figure 4.3).

For instance, the virtual-lab view changes the value of the signal CKstate [1]

and updates the value of the vector Istate[:] when perfectGasSS1 model is enabled

(Enable = [1, 0, 0]) and a state variable value is changed by the user.

Interactive parameters and input variables

The interactive parameters (V , CP ) and the input variables (F , Tin,Q) are defined

as constant state-variables (i.e., with zero time-derivative) in the model. Their

values are changed by using the reinit operator. Four input variables to the model

are used (see Figure 4.3):

– Two arrays (Iparam[:], Ivar[:]) containing the new values.

– Two arrays (CKparam[:], CKvar[:]) for triggering the re-initialization events.

For instance, the virtual-lab view changes the value of the signal CKparam [1]

and updates the value of the vector Iparam[:] when perfectGasSS1 model is

enabled (Enable = [1, 0, 0]) and a parameter value is changed by the user.

Changing the state variable selection

When the user changes the state selection, the physical model instantiation

corresponding to the new state choice must be re-initialized to start its trajectory

at the last point described by the physical model instantiation corresponding to

the previous state selection. To this end, the virtual-lab view:

1. Sets the new value of Enable[:].
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2. Changes the value (from one to zero or vice-versa) of CKparam [i], CKstate [i]

and CKvar [i], where i is an integer whose value depends on the state selec-

tion (for instance, i = 1 if the new state selection is the one corresponding

to perfectGasSS1).

3. Updates the value of the vector Istate[:].

Output variables

The output variable array of the model, O[:], contains the value of the variables

linked to the properties of the virtual-lab view. The virtual-lab view uses the

value of this output array (O[:]) to refresh the simulation view.

The value of the input array Enabled[:] is set by the virtual-lab view. It

selects which output is connected to the output signal O[:]. The output array in

the perfect-gas model is the following: O [:] = {n, p, T, V,CP , Tin, F,Q}.

4.5 Case study: tank system

The tank model shown again in Figure 4.1 is used to illustrate the previous

discussion. Possible choices of the state variables include:

e1 = {h} e2 = {V } e3 = {F}

where ei represents one particular choice of the state variables.

This virtual-lab is required to support three ways of describing the interactive

changes in the amount of liquid contained in the tank:

1. Changes in the liquid volume (V ).

2. Changes in the liquid level (h).

3. Changes in the output flow of liquid (F ).

In other words, each time the user needs to change the amount of liquid, he

can choose among describing it in terms of the volume, in terms of the level, or in

terms of the output flow. Different choices are possible during a given simulation
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extends physicalModel

…
Boolean isState [:]

model physicalModel

when { CK, Enabled } then

reinit ( ivars [:] , I [:] );
end when;

isState [:]
…

I [:]

CK

Enabled

partial model setParamVar

isState[:]
…

when { CK [1] , Enabled [1] }  then

reinit ( ivars [:] , I [:] ) ;
end when;

when { CKstate[1] , Enabled [1] } then

reinit ( state1 [:] , Istate ( n11,…,n1M );
end when;

StateSelection1

O [:]

I [:]

CK [1:N]

Enabled [1:N]

CKstate [1:N]

Istate [:]

model interactiveModel

extends setParamVar ( isState={ … } ) ; 

when { CK [N] , Enabled [N] }  then

reinit ( ivars [:] , I [:] ) ;
end when;

when { CKstate [N] , Enabled [N] } then
reinit ( stateN [:] , Istate ( nN1,…,nNM );

end when;

StateSelectionN

extends setParamVar ( isState={ … } ) ; 

� �

� � � �

I [:]

I [:]

CK [1]

CK [N]

Enabled [1]

Enabled [N]

CKstate [1]

CKstate [N]

Istate [:]

Istate [:]

Enabled [1:N]

isState[:]
…

Figure 4.4: Schematic description of the proposed modeling methodology
for interactive simulation.

run. However, V , h and F can not be simultaneously selected as state variables.

The approach proposed in Section 4.4.2 is applied with slight modifications:

1. The interactive model is composed of as many instances of the physical

model as different state selections are required. In this case, three selections

of the state variables are required: e1 = {h}, e2 = {V } and e3 = {F}.

The boolean vector isState[:], declared in physicalModel, allows controlling

the state selection. The size of this vector is equal to the number of

interactive time-dependent quantities. For instance, if isState[:] is set to the

value {false,true,false} when instantiating the physical model, then the liquid

volume (V ) is selected as a state variable. Also, the interactive parameters

(A, a) and the input variable (v) have been defined as constant state

variables (see Modelica Code 4.4). This first step in the implementation

of the interactive model is represented in Figure 4.4a.

2. The setParamVar class is defined (see Figure 4.4b). It inherits from physi-

calModel, and it contains the when-clauses required to change the value of the



model tank

parameter Boolean hIsState = false;

parameter Boolean VIsState = false;

Real h (stateSelect = if hIsState

then StateSelect.always else StateSelect.never)

"Liquid level";

Real V (stateSelect = if VIsState

then StateSelect.always else StateSelect.never)

"Liquid volume";

parameter Real Ainitial "Initial value of the tank section";

Real A (start = Ainitial) "Tank section - Interactive quantity";

...

equation

der(A) = 0;

...

end tank;

model pipe

Real F (stateSelect = if FIsState

then StateSelect.always else StateSelect.never)

"Liquid flow";

parameter Real aInitial = 1 "Initial value of the pipe section";

Real a (start = aInitial) "Pipe section - Interactive quantity";

...

equation

der(a) = 0;

...

end pipe;

model pump

parameter Real vInitial "Initial value of the applied voltage";

Real v (start = vInitial) "Voltage applied to the pump - Interactive";

parameter Real kInitial "Initial value of the pump parameter";

Real k (start = kInitial) "Pump parameter - Interactive quantity";

...

equation

der(v) = 0;

der(k) = 0;

...

end pump;

partial model physicalModel

parameter Boolean[3] isState;

tank tank1 ( hIsState = isState[1],

VIsState = isState[2], ...);

pipe pipe1 ( FIsState = isState[3], ...);

pump pump1 ( ... );

...

end physicalModel;

Modelica Code 4.4: Tank model with three different selections of the state
variables.
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interactive parameters and input variables. These interactive quantities are

represented by the ivars[:] array, and their new values, specified interactively

by the virtual-lab user, are represented by the I[:] array (note that in this

example: I = { Iparam, Ivar }). The size of these arrays is equal to the number

of interactive parameters plus the number of interactive input variables.

The when-clauses are triggered by the boolean variables CK and Enabled.

When the value of any of these two variables changes from false to true,

then the ivars[:] array is re-initialized to the value of the I[:] array.

3. There are defined as many components (StateSelection1, . . . , StateSelectionN)

as different state-variable choices are required (e1 = state1[:], . . . , eN =

stateN[:]). The number of state-variable choices to be supported by the

virtual-lab is represented by N. The class of these components inherits from

setParamVar (see Figure 4.4c). In addition, it contains the when-clauses

required to re-initialize its state-variable array (i.e., state array) to the values

interactively set by the user (i.e., Istate array).

The CK[1:N] and Enabled[1:N] arrays trigger the re-initialization of the in-

teractive parameters and input variables (note that in this example: CK =

{ CKparam, CKvar } ). The CKstate[1:N] and Enabled[1:N] arrays trigger the

re-initialization of the interactive time-dependent quantities. The i − th

component of these arrays controls the i − th instantiation of the physical

system (i.e., StateSelectioni).

The array Enabled[1:N] indicates which state-variable selection is enabled. It

is used to select which output is connected to the output variables (O[:]).

These are the variables used to refresh the virtual-lab view.

4.6 Conclusions

A novel modeling methodology, oriented to adapt any Modelica model for runtime

interactive simulation, has been discussed and it has been applied for program-

ming JARA 2i.



5
Virtual-labs Implemented by

Combining Ejs, Matlab/Simulink and

Modelica/Dymola

5.1 Introduction

The implementation of virtual-labs supporting runtime interactivity by the com-

bined use of Ejs, Matlab/Simulink and Modelica/Dymola is proposed. The

virtual-lab model is programmed using the Modelica language and translated

using Dymola. The view is developed using Ejs. The model-view communication

is implemented using the following interfaces:

– Modelica/Dymola to Matlab/Simulink interface. The C-code generated by

Dymola for the Modelica model can be embedded within a Simulink block

(Dynasim 2006).

– Ejs to Matlab/Simulink interface. On the other hand, Ejs allows the model

to be partially or completely developed using Simulink block diagrams

(Sanchez et al. 2005a,b).

This approach allows taking advantage of the best features of each tool:

– Ejs capability for building interactive user interfaces composed of graphical

elements, whose properties are linked to the model variables.

– Modelica capability for physical modeling and Dymola capability for simu-

lating hybrid-DAE models.
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– Matlab/Simulink capabilities for modeling of automatic control systems and

for model analysis.

5.2 Virtual-lab model

The methodology proposed in Chapter 4 has to be applied in order to adapt the

physical model for runtime interactive simulation. In addition, the following two

model modifications have to be carried out:

1. As the Modelica model has to be embedded within a Simulink block, the

computational causality of the model-view interface variables has to be

explicitly set.

2. User’s interactive actions generate abrupt changes in the value of the inter-

active variables. The code (i.e., when clauses) to implement these interactive

changes has to be included in the model.

5.3 Virtual-lab view

The virtual-lab view is implemented using Ejs. Ejs includes a panel for the view

description, which is divided in two parts (see Figure 5.1):

– An area containing the Ejs’ “view elements”.

– An area named “Tree of elements”. The view is composed by instantiating

and connecting with the mouse the “view elements” in this area.

The tree of elements of the perfect-gas virtual-lab is shown in Figure 5.1.
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Figure 5.1: View description of the perfect-gas virtual-lab.

5.4 Virtual-lab set up

The perfect gas model described in Section 4.4.1 is used to illustrate the imple-

mentation of the model-view communication through Matlab/Simulink (Sanchez

et al. 2005a,b). The Simulink model of the perfect-gas is shown in Figure 5.2a:

– The Modelica model (perfectGasInteractive) is embedded within the Dymo-

laBlock block.

– The blocks connected to the DymolaBlock inputs (“MATLAB Fcn” blocks)

transmit the value of the input variables from the Matlab workspace to the

Simulink block-diagram window.
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a)

b)

Figure 5.2: Perfect-gas virtual-lab: a) Simulink model; and b) view.

– The blocks connected to the DymolaBlock outputs (“To Workspace” blocks)

transmit the value of the output variables from the Simulink block-diagram

window to the Matlab workspace. The virtual-lab view (programmed in

Ejs) reads the value of these output variables from the Matlab workspace

and writes the value of the input variables in the Matlab workspace.

The view of the virtual-lab is shown in Figure 5.2b. The main window (on

the left side) contains the schematic diagram of the process (above) and the

control buttons (below). Both of them allow the user to experiment with the

model. The vessel volume, represented in the schematic diagram, is linked to

the V variable. Its value can be interactively changed by clicking on the hand
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picture and dragging the mouse. Three radio buttons allow choosing the state

variables ({p, T}, {n, T} or {n, p}). Text fields allow the user to set the value of

the state variables (n, p, T ), the input variables (F , Tin, Q) and the parameters

(V , CP ). The window placed on the right side of the virtual-lab view contains

graphic plots of the model variables.

The dynamic response of the perfect gas to a step change in the gas temper-

ature is shown in Figure 5.2b. This change has been interactively performed by

the virtual-lab user at the simulated time 108 s. The state selection is e = {n, T}.

The following six plots are shown in Figure 5.2b: (1) the number of moles; (2)

the decimal logarithm of the gas pressure; (3) the value of the gas temperature

and the gas flow temperature; (4) the volume of the recipient containing the gas;

(5) the liquid flow rate generated by the pump; and (6) the heat flow rate.

5.5 Case study I: quadruple-tank process virtual-lab

The quadruple-tank process is represented in Figure 5.3 (Johansson 2000). It can

be used to teach different aspects of the multivariable control theory (Johansson

2000, Dormido & Esquembre 2003). The goal is to control the level of the two

lower tanks (h1 and h2) by manipulating the pump voltage (v1 and v2).

5.5.1 Virtual-lab model

In order to illustrate their different dynamic behavior, two different models of the

process have been implemented: a linear model and a non-linear model. The non-

linear model has been composed by using the tankProcessLAB Modelica library

(see Figure 5.4a). Mass balance and Bernoulli’s law are applied to model the

tanks and the flows. The Modelica diagram of the physical model is shown in

Figure 5.4b.

The implementation of the tankProcessLAB Modelica library is part of the

work developed in this dissertation. This library is composed of some basic models

of hydraulic components (i.e., tanks, pipes, valves, etc.) that have been adapted
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for interactive simulation. The tankProcessLAB library can be downloaded from

http://www.euclides.dia.uned.es

The virtual-lab supports interactive changes in the tank physical parameters

(i.e., cross-section, shape and cross-section of the outlet hole) and in the amount of

liquid stored inside the tanks. Two selections of the state variables are supported:

e1 = {volume} and e2 = {level}. As a consequence:

– The changes in the stored amount of liquid can be defined in terms of the

liquid level or the liquid volume.

– The tank cross-section and shape changes can take place under one of the

following alternative conditions: (1) the liquid volume inside the tank is

kept constant; or (2) the liquid level is kept constant.

Two different control strategies have been implemented: manual control and

decentralized PID. The switching between these two control strategies can take

place during the simulation run. The parameters of the PID controllers can be

changed interactively.

5.5.2 Virtual-lab set up

The Simulink model containing the DymolaBlock block is shown in Figure 5.5.

Observe that the structure of this Simulink model is analogous to the perfect-gas

model, shown in Figure 5.2a.

The virtual lab is shown in Figure 5.6. The main window (on the left side of

Figure 5.6) contains the schematic diagram of the process (above) and the control

buttons (below). Both of them allow the user to experiment with the model. The

liquid levels, the tank cross-sections and the level setpoints represented in the

schematic diagram are linked to the respective model variables: their values can

be interactively changed by dragging with the mouse.

The sliders placed under the schematic diagram allow interactively changing

the pump voltages (v1 and v2) and the valve settings (g1 and g2). The radio-

buttons allow choosing the state variables (liquid volumes or levels) and the
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Figure 5.3: Schematic representation of the quadruple-tank process.

a) b)

Figure 5.4: Quadruple-tank process: a) tankProcessLAB Modelica library;
and b) diagram of the quadruple-tank Modelica model.

Figure 5.5: Simulink model of the quadruple-tank process virtual-lab.
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Figure 5.6: View of the quadruple-tank process virtual-lab.

control strategy (manual or decentralized PID). The “Linear” box shows and

hides the liquid levels calculated from the linear model simulation.

Clicking the “ResizeTanks” and “Sections” boxes bring-in two graphical gad-

gets (in the form of a hand and of control circles, respectively) that can be dragged

to change the diameter and shape of the tank section. The “Outlet holes” box

opens and closes a secondary window, where the user can interactively modify

the diameter of the outlet holes.

The “DialogZeros” and “DialogControl” windows are displayed by clicking

on the “Zeros” and “ControlParam” boxes respectively (see Figure 5.6). The

“DialogZeros” window shows the zero location and its directionality (Skogestad &

Postlethwaite 1996). The “DialogControl” window allows changing interactively

the PID parameters and the position of the point (g1, g2). This position has

important consequences: above the diagonal (i.e., g1 + g2 > 1) the system is

minimum phase (easy control problem), and below it is non-minimum phase

(difficult control problem).
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The rest of the check-boxes open and close graphic plots of the liquid levels,

volumes and flows, and plots of the voltage applied to the pumps. Some of these

plots are displayed on the right side of Figure 5.6. The dynamic response of

the four tank system to a step change in the setpoint of the tank 1 liquid level

from 5 cm to 11.2 cm is shown in Figure 5.6. This change has been interactively

performed by the virtual-lab user at the simulated time 204.6 s. The system is

operating in automatic mode.

5.6 Case study II: chemical reactor virtual-lab

The physical model of the chemical reactor has been composed using the JARA

2i Modelica library. The interactive model has been implemented by extending

the physical model described in Section 2.5.3 and by including the required code

to: (1) be useful as a Simulink block; and (2) implement the user’s changes in the

value of the interactive quantities. The Modelica code of the interactive model is

included in Appendix B.

The Modelica models of the chemical reactor and the controllers are embedded

within the SystemBlock and PIDBlock blocks respectively (see Figure 5.7). The

virtual-lab view is shown in Figure 5.8.

The main window (on the left side of Figure 5.8) contains the schematic

diagram of the process (above) and the control buttons (below). Both of them

allow the user to experiment with the model. The user can interactively choose

between manual and automatic control. The automatic control is intended to

perform the following operation policy (see Figure 5.9):

1. Fill up the reactor with the reacting liquid. The inflow is controlled by a

PID.

2. Preheat to certain temperature, and let the reaction proceed adiabatically.

3. Start cooling when either the maximum allowable reaction temperature

occurs or the desired conversion is reached, and cool down to the desired

temperature.



Figure 5.7: Simulink model of the chemical reactor virtual-lab.

Figure 5.8: View of the chemical reactor virtual-lab.
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Figure 5.9: Window menu to determine the operation policy of the chemical
reactor virtual-lab.

4. Empty the reactor.

The value of the PID-controller parameters, the temperatures defining the

operation policy and the desired conversion can be changed interactively. Also,

the value of the model state-variables (i.e., the temperature and mass of the

reaction mixture, and the concentration of A and P ), the model parameters (i.e.,

the reactor volume and section, the area of the heat exchanger, and the physical-

chemical data of the steam and cooling water), and the input variables (i.e., the

inflow temperature and concentration) can be changed interactively during the

simulation run. The secondary windows on the right side of Figure 5.8 contains

plots showing the evolution of some relevant process variables.

5.7 Case study III: industrial boiler virtual-lab

A boiler virtual-lab has been implemented by the combined use of Ejs, Simulink

and Modelica/Dymola. The physical model of the industrial boiler has been

composed using the JARA 2i Modelica library (see Section 2.5.4). The interactive

model has been implemented analogously to the chemical reactor model (see

Section 5.6). That is, it has been implemented by extending the physical model

described in Section 2.5.4 and by including the required code to: (1) be useful
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as a Simulink block; and (2) implement the user’s changes in the value of the

interactive quantities.

The Simulink model and the Ejs view of the boiler virtual-lab are shown

respectively in Figures 5.10 and 5.11. The user can interactively choose between

two control strategies: manual and decentralized PID. The control system has

been modeled using Modelica: a PID is used to control the water level and another

PID is used to control the vapor flow. The manipulated variables are the pump

water-flow and the heater heat-flow respectively. The parameters of these PID

controllers can be changed interactively. In addition, the value of the model state-

variables (mass and temperature of the water and the vapor), parameters (inner

volume of boiler), and input variables (temperature of the input water, valve

opening and output pressure) can be changed interactively during the simulation

run.

The dynamic response of the industrial boiler to a step change in the setpoint

of the vapor output flow from 8 to 9.2 moles/s is shown in the right window of

Figure 5.11. This change has been interactively performed by the virtual-lab user

at the simulated time 201.8 s. The boiler is operating in automatic mode.



Figure 5.10: Simulink model of the industrial boiler virtual-lab.

Figure 5.11: View of the industrial boiler virtual-lab.
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5.8 Case study IV: heat-exchanger virtual-lab

The physical model of the heat-exchanger has been composed using the JARA 2i

Modelica library (see Section 2.5.5). The interactive model has been implemented

analogously to the chemical reactor (see Section 5.6) and industrial boiler (Section

5.7) models. That is, it has been implemented by extending the physical model

described in Section 2.5.5 and by including the required code to: (1) be useful

as a simulink block; and (2) implement the user’s changes in the value of the

interactive quantities.

The Simulink model is shown in Figure 5.12. The interactive model of the

heat exchanger, written in Modelica language, has been embedded within the

DymolaBlock block.

The view of the virtual-lab is shown in Figure 5.13. The main window (on the

left side) contains: (1) a diagram of the heat exchanger; (2) buttons to control the

simulation run (i.e., pause, reset and play); (3) sliders and a text field to modify

the input variables (i.e., liquid and gas flows, liquid and gas input temperatures,

and molar fraction of CO2 and SO2 in the gas mixture); and (4) checkboxes to

show and hide three secondary windows: “Geometry Parameters”, “Modify State”

and “Characteristics”.

The “Geometry Parameters” window contains text fields that can be used

to modify the pipe length and diameters. The controls placed in the “Modify

State”window allow changing the temperature of the medium inside each control

volume (i.e., the cooling liquid, the gas mixture or the metal wall). Finally,

“Characteristics” is a window with several plots of the model variables.



Figure 5.12: Simulink model of the heat exchanger virtual-lab.

Figure 5.13: View of the heat exchanger virtual-lab.
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5.9 Conclusions

The feasibility of combining Modelica/Dymola, Matlab/Simulink and Ejs for

implementing runtime interactive simulations has been demonstrated. The use

of Modelica language has reduced considerably the modeling effort and it has

permitted better reuse of the models. Ejs’ visual elements have allowed easy

creation of the virtual-lab view. This approach has been successfully applied

to setting up four virtual-labs intended for control education: the quadruple-

tank process, the chemical reactor, the industrial boiler, and the heat-exchanger

virtual-lab.



6
VirtualLabBuilder Modelica Library -

User’s Perspective

6.1 Introduction

A fundamental goal of this research work is to facilitate the description and

implementation of virtual-labs using only the Modelica language. To achieve this

goal, a Modelica library has been designed and programmed. This library, named

VirtualLabBuilder, contains Modelica models implementing graphic interactive

elements, such as containers, animated geometric shapes, basic elements and

interactive controls. These models allow the virtual-lab developer:

1. To compose the virtual-lab view.

2. To link the visual properties of the virtual-lab view with variables of the

virtual-lab model.

3. To link HTML pages to the virtual-lab view. These HTML pages are

intended to serve as virtual-lab user’s documentation.

The discussion about VirtualLabBuilder design and use has been structured

into Chapters 6 and 7:

– A library description oriented to the virtual-lab developers and some cases

of use are provided in Chapter 6.
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– Details about the design and implementation of the library, that might be

of interest to the VirtualLabBuilder developers, are discussed in Chapter 7.

Finally, the feasibility of setting up virtual-labs of complex Modelica models

by using VirtualLabBuilder is demonstrated in Chapter 8. For that purpose, a

virtual-lab showing the thermodynamic behavior of an experimental house has

been implemented. This model was developed by M. Weiner as part of his M.S.

thesis (Weiner 1992, Weiner & Cellier 1993).

6.2 Design objectives

The purpose of the VirtualLabBuilder library is to facilitate the implementation

and execution of a virtual-lab completely described in Modelica language. The

following objectives have been taken into account for the design of the library:

1. To have a set of Modelica classes representing each one a graphic component

displayed by the virtual-lab view.

2. To allow easy description of the virtual-lab view, using an object oriented

methodology, and to be able to describe complex virtual-lab views.

3. To automatically generate the executable code of the virtual-lab view.

4. To automatically generate, in a way completely transparent to the user, the

code required to perform the runtime communication between the virtual-

lab model and view.

6.3 Overview of the proposed approach

The virtual-lab definition includes the description of the introduction, the model,

the view, and the bidirectional flow of information between the model and the

view. The virtual-lab definition process is outlined next.
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1. Virtual-lab model. Any Modelica model can be transformed into other

Modelica model suitable for interactive simulation. A systematic methodol-

ogy to perform this transformation was proposed in Section 4.2. Essentially,

it consists in modifying the model so that all the variables that need to be

changed interactively during the simulation (i.e., the interactive variables)

are formulated as state variables. In particular, parameters are redefined

as time-dependent variables whose time-derivative is equal to zero. In-

put variables are reformulated analogously in order to become interactive

variables. Modelica’s when clause and reinit operator allow describing

instantaneous changes in the value of the state variables. This feature

is exploited in order to perform the instantaneous changes in the value of

the interactive variables produced by the user’s interaction. Some of these

model manipulations could be performed automatically by a software tool.

However, at the present time, they have to be carried out manually by the

virtual-lab developer.

2. Virtual-lab view. The virtual-lab developer has to define a Modelica

class describing the virtual-lab view. This class has to extend another

class, named PartialView, that is included in VirtualLabBuilder library (see

Figure 6.1a). The communication interval (i.e., time interval between to

consecutive model-view communications) is a parameter of the PartialView

class (Tcom), that can be set by the virtual-lab developer. PartialView class

contains a pre-defined component: the root element for the view description.

The classes describing the graphic components are within the Containers,

Drawables, InteractiveControls and BasicElements packages of VirtualLabBuilder

library (see Figures 6.1b, 6.1c, 6.1e and 6.1f respectively). The virtual-

lab designer has to compose the virtual-lab view class by instantiating

and connecting the required graphic components. The graphic components

have to be connected forming a structure, whose root is the root element.

The connections among the graphic components determines their layout

in the virtual-lab view. VirtualLabBuilder’s graphic components and their

connection rules are discussed in Section 6.4.
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a) b) c)

d) e) f)

Figure 6.1: VirtualLabBuilder library: a) general structure; and classes
within the following packages: b) Containers; c) Drawables; d) Mechanics;
e) InteractiveControls; and f) BasicElements.

3. Virtual-lab set up. The virtual-lab developer has to define a Modelica

class describing the complete virtual-lab. This class has to contain an

instance of the VirtualLab class, which is within the VirtualLabBuilder library

(see Figure 6.1a). VirtualLab class has the following parameters: the model-

to-view communication interval (Tcom), the name of the Java file (the

content of this file is generated during the model initialization process), the

class describing the virtual-lab model, and the class describing the virtual-

lab view (see Figure 6.2). These two classes have been programmed in Steps

1 and 2 respectively. The virtual-lab designer has to set the value of these

parameters by writing the name of these two classes. In addition, he has

to specify how the variables of the model and the view Modelica classes are

linked. This is accomplished by writing the required Modelica equations

inside the Modelica class defining the complete virtual-lab.

4. Virtual-lab translation and execution. The virtual-lab developer needs

to translate using Dymola (Dynasim 2006) an instance of the Modelica class
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Figure 6.2: Parameter window of the VirtualLab class.

defined in Step 3 into an executable file (i.e., dymosim.exe file). The virtual-

lab is started by executing this file.

5. Automatic code generation and run. At the beginning of the simu-

lation run, some calculations are performed in order to solve the model at

the initial time. The initial sections of the Modelica model describing the

virtual-lab are evaluated. In particular, the initial sections of the interactive

graphic objects composing the virtual-lab view class and of the PartialView

class are executed. These initial sections contain calls to Modelica functions,

which encapsulate calls to external C-functions. These C-functions are

Java-code generators. As a result, during the model initialization, the Java

code of the virtual-lab view is automatically generated, compiled, packed

into a jar file and executed. Also, the communication procedure between the

model and the view is automatically set up. This communication is based on

a client-server architecture: the C-program generated by Dymola (Dynasim

2006) (i.e., dymosim.exe, see Step 4) is the server and the Java program

(which has been automatically generated during the model initialization)

is the client. Once the jar file is executed, the initial layout of the virtual-

lab view is displayed and the client-server communication is established.

Then, the model simulation starts. During the simulation run, there is a
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bi-directional flow of information between the model and the view. The

model sends the data required to refresh the view and the view sends the

value of the variables modified due to a user action at the time instant when

the communication is performed. The time interval between two consecutive

model-view communications was defined in Step 2.

6.4 VirtualLabBuilder library architecture

VirtualLabBuilder library is composed of the packages shown in Figure 6.1a. Some

of them are intended to be used by the virtual-lab developers (i.e., VirtualLab-

Builder users). These are:

1. ViewElements and VLabModels packages, which contain the classes required

to implement the virtual-lab view and to set up the complete virtual-lab.

2. Examples package, which contains some tutorial material illustrating the

library use.

The documentation of these packages is oriented to the VirtualLabBuilder

users.

On the other hand, the classes within the src package are not intended to be

directly used by the virtual-lab developers. The documentation of this package

describes the implementation details required to modify and extend the Vir-

tualLabBuilder library. In fact, the classes within ViewElements and VLabModels

packages inherit from classes defined within src package, inheriting the structure

and the behavior, and adding only the documentation oriented to the virtual-lab

developer. The content of this package will be described in Section 7.2.

6.5 PartialView and VirtualLab classes

VLabModels package contains two classes: PartialView and VirtualLab. The purpose

of PartialView and VirtualLab classes was briefly described in Section 6.3. PartialView
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class has to be the super-class of the model defining the virtual-lab view. The

class describing the complete virtual-lab has to contain an instance of VirtualLab

class. Implementation details can be found in Chapter 7. ViewElements package

is discussed in the next section.

6.6 Interactive graphic elements

ViewElements package contains the graphic elements that can be used to define the

view. The initial sections of these elements contain calls to Modelica functions

that perform calls to external C-functions. These C-functions write the Java code

of the elements to a file, generating automatically the Java application (i.e., a .jar

file) that is the virtual-lab view. The four packages included within ViewElements

are described below.

6.6.1 Containers package

Containers package has those graphic elements that are intended to host other

graphic elements. The container properties are set in the view definition and

they can not be modified during the simulation run. VirtualLabBuilder contains

the following five classes of containers (see Figure 6.1b):

– MainFrame class creates a window where containers and interactive controls

can be placed. The view can contain only one MainFrame object. The user

can stop the simulation by closing this window.

– Dialog class creates a window where containers and interactive controls can

be placed. This class has only two differences with MainFrame class: (1)

simulation run does not stop by closing this window; and (2) there can be

more than one Dialog object.

– Panel class creates a panel where containers, interactive controls and basic

elements can be placed.
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– DrawingPanel class creates a two-dimensional container that only can contain

drawable objects. It represents a rectangular region of the plane which is

defined by means of two points: (XMin, YMin) and (Xmax, YMax). The

coordinates of these two points (i.e., the value of XMin, XMax, YMin and

YMax) are parameters of the class whose values can be set by the user.

– PlottingPanel class creates a two-dimensional container with coordinate axes

that only can contain drawable objects.

The MainFrame, Dialog and Panel classes have a parameter that specifies their

layout policy. It sets where the elements placed within the element are located.

Possible values are BorderLayout, GridLayout, HorizontalBox, VerticalBox and FlowLay-

out. Elements hosted inside a container that don’t contain drawable objects have

to specify their position (i.e., north, south, east or west) only if the layout policy

of their container is BorderLayout.

6.6.2 Drawables package

Drawables package contains several classes implementing interactive 2-D shapes,

whose properties (i.e., size, position, rotation angle, aspect ratio, color, etc.) can

be linked to the model variables. They are intended to be used for building

animated and interactive schematic representations of the system. These classes

are: Polygon, PolygonSet, Oval, Text, Arrow, Trail and TrailSet (see Figure 6.1c). These

elements draw a polygon, a set of polygons, an oval, a text, a vector, a trace, and

a set of traces respectively.

Objects of Drawables classes must be placed inside containers that provide a

coordinate system (i.e., containers of DrawingPanel and PlottingPanel classes).

In addition to this general-purpose interactive components, other domain-

specific components can be implemented. In order to demonstrate this capa-

bility, the Mechanics package has been included within Drawables package (see

Figure 6.1d). It contains four classes (i.e., Damper, DamperSet, Spring and SpringSet)

implementing an interactive damper, a set of interactive dampers, an interactive

spring and a set of interactive springs.
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6.6.3 InteractiveControls package

InteractiveControls package contains classes that allow modifying interactively the

value of the model variables. Each class includes the definition of an input real

variable (var) and a boolean variable (event).

– The event variable is true at those time instants at which the interactive

control is manipulated by the virtual-lab user. Otherwise, the event variable

is false.

– The interactive model variable can be linked to the var variable by writing

the corresponding equation.

This package contains the following classes:

– Slider class creates a slider.

– NumberField class creates an element that allows displaying and editing a

numeric value.

– RadioButton class creates a radio-button.

– Button1Action class creates a button. The var variable is equal to one when

the button is pressed and it is equal to zero otherwise. This variable can be

used as a condition in a when clause. This way, the when clause is executed

whenever the virtual-lab user presses the button.

– Button2Actions class creates a button. The var variable changes alternatively

from zero to one and from one to zero whenever the button is pressed. By

programming the corresponding when clauses, it is possible to associate two

different actions to this button: an action is triggered when var changes

from zero to one, and the other action is triggered when var changes from

one to zero.

– SliderSet class creates a set of N sliders, where N is a class parameter. This

class contains N instances of the Slider class. Each slider is connected to

the next one following the connection rules described in Section 6.7.
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6.6.4 BasicElements package

BasicElements package contains classes that can be hosted inside a window or a

panel. This package contains the following classes:

– Label class creates a decorative label.

– CheckBox class creates a checkbox. The checkbox allows to show or hide the

virtual-lab windows.

– PauseButton class creates a button that allows the user to pause or resume

the simulation by clicking on it.

– InfoButton class creates a button that allows the user to show or hide a win-

dow displaying HTML pages. This feature allows including documentation

in the virtual-lab. That is to say, it supports the implementation of the

virtual-lab introduction.

6.7 Connection rules

The interface of the interactive graphic components is composed of connectors,

which facilitate the connection among the components. Four connector types have

been defined. Each one has a distinctive icon. Connector icons are squared or

circular, empty or filled. The following two types of interfaces have been defined

(see Figures 6.1b, 6.1c, 6.1d, 6.1e & 6.1f):

1. Interface of container components. It has three connectors (see Figure 6.1b).

Two placed on one side (called “left connectors”) and the third one (called

“right connector”) placed on the opposite side.

2. Interface of interactive controls, basic elements and drawable elements. It

has two connectors (called “left connectors”): one filled and one empty (see

Figures 6.1c, 6.1d, 6.1e & 6.1f).

The virtual-lab programmer must observe the following three rules when

connecting the graphic elements:
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1. Only connectors with the same shape (circular or squared) can be con-

nected.

2. Each filled connector must be connected to one and only one empty con-

nector.

3. Each empty connector can be left unconnected or can be connected to one

and only one filled connector.

The meaning of the connections among the graphic components is as follows:

– If two components are connected using their “left connectors”, then both

components are hosted within the same container. The component position

in the chain of connected elements determines its insertion order within the

container.

– If two components are connected using the “right connector” of the first

component and a“left connector” of the second component, then the second

component is hosted within the first component.

Example. The following example tries to illustrate how the graphic elements can

be used to compose the view of a virtual-lab. In particular, the view of the tank

process described in Section 4.2. The Modelica description of the virtual-lab view

and the obtained virtual-lab are shown in Figure 6.3a and Figure 6.3b respectively.

In this case, the model of the tank process has only one state selection and one

state variable (the liquid level).

The mainFrame and dialog components are hosted inside root. The dPanel, panelS

and panelN components are hosted inside mainFrame. The C component is hosted

inside panelN. The pipe, vase, liqPipe and liquid components are hosted inside dPanel.

The a, A, v and h components are hosted inside panelS. The plot component is

hosted inside dialog. Finally, the component trail of the Trail class is hosted inside

plot.

The window showing the component parameters is displayed by double click-

ing on the component icon. The parameter windows of the components trail, a

and mainFrame are shown in Figures 6.4a, 6.4b and 6.4c respectively.
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Figure 6.3: Tank process: a) Modelica description of the virtual-lab view;
and b) virtual-lab.

a) b)

c)

Figure 6.4: Parameter window of the following components: a) trail; b) a;
and c) mainFrame.
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6.8 Case study I: virtual-lab of an industrial boiler

The approach discussed in the previous sections is applied to the implementation

of a virtual-lab for control education. This virtual-lab has been designed to illus-

trate the dynamic behavior of an industrial boiler operating under two different

control strategies: manual and decentralized PID.

6.8.1 Virtual-lab model

The physical model of the industrial boiler has been composed using the JARA 2i

Modelica library (see Section 2.5.4). The Modelica diagram of the boiler model

is shown in Figure 6.5. The control system of the boiler is composed of two

decoupled control loops: (1) the water level inside the boiler is controlled by

manipulating the pump throughput; and (2) the output flow of vapor is controlled

by manipulating the heater power. The two PID have limited output, anti-windup

compensation and setpoint weightings. Each PID has the following interactive

parameters: proportional gain (Kp), integral time constant (Ti), derivative time

constant (Td), setpoint weight for the proportional term (wp), setpoint weight

for the derivative term (wd), anti wind-up compensator constant (Ni), derivative

filter parameter (Nd), lower limit for the output (ymin) and upper limit for the

output (ymax).

6.8.2 Virtual-lab view

The Modelica description of the virtual-lab view is shown in Figure 6.6. It

automatically generates the Java code of the interactive graphic interface shown

in Figure 6.7. The relationship between the Modelica description and the corre-

sponding graphic interface is briefly explained next.

The Modelica model describing the view must extend the PartialView class,

which contains one pre-defined graphic element: root. The root component has

three components hosted inside it: mainFrame of MainFrame class and dialog and
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Figure 6.5: Diagram of the boiler model.

dialog1 of Dialog class. The components mainFrame and dialog generate the two

windows shown in Figure 6.7.

The mainFrame layout policy is set to BorderLayout, in order to allow selecting

the position of the hosted elements (i.e., north, south, center, east or west

positions). In this case, three containers are placed inside mainFrame: drawingPanel

(of DrawingPanel class), and panelNorth and panelSouth (of Panel class).

– drawingPanel is placed in the center of the mainFrame. This component

contains the animated diagram of the plant. This diagram is composed

of drawable elements of Polygon, Oval, Text and Arrow classes. The liquid,

heating system, pump and valve are represented by components of Polygon

class. The two controllers are represented by components of Oval class and

the set-point of the liquid volume is represented by a component of Arrow

class.

– panelNorth hosts interactive controls of RadioButton, InfoButton, PauseButton

and Slider classes. The two radio-buttons allow the user to select the control



Figure 6.6: Diagram of the Modelica description of the view.

Figure 6.7: View of the boiler virtual-lab
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strategy (manual or decentralized PID). The two sliders allow the user to

change the pump input flow and the heater heat-flow when the manual

control strategy is selected. The button of the InfoButton and PauseButton

classes allows the user, respectively, to pause and resume the simulation

and to display a window with the information about the virtual-lab (see

figure 6.8).

– panelSouth hosts interactive controls of Label and Slider classes. These sliders

allow the user to perform interactive changes in the value of the boiler

volume, the output pressure, the valve opening, the water volume and the

vapor flow set points, the mass and temperature of the water, and the vapor

moles contained inside the boiler.

The dialog container hosts interactive controls of Slider class. These sliders

allow the user to change the parameter values of the two PID controllers.

The dialog1 container generates the graphic interface shown in Figure 6.9.

This container hosts components of PlottingPanel class which contain drawables of

Trail class. These drawables generate traces that show the time evolution of some

relevant system variables (see Figure 6.9).

6.8.3 Virtual-lab set up and launch

The virtual-lab description is obtained as discussed in Section 6.3. It is translated

using Dymola and executed. Then, the jar file containing the Java code of the

virtual-lab view is automatically generated and executed. Then, the virtual-lab

view is displayed (see Figure 6.7).

The dynamic response of the boiler to a step change in the output pressure

is shown in Figure 6.9. This change has been interactively performed by the

virtual-lab user at the simulated time 243 s. The boiler is operating in automatic

control mode. The following four plots are shown in Figure 6.9:

1. Actual value of the vapor flow and its setpoint.

2. Heat generated by the heater.



Figure 6.8: Introduction of the boiler virtual-lab.

Figure 6.9: Time evolution of some selected variables of the boiler virtual-
lab.
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3. Actual value of the water volume contained inside the boiler, and its setpoint

value.

4. Liquid flow rate generated by the pump.

6.9 Case study II: virtual-lab of a heat-exchanger

This virtual-lab illustrates the dynamic behavior of a double-pipe heat exchanger.

The model of this virtual-lab has been built using the JARA 2i library. This

model was discussed in Section 2.5.5.

6.9.1 Virtual-lab view

The Modelica description of the virtual-lab view and the Java view generated

are shown in Figures 6.10 and 6.11, respectively. The relationship between the

Modelica description and the corresponding graphic interface is briefly explained

next.

The root component has two components hosted inside it: MF of MainFrame

class and dialog of Dialog class. The components MF and dialog generate the two

windows shown in Figure 6.11.

The MF layout policy is set to BorderLayout, in order to allow selecting the

position of the hosted elements (i.e., north, south, center, east or west positions).

In this case, three containers are placed inside mainFrame: DP (of DrawingPanel

class), panelN and panelS (of Panel class).

– DP is placed in the center of the MF. This component contains the animated

diagram of the longitudinal section of the heat-exchanger. This diagram is

composed of drawable elements of Polygon and PolygonSet classes. Each liquid

control volume has been represented by a rectangular polygon whose filling

color depends on the temperature of the liquid inside the control volume.

Analogously, each gas control volume has been represented by a rectangular

polygon whose temperature depends on the temperature of the gas inside



Figure 6.10: Modelica description of the heat-exchanger virtual-lab view.

Figure 6.11: View of the heat-exchanger virtual-lab.
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the control volume. Color changes from blue (lower temperatures) to red

(higher temperatures).

– panelN hosts interactive controls of Slider and CheckBox classes. The sliders

allow the user to change the pump input temperature, and flow of liquid and

gas. The checkbox allows the user to show and hide the “Dialog” window.

– panelSouth hosts interactive controls of Slider class. These sliders allow the

user to perform interactive changes in the value of the pipe length, inner

and outer diameter of the inner pipe, outer diameter of the outer pipe, gas

pressure and molar fraction of CO2.

The dialog container generates the right window shown in Figure 6.11. This

container hosts components of PlottingPanel class, which contain drawables of Trail

and TrailSet classes. These drawables generate traces that show the time evolution

of some relevant system variables.

6.9.2 Virtual-lab set up and launch

The virtual-lab description is obtained as discussed in Section 6.3. It is translated

using Dymola and executed. Then, the jar file containing the Java code of the

virtual-lab view is automatically generated and executed, and the virtual-lab view

is displayed (see Figure 6.11).

The response to a step change (from 0.3 to 0.5 kg/s) in the liquid flow,

performed interactively at time = 44 s, is shown in Figure 6.11. The following

six plots are shown in the right window of the Figure 6.11:

1. Temperature of each liquid control volume.

2. Temperature of each gas control volume.

3. Temperature of each solid control volume corresponding to the inner pipe

wall.

4. Temperature of the liquid flow generated by the pump.

5. Liquid flow rate generated by the pump.
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6. Gas flow rate generated by the pump.

6.10 Case study III: virtual-lab of a washing machine

The implementation of a virtual-lab for testing designs of drum-type washing

machines is discussed. It is applied to the analysis of an industrial washing

machine (120 Kg load capacity) manufactured by Fagor Industrial. The work

presented in this section is the result of a collaboration with the Mechanical

Engineering Department of the IKERLAN Technological Research Center (Mon-

dragón, Spain). The physical model of the drum-type washing machine and

an important part of the virtual-lab view design has been developed by the

IKERLAN engineers. The adaptation of the physical model to be suitable for

interactive simulation and the implementation of the virtual-lab view have been

part of this thesis work.

The virtual-lab supports interactive changes in the position and properties of

the springs and the dampers, the properties of the inner and outer drums, and

the mass and position of the load. Simulation results are in good agreement with

the experimental data. The virtual-lab has demonstrated to be a valuable design

and analysis tool, allowing the user:

– To get insight into the system behavior.

– To tune the system parameters in order to improve the dynamic behavior.

– To simulate special events, such as a component breakage.

6.10.1 Washing machine dynamic analysis

Drum-type washing machines are widely used in Europe. They are composed of

an inner drum that rotates inside an outer drum, with a horizontal axis, making

the clothes tumble upward and downward during washing cycle (see Figure 6.12).

During the drying cycle, clothes are subjected to both the gravity force (g) and

the centrifugal force, generated by the inner drum rotational speed.
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Figure 6.12: Schematic dynamic model of the washing machine.

When the centrifugal force is bigger than “g”, the clothes tend to stick to the

inner drum wall. In some cases, it results in a non homogeneous distribution of

the clothes’ mass around the periphery of the inner drum. This is mainly due to

the different composition of the tissues. Imbalance occurs when clothes’ center of

mass does not coincide with the inner drum rotation axis, and it induces vibration

to the outer drum.

In order to reduce the vibrations transmitted to the floor, the outer drum

is suspended with springs. The forces transmitted to the frame (floor) can be

drastically reduced if the resulting natural frequency (spring-drum) is very low.

On the other hand, suspended drum movements can become uncontrollable when

passing through the natural frequency and at low rotational speeds, which can

cause collisions against the frame. Friction dampers are normally used to limit

these movements.

Suspended drum movement depends on many factors. For example, the

suspended mass inertia, the spring and damper positions and characteristics, the

unbalanced mass value and location, and the spinning speed profile. All these

parameters must be tuned for each new design, in order to minimize the drum

displacements and the forces transmitted to the frame.

Accurate models of the drum dynamic, including unbalance load effects, can

not be derived analytically due to the complexity of the dynamic behavior, influ-

enced by those parameters and their interactions. This limitation is even more
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a) b)
Figure 6.13: a) WashingMachine library; and b) Modelica diagram of the
washing machine physical model.

evident when analyzing big-size washing machines (40 to 120 kg load capacity),

which are suspended by several couples of springs and dampers. The dynamic

behavior of the suspended drum can be successfully analyzed using rigid-body

dynamic modeling and computer simulation.

6.10.2 Multibody model

The Modelica classes required to describe the washing machine virtual-lab are

contained in the WashingMachine library (see Figure 6.13a). This library is

composed of the following two packages: ModelDescription and ViewDescription.

These packages contain the classes required to describe the model and the view

of the virtual-lab, respectively.

The Modelica diagram of the washing machine is shown in Figure 6.13b. It

has been composed using models contained in the MultiBody library (Otter et al.
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2003), which is one of the Modelica Standard libraries (Modelica 2007). An

application of MultiBody library to the modeling of a household washing machine

is described in (Ferreti & Schiavo 2006).

All the bodies, except the springs, have been considered rigid. The suspended

drum is composed of the following four bodies: outer drum, inner drum, centered

and un-centered mass. These masses are attached to the inner drum. One

rotational degree of freedom (DoF) is allowed between the inner and the outer

drums.

The suspended drum has six DoF. Its dynamic behavior is governed by the

forces generated by the mass of the uncentered clothes, the gravity, and the

forces exerted by three pairs of springs and dampers. The springs and dampers

are modeled as ideal elements (i.e., the force is proportional to the relative

displacement or speed, respectively). Additionally, an external mass-free frame is

considered. The springs and dampers are attached to this frame. This approach

allows the computation of the floor reaction forces.

The model has been adapted applying the methodology discussed in Section

4.2 to allow interactive changes in the position and properties of the springs

and the dampers, the properties of the inner and outer drums, and the mass and

position of the load. The model is intended to be used for tuning the value of these

parameters, in order to improve the washing machine dynamic behavior. The

evaluation of the suspended system displacement is accomplished for the following

two critical test conditions: spinning start up and spinning at maximum speed.

The dynamic behavior analysis is based on the following two key magnitudes:

(1) the displacement of the suspended system with respect to the external frame;

and (2) the forces transmitted to the floor. These forces can cause vibrations and

relative displacements of the frame.

6.10.3 Virtual-lab view

The Modelica description of the virtual-lab view has been developed modularly,

by extending and connecting the required graphic components of the Virtual-

LabBuilder library. The diagram of the Modelica class describing the virtual-lab
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Figure 6.14: Modelica description of the washing-machine virtual-lab view.

view is shown in Figure 6.14. The view contains one main window and 15 dialog

windows. Each window of the virtual-lab view is described by a class. The classes

describing the main window and the dialog windows are briefly described below.

The diagram of the Modelica class describing the main window is shown in

Figure 6.15a. The component MF - of MainFrame class - generates the window

shown in Figure 6.15b. The MF layout policy is set to BorderLayout, in order to

allow selecting the position of the hosted elements (i.e., north, south, center, east

or west positions). It has two components hosted inside it: pCenter and pSouth,

both of Panel class.

– pCenter is placed in the center of the MF. This component contain the two

following containers of the DrawingPanel class: DP1 and DP2. These two

components contain, respectively, the animated diagram of the frontal and

lateral animated diagrams of the washing machine. These two diagrams

are composed of several drawable elements of Polygon, PolygonSet, Oval,

DamperSet and SpringSet classes.

– pSouth hosts several interactive controls of PauseButton, CheckBox, Label and

NumberField classes. Checkboxes allows the user to show and to hide the

dialog windows. The button allows to pause and resume the simulation.

The spatial coordinates of system points are set using NumberField class

components.



a)

b)
Figure 6.15: Main window of the washing machine virtual-lab: a) Modelica
diagram; and b) Java view.
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There are two types of dialog windows: (1) the windows containing plots

that display the time evolution of some model variables; and (2) the windows

containing interactive controls that allow the user to perform interactive changes

in the model variables.

The following windows contain the interactive controls (see Figure 6.16):

– “Spring Data” window allows changing the position of the springs extremi-

ties in relation to the frame and the outer drum.

– “Damper Data” window allows changing the position of the dampers ex-

tremities in relation to the frame and the outer drum.

– “Inner Drum” window allows changing the value of relevant properties of

the inner drum, including radius, mass, length, center of gravity (C.O.G)

position, center position and sheave position. Additionally, this window

contain checkboxes that allow the user to show and hide three dialog win-

dows. These three windows contain interactive control elements that allow

changing the C.O.G. mass and position of the centered and unbalanced load

and the inertia matrix of the inner drum. The Modelica diagram associated

to this window and the graphic interface generated are shown, respectively,

in Figures 6.17a and 6.17b.

– “Outer Drum” window allows changing the value of the properties of the

outer drum (i.e., radius, mass, inertia and position of its C.O.G).

– “Spring constant”window allows changing the value of the spring constants.

– “Damper constant” window allows changing the value of the damper con-

stants.

The virtual-lab contains five plot windows displaying the time-evolution of

the following variables:

– Damper lengths. The Modelica diagram associated to the window dis-

playing the time evolution of the damper lengths and the graphic interface

generated are shown, respectively, in Figures 6.18a and 6.18b. The Modelica



Figure 6.16: Windows“Spring Data”,“Damper Data”,“Inner Drum”,“Outer
Drum”, “Spring constant” and “Damper constant” of the washing machine
virtual-lab.
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a)

b)

Figure 6.17: “Inner drum”window of the washing machine virtual-lab view:
a) Modelica diagram; and b) Java view.

diagram describing this window contain components of the PlottingPanel and

Trail classes.

– Spring lengths.

– Position of a system point, which can be interactively chosen by the virtual-

lab user.

– Position of certain relevant points of the system.

– Rotational speed of the inner drum.

6.10.4 Virtual-lab set up and launch

The virtual-lab description is obtained as discussed in Section 6.3. It is translated

using Dymola and executed. Then, the jar file containing the Java code of the
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a) b)

Figure 6.18: “Inner drum”window of the washing machine virtual-lab view:
a) Modelica diagram; and b) Java view.

virtual-lab view is automatically generated and executed and the virtual-lab view

is displayed (see Figure 6.15b).

The time evolution of the system point whose position can be interactively set

by the virtual-lab user, the spring and the damper lengths are shown respectively

in Figures 6.19, 6.20 and 6.21. The system specifications are the ones displayed

by the windows shown in Figure 6.16. The speed profile of the inner drum is

shown in Figure 6.22.



Figure 6.19: Time evolution of the point whose position can be selected by
the virtual-lab user.

Figure 6.20: Time evolution of the spring lengths.



Figure 6.21: Time evolution of the damper lengths.

Figure 6.22: Speed profile of the inner drum.
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6.11 Conclusions

This chapter has provided the essential information to build a virtual-lab com-

pletely described in Modelica language using the VirtualLabBuilder Modelica

library. For that purpose, the following topics have been discussed:

– The procedure proposed to build a virtual-lab using the VirtualLabBuilder

library.

– The architecture of VirtualLabBuilder library, the interactive graphic ele-

ments included in the library and the connection rules that the library user

has to follow to build the view description.

Additionally, the following three case studies have been discussed:

– The industrial boiler and the heat-exchanger virtual-labs, useful as educa-

tional tools.

– The drum-type washing machine virtual-lab, a useful design aid.





7
VirtualLabBuilder Modelica Library -

Developer’s Perspective

7.1 Introduction

Design and implementation details useful for the developer of the VirtualLab-

Builder library are provided in this chapter. In particular, the following topics

are addressed:

• The procedure to implement new interactive graphic elements.

• The relationship between the structure of the view description in Modelica

and the Java code generation.

• The communication between the model and the Java view.

7.2 Structure of the src package

The VirtualLabBuilder packages containing the classes to be used by the virtual-

lab developers were described in Section 6.4. The structure of the src package is

described below (see Figure 7.1):

VLabModel package includes the PartialView, Root and VirtualLab classes. Par-

tialView and VirtualLab classes are inherited from the classes with the same

name contained in the VirtualLabBuilder.VLabModel package.
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Figure 7.1: Structure of the src package.

ViewElements package includes the Containers, Drawables, InteractiveControls and

BasicElements packages. They contain classes describing the interactive graphic

elements and their base classes. The library developer has to extend these

base classes to implement new interactive graphic elements. The procedure

to implement new interactive graphic elements will be discussed in Section

7.4.

Interfaces package includes the connectors and interfaces of the interactive

graphic elements. They will be discussed in Section 7.3.

Functions package includes:

– Modelica functions embedding external C-functions, which are Java

code generators.

– processingFile Modelica function. It will be described in Section 7.5.

– Some other Modelica functions, which are used by the interactive

graphic elements.

TypesDef package includes type declarations. They are intended to be used for

defining some properties of the interactive graphic elements, such as the

color, the layout, etc.
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InterfacesVariablesIconName

IContainerDrawables
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nodeReferenceChild
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IViewElements
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BorderLayout
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Figure 7.2: Connectors included in the VirtualLabBuilder library.

CServer package includes Modelica functions encapsulating external C-functions.

The goal of these external C-functions is to implement the communication

between the executable C-file generated by Dymola and the virtual-lab GUI

(i.e., the Java program automatically generated during the initialization

process).

7.3 Interface of the interactive graphic elements

The Interfaces package includes the connectors and interfaces of the interactive

graphic elements. The following four classes of interface have been implemented:

IContainer, IContainerDrawables, IDrawables and IViewElements. The connectors and

interfaces defined in the Interfaces package are discussed below.

7.3.1 Connectors

The following four types of connectors have been defined (see Figure 7.2):

– The ParentL and ChildL connectors have the following two variables:

· The nodeReference variable is an integer number that identifies uni-

vocally each one of the interactive graphic objects that compose the

class describing the virtual-lab view.
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· BorderLayout is a boolean variable whose value is true if the compo-

nent’s layout policy is BorderLayout.

– The Parent and Child connectors have only one variable: nodeReference. The

meaning of this variable is the same as in the ParentL and ChildL connectors.

7.3.2 IContainer interface

The IContainer interface is inherited from classes describing containers that don’t

host drawable elements. It contains:

– Two “left” connectors: (1) pLLeft, of ParentL class; and (2) cLLeft, of ChildL

class. The interface contains equations to transmit the value of the pLLeft’s

variables to the cLLeft’s variables (see Modelica Code 7.1).

– An integer variable, called num. Its value is obtained during the model

initialization process. This value identifies univocally each one of the in-

teractive graphic elements composing the Modelica view description. The

computation of the value of the num variable is discussed in Section 7.5.

The num variable is also defined in the other three types of interfaces.

– A String parameter, named LayoutPolicy. The value of this parameter sets

the layout policy of the container (i.e. BorderLayout(), HorizontalBox(),

V erticalBox(), GridLayout or FlowLayout).

– One “right” connector of ChildL class (cLRight). The connector variables are

calculated from num and LayoutPolicy (see Modelica Code 7.1).

7.3.3 IContainerDrawables interface

The IContainerDrawable interface is inherited from classes describing containers that

only host drawable elements. It contains:

– Two “left” connectors: (1) pLLeft, of ParentL class; and (2) cLLeft, of ChildL

class. The interface contains equations to transmit the value of the pLLeft’s

variables to the cLLeft’s variables (see Modelica Code 7.2).



partial model IContainer

import Modelica.Utilities.*;

Interfaces.ParentL pLLeft annotation (extent=[-100,18; -80,38]);

Interfaces.ChildL cLRight annotation (extent=[80,-10; 100,10]);

Interfaces.ChildL cLLeft annotation (extent=[-100,-40; -80,-20]);

parameter TypesDef.LayoutPolicy LayoutPolicy = "BorderLayout()"

"Layout policy of the component";

protected

Integer num "Number identifying the component

in the virtual-lab view description";

initial algorithm

cLRight.nodeReference := num;

cLRight.borderLayout := if (Strings.compare(LayoutPolicy, "BorderLayout()")

== Types.Compare.Equal) then true else false;

cLLeft.nodeReference := pLLeft.nodeReference;

cLLeft.borderLayout := pLLeft.borderLayout;

equation

when false then

num = pre(num);

cLRight.nodeReference = pre(cLRight.nodeReference);

cLRight.borderLayout = pre(cLRight.borderLayout);

cLLeft.nodeReference = pre(cLLeft.nodeReference);

cLLeft.borderLayout = pre(cLLeft.borderLayout);

end when;

annotation (Diagram);

end IContainer;

Modelica Code 7.1: Partial model IContainer.

partial model IContainerDrawables

import Modelica.Utilities.*;

Interfaces.ParentL pLLeft annotation (extent=[-100,40; -80,60]);

Interfaces.ChildL cLLeft annotation (extent=[-100,-40; -80,-20]);

Interfaces.Child cRight annotation (extent=[80,-10; 100,10]);

protected

Integer num "Number identifying the component

in the virtual-lab view description";

initial algorithm

cRight.nodeReference := num;

cLLeft.nodeReference := pLLeft.nodeReference;

cLLeft.borderLayout := pLLeft.borderLayout;

equation

when false then

num = pre(num);

cRight.nodeReference = pre(cRight.nodeReference);

cLLeft.nodeReference = pre(cLLeft.nodeReference);

cLLeft.borderLayout = pre(cLLeft.borderLayout);

end when;

end IContainerDrawables;

Modelica Code 7.2: Partial model IContainerDrawables.
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partial model IDrawable

import Modelica.Utilities.*;

Interfaces.Parent pLeft annotation (extent=[-100,40; -80,60]);

Interfaces.Child cLeft annotation (extent=[-100,-40; -80,-20]);

protected

Integer num "Number identifying the component

in the virtual-lab view description";

Integer dummy;

initial algorithm

cLeft.nodeReference := pLeft.nodeReference;

dummy :=num;

equation

when false then

num = pre(num);

dummy = pre(dummy);

cLeft.nodeReference = pre(cLeft.nodeReference);

end when;

end IDrawable;

Modelica Code 7.3: Partial model IDrawable.

– The num variable.

– One“right” connector of Child class (cRight). The connector variable is equal

to the num variable (see Modelica Code 7.2).

7.3.4 IDrawable interface

The IDrawable interface is inherited from classes describing drawable elements. It

contains:

– Two “left” connectors: (1) pLeft, of Parent class; and (2) cLeft, of Child class.

The interface contains equations to transmit the value of the pLeft’s variables

to the cLeft’s variables (see Modelica Code 7.3).

– The num variable.

7.3.5 IViewElement interface

The IViewElement interface is inherited from classes describing basic and interactive

elements. It contains:
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model IViewElement

import Modelica.Utilities.*;

Interfaces.ParentL pLLeft annotation (extent=[-100,40; -80,60]);

Interfaces.ChildL cLLeft annotation (extent=[-100,-40; -80,-20]);

protected

Integer num;

Integer dummy;

initial algorithm

cLLeft.nodeReference := pLLeft.nodeReference;

cLLeft.borderLayout := pLLeft.borderLayout;

dummy := num;

equation

when false then

num = pre(num);

dummy = pre(dummy);

cLLeft.nodeReference = pre(cLLeft.nodeReference);

cLLeft.borderLayout = pre(cLLeft.borderLayout);

end when;

end IViewElement;

Modelica Code 7.4: Model IViewElement.

– Two “left” connectors: (1) pLLeft, of ParentL class; and (2) cLLeft, of ChildL

class. The interface contains equations to transmit the value of the pLeft’s

variables to the cLeft’s variables (see Modelica Code 7.4).

– The num variable.

7.4 Implementing new interactive graphic elements

Each interactive element of VirtualLabBuilder has associated the following three

elements:

1. A Modelica class. Details about the Modelica class are discussed in the rest

of this section.

2. A Java class. All the Java classes describing interactive components are

packed in a jar file named graphics.jar. Some of these classes are based on

(Open Source Physics 2007).
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3. A Modelica function encapsulating a C function. Its objective is writing to

a file the code required to create an instance of the Java class describing

the interactive element.

7.4.1 The Modelica class

The structure of the VirtualLabBuilder Modelica classes describing interactive

elements is as follows:

– The class inherits from a base class. The Containers, Drawables, Interac-

tiveElements and BasicElements packages contain the base classes required to

create new interactive graphic elements. These base classes are discussed

in Section 7.4.2.

– The declaration of the parameters needed to set the interactive element

properties.

– The section “initial algorithm”, which has to contain the code required to:

· Calculate the value of the num variable. This is accomplished by

executing the function processingFile.

· Call the Modelica function. This Modelica function calls a C function

which write to a file the Java code.

7.4.2 Base classes

The base classes included in the Containers, Drawables, InteractiveElements and Ba-

sicElements packages are discussed in this section.

The relationship among the interfaces, the base classes, and the classes de-

scribing the interactive graphic elements are shown in Figures 7.3, 7.4 and 7.5.

The following symbol terminology has been used to make these representations:

– Classes are placed inside rectangles.

– Partial class are placed inside rectangles with dashed line borders.
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CONTAINERS

MainFrame

Dialog
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Window ContainerDrawables

IContainer IContainerDrawables

Panel

Container

Figure 7.3: Classes included in the Containers package.

– An arrow going from a rectangle A to a rectangle B indicates that the

classes within the rectangle B inherit from the classes within the rectangle

A.

Containers package

The Containers package includes the following three base classes (see Figure 7.3):

Window, Container and ContainerDrawables. These three classes are described below:

– Window class is inherited from classes describing interactive graphic ele-

ments that create windows. This class inherits from the IContainer class. It

contains the declaration of the parameters needed to specify the title of the

window, its width and position, and the number of row and columns if the

GridLayout policy is selected.

– Container class is inherited from classes describing interactive graphic ele-

ments that create panels which can’t host drawables elements. This class

inherits from the IContainer class.

– ContainerDrawables class is inherited from classes describing interactive graphic

elements that create panels which can only host drawables elements. This

class inherits from the IContainerDrawables class.
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Figure 7.4: Classes included in the Drawables package.

Drawables package

The Drawables package includes the following two base classes (see Figure 7.4):

Drawable and Shape. These two classes are described below:

– Drawable class is inherited from classes describing drawables elements. This

class inherits from the IDrawable class. It includes the code required to:

· Send data from the drawable element to the Java program (automat-

ically generated during the model initialization process).

· Finish the simulation when the main window of the Java program is

closed.

These two communication tasks will be discussed in Section 7.6.

– Shape class is inherited from classes describing 2-D drawables with shape

(i.e., Polygon and Oval). This class includes the following parameters in order

to describe the color properties of the drawable element:
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INTERACTIVECONTROLS
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Figure 7.5: Classes included in the InteractiveElements and BasicElements
packages.

· filled “True” if the polygon is filled, “False” otherwise.

· lineColorp[4] vector describing the line color of the drawable.

· fillColorp[4] vector describing the color used to fill the component.

· intLineColor 1 if the line color changes in time, 0 otherwise.

· intFillColor 1 if the filling color changes in time, 0 otherwise.

This class includes the declaration of the following two variables: lineColor[4]

and fillColor[4]. If the intlineColor / intfillColor parameter is 0, then the

value of lineColor[4] / fillColor[4] is set to the value of the lineColorp[4]

/ fillColorp[4] parameters. Otherwise, the value of these variables has to

be set by the virtual-lab developer.

InteractiveElements package

The InteractiveElements package includes the ControlElement base class (see Figure

7.5). It is inherited from classes describing interactive control elements; and it

inherits from the IViewElement class.

The ControlElement base class includes the code required to:



136 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

– Obtain the data sent from the Java program (generated automatically dur-

ing the model initialization process). The communication will be discussed

in Section 7.6.

– Perform the state re-initialization event, which re-initializes the value of

the variable defining the state of the element (var). This event is triggered

when the virtual-lab user manipulates the interactive element.

7.5 Java code generation

There is a relationship among the structure of the Modelica description of the

view, the Java code generated and the virtual-lab view obtained by executing this

Java code. This relationship is discussed in this section, taking as an example

the development of the bouncing-ball virtual-lab (which is included in the Vir-

tualLabBuilder.Examples package). The Modelica description of the virtual-lab

view and the view obtained by executing the generated Java code are shown in

Figures 7.6 and 7.7 respectively.

The Modelica description of the view is built following the methodology

described in Section 6.3. It is composed of a set of interactive graphic elements

connected following the rules proposed in Section 6.7.

Each interactive graphic element has an “initial algorithm” section. This

section includes a call to a Modelica function that encapsulates a call to an

external C function. This external C function writes in a file the code required

to create an instance of the Java class describing the interactive graphic element.

The file name is a global parameter (i.e., inner to PartialView class and outer to

the interactive graphic elements).

The PartialView class contains the code required to compile the generated Java

application, to pack it in a jar file and to execute it. This code is executed during

the model initialization process.
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Figure 7.6: Diagram of the view description of the bouncing ball virtual-lab.

Figure 7.7: Bouncing ball virtual-lab

7.5.1 Execution order of the initial algorithm sections

When several interactive graphic elements are used to compose a view, their

“initial algorithm” sections have to be executed in a sequence that satisfies the

rules listed below. The implementation of the interactive elements guarantees

that these rules are fulfilled.

1. The “initial algorithm” section of the root component is executed in the first

place. As a result, the root component writes the first lines of the Java file.
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2. The “initial algorithm” section of a container is executed before executing

the “initial algorithm” sections of the components hosted in it.

3. The “initial algorithm” section of the drawable components are executed

following their drawing order.

4. The “initial algorithm” section of the components placed according to cer-

tain layout policies within containers are executed in the appropriate order.

The term path will be used in the following discussion. This term is used to

designate a sequence of interactive graphic elements so that from each interactive

graphic element there is a connection to the next element. There are not repeated

elements in the path.

For instance, the Modelica description of the view shown in Figure 7.6 contains

the following paths:

– Path 1: root-MF-pNorth-slider- checkBox-infoButton-reset

– Path 2: root-MF-pNorth-DP-oval

– Path 3: root-MF-D-PP-trail

The “initial algorithm” sections of the interactive graphic elements are ex-

ecuted following a sorted sequence. This sequence is determined by the data

dependency among these sections.

The “initial algorithm” section of the elements forming a path, that has as

initial element the root component, are executed in a relative order depending

on the distance of the element to the root component. For instance, the order of

execution of the “initial algorithm” sections in Path 2 is the following: root, MF,

pNorth, DP and oval.

The value of the num variable of a component indicates the order in which

its “initial algorithm” section has been executed. The num variable of the root

component is equal to zero. The value of the variable num of each element of

the path satisfies the following relationship (being numA the number associated

to the A component): numroot < numMF < numpNorth < numDP < numoval.
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7.6 Runtime communication between the model

simulation and the interactive GUI

The communication established between the C program (generated by Dymola

for the Modelica model) and the interactive Java GUI (automatically generated

during the initialization process of the virtual-lab described in Modelica) is based

on a client-server architecture. The C program is the server and the Java program

is the client. The communication is established via TCP sockets.

During the simulation run, there is a bi-directional flow of information between

the model simulation and the interactive GUI. At every communication interval:

– The model simulation (i.e., the server) sends to the GUI (i.e., the client)

the data required to refresh the virtual-lab view.

– The GUI sends to the model simulation the new value of the variables

modified due to the user’s interactive action.

The communication tasks and the classes involved, from the server and the

client side, are discussed in this section.

7.6.1 Server side

The following three Modelica partial classes are involved in the communication

tasks: PartialView, Drawable and ControlElement. These are the super-classes of

the view description in Modelica, the drawable and the interactive elements

respectively. The tasks performed by each class are discussed below.

PartialView class

1. To set-up the server. The startCserver external C function, included in the

CServer package, is called to perform this task. This function waits until

the client ask for a connection. Then, the connection is established. The

function output is the socket description for the established connection.
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2. To generate time events at each communication interval (Tcom), using the

built-in sample(0, Tcom) operator. The following two tasks are performed

at each time event (see Figure 7.8):

(a) To call to the getVarValues external function, which is included in the

CServer package. This function receives and processes the data sent

by the Java GUI.

The Java GUI sends the data in a string with the following format:

nChanges, index1, value1, ..., indexnChanges, valuenChanges#

Where:

– nChanges is the number of interactive variables modified due to

the user’s action.

– valuei is the new value of the var variable of the interactive control

element number indexi.

The getVarValues function receives these data and generates as output

the CK[:] and Inew[:] arrays. These two arrays are global variables

(inner to PartialView and outer to ControlElement class).

– If indexi is within the string sent by the Java view, then CK[indexi]

is set to one. Otherwise, it is equal to zero.

– If indexi is within the string sent by the Java view, then Inew[indexi]

is set to valuei. Otherwise, Inew[indexi] is set to zero.

(b) To change the value of the boolean variable refreshView (from false to

true or vice-versa). This is a global variable (inner to PartialView and

outer to Drawable class).

Drawable class

1. To send information to the Java GUI. Each drawable element sends the

following information:

– The value of the num variable of the drawable element.



7.6 Runtime communication between the model simulation and the interactive GUI 141

partialView

partial model partialView

parameter Real Tcom;

inner Boolean refreshView;

inner Real CK[:];

inner Real Inew[:];

…

when sample(0,Tcom)  then

refreshView = not(pre(refreshView));

(CK, Inew) = getVarValues(…);

end when;

end partialView;
controlElement

partial model controlElement

Integer index;

input Real var;

outer Real CK[:];

outer Real Inew[:];

Boolean even (start = false);

…

event = CK[index]>0;

when event  then

reinit(var, Inew[index]);

end when;

end controlElement;

Drawable

partial model Drawable

parameter Integer numInt;

parameter Integer numIntColor;

outer Boolean refreshView;

protected

Boolean windowClosed (start =false);

Real out1 (start = 1);

…

when change(refreshView)  then

out1 =if (numInt+numIntColor)>0  then

sendVarVarlues(…) else 0;

end if;

end when;

when ( out1<0.5) then

shutDownConnection(…);

windowClosed = true;

…

terminate(“Main window closed”);

end when;

end Drawable;

Figure 7.8: Relationship among the PartialView, ControlElement and
Drawable classes.

– The geometric properties of the drawable element (i.e., position of the

vertices of a polygon, position of the center and length of the axis of

an oval, etc.). The value of the numInt parameter sets the number of

data to be sent. These data are stored in the vert[:] vector.

– The color properties of the drawable element (border line and filling

color). The value of the numIntColor parameter sets the number of

data to be sent. These data are stored in the colors[:] vector.
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This information is sent at each communication interval, when the following

two conditions are satisfied: (1) the refreshView variable value has changed;

and (2) the windowClosed variable value is false.

2. To end the model simulation when the Java GUI is closed. A when clause

is triggered when the drawable element sends data to the GUI and, after

waiting for TMax seconds, it has not received any reception confirmation

from the GUI. This when clause performs the following tasks:

(a) To call to the Modelica built-in operator terminate, which finishes the

simulation.

(b) To call to the shutDownConnection external function, which is in-

cluded in the CServer package.

(c) To set windowClosed boolean variable to true.

ControlElement class

1. When the value of the event variable becomes true, a when clause including

the code to re-initialize the value of var to Inew[index] is executed.

– var is the interactive variable.

– index is a number that univocally identifies each interactive control.

– CK[:] and Inew[:] are global variables whose values are transmitted

from the PartialView class. CK[index] is equal to one only if the variable

associated to the interactive element has been modified due to a user’s

action. In that case, the new value of the variable is contained in

Inew[index].

– event is a boolean variable whose value is set to true only when

the interactive element has been manipulated by the user (event =

CK[index] > 0).
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7.6.2 Client side

The following two Java classes are involved in the communication tasks: Client

and Communication. They are included in the graphics.jar file.

The constructor of the Client class contains the code to start the TCP con-

nection with the server. This class includes methods to send and receive data

to/from the server.

The Communication class includes a while loop that is executed until the main

window is closed. The following tasks are sequentially executed inside the loop

(see Figure 7.9):

1. To refresh the interactive GUI.

2. If the user has manipulated any interactive element, then the following

actions are performed:

(a) The counter of the number of changes (nChanges variable) is increased

by one.

(b) Inew[nChanges] is set to the new value.

(c) index[nChanges] value is set to the identification number of the in-

teractive element that has been manipulated by the user.

3. To call the sendVarValues function. This function sends a string with the

new values interactively set by the user. The string format was described

in Section 7.6.1.

4. If the simulation is paused, then go to step 1, else go to step 5.

5. To obtain the data sent by each drawable element included in the view. For

that purpose, the following messages are exchanged with the server:

– When the client gets ready to receive the data, then it sends a string

to the server. The server waits during a limited time (TMax) for the

string reception.
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Java View

sendVarValues(nChanges,index[:],

I
new
[:])

Yes

No

For each object corresponding to an

Interactive Element:

If the user has manipulated the

object THEN:

•nChanges+=1;

•index[nChanges]=index;

•I
new
[nChanges]=value;

UPDATE WINDOWS

Simulation

Is

Paused?

For each object corresponding

to a Drawable Element:

SEND_ACK

Receive data of the Element

Wait to receive Data

For each object corresponding

to a Drawable Element:

RECV_ACK (Wait T
MAX
)

Send Data

dymosim.exe

nChanges = 0

Figure 7.9: Communication between the Java view and the executable file
generated by Dymola.

– Once the server has received the string, it sends the value of its num

variable and the values required to modify the color and the geometric

properties of the corresponding Java object. The GUI receives this

string and modifies the properties of the corresponding Java object.

6. The value of the nChanges variable is set to zero.

7. Go to step 1.
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7.7 Conclusions

Chapter 6 was oriented to the VirtualLabBuilder users. The information required

to build a virtual-lab using the library and some virtual-labs illustrating the

proposed approach were discussed.

On the other hand, this chapter was oriented to the library developers. The

design and implementation details of the library were discussed. These details

are useful in order to create new components and to get a better understanding

of the library.





8
Solar House virtual-lab

8.1 Introduction

The use of VirtualLabBuilder Modelica library for the implementation of a virtual-

lab describing the thermodynamic behavior of a solar house is discussed in this

chapter. The solar house model was developed by Markus Weiner as a part

of his M.S. thesis (Weiner 1992, Weiner & Cellier 1993) and it was included

in the BondLib Modelica library by F.E. Cellier. This Modelica model has

been adapted for interactive simulation by using the methodology discussed in

Chapter 4. The interactive graphic user-to-model interface has been built by using

VirtualLabBuilder. The virtual-lab obtained is completely written in Modelica

language.

8.2 Description of the solar house virtual-lab

The implementation of a virtual-lab intended to illustrate the thermodynamics

of an experimental solar house is discussed. This solar house is located near the

airport in Tucson, Arizona, and has a passive solar heating system. The house

has four rooms: two bedrooms, a living room and a solarium that collects heat

during the winter and releases it during the summer. The living room has an



148 8 Virtual-lab of a solar house implemented using the VirtualLabBuilder library

Figure 8.1: Floor plan of the house (Weiner 1992).

air conditioning unit. The floor plan and perspectives of the house are shown in

Figures 8.1 and 8.2 respectively (Weiner 1992).

The solar-house virtual-lab allows the user to:

• Change the thermodynamic properties of the slab, the outer and inner walls,

and the roof.

• Turn on and off the air conditioning unit, which is placed in the living room.

• Set the parameters of the air conditioning control system (i.e., the setpoints

for the minimum and maximum values of the temperature).

The virtual-lab view contains the floor plan of the house (see Figure 8.5b).

The room colors change between blue and red as a function of the temperature

inside the room. The heat flow through the outer walls are represented by arrows.
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Figure 8.2: Perspectives of the house (Weiner 1992).

The width and orientation of the arrow are functions of the magnitude and the

direction of the heat flow, respectively. Also, the virtual-lab view contains plots

of some selected variables (see Figure 8.7).

8.3 The Modelica model of the solar house

This solar house model is included within the Bondlib library (Cellier & Nebot

2005). The four rooms of the house are composed using models that describe the

outer and inner walls, the roofs, the windows, the slabs and the outer and inner

doors. A brief description of these models is given below:
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Outer wall. This model consists of a boundary convection layer on the outside,

three conduction layers inside the wall, and another boundary convection

layer on the inside. The model computes its own solar position. The solar

radiation model computes the entropy flow to the wall from both direct and

diffuse radiation. The ambient air temperature is also computed inside the

model.

Inner wall. They have the same structure as the outer walls. However, there is

no solar radiation to be taken into account for the interior walls.

Roof. This is exactly the same physical model as the exterior wall model (only

with different values for the physical parameters).

Window. This model has an outside convection layer, but no conduction layers,

as the glass is considered thin and homogeneous.

Slab. In Tucson, houses are built on sand. The house is not thermally insulated

from the ground, thus, the thermal building model ought to take into

account the exchange of heat between the house and the slab underneath

it. The slab is modeled with a single conduction layer connecting the

temperature of the slab to the temperature of the floor. Above the floor,

there is a boundary convection layer.

Outer and inner doors. They are similar to windows, in that they are thin

and homogeneous. Thus the model contains an outside convection layer,

no conduction layers, and no inside convection layer either.

The bond graph technique is used to model the physical laws of heat transfer

between the basic components of the house, regarding conduction, convection

and radiation. A detailed description of the model can be found in (Weiner 1992,

Weiner & Cellier 1993).
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8.4 Composing the virtual-lab

The solar house model has been adapted to suit interactive simulation. Interactive

parameters and input variables have been re-defined as constant state variables

(i.e., with zero time-derivative).

The Modelica description of the virtual-lab view has been developed mod-

ularly, by extending and connecting the required graphic components of the

VirtualLabBuilder library. Modelica classes have been programmed to describe

the view associated to an inner wall (InWallView), an outer wall (ExWallView), a

slab (SlabView) and a roof (RoofView). These are described next:

• ExWallView class is shown in Figure 8.3a and the graphic interface generated

is shown in Figure 8.3b. The ExWallView class contains instances of graphic

elements contained in VirtualLabBuilder library (i.e., Dialog, DrawingPanel,

Panel, Polygon, Text and Slider). The connection among these elements

determine the layout of the graphic interface. The graphic interface consists

of a window that contains a set of sliders at the bottom and the top (see

Figure 8.3b). These sliders allow the user to modify the wall temperature

and its thermodynamic properties (i.e., specific thermal conductivity of the

dry wall, thickness of the conduction layer, specific heat capacity, density,

thickness of the outer wall and absorption coefficient). The center of the

window contains a graphical representation of the wall model, which is

composed of three conducting layers.

• InWallView class contains sliders that allow the user to change the wall

temperature and its thermodynamic properties (i.e., specific thermal con-

ductivity of the dry wall, thickness of the conduction layer, specific heat

capacity, density and thickness).

• RoofView class contains sliders that allow the user to change the thermody-

namic properties (i.e., specific thermal conductivity, thickness, specific heat

capacity and density) of the three conducting layers that compose the roof.



� �
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Figure 8.3: ExWallView class: a) diagram of the Modelica description; and
b) generated view.
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��

��
Figure 8.4: BedRoom1View class: a) diagram of the Modelica description;
and b) generated view.

• SlabView class contains sliders that allow the user to change its thermody-

namic properties (i.e., specific thermal conductivity, thickness of the slab,

specific heat capacity, density and thickness of the conduction layer).

Modelica classes have been programmed to describe the view associated to

the house (HouseView), the living room (LivingRoomView), and bedrooms 1 and 2

(BedRoom1View and BedRoom2View). These are briefly described next:

• BedRoom1View class is shown in Figure 8.4a and the graphic interface gen-

erated is shown in Figure 8.4b. This model contains instances of SlabView,
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Figure 8.5: HouseView class: a) diagram of the Modelica description; and
b) generated view.

RoofView, ExWallView and InWallView classes. The view consists of a window

that has a set of checkboxes at the bottom and the floor plan of the room

at the center (see Figure 8.4b). The checkboxes allow the user to show and

hide the windows associated to each building component of the room (outer

and inner walls, slab and roof).

• HouseView class is shown in Figure 8.5a and the graphic interface generated

is shown in Figure 8.5b. The view consists of a window that has a set

of checkboxes at the bottom and a diagram of the house floor plan in the

center (see Figure 8.5b). The checkboxes allow the user to show and hide the
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Figure 8.6: Modelica diagram of the complete virtual-lab view.

windows associated to the bedrooms 1 and 2, and to the living room. Each

room of the floor plan has a color, that change from blue to red depending

on the room temperature. The arrows shown in the floor plan represent

the heat flow through the outer walls (see Figure 8.5b). The width and

orientation of the arrows depend on the magnitude and the direction of the

heat flow, respectively.

The Modelica description of the complete view (i.e, class View) is shown

in Figure 8.6. This model extends the PartialView class, which contains: a)

one pre-defined graphic element: root; and b) the code required to perform

the communication between the model and the view. The View class contains



Figure 8.7: Dynamic response of some selected variables.
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instances of BedRoom1View, BedRoom2View and LivingRoomView classes. It also

contains instances of the VirtualLabBuilder library components describing plots.

These plots are used to display the time evolution of the heat flow and the

temperature in the rooms of the house.

The Modelica description of the virtual-lab has to be an instance of VirtualLab

class. This class contains: a) two parametrized generic classes: the classes of the

virtual-lab model and view; and b) the equations that link the variables of the

model and the view classes.

8.5 Virtual-lab launch

The Modelica description of the virtual-lab is translated using Dymola and run.

Then, the jar file containing the Java code of the virtual-lab view is automatically

generated and executed. When the jar file is run, the virtual-lab view is displayed

and the client-server communication is established. Then, the model simulation

starts. During the simulation run, there is a bi-directional flow of information

between the model and the view.

The dynamic response of the solar house when the air conditioning is turned

off is shown in Figure 8.7. This change has been interactively performed by the

virtual-lab user at the simulated time 100 h. The following six plots are shown

in Figure 8.7:

• The heat flow rate in bedroom 2.

• The heat flow rate of the air conditioning;

• The living room temperature and the setpoint value for the minimum and

maximum temperatures.

• The bedroom 1 temperature.

• The bedroom 2 temperature.

• The ambient temperature.
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8.6 Conclusions

The feasibility of setting up virtual-labs of complex Modelica models by us-

ing VirtualLabBuilder has been demonstrated. This approach has two strong

points. Firstly, the virtual-lab is completely described using Modelica language,

an object-oriented modeling language aimed to be a de-facto standard for rep-

resenting models and to support model exchange. Secondly, VirtualLabBuilder

library allows performing an object-oriented description of the virtual-lab view,

which facilitates its development, maintenance and reuse.

VirtualLabBuilder has been used to implement a virtual-lab describing the

thermodynamic behavior of a solar house. The model describing the solar house

has been adapted to suit interactive simulation. The view has been implemented

using graphic elements of VirtualLabBuilder.
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Conclusions and Future Research

9.1 Conclusions

Three different approaches to the implementation of virtual-labs using Modelica

language have been proposed:

1. The implementation of virtual-labs with batch interactivity by combining

the use of Sysquake and Modelica/Dymola. This work has resulted in the

following publications: (Martin et al. 2005b,c).

2. The implementation of virtual-labs with runtime interactivity by combining

the use of Ejs and Modelica/Dymola. The obtained results are summarized

in the following publications: (Martin et al. 2004a,b, 2005a,b,c).

3. The implementation of virtual-labs with runtime interactivity using only

Modelica/Dymola. This approach has been proposed in the following pub-

lications: (Martin et al. 2006, Martin-Villalba et al. 2007, Martin et al.

2007).

The methodologies and software tools required to put these three approaches

into practice have been developed:
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1. A Sysquake to Dymosim interface has been programmed. It consists in a

set of functions in LME language which can be called from the Sysquake

applications. They are available at http://www.euclides.dia.uned.es

2. A methodology for adapting any Modelica model for runtime interactive

simulation has been proposed. Two cases have been considered: (1) all

interactive quantities can be simultaneously defined as state variables; and

(2) several selections of the state variables need to be simultaneously sup-

ported.

3. A methodology for combining the use of Ejs and Modelica/Dymola has been

proposed. It takes advantage of the existing Ejs-Simulink and Dymola-

Simulink interfaces.

4. VirtualLabBuilder Modelica library has been designed and programmed. Its

on-line documentation is available at http://www.euclides.dia.uned.es

The proposed methodology to adapt Modelica models for interactive simula-

tion has been successfully applied to the libraries shown below. Both libraries

can be downloaded from http://www.euclides.dia.uned.es

1. JARA library has been translated into Modelica language and adapted for

runtime and batch interactive simulation. This new version of the library

is named JARA 2i.

2. tankProcessLAB Modelica library has been programmed and adapted for

runtime and batch interactive simulation.

The proposed approaches have been successfully applied to the development

of several virtual-labs for process control education:

1. Virtual-labs with batch interactivity: hysteresis-based controller, chemical

reactor, double-pipe heat exchanger and industrial boiler virtual-labs.

2. Virtual-labs with runtime interactivity: quadruple-tank system, industrial

boiler, chemical reactor and double-pipe heat exchanger virtual-labs.
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Finally, the proposed approach to the implementation of virtual-labs using

only Modelica/Dymola has been successfully applied to:

1. The solution of a real industrial problem. A virtual-lab aimed to be applied

for testing designs of drum-type washing machines has been implemented.

This application has been developed in cooperation with engineers of the

Mechanical Engineering Department of the IKERLAN Technological Re-

search Center (Mondragón, Spain).

2. The implementation of a virtual-lab based on a complex Modelica model

that has been developed by other authors. A virtual-lab illustrating the

thermodynamic behavior of an experimental solar house has been imple-

mented.

9.2 Future research

Finally, some ideas about possible extensions of this work are the following:

– To implement a software tool able to automatically perform the model adap-

tation for interactive simulation that has been proposed in this dissertation.

– To develop additional interactive graphic elements and to include them in

the VirtualLabBuilder library. For instance, drawable elements describing

3-D shapes.

– To adapt the libraries included in the Modelica Standard library for in-

teractive simulation and to develop the corresponding graphic interactive

elements.

– To explore the use of VirtualLabBuilder in other Modelica simulation envi-

ronments, such as OpenModelica and DrModelica (Lengquist et al. 2003).

– To support the generation of the virtual-labs implemented using Virtual-

LabBuilder as Java applets.
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A
Sysquake - Dymosim Interface

The sysquakeDymosimInterface library contains LME functions to experiment

with the dymosim.exe file. This file is generated by Dymola from the Modelica

model. The sysquakeDymosimInterface library can be freely downloaded from

http://www.euclides.dia.uned.es. A description of each function is provided be-

low.

A.1 setExperiment

PURPOSE
To log to a text file the simulation parameters.

USAGE

setExperiment( txtFile, StartTime, StopTime, Increment,

nInterval, Tolerance, MaxFixedStep, Algorithm )

PARAMS

txtFile Name of the file where the simulation parame-

ters are written. By-default value: dsin1.txt.

StartTime Integration start time (and linearization time).

StopTime Integration end time.

Increment Communication step size, provided that Incre-

ment value is greater than zero.
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nInterval Number of communication intervals, if greater

than zero.

Tolerance Relative precision of signals for simulation, lin-

earization and trimming.

MaxFixedStep Maximum step size of fixed step size integrators,

provided that MaxFixedStep value is greater

than 0.0.

Algorithm Integer (1...28) for selecting the integration al-

gorithm, as described in (Dynasim 2006).

A.2 getInfo

PURPOSE
To execute the dymosim.exe file (command dymosim -i) in order to generate the

Dymosim input file (dsin.txt). In addition, this function reads the names of the

model variables (i.e., inputs, outputs, parameters, states) and their default values

from dsin.txt file, and saves them as variables to the Sysquake workspace.

USAGE

[p, x0, pN, x0N, inputN, outputN] = getInfo

PARAMS

p Vector that contains the parameter values.

x0 Vector that contains the start values of the state

variables.

pN Set of strings, each string representing the name

of a parameter.

x0N Set of strings, each string representing the name

of a state variable.

inputN Set of strings, each string representing the name

of an input.

outputN Set of strings, each string representing the name

of an output.
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A.3 setValues

PURPOSE
To write to a text file the name and the value of the model parameters and the

state variables.

USAGE

setValues(txtFile, pN, p, x0N, x0)

PARAMS

txtFile Name of the file where the simulation parame-

ters are written. By-default value: dsin1.txt).

pN Set of strings, representing each string the name

of a parameter.

p Vector that contains the parameter values.

x0N Set of strings, representing each string the name

of a state variable.

x0 Vector that contains the start values of the state

variables.

A.4 dymosim

PURPOSE
To simulate the Dymola model by executing the following command: dymosim

-d dsin.txt iFile oFile.

USAGE

dymosim()

dymosim(iFile, oFile)
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PARAMS

iFile Name of the file that contains the simulation

parameters. By-default value: dsin1.txt

oFile Name of the file where the results are saved.

Using the command tload the results can be

loaded in the Sysquake workspace. By-default

value: dsres.txt

A.5 linearize

PURPOSE
To obtain the linearized model by executing the following command: dymosim -l

iFile oFile.

USAGE

linearize()

linearize(iFile, oFile)

PARAMS

iFile Name of the file that contains the simulation

parameters. By-default value: dsin1.txt

oFile Name of the file where the results are saved.

Using the command tload the results can be

loaded in the Sysquake workspace. By-default

value: dsres.txt

A.6 tload

PURPOSE
To read the result file, oFile, and to store the signal names and the simulation

results into N (text matrix) and s (numeric matrix) respectively.
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USAGE

[N,s] = tload(oFile)

PARAMS

N Simulation results. N[i] contains the simulation

results of the variable whose name is contained

in s[i].

s Matrix that store the signal names as strings.

oFile Name of the file where the results are loaded.

By-default value: dsres.txt

A.7 tloadlin

PURPOSE
To load the linear model generated by dymosim from the txtfile file (default file

name: dslin.txt) into the Sysquake workspace.The linear matrix is described by

the following equations:

der(x) = A ∗ x + B ∗ u

y = C ∗ x + D ∗ u

USAGE

[A,B,C,D,xN,uN,yN] = tloadlin(txtfile)

PARAMS

A,B,C,D Matrices of the linear system.

xN Set of strings, each string representing the name

of a state variable.

uN Set of strings, each string representing the name

of an input variable.

yN Set of strings, each string representing the name

of an output variable.
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Interactive Models

B.1 Perfect gas

model perfectGas

parameter Boolean nIsState;

parameter Boolean pIsState;

parameter Boolean TIsState;

Real n (unit="mol",

stateSelect= if nIsState then StateSelect.always else StateSelect.default,

start=20) "Mol number";

Real p (unit="N.m-2",

stateSelect=if pIsState then StateSelect.always else StateSelect.default,

start=1e5) "Gas pressure";

Real T (unit="K",

stateSelect=if TIsState then StateSelect.always else StateSelect.default,

start=300) "Gas temperature";

Real V (unit="m3", start=1) "Volume";

Real Cp (unit="J/(Kg.K)", start=5*R/2) "Heat capacity at constant pressure";

Real Cv (unit="J/(Kg.K)") "Heat capacity at constant volume";

Real F (unit="mol.s-1") "Input flow";

Real Tin (unit="K") "Input temperature";

Real Q (unit="J.s-1") "Heat flow";

parameter Real R (unit="J/(mol.K)") = 8.31 "Constant of the perfect gases";

protected

Real U (unit="J", stateSelect = StateSelect.never) "Internal energy";

Boolean empty (start=false);

equation

// Interactive parameters

der(V) = 0;

der(Cp) = 0;

// Input variables

der(F) = 0;

der(Tin) = 0;
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der(Q) = 0;

// State equation

p * V = n * R * T;

// Mol balance

der(n) = if empty then 0 else F;

// Energy balance

der(U) = if empty then 0 else if F>0 then F*Cp*Tin+Q else F*Cp*T+Q;

// Internal energy

U = n * Cv * T;

// Mayer law

Cp - Cv = R;

// Empty-vessel condition

when F > 0 and pre(empty) or n < 1e-5 and not pre(empty) then

empty = not pre(empty);

end when;

end perfectGas;

model perfectGasI

extends perfectGas;

// Interface

input Real Iparam[2];

input Real Ivar[3];

input Real Istate[3];

Real CKparam;

Real CKvar;

Real CKstate;

output Real O[8];

protected

Boolean CKparamIs0 (start = true, fixed=true);

Boolean CKvarIs0 (start = true, fixed=true);

Boolean CKstateIs0 (start = true, fixed=true);

equation

// Interactive change of the parameters

when CKparam > 0.5 and pre(CKparamIs0) or CKparam < 0.5 and not pre(CKparamIs0) then

CKparamIs0 = CKparam < 0.5;

reinit(V, Iparam[1]);

reinit(Cp, Iparam[2]);

end when;

// Interactive change of the input variables

when CKvar > 0.5 and pre(CKvarIs0) or CKvar < 0.5 and not pre(CKvarIs0) then

CKvarIs0 = CKvar < 0.5;

reinit(F, Ivar[1]);

reinit(Tin, Ivar[2]);

reinit(Q, Ivar[3]);

end when;

// Output signal

O = { n, p, T, V, Cp, Tin, F, Q };

end perfectGasI;
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model perfectGasSS1

extends perfectGasI (nIsState=false, pIsState=true, TIsState=true);

equation

// Interactive change of the state variables

when CKstate > 0.5 and pre(CKstateIs0) or CKstate < 0.5 and not pre(CKstateIs0) then

CKstateIs0 = CKstate < 0.5;

reinit(p, Istate[2]);

reinit(T, Istate[3]);

end when;

end perfectGasSS1;

model perfectGasSS2

extends perfectGasI (nIsState=true, pIsState=false, TIsState=true);

equation

// Interactive change of the state variables

when CKstate > 0.5 and pre(CKstateIs0) or CKstate < 0.5 and not pre(CKstateIs0) then

CKstateIs0 = CKstate < 0.5;

reinit(n, Istate[1]);

reinit(T, Istate[3]);

end when;

end perfectGasSS2;

model perfectGasSS3

extends perfectGasI (nIsState=true, pIsState=true, TIsState=false);

equation

// Interactive change of the state variables

when CKstate > 0.5 and pre(CKstateIs0) or CKstate < 0.5 and not pre(CKstateIs0) then

CKstateIs0 = CKstate < 0.5;

reinit(n, Istate[1]);

reinit(p, Istate[2]);

end when;

end perfectGasSS3;

model perfectGasInteractive

input Real Iparam[2];

input Real Ivar[3];

input Real Istate[3];

input Real CKparam[3];

input Real CKvar[3];

input Real CKstate[3];

input Real Enabled[3];

output Real O[8];

output Real Release[1];

perfectGasSS1 SS1( CKparam = CKparam[1], CKvar = CKvar[1], CKstate = CKstate[1]);

perfectGasSS2 SS2( CKparam = CKparam[2], CKvar = CKvar[2], CKstate = CKstate[2]);

perfectGasSS3 SS3( CKparam = CKparam[3], CKvar = CKvar[3], CKstate = CKstate[3]);

equation

Iparam = SS1.Iparam;

Istate = SS1.Istate;

Ivar = SS1.Ivar;
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Iparam = SS2.Iparam;

Istate = SS2.Istate;

Ivar = SS2.Ivar;

Iparam = SS3.Iparam;

Istate = SS3.Istate;

Ivar = SS3.Ivar;

Release = 4.0;

O = if Enabled[1] > 0.5 then SS1.O

else if Enabled[2] > 0.5 then SS2.O

else if Enabled[3] > 0.5 then SS3.O

else zeros(size(O, 1));

end perfectGasInteractive;

B.2 Chemical reactor

model batchReacLiqAtoPInteractive

// Physical model

extends PhysicalModel.batchReacLiqAtoP;

// Interface

input Real Iparam[7];

input Real Ivar[10];

input Real Istate[4];

input Real CKparam;

input Real CKvar;

input Real CKstate;

output Real O[21];

output Real Release;

protected

Boolean CKparamIs0 (start = true, fixed=true);

Boolean CKvarIs0 (start = true, fixed=true);

Boolean CKstateIs0 (start = true, fixed=true);

equation

// Model release

Release = 1.0;

// Interactive change of the parameters

when CKparam > 0.5 and pre(CKparamIs0) or CKparam < 0.5 and not pre(CKparamIs0) then

CKparamIs0 = CKparam < 0.5;

reinit(liq.vessel.vesselVolume,Iparam[1]);

reinit(liq.liquid.section,Iparam[2]);

reinit(resistTherm.hTSteam,Iparam[3]);

reinit(resistTherm.hTWater,Iparam[4]);

reinit(resistTherm.heatExchArea,Iparam[5]);

reinit(chRAtoP.kCoef[1],Iparam[6]);

reinit(chRAtoP.kCoef[2],Iparam[7]);

end when;

// Interactive change of the input variables

when CKvar > 0.5 and pre(CKvarIs0) or CKvar < 0.5 and not pre(CKvarIs0) then

CKvarIs0 = CKvar < 0.5;

reinit(resistTherm.isHeater,Ivar[1]);

reinit(fluidTemp.isHeater,Ivar[1]);

reinit(resistTherm.isChiller,Ivar[2]);
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reinit(fluidTemp.isChiller,Ivar[2]);

reinit(fluidTemp.tempHeat,Ivar[3]);

reinit(fluidTemp.tempCool,Ivar[4]);

reinit(sourceLiqCtrl.flowVSP, -Ivar[5]);

reinit(sourceLiqCtrl.tempSP,Ivar[6]);

reinit(sourceLiqCtrl.fractVSP[1],Ivar[7]);

reinit(sourceLiqCtrl.fractVSP[2],Ivar[8]);

reinit(sourceLiqCtrl.fractVSP[3],Ivar[9]);

reinit(chRAtoP.calcConversion,Ivar[10]);

end when;

// Interactive change of the state variables

when CKstate > 0.5 and pre(CKstateIs0) or CKstate < 0.5 and not pre(CKstateIs0) then

CKstateIs0 = CKstate < 0.5;

reinit(liq.liquid.massL[1],Istate[1]);

reinit(liq.liquid.massL[2],Istate[2]);

reinit(liq.liquid.massL[3],Istate[3]);

reinit(liq.liquid.tempL,Istate[4]);

end when;

// Output variables

O = { liq.liquid.massL[1], liq.liquid.massL[2], liq.liquid.massL[3],

liq.liquid.tempL, liq.liquid.liqHeight, liq.liquid.fluidV,

fluidTemp.sourceTemp, fluidTemp.consumHeater, fluidTemp.consumChiller,

fluidTemp.isHeater, fluidTemp.isChiller, -liqSource.inMass.massLF[1],

-liqSource.inMass.massLF[2], -liqSource.inMass.massLF[3],

-liqSource.totalMassF, liqSource.tempF, -chRAtoP.inMass.massLF[1],

-chRAtoP.inMass.massLF[2], -chRAtoP.inMass.massLF[3],

chRAtoP.conversion, chRAtoP.reactionRate[1] };

end batchReacLiqAtoPInteractive;





C
VirtualLabBuilder - User’s Reference

This appendix contains the documentation of some packages of the VirtualLab-

Builder library as it has been generated by Dymola. Only the packages intended

to be directly used by virtual-lab developers have been included (i.e., all packages

shown in Figure C.1 except the src package). Information about equations and

components has been omitted.

Complete on-line information about the VirtualLabBuilder library is available

at http://www.euclides.dia.uned.es

Figure C.1: Packages of VirtualLabBuilder library.
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VirtualLabBuilder

Information

VirtualLabBuilder- A Modelica library that 
facilitates the implementation of virtual-labs 

using only Modelica
Release 1.0 (2007)

Author
Carla Martin-Villalba
Department of Computer Science and Automatic Control, UNED
Madrid, Spain 
email: carla@dia.uned.es

VirtualLabBuilder Modelica library facilitates the implementation of virtual-labs using only 
Modelica. It includes Modelica models implementing graphic interactive elements, such as
containers, animated geometric shapes, basic elements and interactive controls. These
models allow the virtual-lab developer:

To compose the view.
To link the visual properties of the virtual-lab view with the model variables.

The interactive graphic interface is automatically generated during the model initialization 
process. The components of the library contain the code required to perform the bidirectional
communication between the view and the model. In addition, VirtualLabBuilder library 
supports including documentation in the virtual-lab. This documentation is composed of
HTML pages.

VirtualLabBuilder Architecture

VirtualLabBuilder library is composed of the packages shown in Figure 1a. Some of them are
intended to be used by the virtual-lab developers (i.e., VirtualLabBuilder users). These are:

ViewElements and VLabModels packages, which contain the classes required to
implement the virtual-lab view and to set up the complete virtual-lab.
Examples package, which contains some tutorial material illustrating the library use. The
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documentation of these packages is oriented to the VirtualLabBuilder users.
On the other hand, the classes within the src package are not intended to be directly used
by the virtual-lab developers. The documentation of this package describes the
implementation details required to modify and extend the VirtualLabBuilder library.
In fact, the classes within ViewElements and VLabModels packages inherit from classes 
defined within src package, inheriting the structure and the behavior, and adding only
the documentation oriented to the virtual-lab developer. 

Figure 1.VirtualLabBuilder library: a) general structure; and classes within the 
following packages: b) Containers; c) Drawables; d) Mechanics; e) InteractiveControls;
and f) BasicElements..

Steps to describe a virtual-lab

The virtual-lab definition includes the description of the introduction, the model, the
view, and the bidirectional flow of information between the model and the view. The
virtual-lab definition process is outlined next.

Virtual-lab model. Any Modelica model can be transformed into other Modelica 
model suitable for interactive simulation. Essentially, the proposed methodology

1.
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consists in modifying the model so that all the variables that need to be changed
interactively during the simulation (i.e., the interactive variables) are formulated as
state variables. In particular, parameters are redefined as time-dependent variables
whose time-derivative is equal to zero. Input variables are reformulated analogously
in order to become interactive variables. Modelica's when clause and reinit operator 
allow describing instantaneous changes in the value of the state variables. This
feature is exploited in order to perform the instantaneous changes in the value of the
interactive variables produced by the user's interaction. Some of these model
manipulations could be performed automatically by a software tool. However, at the
present time, they have to be carried out manually by the virtual-lab developer.
Virtual-lab view. The virtual-lab developer has to define a Modelica class 
describing the virtual-lab view. This class has to extend another class, named
PartialView, that is included in VirtualLabBuilder library (see Figure 1a). The
communication interval (i.e., time interval between to consecutive model-view 
communications) is a parameter of the PartialView class (Tcom), that can be set by 
the virtual-lab developer. PartialView class contains a pre-defined component: the 
root element for the view description. The classes describing the graphic
components are within the Containers, Drawables, InteractiveControls and 
BasicElements packages of VirtualLabBuilder library (see Figures 1b, 1c, 1e and 1f 
respectively). The virtual-lab designer has to compose the virtual-lab view class by
instantiating and connecting the required graphic components. The graphic
components have to be connected forming a structure, whose root is the root 
element. The connections among the graphic components determines their layout in
the virtual-lab view.

2.

Virtual-lab set up. The virtual-lab developer has to define a Modelica class 
describing the complete virtual-lab. This class has to contain an instance of the
VirtualLab class, which is within the VirtualLabBuilder library (see Figure 1a).
VirtualLab class has the following parameters:

Model-to-view communication interval (Tcom).
Name of the java file (the content of this file is generated during the model 
initialization process).
Class describing the virtual-lab model.
Class describing the virtual-lab view.

These two classes have been programmed in Steps 1 and 2 respectively. The
virtual-lab designer has to set the value of these parameters by writing the name of 
these two classes. In addition, he has to specify how the variables of the model and
the view Modelica classes are linked. This is accomplished by writing the required
Modelica equations inside the Modelica class defining the complete virtual-lab.

3.

Virtual-lab translation and execution. The virtual-lab developer needs to translate
using Dymola an instance of the Modelica class defined in Step 3 into an executable
file (i.e., dymosim.exe file). The virtual-lab is started by executing this file.

4.

Automatic code generation and run. At the beginning of the simulation run, some 
calculations are performed in order to solve the model at the initial time. The initial 
sections of the Modelica model describing the virtual-lab are evaluated. In
particular, the initial sections of the interactive graphic objects composing the 
virtual-lab view class and of the PartialView class are executed. These initial 
sections contain calls to Modelica functions, which encapsulate calls to external 

5.



VirtualLabBuilder

4 of 4

C-functions. These C-functions are Java-code generators. As a result, during the
model initialization, the Java code of the virtual-lab view is automatically generated,
compiled, packed into a jar file and executed. Also, the communication procedure
between the model and the view is automatically set up. This communication is
based on a client-server architecture: the C-program generated by Dymola (i.e.,
dymosim.exe, see Step 4) is the server and the Java program (which has been
automatically generated during the model initialization) is the client. Once the jar
file is executed, the initial layout of the virtual-lab view is displayed and the
client-server communication is established. Then, the model simulation starts.
During the simulation run, there is a bi-directional flow of information between the 
model and the view. The model sends the data required to refresh the view and the
view sends the value of the variables modified due to a user action at the time
instant when the communication is performed. The time interval between two
consecutive model-view communications was defined in Step 2.

References
Dynasim (2004): Dymola. User's Manual. Dynasim AB.Version 5.3a.
Dynasim (2006): Dymola. User's Manual. Dymola 6 Additions Dynasim AB.Version 
5.3a.
Martin, C. and A. Urquia and S. Dormido (2007): Implementation of Interactive Virtual 
Laboratories for Control Education Using Modelica. Proceedings of European Control
Conference 2007, Kos (Greece), pp. 2679-2686.
Martin, C. and A. Urquia and S. Dormido (2007): Virtual-lab of a Solar House 
implemented using VirtualLabBuilder Modelica library. Proceedings of Conference on
Systems and Control (CSC'2007), Marrakech (Morocco), paper #130.
Martin, C., Urquia, A., and Dormido, S. (2004): An Approach to Virtual-Lab 
Implementation using Modelica. In: Proceedings of the 2006 European Simulation and
Modelling Conference (ESM'2006), Toulouse (France), pp. 137-141.

Package Content
Name Description

 VLabModels Classes to describe the virtual-lab view and to set-up the virtual-lab
 ViewElements Package including interactive graphic elements
 Examples Some examples of use
 src Source code

HTML-documentation generated by Dymola Mon Aug 27 18:14:34 2007.
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VirtualLabBuilder.VLabModels
Classes to describe the virtual-lab view and to set-up the virtual-lab

Information

VLabModels package
VLabModels package includes the PartialView and the VirtualLab classes. These two
classes are required to describe the virtual-lab view and to set-up the virtual-lab, 
respectively.

Package Content
Name Description

VirtualLab Class containing instances of the model and view description
 PartialView Super-class of the model describing the virtual-lab view

VirtualLabBuilder.VLabModels.VirtualLab
Class containing instances of the model and view description

Information
The class describing the complete virtual-lab has to contain an instance of VirtualLab class.
The virtual-lab designer has to set the name of the model and the view classes.

Parameters
Type Name Default Description
Real Tcom 0.1 Communication interval
String fileName "gui.java" Name of the java file
replaceable model 
ViewI NULL Class describing the virtual-lab view
replaceable model 
ModelI NULL Class describing the virtual-lab model

String sourceCodePath "C:/Program 
Files/Dymola/Sou...

Path where the C-functions, 
graphics.jar and delayrun.exe are 
located



VirtualLabBuilder.VLabModels

2 of 2

VirtualLabBuilder.VLabModels.PartialView
Super-class of the model describing the virtual-lab view

Information

PartialView class has to be the super-class of the model describing the virtual-lab view. The
communication interval (i.e., time interval between to consecutive model-view
communications) is a parameter of this class (Tcom), that can be set by the virtual-lab 
developer. PartialView class contains a pre-defined component: the root element for the 
view description.

Parameters

Type Name Default Description
Real Tcom 0.1 Communication interval
Integer serverPort 4242 Server Port number

String sourceCodePath "C:/Program 
Files/Dymola/Sou...

Path where the C-functions, 
graphics.jar and delayrun.exe are 
located

String fileName "gui.java" Java file name

HTML-documentation generated by Dymola Mon Aug 27 18:14:34 2007.
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VirtualLabBuilder.ViewElements
Package including interactive graphic elements

Information

ViewElements package
ViewElements package includes the Containers, Drawables, InteractiveControls
and BasicElements packages. These packages contain classes describing the
interactive graphic elements.

Package Content
Name Description

 ParentRoot Connector Parent
 ChildRoot Connector Child
 Containers Container elements
 Drawables Drawable elements
 InteractiveControls Interactive control elements
 BasicElements Basic elements

VirtualLabBuilder.ViewElements.ParentRoot
Connector Parent

Information
Contents
Type Name Description
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Integer nodeReference Number identifying the component hosting the element
Boolean borderLayout True if the component hosting the element has the 

BorderLayout layout policy

VirtualLabBuilder.ViewElements.ChildRoot
Connector Child

Information

Contents

Type Name Description
Integer nodeReference Number identifying the component
Boolean borderLayout True if the component has the BorderLayout layout 

policy

HTML-documentation generated by Dymola Mon Aug 27 20:57:40 2007.
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VirtualLabBuilder.ViewElements.Containers
Container elements

Information

Containers package
Containers package has those graphic elements that are intended to host other graphic
elements. The container properties are set in the view definition and they can not be
modified during the simulation run.

Package Content
Name Description

 MainFrame Main window
 Dialog Dialog window
 Panel Panel container
 DrawingPanel Drawing-panel
 PlottingPanel Plotting-panel

VirtualLabBuilder.ViewElements.Containers.MainFrame
Main window

Information
Creates a window where containers, basic elements and interactive controls can be placed.
The view can contain only one MainFrame object. The user can stop the simulation by
closing this window.

Parameters
Type Name Default Description

LayoutPolicy LayoutPolicy "BorderLayout()" Layout policy
String title "MainFrame" Text displayed as title
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Integer xPosition 0 X coordinate of the window upper left corner
in pixels

Integer yPosition 0 Y coordinate of the window upper left corner
in pixels

Integer Width 400 Window width in pixels
Integer Height 400 Window height in pixels
Integer nRows 1 Number of rows when GridLayout policy is 

selected
Integer nColumns 1 Number of columns when GridLayout policy 

is selected

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components - Parent information
ChildL cLRight Connector of non drawable components - Child information
ChildL cLLeft Connector of non drawable components - Parent information

VirtualLabBuilder.ViewElements.Containers.Dialog
Dialog window

Information

This class, like MainFrame, creates a window where containers, basic elements and
interactive controls can be placed. This class has only two differences with MainFrame class:
simulation run doesn't stop by closing this window and there can be more than one Dialog
object.

Parameters

Type Name Default Description
LayoutPolicy LayoutPolicy "BorderLayout()" Layout policy
String title "Dialog" Text displayed as title
Integer xPosition 0 X coordinate of the window upper left corner

in pixels
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Integer yPosition 0 Y coordinate of the window upper left corner
in pixels

Integer Width 400 Window width in pixels
Integer Height 400 Window height in pixels
Integer nRows 1 Number of rows when GridLayout policy is 

selected
Integer nColumns 1 Number of columns when GridLayout policy 

is selected

String varName ""
String variable that can be linked to the 
corresponding variable of a check-box in 
order to show and hide the window by 
clicking on the check-box

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components - Parent information
ChildL cLRight Connector of non drawable components - Child information
ChildL cLLeft Connector of non drawable components - Parent information

VirtualLabBuilder.ViewElements.Containers.Panel
Panel container

Information

Panel model creates a panel where containers, basic elements and interactive controls can be
placed.

Parameters

Type Name Default Description
LayoutPolicy LayoutPolicy "BorderLayout()" Layout policy

positioninLayout position "SOUTH"
If the element hosting the panel has 
BorderLayout policy, this parameter sets 
the panel location respect to its container 
(i.e., north, south, west or east)

Integer nRows 1 Number of rows if GridLayout policy is 
selected
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Integer nColumns 1 Number of columns if GridLayout policy 
is selected

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components - Parent information
ChildL cLRight Connector of non drawable components - Child information
ChildL cLLeft Connector of non drawable components - Parent information

VirtualLabBuilder.ViewElements.Containers.DrawingPanel
Drawing-panel

Information

DrawingPanel model creates a two-dimensional container that only can contain drawable
objects. It represents a rectangular region of the plane which is defined by means of two
points: (XMin, YMin) and (Xmax, YMax). The coordinates of these two points (i.e., the value
of (XMin, YMin) and (Xmax, YMax) ) are parameters of the class whose value can be set by
the user.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container when this container has the BorderLayout layout policy
Real XMin -1 Minimum X
Real XMax 1 Maximum X
Real YMin -1 Minimum Y
Real YMax 1 Maximum Y

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components - Parent information
ChildL cLLeft Connector of non drawable components - Parent information
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Child cRight Connector of drawable components - Child information

VirtualLabBuilder.ViewElements.Containers.PlottingPanel
Plotting-panel

Information

PlottingPanel model creates a two-dimensional container with coordinate axes that only can
contain drawable objects.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container when this container 

has the BorderLayout layout policy
String title "" Title to display at the top
fontType font_name "Dialog" Title font
Integer font_size 14 Size of the title font
fontStyle font_style "BOLD" Style of the title font
axesType axesType "cartesian2" The type of axis to be displayed
String titleX "" Label of the X axis
xyaxesType xAxisType "linear" The type (linear or log) for cartesian X axis
booleanValue gridX "true" Whether to display the grid for the X axis
String titleY "" Label of the Y axis
xyaxesType yAxisType "linear" The type (linear or log) for cartesian Y axis
booleanValue gridY "true" Whether to display the grid for the Y axis
Real deltaR 2 The separation in R for the polar axis
Real deltaTheta 3.14159/8 The separation in Theta for polar axis
booleanValue autoScaleX "true" Whether to automatically adjust X scale
Real marginX 0 Margin to be left in the X scale
booleanValue autoScaleY "true" Whether to automatically adjust Y scale
Real marginY 0 Margin to be left in the Y scale
Real minX 0 The minimum X value that can be displayed
Real maxX 1 The maximum X value that can be displayed
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Real minY 0 The minimum Y value that can be displayed
Real maxY 1 The maximum Y valued taht can be displayed
booleanValue coordinates "true" Whether to display coordinates when the mouse 

is pressed
booleanValue showGrid "true" Whether to show or not the grid

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components - Parent information
ChildL cLLeft Connector of non drawable components - Parent information
Child cRight Connector of drawable components - Child information

HTML-documentation generated by Dymola Mon Aug 27 20:57:40 2007.
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VirtualLabBuilder.ViewElements.Drawables
Drawable elements

Information

Drawables package
Drawables package contains several classes implementing interactive 2-D shapes, whose
properties (i.e., size, position, rotation angle, aspect ratio, colour, etc.) can be linked to the 
model variables. They are intended to be used for building animated and interactive schematic
representations of the system. Objects of Drawables classes must be placed inside containers 
that provide a coordinate system (i.e., containers of DrawingPanel and PlottingPanel classes).

Package Content
Name Description

 Polygon Draws a polygon
 Oval Draws an oval
 Text Displays a string
 Arrow Draws an arrow
 Trail Draws a trail
 TrailSet Draws a set of trails
 PolygonSet Draws a set of polygons
 Mechanics Mechanic drawable elements

VirtualLabBuilder.ViewElements.Drawables.Polygon
Draws a polygon

Information
Draws a polygonal curve specified by the coordinates of its vertexes points. The x and y
coordinates of the vertexes points of the polygon (x[:] and y[:] vectors) can be linked to model 
variables.

Parameters
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Type Name Default Description
booleanValue filled "true" True if the drawable is filled and false 

otherwise
Color lineColorp[4] {0,0,0,255} The color used for the lines of the 

component
Color fillColorp[4] {0,0,255,255} The color used to fill the component
Integer intLineColor 0 1 if the line color changes in time and 0 

otherwise
Integer intFillColor 0 1 if the filling color changes in time and 0 

otherwise
Integer nPoints 1 Number of vertices
booleanValue closed "true" True if the polygon is closed and false 

otherwise
Integer intVertexesX[:] zeros(nPoints) intVertexesX[i] = 1 if coordinate x of 

vertex i changes in time
Integer intVertexesY[:] zeros(nPoints) intVertexesY[i] = 1 if coordinate y of vertex

i changes in time
Real stroke 1.0 Stroke used to draw the lines
Integer gradient 0 1 if there is a gradient in the filling color
Real p1[2] {0,0} Position where the color gradient starts
Color color1[4] {192,192,192,255} Color at point p1
Real p2[2] {0,10} Position where the color gradient finishes
Color color2[4] {64,64,64,255} Color at point p2
booleanValue cyclic "true" True if the color gradient is cyclic

Connectors

Type Name Description
Parent pLeft Connector of drawable components 
Child cLeft Connector of drawable components 

VirtualLabBuilder.ViewElements.Drawables.Oval
Draws an oval

Information

Oval class draws an oval. The position of the oval center (Center[:] variable) and the lengths of 
the axes (Axes[:] variable) can be linked to the model variables.

Parameters
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Type Name Default Description
booleanValue filled "true" True if the drawable is filled and false 

otherwise
Color lineColorp[4] {0,0,0,255} The color used for the lines of the component
Color fillColorp[4] {0,0,255,255} The color used to fill the component
Integer intLineColor 0 1 if the line color changes in time and 0 

otherwise
Integer intFillColor 0 1 if the filling color changes in time and 0 

otherwise
Integer intCenter 0 intCenter = 1 ==> the center changes in time
Integer intAxes 0 intAxes = 1 ==> the axes change in time 
Real stroke 1.0 Stroke used to draw the lines
Integer gradient 0 1 if there is a gradient in the filling color
Real p1[2] {0,0} Position where the color gradient starts
Color color1[4] {192,192,192,255} Color at point p1
Real p2[2] {0,10} Position where the color gradient finishes
Color color2[4] {64,64,64,255} Color at point p2
booleanValue cyclic "true" True if the color gradient is cyclic

Connectors

Type Name Description
Parent pLeft Connector of drawable components 
Child cLeft Connector of drawable components 

VirtualLabBuilder.ViewElements.Drawables.Text
Displays a string

Information

Text class displays a string. The position of the string center (Center[:] variable) can be linked to
the model variables.

Parameters

Type Name Default Description
Color textColor[4] {0,0,0,255} string color
Integer intCenter 0 = 0 if the center change in time and 0 otherwise 
String textString "" String displayed by the element
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Connectors

Type Name Description
Parent pLeft Connector of drawable components 
Child cLeft Connector of drawable components 

VirtualLabBuilder.ViewElements.Drawables.Arrow
Draws an arrow

Information

Arrow class displays a vector. The position of the origin (Origin[:] variable) and horizontal and 
vertical components of the vector (Length[:] variable) can be linked to the model variables.

Parameters

Type Name Default Description
Color color[4] {0,0,0,255} string color
Integer intOrigin 0 = 0 if the center change in time and 0 otherwise 
Integer intLength 0 = 0 if the center change in time and 0 otherwise 
Real stroke0 2 Stroke used to draw the lines
Integer intStroke 0 = 0 if the stroke change in time and 0 otherwise

Connectors

Type Name Description
Parent pLeft Connector of drawable components 
Child cLeft Connector of drawable components 

VirtualLabBuilder.ViewElements.Drawables.Trail
Draws a trail

Information

Creates a drawing element that displays a sequence of points at given coordinates of the hosting
container. The position of the new point (point[ : ] variable) can be linked to the model
variables.
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Parameters

Type Name Default Description
Integer maximumPoints 100 Maximum number of points to be drawn
Integer nSkip 100 Number of points to skip before plotting one
Color lineColor[4] {0,0,0,255} Line color
booleanValue connected "true" Whether to connect next point with the previous

Connectors

Type Name Description
Parent pLeft Connector of drawable components 
Child cLeft Connector of drawable components 

VirtualLabBuilder.ViewElements.Drawables.TrailSet
Draws a set of trails

Information

Draws a set of N_trails elements of the Trail class. The position of the new point of the trail i (i 
= 1,..N_trails)(point[i,:] variable) can be linked to the model variables.

Parameters

Type Name Default Description
Integer N_trails 2 Number of trails
Integer maximumPoints 100 Maximum number of points to be drawn
Integer nSkip 1 Number of points to skip before plotting one
Color lineColor[4] {0,0,0,255} Line color
booleanValue connected "true" Whether to connect next point with the previous

Connectors

Type Name Description
Parent parent Connector of the drawable elements
Child child Connector of the drawable elements
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VirtualLabBuilder.ViewElements.Drawables.PolygonSet
Draws a set of polygons

Information

Draws a set of N elements of the Polygon class. The x and y coordinates of the vertexes points
of the polygon i (i = 1,..N) (x[i:,:] and y[i,:] vectors) can be linked to model variables.

Parameters

Type Name Default Description
booleanValue filled "true" True if the polygon is filled and false 

otherwise
Color lineColorp[4] {0,0,0,255} The color used for the lines of the 

component
Color fillColorp[4] {0,0,255,255} The color used to fill the component
Integer intLineColor 0 1 if the line color changes in time and 0 

otherwise
Integer intFillColor 0 1 if the filling color changes in time and 0 

otherwise
Integer N 2 Number of polygons
Integer nPoints 1 Number of vertices
booleanValue closed "true" True if the polygon is closed and false 

otherwise
Integer intVertexesX[:] zeros(nPoints) intVertexesX[i] = 1 if coordinate x of 

vertex i changes in time
Integer intVertexesY[:] zeros(nPoints) intVertexesY[i] = 1 if coordinate y of vertex

i changes in time
Real stroke 1 Stroke used to draw the lines
Integer gradient 0 1 if there is a gradient in the filling color
Real p1[2] zeros(2) Position where the color gradient starts
Color color1[4] {192,192,192,255} Color at point p1
Real p2[2] {0,10} Position where the color gradient finishes
Color color2[4] {64,64,64,255} Color at point p2
booleanValue cyclic "true" True if the color gradient is cyclic
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Connectors

Type Name Description
Parent parent Connector of the drawable elements
Child child Connector of the drawable elements
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VirtualLabBuilder.ViewElements.Drawables.Mechanics
Mechanic drawable elements

Information

Mechanics package
Mechanics package contains several classes implementing an interactive damper, a set of interactive 
dampers, an interactive spring and a set of interactive springs.

Package Content
Name Description

 Damper Draws a damper
 DamperSet Draws a set of dampers
 Spring Draws a spring
 SpringSet Draws a set of springs

VirtualLabBuilder.ViewElements.Drawables.Mechanics.Damper
Draws a damper

Information
Creates a damper. The position of the two damper extremities (p1[:] and p2[:] variables) can be linked to 
the model variables.

Parameters
Type Name Default Description
Real d 1/3 Length of the damper fixed part divided by the damper length
Real L1 0.02 Distance from the wide to the narrow part of the damper
Real L2 0.02 Width of the narrow part of the damper
Integer intX1Y1 0 = 0 if the point (x1, y1) change in time and 0 otherwise 
Integer intX2Y2 0 = 0 if the point (x2, y2) change in time and 0 otherwise 
Color color1[4] {255,0,255,255} The damper color changes form this color to color2
Color color2[4] {249,204,202,255} The damper color changes form this color to color1

Connectors
Type Name Description
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Parent pLeft Connector of drawable components 
Child cLeft Connector of drawable components 

VirtualLabBuilder.ViewElements.Drawables.Mechanics.DamperSet
Draws a set of dampers

Information

Creates a set of dampers. The position of the two extremities of each damper (p1[:, :] and p2[:, :]
variables) can be linked to the model variables.

Parameters

Type Name Default Description
Integer N_dampers 2 Number of dampers
Real d 1/3 length of the damper fixed part divided by the damper length
Real L1 0.02 distance from the wide to the narrow part of the damper
Real L2 0.02 width of the narrow part of the damper
Integer intX1Y1 0 = 0 if the point (x1, y1) change in time and 0 otherwise 
Integer intX2Y2 0 = 0 if the point (x2, y2) change in time and 0 otherwise 
Color color1[4] {255,0,255,255} The damper color changes form this color to color2
Color color2[4] {249,204,202,255} The damper color changes form this color to color1

Connectors

Type Name Description
Parent parent Connector of the drawable elements
Child child Connector of the drawable elements

VirtualLabBuilder.ViewElements.Drawables.Mechanics.Spring
Draws a spring

Information

Creates a spring. The position of the two spring extremities (p1[:] and p2[:] variables) can be linked to 
the model variables.
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Parameters

Type Name Default Description
Real d 1/19 length of the spring without picks divided by the damper length 

and two
Integer N 4 pick number
Real A 0.05 amplitude of the picks
Integer intX1Y1 0 = 0 if the point (x1, y1) change in time and 0 otherwise 
Integer intX2Y2 0 = 0 if the point (x2, y2) change in time and 0 otherwise 
Real stroke 2 Stroke used to draw the lines
Color lineColor[4] {192,192,192,255} Line Color

Connectors

Type Name Description
Parent pLeft Connector of drawable components 
Child cLeft Connector of drawable components 

VirtualLabBuilder.ViewElements.Drawables.Mechanics.SpringSet
Draws a set of springs

Information

Creates a set of dampers. The position of the two extremities of each spring (p1[:, :] and p2[:, :]
variables) can be linked to the model variables.

Parameters

Type Name Default Description
Integer N_springs 2 Number of springs
Real d 1/19 length of the spring without picks divided by the damper length 

and two
Integer N 4 pick number
Real A 0.05 amplitude of the picks
Integer intX1Y1 0 = 0 if the point (x1, y1) change in time and 0 otherwise 
Integer intX2Y2 0 = 0 if the point (x2, y2) change in time and 0 otherwise 
Real stroke 2 Stroke used to draw the lines
Color lineColor[4] {192,192,192,255} Line Color

Connectors
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Type Name Description
Parent parent Connector of the drawable elements
Child child Connector of the drawable elements
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VirtualLabBuilder.ViewElements.InteractiveControls
Interactive control elements

Information

InteractiveControls package
InteractiveControls package contains classes that allow modifying interactively the value of model variables.
Each class includes a definition of an input real variable (var) and a boolean variable (event). The value of the
event variable is true at those time instants at which the interactive control is manipulated by the virtual-lab user.
Otherwise, the event variable is false The interactive model variable can be linked to the var variable by writing
the corresponding equation.

Package Content
Name Description

 Slider Creates a slider
 SliderSet Creates a set of sliders
 NumberField Allows editing a numeric value
 RadioButton Creates a radio-button
 Button1Action Creates a 1 action button
 Button2Actions Creates a 2 actions button

VirtualLabBuilder.ViewElements.InteractiveControls.Slider
Creates a slider

Information
Creates a slider.

Parameters
Type Name Default Description

positioninLayout position "CENTER" Position inside its container
String stringFormat "0.00" Format of the text displayed by the component
String tickFormat "0.00" Format of the text displayed with the ticks
Integer tickNumber 9 Number of ticks
Real minimum 0 Minimum value of the variable linked to the component
Real maximum 1 Maximum value of the variable linked to the component
Real factor 1 Scale factor
booleanValue enable "true" True if the component is enabled

Connectors
Type Name Description
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ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 

VirtualLabBuilder.ViewElements.InteractiveControls.SliderSet
Creates a set of sliders

Information

Creates a set of sliders.

Parameters

Type Name Default Description
Integer N 2 Number of sliders
String stringFormat[N]  Format of the text displayed by the component
String tickFormat "0.00" Format of the text displayed with the ticks
Integer tickNumber[N] 9*ones(N) Number of ticks
Real minimum[N] zeros(N) Minimum value of the variable linked to the component
Real maximum[N] ones(N) Maximum value of the variable linked to the component
Real factor[N] ones(N) Scale factor
booleanValue enable "true" True if the component is enabled

Connectors

Type Name Description
ParentL parentL Connector of drawables
ChildL childL Connector of drawables

VirtualLabBuilder.ViewElements.InteractiveControls.NumberField
Allows editing a numeric value

Information

Creates an element that allows editing a numeric value.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
String stringFormat "0.00" Format of the displayed number
booleanValue enable "true" 1: enabled, 0: disabled



VirtualLabBuilder.ViewElements.InteractiveControls

3 of 5

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 

VirtualLabBuilder.ViewElements.InteractiveControls.RadioButton
Creates a radio-button

Information

Creates a radio-button. The var variable of this element can have the value 0 or 1.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
booleanValue buttonValue "true" Initial value
String text "radioButton" Text displayed by the element
String buttonGroup "buttonGroup" The radio-button belongs to this group

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 

VirtualLabBuilder.ViewElements.InteractiveControls.Button1Action
Creates a 1 action button

Information

Creates a button. The var variable is equal to one when the button is pressed and it is equal to zero otherwise.
This variable can be used as a condition in a when clause. This way, the when clause is executed whenever the 
virtual-lab user presses the button.

Parameters

Type Name Default Description
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positioninLayout position "CENTER" Position inside its container
booleanValue selected "false" Whether the button is selected or not
String label "info" Text displayed by the button
alignmentType alignment "0.00" Text alignment
String image "" Path of the image of the button
Color bgcolor[4] {192,192,192,255} Background color
String tooltip "" Tooltip
Color lettercolor[4] {0,0,0,255} String color
fontType typeFont "Times New Roman" Type of font
fontStyle styleFont "Plain" Style of font
Integer sizeFont 20 Size of font

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 

VirtualLabBuilder.ViewElements.InteractiveControls.Button2Actions
Creates a 2 actions button

Information

This class creates a button. The var variable changes alternatively from zero to one and from one to zero
whenever the button is pressed. By programming the corresponding when clauses, it is possible to associate two
different actions to this button: an action is triggered when var changes from zero to one, and the other action is 
triggered when var changes from one to zero.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
booleanValue selected "false" Whether the button is selected or not
String label "info" Text displayed by the button
alignmentType alignment "0.00" Text alignment
String image "" Path of the image of the button
Color bgcolor[4] {192,192,192,255} Background color
String tooltip "" Tooltip
Color lettercolor[4] {0,0,0,255} String color
fontType typeFont "Times New Roman" Type of font
fontStyle styleFont "Plain" Style of font
Integer sizeFont 20 Size of font
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Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 
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VirtualLabBuilder.ViewElements.BasicElements
Basic elements

Information

BasicElements package
BasicElements package contains classes that can be hosted inside a window or a panel.

Package Content
Name Description

 Label Decorative label
 CheckBox Check-box
 PauseButton Button to pause and resume the simulation
 InfoButton Button that allows the user to display the virtual-lab documentation

VirtualLabBuilder.ViewElements.BasicElements.Label
Decorative label

Information
Creates a decorative label.

Parameters
Type Name Default Description

positioninLayout position "CENTER" Position inside its container
String text "text" Text to be displayed
alignmentType alignment "0.00" Alignment of the text
Color background[4] {255,255,255,255} Background color
Color foreground[4] {0,0,0,255} Foreground color
fontType typeOfFont "Times New Roman" Type of font of the text
fontStyle styleOfFont "Plain" Style of font of the text
Integer sizeOfFont 10 Size of font

Connectors
Type Name Description
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ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 

VirtualLabBuilder.ViewElements.BasicElements.CheckBox
Check-box

Information

Creates a check-box. The checkbox allows to show or hide the virtual-lab windows by clicking
on it.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
booleanValue initialValue "false" Initial value
String label "" String displayed by the element

String varName "var"
String variable that can be linked to the 
corresponding variable of a dialog window in order to
show and hide the window by clicking on the 
check-box

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 

VirtualLabBuilder.ViewElements.BasicElements.PauseButton
Button to pause and resume the simulation

Information

Creates button that allows the user to pause and resume the simulation by clicking on it.
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Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
booleanValue buttonPause "false" Initial value

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 

VirtualLabBuilder.ViewElements.BasicElements.InfoButton
Button that allows the user to display the virtual-lab documentation

Information

Creates a button that allows the user to show or hide a window displaying HTML pages. This
feature allows including documentation in the virtual-lab. That is to say, it supports the
implementation of the virtual-lab introduction.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
booleanValue selected "false" Whether the button is selected or not
String label "info" Text displayed by the button
alignmentType alignment "0.00" Text alignment
String image "" Path of the image of the button
Color bgcolor[4] {255,255,255,255} Background color
String tooltip "" Tooltip
Color lettercolor[4] {0,0,0,255} String color
fontType typeFont "Times New 

Roman" Type of font
fontStyle styleFont "Plain" Style of font
Integer sizeFont 20 Size of font
String path "" location of the html file



VirtualLabBuilder.ViewElements.BasicElements

4 of 4

Integer xPos 400 Position of the dialog window displayed 
by the button

Integer yPos 0 Position of the dialog window displayed 
by the button

Integer xWidth 400 Width of the dialog window displayed by 
the button

Integer yWidth 400 Height of the dialog window displayed by 
the button

String title "Info window" Title of the dialog window displayed by 
the button

Connectors

Type Name Description
ParentL pLLeft Connector of non drawable components 
ChildL cLLeft Connector of non drawable components 
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VirtualLabBuilder.Examples
Some examples of use

Information

Examples package
Example package includes two examples of use.

Package Content
Name Description
 BBall Bouncing ball
 tank Tank with multiple state selections
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VirtualLabBuilder.Examples.BBall
Bouncing ball

Information

BBall package
BBall package includes the description of the bouncing-ball virtual-lab. The
BBModel has been extracted from (Dynasim 2004) and have been adapted for 
interactive simulation.

References
Dynasim (2004): Dymola. User's Manual. Dynasim AB.Version 5.3a.

Package Content
Name Description

BBModel Virtual-lab model
 BBView Virtual-lab view description

BBInteractive Interactive model

VirtualLabBuilder.Examples.BBall.BBModel
Virtual-lab model

Information

This model has been extracted from (Dynasim 2004). It has been adapted for
interactive simulation. The interactive variables of the models are shown in Table
1.
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Table 1. Interactive variables.
x Ball position.
v Ball velocity.
ebounce Elasticity coefficient.

References
Dynasim (2004): Dymola. User's Manual. Dynasim AB.Version 5.3a.

Parameters

Type Name Default Description
Height xStart 10 [m]
Velocity vStart 0 [m/s]
Mass m 2 [kg]
Real ebounceIni 0.8 Initial value of the elasticity coefficient
Real vsmall 1e-4  

VirtualLabBuilder.Examples.BBall.BBView
Virtual-lab view description

Information

This model has been composed by extending the PartialView class and by
instantiating and connecting the required components of the VirtualLabBuilder
library. The connection rules are described in the documentation of the
ViewElements package.

Parameters
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Type Name Default Description
Real Tcom 0.1 Communication interval
Integer serverPort 4242 Server Port number

String sourceCodePath "C:/Program 
Files/Dymola/Sou...

Path where the C-functions, 
graphics.jar and delayrun.exe 
are located

String fileName "gui.java" Java file name

VirtualLabBuilder.Examples.BBall.BBInteractive
Interactive model

Information

This model has been composed by instantiating the VirtualLab Model, which is
included in the VirtualLabBuilder library. The BBInteractive model includes the 
equations required to link the model and the view variables.
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VirtualLabBuilder.Examples.tank
Tank with multiple state selections

Information

tank package
This model intends to illustrate the case of a model supporting several state selections. This
model describes a tank with one output at the bottom and one pump placed at the top.

Package Content
Name Description

tank1OutputModel Physical model
StateSelection1 h: state variable
StateSelection2 V: state variable
StateSelection3 F: state variable
interactiveModel Interactive model
 tank1OutputView Virtual-lab view

tank1OutputInteractive Virtual-lab model
setParamVar When clauses to change interactive parameters and input variables

VirtualLabBuilder.Examples.tank.tank1OutputModel
Physical model

Information

This model describes a tank with one output at the bottom and one pump placed at the top.
It has been adapted for interactive simulation. The boolean vector isState[:], declared in
tank1OutputModel, allows controlling the state selection. The size of this vector is equal to
the number of interactive time-dependent quantities. The interactive variables of the
models are shown in Table 1.

Table 1. Interactive variables.
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a Output hole section.
A Tank section.
k Input valve parameter.
vin Input voltage.

Parameters

Type Name Default Description
Boolean isState[3] {true,false,false} This vector allows controlling the state selection
Boolean hIsState isState[1] true: h is the state variable
Boolean VIsState isState[2] true: V is the state variable
Boolean FIsState isState[3] true: F is the state variable
Real aInitial 0.4 Initial value of the output hole section
Real AInitial 2 Initial value of the tank section
Real KInitial 100 Initial value of the pump parameter
Real vInitial 0.01 Initial value of the pump voltage
Real hInitial 3 Initial value of the liquid level
Real VInitial 20 Initial value of the liquid volume
Real FInitial 140 Initial value of the liquid flow
Real g 981 Constant of gravity [cm/s2]

VirtualLabBuilder.Examples.tank.StateSelection1
h: state variable

Information

This model inherits from the setParamVar model. The liquid level (h) is the state variable 
of this model. It includes the code to reinitialize the value of the state variable.

Parameters

Type Name Default Description
Boolean isState[3] {true,false,false} This vector allows controlling the state selection
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Boolean hIsState isState[1] true: h is the state variable
Boolean VIsState isState[2] true: V is the state variable
Boolean FIsState isState[3] true: F is the state variable
Real aInitial 0.4 Initial value of the output hole section
Real AInitial 2 Initial value of the tank section
Real KInitial 100 Initial value of the pump parameter
Real vInitial 0.01 Initial value of the pump voltage
Real hInitial 3 Initial value of the liquid level
Real VInitial 20 Initial value of the liquid volume
Real FInitial 140 Initial value of the liquid flow
Real g 981 Constant of gravity [cm/s2]

VirtualLabBuilder.Examples.tank.StateSelection2
V: state variable

Information

This model inherits from the setParamVar model. The liquid volume (V) is the state 
variable of this model. It includes the code to reinitialize the value of the state variable.

Parameters

Type Name Default Description
Boolean isState[3] {true,false,false} This vector allows controlling the state selection
Boolean hIsState isState[1] true: h is the state variable
Boolean VIsState isState[2] true: V is the state variable
Boolean FIsState isState[3] true: F is the state variable
Real aInitial 0.4 Initial value of the output hole section
Real AInitial 2 Initial value of the tank section
Real KInitial 100 Initial value of the pump parameter
Real vInitial 0.01 Initial value of the pump voltage
Real hInitial 3 Initial value of the liquid level
Real VInitial 20 Initial value of the liquid volume
Real FInitial 140 Initial value of the liquid flow
Real g 981 Constant of gravity [cm/s2]
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VirtualLabBuilder.Examples.tank.StateSelection3
F: state variable

Information

This model inherits from the setParamVar model. The liquid flow (F) is the state variable 
of this model. It includes the code to reinitialize the value of the state variable.

Parameters

Type Name Default Description
Boolean isState[3] {true,false,false} This vector allows controlling the state selection
Boolean hIsState isState[1] true: h is the state variable
Boolean VIsState isState[2] true: V is the state variable
Boolean FIsState isState[3] true: F is the state variable
Real aInitial 0.4 Initial value of the output hole section
Real AInitial 2 Initial value of the tank section
Real KInitial 100 Initial value of the pump parameter
Real vInitial 0.01 Initial value of the pump voltage
Real hInitial 3 Initial value of the liquid level
Real VInitial 20 Initial value of the liquid volume
Real FInitial 140 Initial value of the liquid flow
Real g 981 Constant of gravity [cm/s2]

VirtualLabBuilder.Examples.tank.interactiveModel
Interactive model

Information

This model is composed of three instantiations of the physical-model: SS1, SS2 and SS3.
Each model has a different choice of the state variables.
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VirtualLabBuilder.Examples.tank.tank1OutputView
Virtual-lab view

Information

This model has been composed by extending the PartialView class and by instantiating and
connecting the required components of the VirtualLabBuilder library. The connection rules
are described in the documentation of the ViewElements package.

Parameters

Type Name Default Description
Real Tcom 0.1 Communication interval
Integer serverPort 4242 Server Port number

String sourceCodePath "C:/Program 
Files/Dymola/Sou...

Path where the C-functions, 
graphics.jar and delayrun.exe are 
located

String fileName "gui.java" Java file name
Integer liquidIX[6] {1,1,1,1,1,1} Interactive x components of the 

liquid polygon
Integer liquidIY[6] {1,0,0,1,1,1} Interactive y components of the 

liquid polygon
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Integer vaseIX[6] {1,1,1,1,1,1} Interactive x components of the 
vase polygon

Integer vaseIY[6] {0,0,0,0,0,0} Interactive x components of the 
vase polygon

Integer liquidFromPipeIx[4] {1,1,1,1} Interactive x components of the 
liquidFromPipe polygon

VirtualLabBuilder.Examples.tank.tank1OutputInteractive
Virtual-lab model

Information

This model has been composed by instantiating the VirtualLab Model, which is included in
the VirtualLabBuilder library. The tank1OutputInteractive model includes the equations 
required to link the model and the view variables.

VirtualLabBuilder.Examples.tank.setParamVar
When clauses to change interactive parameters and input variables

Information

The setParamVar class inherits from physicalModel, and it contains the when-clauses 
required to change the value of the interactive parameters and input variables. The new
values of the interactive quantities, specified interactively by the virtual-lab user, are
included in the array I[:]. The size of these arrays is equal to the number of interactive
parameters plus the number of interactive input variables. The when-clauses are triggered 
by the boolean variables CK and Enabled. When the value of any of these two variables
changes from false to true, then the interactive quantities are re-initialized to the value of
the I[:] array.

Parameters

Type Name Default Description
Boolean isState[3] {true,false,false} This vector allows controlling the state selection
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Boolean hIsState isState[1] true: h is the state variable
Boolean VIsState isState[2] true: V is the state variable
Boolean FIsState isState[3] true: F is the state variable
Real aInitial 0.4 Initial value of the output hole section
Real AInitial 2 Initial value of the tank section
Real KInitial 100 Initial value of the pump parameter
Real vInitial 0.01 Initial value of the pump voltage
Real hInitial 3 Initial value of the liquid level
Real VInitial 20 Initial value of the liquid volume
Real FInitial 140 Initial value of the liquid flow
Real g 981 Constant of gravity [cm/s2]
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