Tesis Doctoral

Doctoral Dissertation

Modelado Orientado a Objetos de
Laboratorios Virtuales para Ia
Educacion en Control Automdtico

Object-Oriented Modeling of Virtual
Laboratories for Control Education

Carla Martin Villalba

Ingeniera en Electrénica

Universidad Nacional de Educacion a Distancia
Escuela Técnica Superior de Ingenieria Informatica
Departamento de Informatica y Automaética

Madrid, 2007

Departamento

Titulo de la Tesis

Autor

Titulacion

Directores

Department

Dissertation Title

Author

Academic Degree

Advisors

Informdatica y Automdatica

Modelado Orientado a Objetos de
Laboratorios Virtuales para la
Educacion en Control Automdtico

Carla Martin Villalba

Ingeniera en Electronica
Universidad Complutense de Madrid

Sebastidn Dormido Bencomo
Alfonso Urquia Moraleda

Informatica y Automatica

Object-Oriented Modeling of
Virtual Laboratories for Conftrol
Education

Carla Martin Villalba

Electrical Engineering
Universidad Complutense de Madrid

Sebastidn Dormido Bencomo
Alfonso Urquia Moraleda

Acknowledgements

I would like express my deep gratitude to all those who contributed in some way
to this thesis.

My supervisor Alfonso Urquia Moraleda for guiding me, encouraging me to
do always my best and not less and helping me whenever I needed it.

My supervisor Sebastiin Dormido Bencomo for the advices, support and
material and financial resources he has provided throughout the course of this
work.

Genoveva Martinez and Miguel Sancho for believing in me and giving me my
first fellowship to start my research work.

My colleagues of the Computer Science and Automatic Control department
for the good atmosphere to develop my work. Especially to Rocio Mufioz and
José Manuel Diaz for his friendship and support. I would like to thank the
colleagues with whom I shared the “fellowship room” for creating a fun and
stimulating environment: Carlos Herndndez, Luis Torres, Roselvi Pérez, Arnoldo
W. Fernandez and Gonzalo Farias.

Pilar Riego, the department secretary, for assisting me in many different ways.

Yves Piguet, the Sysquake developer, for his assistance with the use of Sys-
quake.

Francisco Esquembre, the Easy Java Simulation (Ejs) developer, for providing

me the last releases of Ejs and for his assistance with the use of Ejs.

Dennis Gillet for accepting me in his group to do part of my research work and
for his support during my stay at the Ecole Polytechnique Federale de Lausanne
(EPFL).

I would like to thank my parents. They always did their best to raise me,
support me, teach me and love me. I also would like to thank my brother and
sisters (Rita, Ana, Ernesto and Marta) for always being there.

Especially, I would like to give my thanks to José Luis who helped me patiently

during these years and provided me a loving environment.

Contents

Resumen en Castellano (Abstract in Spanish) Xi
Introducciéno xi
Objetivos o xiii
Estructuradelatesis. Lo XV
Publicaciones y proyectos de investigacién xvii
Conclusiones XX
Lineas futuras de investigacién oL xxiii
Infroduction, Objectives and Structure 1
1.1 Introduction. L 1
1.2 Objectives 3
1.3 Structure of the dissertation 0L 5
1.4 Publications 6
1.5 Research projects Lo 8
Object-Oriented Modeling and Interactive Simulation 11
2.1 Introduction L 11
2.2 Evolution of continuous-time modeling and simulation 12

2.2.1 Analog simulation 13
2.2.2 The CSSL standard 13

2.2.3 Graphical block diagram modeling 14

il

Contents

2.2.4 Modeling in specific domains L. 16
2.2.5 Physical modeling 0L, 17
2.3 Modelica languageo oo 19
2.4 Modelica simulation environments 24
25 JARA library 25
2.5.1 Fundamental modeling hypotheses of JARA 25
2.5.2 JARA architecture 28
2.5.3 Model of a chemical reactor 30
2.5.4 Model of an industrial boiler 31
2.5.5 Model of a double-pipe heat exchanger 32
2.6 Virtual-labs for control engineering education 33
2.7 Interactive simulation tools L. 36
2.71 LabVIEW 36
2.7.2 Sysquake 37
2.7.3 Easy Java Simulations L. 38
2.7.4 Object-Oriented Continuous Modeling Program 39
2.8 Interactive simulation using Modelica 40
2.9 Conclusions e 40

Batch Interactive Simulation, by Combining the Use of Sysquake

and Modelica/Dymola 41
3.1 Introduction. 41
3.2 Sysquake to Dymosim interface 42
3.3 Case study I: hysteresis-based controller 43
3.4 Case study II: control of a chemical reactor 45
3.5 Case study III: control of a double-pipe heat exchanger 48

3.5.1 Plant identificationo 49

3.5.2 Controller synthesis and analysis 51

3.5.3 Exampleofuse 51
3.6 Case study IV: control of an industrial boiler 52

3.6.1 Plant identification 53

Contents

5

iii
3.6.2 Controller synthesis and analysis 54
3.6.3 Exampleofuse 54
3.7 Conclusions 56
Modeling Methodology for Runtime Interactive Simulation 57
4.1 Introduction. L a7
4.2 Model description for interactive simulation 58
4.2.1 Interactive quantities. 59
4.2.2 Description of the interactive quantities 60
4.3 Designof JARA 2 65
4.4 Supporting several selections of the state variables 66
4.4.1 DMotivating exampleo 66
4.4.2 Model description oo 68
4.5 Case study: tank system L. 71
4.6 Conclusions 74
Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and
Modelica/Dymola 75
5.1 Introduction. 75
5.2 Virtual-labmodel Lo 76
5.3 Virtual-lab view oo o 76
54 Virtual-labsetup. o 77
5.5 Case study I: quadruple-tank process virtual-lab 79
5.5.1 Virtual-labmodel o000 79
5.5.2 Virtual-labsetup L. 80
5.6 Case study II: chemical reactor virtual-lab 83
5.7 Case study III: industrial boiler virtual-lab 85
5.8 Case study IV: heat-exchanger virtual-lab 88
5.9 Conclusions L 90
VirtuallabBuilder Modelica Library - User’s Perspective 91

6.1 Introduction.o 91

v

Contents

6.2 Design objectives L oL 92
6.3 Overview of the proposed approach 92
6.4 VirtualLabBuilder library architecture 96
6.5 PartialView and VirtualLlabclasses 96
6.6 Interactive graphic elementso 97
6.6.1 Containers package 97
6.6.2 Drawables package 0. 98
6.6.3 InteractiveControls package 99
6.6.4 BasicElements package L. 100
6.7 Connection rules 100
6.8 Case study I: virtual-lab of an industrial boiler 103
6.8.1 Virtual-lab model 103
6.8.2 Virtual-lab viewo L 103
6.8.3 Virtual-lab set up and launch 106
6.9 Case study II: virtual-lab of a heat-exchanger 108
6.9.1 Virtual-lab view L. 108
6.9.2 Virtual-lab set up and launch 110
6.10 Case study III: virtual-lab of a washing machine 111
6.10.1 Washing machine dynamic analysis 111
6.10.2 Multibody model oo 113
6.10.3 Virtual-lab view L. 114
6.10.4 Virtual-lab set up and launch 119
6.11 Conclusions L 123
VirtuallabBuilder Modelica Library - Developer’s Perspective 125
7.1 Introduction 125
7.2 Structure of the src package 125
7.3 Interface of the interactive graphic elements 127
7.3.1 Connectors 127
7.3.2 IContainer interface 128

7.3.3 |IContainerDrawables interface 128

Contents

v
7.3.4 IDrawable interface oL 130
7.3.5 IViewElement interface 130
7.4 Implementing new interactive graphic elements 131
7.4.1 The Modelicaclass 132
742 Baseclasses L 132
7.5 Java code generation oo 136
7.5.1 Execution order of the initial algorithm sections 137

7.6 Runtime communication between the model simulation and the
interactive GUL 139
7.6.1 Serverside 139
7.6.2 Clientside. o 143
7.7 Conclusions 145

8 Virtual-lab of a solar house implemented using the Virtuallab-
Builder library 147
8.1 Introduction. 147
8.2 Description of the solar house virtual-lab. 147
8.3 The Modelica model of the solar house 149
8.4 Composing the virtual-lab o o0 151
8.5 Virtual-lablaunch o o000 157
8.6 Conclusions L 158
9 Conclusions and Future Research 159
9.1 Conclusions 159
9.2 Futureresearch 161
Bibliography 163
APPENDICES 178
A Sysquake - Dymosim Interface 179
A1 setExperiment 179

A2 getlnfo. 180

vi

A3 setValues
A4 dymosim.,
A5 linearize

A6 tload

B Interactive Models

B.1 Perfectgas

B.2 Chemical reactor

C VirtualLabBuilder - User’s Reference

Contents

2.1
2.2

2.3

24

2.5

2.6
2.7

2.8

3.1
3.2
3.3
3.4
3.5

List of Figures

Evolution of continuous-time modeling and simulation. 12
RC circuit model implemented using: a) Simulink; b) PSpice; and
c) Modelica/Dymola. o L 15
RLC circuit model implemented using: a) Simulink; b) PSpice;
and c¢) Modelica/Dymola. 15
a) JARA packages; b) JARA.cuts package; ¢) JARA. interf pack-
age; d) JARA heat package; e) JARA liq package; f) JARA.phase
package; g) JARA.gas package; h) JARA.chReac package. 29

a) JARA 2i packages; and b) Modelica diagram of the batch reactor

a) JARA 2i packages; and b) Modelica diagram of the boiler model. 31

a) JARA 2i packages; and b) Modelica diagram of the heat-exchanger

model. e 33
View of the magnetic levitator virtual-lab. 35
Sysquake-Dymosim interface functions. 42
Control loop. L 44
Constitutive relation of the controller. 44
View of the control loop virtual-lab. 44

Documentation of the control loop virtual-lab. 45

viil

3.6

3.7
3.8

3.9

3.10

3.11

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

9.5
5.6
2.7
5.8
5.9

List of Figures

Diagram of the reactor Modelica model: a) open-loop system; and
b) closed-loop system. 47
View of the chemical reactor virtual-lab. 47
Diagram of the heat-exchanger Modelica model: a) open-loop plant;
b) plant controlled using a PID; and c) plant controlled using a
compensator. o 49
View of the double-pipe heat-exchanger virtual-lab: a) plant lin-
earization; and b) controller synthesis. 50
Diagram of the boiler Modelica model composed using JARA: a)
open-loop plant; b) plant controlled using two PID; and c) plant
controlled using a PID to control the water level inside the boiler
and a compensator to control the output flow of vapor.. 53

View of the boiler virtual-lab: a) plant linearization; and b) con-

troller synthesis. L 55
Tank model. 59
Model of a perfect gas. oo 67
Schematic description of the model-view connection. 69

Schematic description of the proposed modeling methodology for

interactive simulation. L. 72
View description of the perfect-gas virtual-lab. 7
Perfect-gas virtual-lab: a) Simulink model; and b) view. 78
Schematic representation of the quadruple-tank process. 81

Quadruple-tank process: a) tankProcessLAB Modelica library; and

b) diagram of the quadruple-tank Modelica model. 81
Simulink model of the quadruple-tank process virtual-lab. 81
View of the quadruple-tank process virtual-lab. 82
Simulink model of the chemical reactor virtual-lab. 84
View of the chemical reactor virtual-lab. 84

Window menu to determine the operation policy of the chemical

reactor virtual-lab. 85

List of Figures

5.10
5.11
5.12
5.13

6.1

6.2
6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14
6.15

6.16

6.17

ix
Simulink model of the industrial boiler virtual-lab. 87
View of the industrial boiler virtual-lab. 87
Simulink model of the heat exchanger virtual-lab. 89
View of the heat exchanger virtual-lab. 89
VirtualLabBuilder library: a) general structure; and classes within
the following packages: b) Containers; ¢) Drawables; d) Mechanics;
e) InteractiveControls; and f) BasicElements. 94
Parameter window of the VirtualLab class. 95
Tank process: a) Modelica description of the virtual-lab view; and
b) virtual-lab.o o 102
Parameter window of the following components: a) trail; b) a; and
c) mainFrame. 102
Diagram of the boiler model. 104
Diagram of the Modelica description of the view. 105
View of the boiler virtual-lab 105
Introduction of the boiler virtual-lab. 107

Time evolution of some selected variables of the boiler virtual-lab. 107

Modelica description of the heat-exchanger virtual-lab view. 109
View of the heat-exchanger virtual-lab. 109
Schematic dynamic model of the washing machine. 112

a) WashingMachine library; and b) Modelica diagram of the wash-
ing machine physical model. o000 113
Modelica description of the washing-machine virtual-lab view. . . . 115
Main window of the washing machine virtual-lab: a) Modelica
diagram; and b) Java view. oL 116
Windows “Spring Data”, “Damper Data”, “Inner Drum”, “Outer
Drum”, “Spring constant” and “Damper constant” of the washing
machine virtual-lab. 00000 118
“Inner drum” window of the washing machine virtual-lab view:

a) Modelica diagram; and b) Java view. 119

6.18

6.19

6.20
6.21
6.22

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3

8.4

8.5

8.6
8.7

C.1

List of Figures

“Inner drum” window of the washing machine virtual-lab view:
a) Modelica diagram; and b) Java view. 120

Time evolution of the point whose position can be selected by the

virtual-lab user. Lo 121
Time evolution of the spring lengths. 121
Time evolution of the damper lengths. 122
Speed profile of the inner drum. 122
Structure of the src package. 126
Connectors included in the VirtualLabBuilder library. 127
Classes included in the Containers package. 133
Classes included in the Drawables package. 134

Classes included in the InteractiveElements and BasicElements packages. 135
Diagram of the view description of the bouncing ball virtual-lab. . 137
Bouncing ball virtual-labo 137
Relationship among the PartialView, ControlElement and Drawable classes. 141

Communication between the Java view and the executable file

generated by Dymola. oL 144
Floor plan of the house (Weiner 1992). 148
Perspectives of the house (Weiner 1992). 149

ExWallView class: a) diagram of the Modelica description; and b)
generated view. oL L L 152
BedRoom1View class: a) diagram of the Modelica description; and b)
generated View. L oL 153

HouseView class: a) diagram of the Modelica description; and b)

generated View. L oL Lo 154
Modelica diagram of the complete virtual-lab view. 155
Dynamic response of some selected variables. 156

Packages of VirtualLabBuilder library. 191

Resumen en Castellano

(Abstract in Spanish)

INntroduccion

Los laboratorios virtuales son herramientas tutiles para la ensenanza del control
automatico de procesos. Pueden emplearse para explicar los conceptos basicos
del control, para mostrar los problemas desde nuevas perspectivas, y para ilustrar
cuestiones relativas al andlisis y disenio (Johansson et al. 1998, Wittenmark et al.
1998, Dormido 2004).

El laboratorio virtual se compone de un modelo y de una wista. El modelo es la
representacion matematica de aquellos aspectos del comportamiento del sistema
que son relevantes para el propdsito del estudio. La wvista es la interfaz grafica
entre el usuario del laboratorio virtual y el modelo matemaético. Su propdsito
es doble: proporcionar una representacion visual del comportamiento del modelo
simulado y facilitar la interaccién del usuario con el modelo (interactividad).

Atendiendo a la forma en que el usuario puede actuar sobre el modelo, cabe

distinguir entre los dos tipos siguientes de interactividad:

— Interactividad continua. El usuario puede modificar el valor de las entradas,
los pardmetros y las variables de estado del modelo en cualquier instante
durante la ejecucion de la simulacién. De este modo, el usuario percibe

instantdneamente cémo esos cambios afectan a la dindmica del modelo.

X1l

Resumen en Castellano (Abstract in Spanish)

— Interactividad discontinua. El usuario puede fijar el valor de los pardmetros
v el estado inicial del modelo, inicidndose entonces automaticamente una ré-
plica de la simulacién. Durante la ejecucién de la simulacién, no se permite
al usuario interactuar con el modelo. Una vez finalizada la simulacion, sus
resultados son mostrados y analizados, permitiéndose entonces al usuario
interaccionar de nuevo con el modelo a fin de fijar un nuevo conjunto de

valores para los parametros y las condiciones iniciales.

Existen varias herramientas software cuyo propdsito es facilitar la creacién
de laboratorios virtuales. Dos de ellas son Sysquake e Fasy Java Simulations
(Ejs). Sysquake (Sysquake 2004, Piguet et al. 1999) es un entorno similar a
Matlab, especialmente concebido para el desarrollo de laboratorios virtuales con
interactividad discontinua. Ejs (EJS 2007, Esquembre 2004) es una herramienta,
de c6digo abierto, para el desarrollo de laboratorios virtuales con interactividad
continua.

Estas herramientas software permiten crear de un modo sencillo la interfaz
grafica interactiva de usuario (la vista del laboratorio virtual). Sin embargo, las
capacidades para la definicién del modelo y los solucionadores numéricos que
proporcionan estas herramientas no se corresponden al estado del arte.

Modelica (Modelica 2005, Modelica 2007) es un lenguaje de modelado gratuito,
orientado a objetos, que facilita el paradigma del modelado fisico (l&strém et al.
1998). Los modelos se describen matematicamente mediante ecuaciones difer-
enciales, algebraicas y discretas (modelos DAE hibridos). El lenguaje Modelica
facilita una descripcién declarativa (no causal) del modelo, lo cual facilita una
mejor reutilizacion de los modelos. A consecuencia de todo ello, el uso de Modelica
reduce considerablemente el esfuerzo de modelado.

El lenguaje Modelica estd concebido para su aplicacién al modelado de sis-
temas multi-dominio (por ejemplo, con una parte eléctrica, otra mecéanica, otra
hidraulica, otra termo-fluida, etc), resultando idéneo para describir el tipo de
modelo multi-dominio usado en el control automatico.

El desarrollo de librerias de modelos en Modelica es una linea de investigacién

muy activa, encontrandose disponibles en la actualidad librerias de componentes,

Resumen en Castellano (Abstract in Spanish) xiii

tanto comerciales como gratuitas, para el modelado en los dominios eléctrico,
mecéanico, termo-fluido, hidraulico, fisico-quimico, etc., asi como librerias que
soportan el modelado mediante formalismos tales como las redes de Petri, los
grafos de ligadura (bond graphs), etc.

Sin embargo, ni el lenguaje Modelica, ni los entornos de simulacién que
soportan Modelica (OpenModelica (OpenModelica 2007, Fritzson et al. 2002,
2006), Dymola (Dynasim 2006), etc.), ofrecen capacidades para la simulacién
interactiva. Por tanto, la aplicacion de Modelica al desarrollo de laboratorios
virtuales es un campo de investigacién abierto, en el cual se ha centrado la

presente tesis.

Objetivos

Se han planteado bésicamente cuatro objetivos en el trabajo de investigacion
descrito en esta tesis, que son descritos a continuacion.

El primer objetivo de esta tesis es explorar la viabilidad de usar el lenguaje
Modelica en el desarrollo de laboratorios virtuales adecuados para la ensenanza
del control automatico de procesos. La motivacion es conseguir, mediante el
empleo del lenguaje Modelica, reducir el esfuerzo requerido para el desarrollo de
los laboratorios virtuales.

Se plantea como objetivo soportar el desarrollo de laboratorios virtuales con

interactividad continua y con interactividad discontinua, proponiéndose para ello:

1. La implementacién de laboratorios virtuales con interactividad discontinua
combinando el uso de Sysquake y Modelica/Dymola. El modelo del labo-
ratorio virtual se describe usando el lenguaje Modelica y se traduce usando

Dymola. La vista del laboratorio virtual se desarrolla usando Sysquake.

Para poner en practica esta aproximacioén, se propone el disefio y progra-
macién de una interfaz entre Sysquake y Dymosim. Dymosim es el fichero

ejecutable generado por Dymola para el modelo en Modelica. El propdsito

X1v

Resumen en Castellano (Abstract in Spanish)

de esta interfaz es sincronizar la ejecucién de la aplicacién de Sysquake y

Dymosim.

2. La implementaciéon de laboratorios virtuales con interactividad continua,
primero combinando el uso de Ejs y Modelica/Dymola, y finalmente usando

s6lo Modelica/Dymola. Esto implica:

(a) Proponer una clasificacién de las magnitudes interactivas y analizar
las restricciones que la formulacion del modelo matemético impone en

la seleccién de las magnitudes interactivas.

(b) Proponer una metodologia sistematica para adaptar cualquier modelo
escrito en Modelica a una formulacién que permita su simulaciéon con

interactividad continua.

(c) Demostrar la viabilidad de combinar el uso de Ejs y Modelica/Dymola,
lo cual se lleva acabo usando las interfaces entre Ejs y Matlab/Simulink
y entre Matlab/Simulink y Dymola que han sido desarrolladas por

otros autores.

(d) Disenar y programar una libreria en lenguaje Modelica que facilite la
descripcion de la vista del laboratorio virtual y que, a partir de dicha
descripcion, genere automaticamente el cédigo ejecutable de la vista y
la comunicacién entre el modelo y la vista. El uso de esta libreria, que
se denominard VirtualLabBuilder, permitird describir el laboratorio

virtual usando sélo el lenguaje Modelica.

El segundo objetivo de este trabajo de tesis es traducir al lenguaje Modelica,
y adaptar para la simulacién interactiva, la libreria JARA (Urquia 2000). Esta
libreria contiene modelos de algunos de los principios fisico-quimicos que encuen-
tran aplicacién en el modelado de procesos de transporte, termo-fluidos, cambios
de fase y quimicos, etc., en el contexto del control automatico. La motivacién
detras de este objetivo es obtener una libreria en lenguaje Modelica que pueda
ser usada en el desarrollo de laboratorios virtuales para la ensenanza del control

automatico de procesos quimicos.

Resumen en Castellano (Abstract in Spanish) XV

El tercer objetivo de este trabajo de tesis es desarrollar un conjunto de
laboratorios virtuales para la ensefianza del control automaético. Algunos de estos
laboratorios virtuales serdn construidos usando modelos de plantas incluidas en la
libreria JARA: un reactor quimico, un evaporador industrial y un intercambiador
de calor.

Finalmente, el cuarto objetivo es demostrar que la metodologia propuesta
y el software programado para el desarrollo de laboratorios virtuales usando sélo

Modelica/Dymola se puede aplicar con éxito a:

1. La solucion de un problema industrial real. Se desarrollard un laboratorio
virtual con aplicacién al disenio y optimizacién de una lavadora indus-
trial, colaborando para ello con ingenieros del Departamento de Ingenieria
Mecéanica del Centro de Investigacién Tecnolégica IKERLAN (Mondragén,

Espana).

2. La implementacion de un laboratorio virtual basado en un modelo en Mo-
delica complejo, de grandes dimensiones, que ha sido desarrollado por otros
autores. Para este propdsito, se usard el modelo del comportamiento ter-
modindmico de una casa solar incluido en la libreria BondLib (Weiner &

Cellier 1993, Cellier & Nebot 2005).

Estructura de la tesis

La tesis se ha estructurado en nueve capitulos y tres apéndices, cuyo contenido

se describe brevemente a continuacién.

Capitulo 1. Comienza con una breve introduccién, en la cual se discute la
motivacion del trabajo de investigacion realizado. Se describen los objetivos
v la estructura de la tesis. Finalmente, se enumeran las publicaciones a las
que ha dado lugar este trabajo de investigacion, asi como la participacién

en proyectos de investigacién subvencionados.

Capitulo 2. Se presenta una breve revision de los conceptos que juegan un papel

fundamental en la linea de investigacion desarrollada en esta tesis. En

Xvi

Resumen en Castellano (Abstract in Spanish)

particular, se discute el estado del arte en modelado y simulacién, y el
desarrollo de laboratorios virtuales, todo ello en el contexto del control

automético. Ademads, se describen algunas caracteristicas relevantes de la

libreria JARA.

Capitulo 3. Se propone una metodologia para la implementacién de labora-

torios virtuales combinando el uso de Sysquake y Modelica/Dymola, y se
aplica al desarrollo de varios laboratorios virtuales para la docencia del con-
trol automético. En el Apéndice A se proporciona informacién adicional
sobre el software desarrollado: la libreria de funciones LME denominada

sysquakeDymosimInterface.

Capitulo 4. Se identifican diferentes tipos de magnitudes interactivas y se ana-

lizan las ligaduras que el modelo matematico impone sobre la seleccién de
las magnitudes interactivas. Sobre la base de esta discusién, se propone
una metodologia de modelado para adaptar cualquier modelo escrito en
Modelica a una formulacién valida para su simulacién interactiva continua.
En el Apéndice B se muestra el listado de dos modelos empleados para

ilustrar la aplicacién de la metodologia.

Capitulo 5. Se propone un procedimiento para desarrollar laboratorios virtuales

combinando el uso de Ejs, Matlab/Simulink y Modelica/Dymola, y se aplica
al desarrollo de varios laboratorios virtuales para la docencia del control

automatico.

Capitulo 6. Se propone un procedimiento para desarrollar laboratorios virtuales

usando sélo Modelica/Dymola, y se discute la estructura y uso de la her-
ramienta software que ha sido disenada y programada para aplicarlo: la
libreria en lenguaje Modelica denominada VirtualLabBuilder. Finalmente,
se describe el desarrollo de varios laboratorios virtuales aplicando los pro-

cedimientos propuestos y las herramientas software programadas.

Resumen en Castellano (Abstract in Spanish) xvii

El Apéndice C contiene el manual de referencia de la libreria VirtualLab-
Builder, tal como ha sido generado por la herramienta Dymola a partir de

la estructura y documentacién de la libreria.

Capitulo 7. Se discuten los detalles mas relevantes del desarrollo de la libreria
VirtualLabBuilder, proporcionando las claves para la extension de la misma

con nuevas clases.

Capitulo 8. Se discute el desarrollo, empleando la libreria VirtualLabBuilder,
de un laboratorio virtual del comportamiento termodinamico de una casa

solar.

Capitulo 9. Se presentan las conclusiones del trabajo de investigacion y algunas

posibles lineas futuras de investigacion.

Publicaciones y proyectos de investigacion

El trabajo de investigacién descrito en la presente Tesis Doctoral ha dado lugar

a las publicaciones citadas a continuacién.

1. Carla Martin; Alfonso Urquia; Sebastian Dormido (2007): “Implementation
of Interactive Virtual Laboratories for Control Education Using Modelica”,
In: proceedings of Furopean Control Conference 2007, Kos (Greece), paper
#WeAO05.1, pp. 2679-2686.

2. Carla Martin-Villalba; Alfonso Urquia; Sebastidn Dormido (2007): “Desar-
rollo de Laboratorios Virtuales con Aplicacién a la Ensenanza del Control
usando Modelica”, In: proceedings of V Jornadas de Ensenanza via Inter-
net/Web de la Ingenieria de Sistemas y Automdtica (EIWISA’07), Sequndo

Congreso Espanol de Informdtica (CEDI), Zaragoza (Spain).

3. Carla Martin; Alfonso Urquia; Sebastidan Dormido (2007): “Virtual-lab of a
Solar House Implemented using VirtualLabBuilder Modelica Library”, In:
proceedings of Conference on Systems and Control (CSC’2007), Marrakech

(Morocco), paper #130.

XViii

10.

Resumen en Castellano (Abstract in Spanish)

. Carla Martin; Alfonso Urquia; Sebastidn Dormido (2006): “An Approach to

Virtual-Lab Implementation using Modelica”, In: proceedings of Furopean
Simulation and Modelling Conference (ESM’2006), Toulouse (France), pp.
137-141.

. Carla Martin; Alfonso Urquia; Sebastidan Dormido (2005): “Object-Oriented

Modeling of Virtual Laboratories for Control Education”, In: proceedings
of 16! IFAC World Congress, Prague (Czech Republic), Paper code: Th-
A22-TO/2.

. Carla Martin; Rocio Munoz; Alfonso Urquia; Sebastidn Dormido (2005): “A

Distance Learning Course on Virtual-lab Implementation for High School
Science Teachers”, In: proceedings of 6" International Conference on Vir-

tual University, Bratislava (Slovak Republic), pp. 3-8.

Carla Martin; Alfonso Urquia; Sebastidn Dormido (2005): “Modelado Ori-
entado a Objetos de Laboratorios Virtuales con Aplicacién a la Ensefianza
de Control de Procesos Quimicos”, In: proceedings of IV Jornadas de
Ensenanza via Internet/Web de la Ingenieria de Sistemas y Automdtica
(EIWISA’05), Primer Congreso Espanol de Informdtica (CEDI), Granada

(Spain), pp. 21-26.

. Carla Martin; Alfonso Urquia; Sebastidn Dormido (2005): “Modeling of

Interactive Virtual Laboratories with Modelica”, In: proceedings of 4"

International Modelica Conference, Hamburg (Germany), pp. 159-168.

. Carla Martin; Alfonso Urquia; Sebastidn Dormido (2004): “JARAZ2i - A Mo-

delica Library for Interactive Simulation of Physical-Chemical Processes”,
In: proceedings of Furopean Simulation and Modelling Conference, Paris

(France), pp. 128-132.

Carla Martin; Alfonso Urquia; José Sanchez; Sebastidan Dormido; Fran-
cisco Esquembre; Jose L. Guzman; Manuel Berenguel (2004): “Interactive

Simulation of Object-Oriented Hybrid Models, by Combined Use of Ejs,

Resumen en Castellano (Abstract in Spanish) Xix

Matlab/Simulink and Modelica/Dymola”, In: proceedings of 18" Buropean

Simulation Multiconference, Magdeburg (Germany), pp. 210-215.

11. Alfonso Urquia; Carla Martin; Sebastidan Dormido (2005): “Design of SPICE-
Lib: a Modelica Library for Modeling and Analysis of Electric Circuits”,
Mathematical and Computer Modelling of Dynamical Systems, Vol. 11, No.

1, pp. 43-60.

12. Carla Martin; Alfonso Urquia; Sebastidan Dormido (2003): “SPICELib -
Modeling and Analysis of Electric Circuits with Modelica”, In: proceedings

of 3% International Modelica Conference, Linkoping (Sweden), pp. 161-170.

Trabajos en proceso de revision

Los siguientes trabajos se encuentran en proceso de revisién:

1. Carla Martin; Alfonso Urquia; Sebastidan Dormido: “Object-Oriented Mod-
elling of Virtual-Labs for Education in Chemical Process Control”, submit-

ted for publication in Computer Chemical Engineering, Elsevier.

2. Carla Martin-Villalba; Alfonso Urquia; Sebastian Dormido: “An Approach
to Virtual-Lab Implementation using Modelica”, submitted for publication
in Mathematical and Computer Modelling of Dynamical Systems, Taylor &

Francis.

3. Carla Martin; Alfonso Urquia; Sebastidn Dormido: “Educacién a Distancia
del Profesorado de Ciencias en el Desarrollo de Laboratorios Virtuales”, sub-
mitted for publication in Revista Iberoamericana de Educacion a Distancia

(RIED), AIESAD.

4. Carla Martin-Villalba; Félix Martinez; Alfonso Urquia; Sebastidn Dormido:
“Implementation in Modelica of a Virtual-Lab for Testing Washing Machine
Designs”, regular paper submitted for the Furopean Simulation and Mod-

elling Conference 2007.

XX Resumen en Castellano (Abstract in Spanish)

Proyectos de investigacion

La mayoria de los resultados desarrollados en la tesis doctoral han sido obtenidos

en el marco de diferentes proyectos de investigacién:

1. “Control de sistemas complejos en la logistica y producciéon de bienes y
servicios. Acrénimo: COSICOLOGI-CM”, IV PRICIT 2005-2008. Plan
Regional de Ciencia y Tecnologia de la Comunidad de Madrid. Ref. S-
0505/DPI1/0391, Enero 2005 - Diciembre 2008, Investigador principal: Prof.

Dr. Sebastidan Dormido Bencomo.

2. “Herramientas interactivas para el modelado, visualizacién, simulacién y
control de sistemas dinamicos”, CICYT, DPI 2004-01804, Enero 2004 -
Diciembre 2006, Investigador principal: Prof. Dr. Sebastidn Dormido

Bencomo.

3. “Laboratorios virtuales y remotos de control automatico: andlisis, diseno
y desarrollo”, CICYT, DPI 2001-01012, Enero 2002 - Diciembre 2004,

Investigador principal: Prof. Dr. SebastiAn Dormido Bencomo.

Conclusiones

Se han propuesto tres enfoques diferentes para el desarrollo de laboratorios vir-

tuales usando el lenguaje Modelica:

1. El desarrollo de laboratorios virtuales con interactividad discontinua, com-
binando el uso de Sysquake y Modelica/Dymola. Este trabajo se encuentra

resumido en (Martin et al. 2005b,c).

2. El desarrollo de laboratorios virtuales con interactividad continua, combi-
nando el uso de Ejs y Modelica/Dymola. El planteamiento y los resultados

obtenidos se resumen en (Martin et al. 2004a,b, 2005a,b,c).

Resumen en Castellano (Abstract in Spanish) xxi

3. El desarrollo de laboratorios virtuales con interactividad continua, usando
s6lo Modelica/Dymola. Este trabajo se encuentra resumido en (Martin

et al. 2006, Martin-Villalba et al. 2007, Martin et al. 2007).

Se han propuesto las metodologias y desarrollado las herramientas software
necesarias para llevar a la practica las tres métodos anteriormente expuestos para

el desarrollo de laboratorios virtuales. En concreto:

1. Se ha programado una interfaz entre Sysquake y Dymosim. Esta interfaz
consiste en un conjunto de funciones en el lenguaje LME, que pueden ser
invocadas desde las aplicaciones de Sysquake. Dicha interfaz esta disponible

en http://www.euclides.dia.uned.es

2. Se ha propuesto una metodologia para adaptar cualquier modelo escrito en
Modelica a una formulaciéon valida para la simulacién con interactividad

continua. Se han considerado los dos casos siguientes:

(a) Pueden definirse todas las magnitudes interactivas simultdneamente

como variables de estado.

(b) Lo anterior no es posible, con lo cual es necesario soportar simultdnea-

mente varias selecciones de las variables de estado.

3. Se ha propuesto un procedimiento para desarrollar laboratorios virtuales
combinando el uso de Ejs y Modelica/Dymola, valiéndose para ello de las

interfaces existentes entre Ejs y Simulink, y entre Dymola y Simulink.

4. Se ha disenado y programado la libreria en lenguaje Modelica denominada
VirtualLabBuilder, gracias a la cual puede describirse el laboratorio virtual
empleando Unicamente lenguaje Modelica. Su documentacion on-line esté

disponible en http://www.euclides.dia.uned.es

La metodologia propuesta para adaptar modelos escritos en Modelica a la
simulacion interactiva ha sido aplicada con éxito a las dos librerias indicadas a

continuacién. Ambas pueden ser descargadas de http://www.euclides.dia.uned.es

xxii

Resumen en Castellano (Abstract in Spanish)

1. Lalibreria JARA ha sido traducida al lenguaje Modelica y ha sido adaptada

para la simulacién con interactividad continua y discontinua. Esta nueva
versién de la libreria JARA, en lenguaje Modelica y adecuada para la

simulacién interactiva, se ha denominado JARA 2i.

. Se ha disenado y programado en Modelica la libreria tankProcessLAB, y se

ha adaptado para la simulacién con interactividad continua y discontinua.

Las metodologias propuestas y las herramientas software programadas han
sido aplicadas con éxito al desarrollo de los siguientes laboratorios virtuales para

la educacion en control de procesos:

— Laboratorios wvirtuales con interactividad discontinua. Laboratorios vir-

tuales de un controlador de histéresis, un reactor quimico, un intercam-

biador de calor de doble tubo y un evaporador industrial.

— Laboratorios virtuales con interactividad continua. Laboratorios virtuales

de un sistema de cuatro tanques, un evaporador industrial, un reactor

quimico y un intercambiador de calor de doble tubo.

Finalmente, el trabajo de investigacién realizado para posibilitar la descrip-
cién de los laboratorios virtuales usando tinicamente el lenguaje Modelica ha sido

aplicado con éxito:

1. Al desarrollo de un laboratorio virtual para el diseno y andlisis de lavadoras

con tambor, con aplicacién a un problema de diseno industrial real. La
definicién de las especificaciones del laboratorio virtual y la programacién
del modelo (en lenguaje Modelica) ha sido realizada por los usuarios del
laboratorio virtual: ingenieros del Departamento de Ingenieria Mecanica

del Centro de Investigaciones Tecnoldgicas IKERLAN (Mondragén, Spain).

. Al desarrollo de un laboratorio virtual que ilustra el comportamiento ter-

modindmico de una casa solar. Con ello se demuestra que los resultados
obtenidos son aplicables a modelos de grandes dimensiones y complejidad,

desarrollados ademas por otros autores.

Resumen en Castellano (Abstract in Spanish) xxiii

Lineas futuras de investigacion

Finalmente, se exponen a continuacion algunas ideas sobre posibles extensiones

del trabajo de investigacion realizado en esta tesis:

— Implementar una herramienta software que permita realizar automética-
mente las adaptaciones al modelo para la simulacién interactiva que han

sido propuestas en esta tesis.

— Desarrollar mas elementos gréaficos interactivos e incluirlos en la libreria
VirtualLabBuilder. Por ejemplo, elementos de dibujo que describan formas

3-D.

— Adaptar las librerfas incluidas en la libreria estdndar de Modelica a la
simulacién interactiva y desarrollar los correspondientes elementos graficos

interactivos.

— Explorar el uso de VirtualLabBuilder en otros entornos de simulaciéon que
soportan Modelica, tales como OpenModelica y DrModelica (Lengquist
et al. 2003).

— Extender las capacidades de VirtualLabBuilder de modo que la interfaz

grafica interactiva de los laboratorios virtuales sea un applet de Java.

Introduction, Objectives

and Structure

1.1 Infroduction

Virtual-labs are useful tools for control education. They can be used to explain
basic concepts, to provide new perspectives of a problem, and to illustrate analysis
and design topics (Johansson et al. 1998, Wittenmark et al. 1998, Dormido 2004).

Virtual-labs are composed of a model and a view. The model is the ma-
thematical model representing the relevant behavior of the system under study.
The view is the graphical user-to-model interface. It is intended to provide a
visual representation of the simulated model behavior and to facilitate the user’s
interactive actions on the model.

Two alternative types of interactivity can be considered:

— Runtime interactivity. The user is allowed to perform actions on the model
during the simulation run. He can change the value of the model inputs,
parameters and state variables, perceiving instantly how these changes
affect to the model dynamic. An arbitrary number of actions can be made

on the model during a given simulation run.

— Batch interactivity. The user’s action triggers the start of the simulation,

which is run to completion. During the simulation run, the user is not

1 Introduction, Objectives and Structure

allowed to interact with the model. Once the simulation run is finished, the

results are displayed and a new user’s action on the model is allowed.

There exist several software tools specifically intended for the implementation
of virtual-labs. Two of them are Sysquake and Easy Java Simulations (Ejs).
Sysquake (Sysquake 2004, Piguet et al. 1999) is a Matlab-like environment for
developing virtual-labs with batch interactivity. Ejs (EJS 2007, Esquembre 2004)
is a software tool for developing virtual-labs with runtime interactivity. These
software tools allow easy creation of the interactive graphical user interface.
However, the model definition capabilities and the numerical solvers provided
by these tools are not the state-of-the-art.

Modelica (Modelica 2005, Modelica 2007) is a freely available, object-oriented
modeling language that facilitates the physical modeling paradigm (Astrém et al.
1998). Models are mathematically described by differential, algebraic and discrete
equations. The Modelica language supports a declarative (non-causal) description
of the model, which permits better reuse of the models. As a consequence, the
use of Modelica reduces considerably the modeling effort.

Modelica is intended for multi-domain modeling. Currently, a number of free
and commercial component libraries in different domains are available (Mode-
lica 2007), including electrical, mechanical, thermo-fluid and physical-chemical.
Modelica is well suited for describing the type of multi-domain models used in
automatic control.

However, neither Modelica language nor Modelica simulation environments
(e.g., OpenModelica (OpenModelica 2007, Fritzson et al. 2002, 2006), Dymola
(Dynasim 2006), etc.) support interactive simulation. As a consequence, ex-
tending the Modelica capabilities in order to facilitate the implementation of

virtual-labs is an open research field.

1.2 Objectives 3

1.2 Objectives

The first objective of this dissertation is to explore the feasibility of using
Modelica language in the implementation of virtual-labs for control education.
The motivation behind this objective is to reduce the virtual-lab development

effort. Different approaches to this objective are considered:

1. The implementation of virtual-labs with batch interactivity by combining
the use of Sysquake and Modelica/Dymola. The virtual-lab model is pro-
grammed using Modelica language and translated using Dymola. The

graphical user-to-model interface is implemented using Sysquake.

In order to implement this approach, the design and programming of a
Sysquake-to-Dymosim interface is proposed. Dymosim is the executable file
generated by Dymola for the Modelica model. The purpose of this interface

is to synchronize the execution of Dymosim and the Sysquake application.

2. The implementation of virtual-labs with runtime interactivity, firstly com-
bining the use of Ejs and Modelica/Dymola, and finally using only Mode-

lica/Dymola. This implies:

(a) To identify different types of interactive quantities and to analyze the
constraints that the mathematical model imposes on the selection of

the interactive quantities.

(b) To propose a systematic methodology for adapting any Modelica model

to runtime interactive simulation.

(¢) To demonstrate the feasibility of combining the use of Ejs and Mode-
lica/Dymola, which is accomplished by using the Ejs-to-Matlab/Simulink
and Matlab/Simulink-to-Dymola interfaces.

(d) To design and program a Modelica library to facilitate the implemen-
tation of the virtual-lab view and the model-to-view communication.
The use of this library will allow to describe the virtual-lab using only

the Modelica language.

1 Introduction, Objectives and Structure

The second objective of this dissertation work is translating into Modelica
language and adapting for interactive simulation the JARA library (Urquia 2000).
This library contains models of some fundamental physical-chemical principles.
Its main application domain is the modeling of transport, thermo-fluid, phase-
change and chemical processes in the context of automatic control. The motiva-
tion behind this objective is to obtain a Modelica library that could be used in
the development of virtual-labs for chemical process control education.

The third objective of this dissertation work is to develop a set of virtual-
labs for process control education. Some of these virtual-labs will be built using
models of process plants included in the JARA library: a chemical reactor, an
industrial boiler and a double-pipe heat exchanger. Other virtual-labs will be
composed by using a Modelica library for modeling basic hydraulic processes
that will be developed as a part of this dissertation work.

Finally, the fourth objective is to demonstrate that the proposed approach
to the implementation of virtual-labs using only Modelica/Dymola can be applied

to:

1. The solution of a real industrial problem. A virtual-lab for aiding in the
design and optimization of a drum-type washing machine will be developed
in cooperation with engineers of the Mechanical Engineering Department

of the IKERLAN Technological Research Center (Mondragén, Spain).

2. The implementation of a virtual-lab based on a complex Modelica model
that has been developed by other authors. The model of a solar house that
is included in the BondLib Modelica library (Weiner & Cellier 1993, Cellier

& Nebot 2005) will be used for this purpose.

1.8 Structure of the dissertation 5

1.3 Structure of the dissertation

This dissertation has been structured as follows:

Chapter 2. A brief review of some concepts that play a fundamental role is this
dissertation is presented. In particular, it is discussed the state-of-the-art
in modeling, simulation, and virtual-lab implementation in the context of
automatic control. Additionally, some relevant characteristics of the JARA

Modelica library are described.

Chapter 3. A methodology for the implementation of virtual-labs by combining
the use of Sysquake and Modelica/Dymola is proposed. The development

of some virtual-labs illustrating this approach is discussed.

Additional information about the developed software (a library of LME

functions called sysquakeDymosimInterface) is provided in Appendix A.

Chapter 4. Different types of interactive quantities are identified and the con-
straints that the mathematical model imposes on the selection of the inter-
active quantities are analyzed. On the basis of this discussion, a modeling
methodology to adapt any Modelica model for runtime interactive simula-

tion is proposed.

The code of two models illustrating the application of the proposed method-

ology is provided in Appendix B.

Chapter 5. A methodology for implementing virtual-labs by combining the use
of Ejs, Matlab/Simulink and Modelica/Dymola is proposed. The develop-

ment of several virtual-labs according to this methodology is described.

Chapter 6. A novel approach to the virtual-lab implementation using only Mo-
delica/Dymola is proposed. The VirtualLabBuilder Modelica library is
presented and some relevant information about its use is provided. The
development of virtual-labs using Modelica language is illustrated by means

of some case studies.

6 1 Introduction, Objectives and Structure

The Appendix C contains the VirtualLabBuilder user’s reference. It has
been generated by the Dymola tool from the library structure and docu-

mentation.

Chapter 7. The most relevant implementation details of the VirtualLabBuilder
Modelica library are discussed. The extension of the library with additional

classes is addressed in this chapter.

Chapter 8. The implementation of a virtual-lab illustrating the thermodynamic
behavior of a solar house is discussed. This virtual-lab is described using

only the Modelica language.

Chapter 9. The conclusions and the future research are presented.

1.4 Publications

1. Carla Martin; Alfonso Urquia; Sebastian Dormido (2007): “Implementation
of Interactive Virtual Laboratories for Control Education Using Modelica”,
In: proceedings of Furopean Control Conference 2007, Kos (Greece), paper
#WeAO05.1, pp. 2679-2686.

2. Carla Martin-Villalba; Alfonso Urquia; Sebastidn Dormido (2007): “Desar-
rollo de Laboratorios Virtuales con Aplicacién a la Ensenianza del Control
usando Modelica”, In: proceedings of V Jornadas de Ensenanza via Inter-
net/Web de la Ingenieria de Sistemas y Automdtica (EIWISA’07), Sequndo

Congreso Espanol de Informdtica (CEDI), Zaragoza (Spain).

3. Carla Martin; Alfonso Urquia; Sebastidan Dormido (2007): “Virtual-lab of a
Solar House Implemented using VirtualLabBuilder Modelica Library”, In:
proceedings of Conference on Systems and Control (CSC’2007), Marrakech

(Morocco), paper #130.

4. Carla Martin; Alfonso Urquia; Sebastidn Dormido (2006): “An Approach to

Virtual-Lab Implementation using Modelica”, In: proceedings of Furopean

1.4 Publications

10.

Simulation and Modelling Conference (ESM’2006), Toulouse (France), pp.
137-141.

Carla Martin; Alfonso Urquia; Sebastian Dormido (2005): “Object-Oriented
Modeling of Virtual Laboratories for Control Education”, In: proceedings
of 16! IFAC World Congress, Prague (Czech Republic), Paper code: Th-
A22-TO/2.

Carla Martin; Rocio Mutioz; Alfonso Urquia; Sebastidn Dormido (2005): “A
Distance Learning Course on Virtual-lab Implementation for High School
Science Teachers”, In: proceedings of 6" International Conference on Vir-

tual University, Bratislava (Slovak Republic), pp. 3-8.

Carla Martin; Alfonso Urquia; Sebastidn Dormido (2005): “Modelado Ori-
entado a Objetos de Laboratorios Virtuales con Aplicacién a la Ensenanza
de Control de Procesos Quimicos”, In: proceedings of IV Jornadas de
Ensenanza via Internet/Web de la Ingenieria de Sistemas y Automdtica
(EIWISA’05), Primer Congreso Espanol de Informdtica (CEDI), Granada

(Spain), pp. 21-26.

Carla Martin; Alfonso Urquia; Sebastidn Dormido (2005): “Modeling of
Interactive Virtual Laboratories with Modelica”, In: proceedings of 4"

International Modelica Conference, Hamburg (Germany), pp. 159-168.

Carla Martin; Alfonso Urquia; Sebastidan Dormido (2004): “JARA2i - A Mo-
delica Library for Interactive Simulation of Physical-Chemical Processes”,
In: proceedings of Furopean Simulation and Modelling Conference, Paris

(France), pp. 128-132.

Carla Martin; Alfonso Urquia; José Sanchez; Sebastidan Dormido; Fran-
cisco Esquembre; Jose L. Guzman; Manuel Berenguel (2004): “Interactive
Simulation of Object-Oriented Hybrid Models, by Combined Use of Ejs,
Matlab/Simulink and Modelica/Dymola”, In: proceedings of 18" Buropean

Simulation Multiconference, Magdeburg (Germany), pp. 210-215.

8 1 Introduction, Objectives and Structure

11. Alfonso Urquia; Carla Martin; Sebastidan Dormido (2005): “Design of SPICE-
Lib: a Modelica Library for Modeling and Analysis of Electric Circuits”,
Mathematical and Computer Modelling of Dynamical Systems, Vol. 11, No.
1, pp. 43-60.

12. Carla Martin; Alfonso Urquia; Sebastidn Dormido (2003): “SPICELib -
Modeling and Analysis of Electric Circuits with Modelica”, In: proceedings

of 37 International Modelica Conference, Linkoping (Sweden), pp. 161-170.
The revision process of the following manuscripts is on going:

1. Carla Martin; Alfonso Urquia; Sebastidan Dormido: “Object-Oriented Mod-
elling of Virtual-Labs for Education in Chemical Process Control”, submit-

ted for publication in Computer Chemical Engineering, Elsevier.

2. Carla Martin-Villalba; Alfonso Urquia; Sebastian Dormido: “An Approach
to Virtual-Lab Implementation using Modelica”, submitted for publication
in Mathematical and Computer Modelling of Dynamical Systems, Taylor &

Francis.

3. Carla Martin; Alfonso Urquia; Sebastidn Dormido: “Educacién a Distancia
del Profesorado de Ciencias en el Desarrollo de Laboratorios Virtuales”, sub-

mitted for publication in Revista Iberoamericana de Educacion a Distancia

(RIED), AIESAD.

4. Carla Martin-Villalba; Félix Martinez; Alfonso Urquia; Sebastidn Dormido:
“Implementation in Modelica of a Virtual-Lab for Testing Washing Machine
Designs”, regular paper submitted for the Furopean Simulation and Mod-

elling Conference 2007.

1.5 Research projects

Most of the results developed in the doctoral dissertation have been obtained in

the framework of different research projects:

1.5 Research projects

1.

“Control de sistemas complejos en la logistica y producciéon de bienes y
servicios. Acrénimo: COSICOLOGI-CM”, IV PRICIT 2005-2008. Plan
Regional de Ciencia y Tecnologia de la Comunidad de Madrid. Ref. S-
0505/DPI1/0391, January 2005 - December 2008, Principal researcher: Prof.

Dr. Sebastian Dormido Bencomo.

“Herramientas interactivas para el modelado, visualizacién, simulacién y
control de sistemas dindmicos”, CICYT, DPI 2004-01804, January 2004
- December 2006, Principal researcher: Prof. Dr. Sebastian Dormido

Bencomo.

“Laboratorios virtuales y remotos de control automatico: andlisis, diseno
y desarrollo”, CICYT, DPI 2001-01012, January 2002 - December 2004,

Principal researcher: Prof. Dr. Sebastidn Dormido Bencomo.

Object-Oriented Modeling and

Inferactive Simulation

2.1 Introduction

A brief review of the state-of-the-art in modeling, simulation, and virtual-lab
implementation in the context of automatic control is presented. Firstly, the
historical development of continuous-time modeling paradigms and simulation
tools is discussed. Secondly, some relevant features of the object-oriented mo-
deling languages and environments are described. Special attention is paid to
the Modelica language and the Dymola environment, because they play a funda-
mental role in this work. Thirdly, some of the many benefits of virtual-labs for
control education and some key characteristics of four software tools intended for
virtual-lab implementation are discussed. These tools are LabVIEW, Sysquake,
Easy Java Simulations and OOCSMP. Finally, the previous work on virtual-
lab implementation using Modelica that has been developed by other authors is

described.

12 2 Object-Oriented Modeling and Interactive Simulation

ANALOG SIMULATION DIGITAL SIMULATION
Physical modeling

ASCEND, Dymola, Acausal, 00, DAE
EcosimPro, gPROMS, NMF,

ObjectMath, Omola,
SIDOPS+, Smile, U.L.M, ... Standard ?

S

1930 40 50 60 80 90 2000

Standard - r
CSSL

Graphical Block Diagram

Paradigm of Modeling

Analog computation

x=f (X, t) General purpose modeling environments:

ODE, causal description
Special purpose modeling environments

Libraries of numeric subroutines and programming languages

Figure 2.1: Evolution of continuous-time modeling and simulation.

2.2 Evolution of continuous-time modeling and

simulation

Graphical block diagram modeling is widely used in control engineering (Kara-
yanakis 1995). Some examples of languages and environments supporting this
paradigm are Matlab/Simulink (Matlab 2007), MATRIX x /SystemBuild (Shah
et al. 1985) and ACSL Graphics Modeller (MGA Software 1996). Block diagram
modeling paradigm might be considered as a heritage of analog simulation (Astrém
et al. 1998).

On the other hand, object-oriented modeling languages and compilers sup-
porting the physical modeling paradigm have become available since the 1990’s
decade. This is driven by demands from users to be able to simulate complex
multi-domain models.

In order to put into their historical context these modelling paradigms, some
aspects of the evolution of continuous-time modeling and simulation are outlined

next.

2.2 Evolution of continuous-time modeling and simulation 13

2.2.1 Analog simulation

Analog techniques were predominant from 1920 to 1950 (see Figure 2.1). The
idea is to model a system in terms of ordinary differential equations (ODE) and
then make a physical device that obeys the equations. The physical system is
initialized with proper initial values and its development over time then mimics
the differential equation (Astrém et al. 1998).

First analog simulators were mechanical systems. The mechanical differential
analyzer developed by Vanevar Bush at MIT was the first general purpose tool to
simulate dynamical systems (Bush 1931). A major shift in technology occurred
in 1947, when it was demonstrated that simulation could be done electronically
(Ragazzini et al. 1947).

Variables were represented as voltages in the electronic simulators. The
differential equations were represented in terms of the fundamental operations:
addition, multiplication, integration and function generation. Since the analog
computer has limited range and resolution, the variables must be scaled (Jackson
1960). Several manual steps could be required to transform the model equations
into the ODE formulation (i.e., ‘é—f = f(t,x)). These formula manipulations,
which are tedious and error prone, include breaking the algebraic loops, for

instance by including small capacitors (l&strém et al. 1998).

2.2.2 The CSSL standard

The use of digital computers in simulation was explored since the advent of
computes in the early 1950’s. This development was triggered by Selfridge, which
showed how a digital computer can emulate a differential analyzer (Selfridge
1955). By 1967, there were more than 23 programs for model simulation.

The simulation paradigm adopted by these programs was the same used
in analog simulators, i.e., to describe the model in terms of ordinary differen-
tial equations (ODE), which were solved using numerical integration techniques.
ODE solvers are based on the idea of replacing the differential equations by

difference equations. Methods well known in the 1960’s include Euler method,

14

2 Object-Oriented Modeling and Interactive Simulation

Runge-Kutta methods and explicit multi-step methods. Important contributions
were given to stability of difference approximations (Dahlquist 1959, Henrichi
1962). The automatic step length adjustment was another important contribution
(Fehlberg 1964). However, ODE solvers well suited for stiff systems were not
available at that time.

The CSSL standard appeared at 1967 (Augustin et al. 1967). A system can
be described in CSSL language in three different ways: (1) as an interconnection
of blocks; (2) by mathematical expressions; and (3) by conventional programming
constructs as in FORTRAN.

CSSL defines a set of operators. For instance, INTEG emulates the integrator
of the analog computer, and IMPL allows breaking the algebraic loops. The user
can define new block types by means of a MACRO definition. Additionally, CSSL
contains sentences to select integration routines and their parameters, control the
simulation and document the results.

Software products based on the CSSL definition appeared. One example is
ACSL (Mitchell & Gauthier 1976), which was for a long time a “de facto” stan-
dard for simulation. Constructors for combining continuous/discrete modeling
were later added to ACSL. ACSL Graphics Modeller was introduced in 1993,

supporting the graphical block diagram modeling.

2.2.3 Graphical block diagram modeling

This modeling paradigm facilitates a hierarchical and modular description of the
model. The model is built from graphical blocks, which have input and output
ports. The connection among the blocks is performed by connecting these ports.

The analog computing paradigm with its requirement of explicit state models
(ODE) is a fundamental limitation of the block diagram modeling (Astrém et al.
1998). The blocks have a unidirectional data flow, from input to output. As a
consequence, it is cumbersome to build physics-based model libraries in the block
diagram languages.

Some tools supporting graphical block diagram modeling are Simulink (orig-

inally called Simulab) (Grace 1991), Scicos (Bunks et al. 1999, Chancelier et al.

2.2 Evolution of continuous-time modeling and simulation 15

resistor capacitor
il R

=

e Integrator _ _
v Y R=2 =1
Lt 2 c
% Signal 2 O

=
=
a
CVE
Signal Builder S 1 LS %
w0
Y
il Add
<l ’
KJ‘I L
2 b) c) ground

Figure 2.2: RC circuit model implemented using: a) Simulink; b) PSpice;
and c) Modelica/Dymola.

resistar inductar

10)aedea

% Signal 2

Signal Builder

o
|
<
N
[¢]
e
Ly
|afEyo st

a) b) c) ground

Figure 2.3: RLC circuit model implemented using: a) Simulink; b) PSpice;
and c) Modelica/Dymola.

2002) and SystemBuild (Shah et al. 1985). These tools are integrated in the
matrix environments Matlab (Matlab 2007), Scilab (Scilab 2007) and MATRIX x
(MATRIXx 2007), respectively.

Two models of electric circuits are used to illustrate how models are described
according to different modeling paradigms. The RC circuit shown in Figure 2.2a
has been implemented using Matlab/Simulink. In order to build this model, the

following steps were taken:

1. The equations for each element of the circuit were derived:

V = pulse(t) (2.1)
VR = iR (2.2)
dve .
— = 2.
C praiak’ (2.3)
V =vrp+vc (2.4)

2. The computational causality of the model was calculated, and the model

equations were manipulated. The variable on the left side is each equation is

16 2 Object-Oriented Modeling and Interactive Simulation

the variable to be calculated from the equation. The manipulated equations

are the following:

V = pulse(t) (2.5)
dve)
o C (26)
.V —-uwe
= 2-
=L (27)

3. These equations were transformed into the block description shown in Fig-

ure 2.2a.

Connecting in series an inductor, the circuit shown in Figure 2.3 is obtained.
The computational causality of the model needs to be re-calculated. The manip-

ulated model is the following:

V = pulse(t) (2.8)
dve)
= 2.9
a C (2:9)
di V—i1-R—vo
= - " 2.1
dt L (2.10)

The model described using Matlab/Simulink is shown in Figure 2.3a.

2.2.4 Modeling in specific domains

There are modeling environments that allow the user to compose models in spe-
cific domains. A model is assembled simply by connecting components from pre-

defined libraries. Some examples of specific domain simulators are the following;:

— PSpice (Nagel & Pederson 1973, Nagel 1975, Kielkowski 1998, OrCAD Inc.
1999) and VHDL-AMS (IEEE 1997) for electronic systems.

— ADAMS (Adams 2007) and SIMPACK (SIMPACK 2007) for mechanical

systems.

— gPROMS (Barton & Pantelides 1994) for energy and process systems.

2.2 Evolution of continuous-time modeling and simulation 17

The models of the RC and RCL circuits composed using PSpice are shown
in Figures 2.2b and 2.3b. The model description is very similar to the schematic

diagram of the circuit.

2.2.5 Physical modeling

The physical modeling paradigm is based on the modular modeling methodology.

Typically, the basic stages of the physical modeling are (Astrém et al. 1998):

1. Definition of the system structure and partition of the system into subsys-

tems.
2. Definition of the interaction among the subsystems.

3. Description of the internal behavior of each subsystem, independently of
each other, in terms of mass, energy and momentum balances and of ma-

terial equations.

The modeling knowledge is represented as differential, algebraic and discrete
equations that may change by being triggered by events (i.e., hybrid models).
A model is considered as a constraint between system variables (l&strém et al.
1998).

In order to perform the design of a dynamic system, we have to define the
structure of the system, identify its different parts and the interactions between
them. Then, the internal behavior of each part is defined indepently. A language
that supports object oriented modeling of hybrid dynamic systems require a
syntax suitable for the definition, parametrization, reuse, connection and instan-
tiation of classes. The syntax has to facilitate the information encapsulation.

The first languages supporting physical modeling appeared by the mid 1980’s
(Astr('jm et al. 1998). Among the first languages supporting the physical modeling
paradigm were Dymola (Elmqvist 1978) and Omola (Andersson 1989a,b, 1990,
1994). Other object-oriented modeling languages are ABACUSS II (ABACUSS
II 2007), ASCEND (Piela 1989), Smile (Kloas et al. 1995), gPROMS (Barton
& Pantelides 1994), MODE.LA (MODE.LA 2007, Stephanopoulos et al. 1990),

18

2 Object-Oriented Modeling and Interactive Simulation

ObjectMath (Fritzson et al. 1995), EcosimPro Language (Empresarios Agrupa-
dos 2007a,b,c) and Modelica (Modelica 2005, Modelica 2007). Among the first
publications concerning interactive simulation is (Korn 1989).

The common characteristics of these modeling languages are the object-oriented,
non-causal modeling methodology and the need for automatic symbolic formula
manipulation. Object-oriented modeling is based, among others, on three prin-
ciples: abstraction, encapsulation and modularity. Object-oriented modeling
languages support a declarative description of the model, based on equations (i.e.,
equation-oriented modeling) instead of assignment statements. The information
of what variable to solve for in each equation is not included in the model (i.e.,
non-causal modeling). This permits better reuse of models since equations do not
specify a certain data flow direction. Thus a model can adapt to more than one
data flow context. The software tools supporting these modeling languages im-
plement algorithms to automatically decide which equation to use for calculating
each unknown variable.

The symbolic manipulations that these software tools carry out on the model

can be classified into two types according to their purpose.

1. Manipulations intended to translate the object-oriented description of the
model into the so-called flat model (Fritzson et al. 2002, Fritzson 2004).
The flat model contains the complete set of model equations and functions,

with all the object-oriented structure removed.

2. Manipulations intended to transform the flat model into an efficiently solv-
able from. This second type of manipulations includes (Cellier 1991, Cellier

& Kofman 2006, Fritzson 2004):

— The efficient formulation of the complete-model equations, eliminating
the redundant variables and the trivial equations resulting from the

submodels connections (Elmqvist 1978, Bunus & Fritzson 2002).
— The sorting of the equations (Elmqvist 1978, Cellier & Kofman 2006).

— The symbolic manipulation of those equations in which the unknown

variable appears linearly.

2.8 Modelica language 19

— The reduction of the system index to zero or one (Brenan et al. 1996,

Mattsson & Soderlind 1992, Pantelides 1988).

The modeling environments need, for simulating hybrid models (i.e., a set of

synchronous differential, algebraic and discrete equations), the following:

1. A simulation algorithm appropriate for hybrid systems (for instance, the

Omola simulation algorithm is described in (Andersson 1994)).

2. An adequate treatment of the discrete events (Elmqvist et al. 1993): the
detection, the accurate determination of the trigger time (Cellier 1979,
Cellier et al. 1993, Elmqvist et al. 1993, 1994) and the re-start problem

solution.

3. Algorithms to carry out the symbolic manipulation of the linear systems of
simultaneous equations and to tear the nonlinear ones (Elmqvist & Otter

1994).

In addition, the modeling environment needs to include at least one DAE-
solver algorithm (Gear 1971, Brenan et al. 1996, Hairer et al. 1989), for instance,
DASSL (Brenan et al. 1996). The simulation efficiency is notably increased with

the use of inline integration algorithms (Elmqvist et al. 1995).

2.3 Modelicalanguage

Modelica is an object-oriented modeling language based on the physical mo-
deling paradigm (Modelica 2005, Modelica 2007). Modelica language has been
designed by the developers of the object oriented languages ALLAN (Jeandel et al.
1997), Dymola (Dynasim 2006), NMF (Sahlin et al. 1996), ObjectMath (Fritzson
et al. 1995), Omola (Andersson 1989a,b, 1990, 1994), SIDOPS+ (Breuneuse &
Broenink 1997), Smile (Kloas et al. 1995) and a number of modeling practitioners
in different domains. Modelica is intended to serve as a standard format so that

models arising in different domains can be exchanged between tools and users.

20

2 Object-Oriented Modeling and Interactive Simulation

Modelica supports multi-domain modeling and several formalisms, such as
ODE, DAE, bond graphs (Karnopp & Rosenberg 1968, Karnopp et al. 1990,
Thoma 1990, Cellier 1991), finite state automata, and Petri nets. In addition,
PDE support in Modelica is an open research field (Saldamli 2002, 2005, 2006).

A number of free and commercial component libraries in different domains
are available (Modelica 2007), including electrical (Clauss et al. 2000, Cellier &
Nebot 2005, Urquia et al. 2005, Martin et al. 2003) mechanical (Otter et al. 2003),
thermo-fluid (Eborn 1998, 2001, Tummescheit 2002, Elmqvist et al. 2003, Casella
& Leva 2003, 2006, Mattsson 1997), physical-chemical (Urquia & Dormido 2003),
bond graph (Cellier & Nebot 2005, Zimmer & Cellier 2006) and state machines
(Otter et al. 2005).

Some features of the Modelica language version 2.2 are described below (Mo-
delica 2007, Modelica 2005, Fritzson 2004, Fritzson & Engelson 1998). The
basic structuring element in Modelica is a class. There are seven restricted class
categories with specific keywords: type, connector, model, package, block, function

and record.

Partial classes. The class prefix partial is used to indicate that a class is incom-
plete and cannot be instantiated. Models are classes of type model or partial
model. Classes of type model describe a complete model, whereas those of
type partial model describe only certain model properties and cannot be

instantiated.

Package. Classes can be grouped in special classes, named package. Packages
contain only constant and classes declarations. The classes contained in the

package can be accessed using the dot notation.
Reuse. Modelica allows class reuse in the two following ways:

e Reusing the classes through composition. New values can be set to its
parameters. There is a type of class, named record, whose purpose is

to group a set of parameters.

e Reusing the classes through inheritance. When a class composed by

other classes is inherited it is possible, unless it is forbidden on purpose,

2.8 Modelica language 21

to modify the class and the value of the parameters of each submodel
composing the inherited class (redeclare sentence). The new class of
the submodel must be a subtype of the older one (class A is a subtype
of class B if class A includes all the public components of class B).

Modelica support multiple inheritance.

Replaceable classes. Additionally, the class of some submodels (replaceable
model) and/or connectors (replaceable connector) that compose a class can

be declared as parameters that can be redefined when the class is reused.

Information encapsulation. Modelica hides the information contained in the
section protected of a class when it is reused as a submodel. The rest of the
variables can be accessed using the dot notation. The variables contained
in the protected section of a class can be accessed from any other class that

extends this class.

Class interface. Interface variables can be flow (its sum is 0 at the connection
point) or non-flow (are equal at the connection point). These variables are
gathered in special classes named connector. Connector classes can’t contain
equations. Classes that describe models inherit their interface description.
The connection between two submodels is defined by applying the connect
function to a couple of classes of type connector. The computation causality
of the terminal variables can be set by using the prefixes input and output.
Modelica checks that the computational causality is the one set by using

these two prefixes.

Types. The basic predefined built-in types of Modelica are Real, Integer, Boolean,
String and the basic enumeration type. New types can be defined and
extended, with the restriction that type classes cannot include variables

and equations.

Blocks. A specific type of class named block is defined to describe block dia-
grams. The terminal variables of the block diagrams have a fixed compu-

tational causality.

22 2 Object-Oriented Modeling and Interactive Simulation

Regular structures. Set of equations, submodels and connections can be de-

fined using for loops.

Algorithms. Modelica allows to define in a class a sorted sequence of assigna-
tions by including them in a special section (algorithm). The algorithm
section can contain assignations of the type (variable) := (expression), for

and while structures.

Functions. There are special classes named function, that can include local and
global variables and an algorithm section. Local variables are defined inside
a protected section. Global variables can only be defined as computational
input or output (these are marked in the code by keywords input and
output). Class of type function can encapsulate calls to functions defined

in other languages.

Built- in operators. Built-in operators of Modelica have the same syntax as a
function call. However, the result of a built-in operator depends not only
on the input arguments but also on the status of the simulation. Some

Modelica built-in operators are the following:

— der(expr): performs the time derivative of the expression expr. The
expression expr need to be a subtype of Real and the expression and
all its sub-expressions must be differentiable. If expr is an array, the

operator is applied to all elements of the array.

— assert(condition, message): allows to show an error message when the

value of the boolean expression condition is false.
— pre(y): returns the “left limit” of variable y(t) at a time instant .

— reinit(x, expr): reinitializes the value of the state variable x with expr

at an event instant. It can only be applied in the body of a when-clause.

— initial(): returns true during the initialization phase and false other-

wise.
— terminal(): returns true at the end of a successful analysis.

— terminate(message): successfully terminates the current analysis.

2.8 Modelica language 23

— sample(start,interval): returns true and triggers time events at time
instants start + ¢ * interval, where ¢ = 0,1,.... During continuous

integration the operator returns always false.

Variable structure and discrete events. Modelica provides the if-then—else

structure to describe variable structure models.

The instantaneous equations are modeled using the when structure. The
expression of a when clause shall be a discrete-time Boolean scalar or vector
expression. The equations and algorithm statements within a when clause
are activated when the scalar or any one of the elements of the vector

expression becomes true.

Inner and outer prefixes. An element declared with the prefix outer refer-
ences an element instance with the same name and the prefix inner. There
shall exist at least one corresponding inner element declaration for an outer

element reference.

Initialization. The model initialization takes place just before the simulation
starts. The wnitial algorithm and initial equation sections are executed
during the initialization phase. The initial algorithm section can include
any kind of equation except when-statements. The initial equation section
can include any kind of equation except when-equations. The equations
inside a when are included in the initialization equation system only if they
are explicitly enable with the initial() operator. Additionally, it is possible

to specify the initial value of a variable through its start attribute.

Selection of the state variables. Modelica supports the user’s control on the
state variables selection, via the stateSelect attribute of Real variables (Otter
& Olsson 2002). This attribute values include “never” (the variable will
never be selected as state variable) and “always” (the variable will always

be used as a state).

Annotations. Annotations are intended for storing extra information about a

model, such as the model icon representation, the structure of composed

24

2 Object-Oriented Modeling and Interactive Simulation

models and connection between submodels, documentation or versioning,

etc.

2.4 Modelica simulation environments

OpenModelica (OpenModelica 2007, Fritzson et al. 2002, 2006), Dymola (Dynasim
2006) and MathModelica System Designer (MathModelica 2007) are three mode-
ling and simulation environments that support the Modelica language. Open-
Modelica environment is free, and it can be used (from version 1.4.2) together
with the graphical editor MathModelica Lite. On the other hand, Dymola and
MathModelica System Designer are commercial environments.

The simulation environment used in this dissertation is Dymola. Dymola
translates the Modelica description of the model into an executable, Dymosim,
which performs the simulation (Dynasim 2006). Dymosim is a stand-alone pro-
gram without any graphical user interface which reads the experiment description
from an input file, performs one simulation run, stores the results in Matlab binary
format on file, and terminates. Dymosim can be called either from the Dymola’s
graphic user interface or directly by the user.

Dymola provides, since version 5.0, an interface to Matlab/Simulink for ver-
sions above Matlab 5.3 / Simulink 3. Dymola interface to Simulink can be
found in Simulink’s library browser: DymolaBlock block (Dynasim 2006). This
block is an interface to the C-code generated by Dymola for the Modelica code.
DymolaBlock can be connected to other Simulink blocks, and also to other Dymo-
laBlock blocks, in the Simulink’s workspace window. Simulink synchronizes the
numerical solution of the complete model, performing the numerical integration
of the DymolaBlock blocks together with the other blocks.

In order to make the Modelica model useful as a DymolaBlock block, the
computational causality of the Modelica model interface needs to be explicitly set
(Dynasim 2006). The input variables are supposed to be calculated from other
Simulink blocks, while the output variables are calculated from the Modelica

model.

2.5 JARA library 25

2.5 JARA library

JARA is a library of dynamic hybrid models of some fundamental physical-
chemical principles (Urquia 2000, Urquia & Dormido 2003). The main appli-
cation of JARA is the modeling of physical-chemical processes in the context
of automatic control. The modeling hypotheses and architecture of JARA are
discussed in this section.

JARA was originally written in the “old” Dymola language (Elmqvist et al.
1996). Later on, as a part of this dissertation work (it will be discussed in
Chapter 4), the library was translated into Modelica language and adapted for
interactive simulation. This new version of the library, called JARA 2i, has been
used to compose three of the virtual-labs discussed through this dissertation:
control of a chemical reactor, control of an industrial boiler and dynamic be-
havior of a heat-exchanger. JARA 2i Modelica library can be downloaded from

http://www.euclides.dia.uned.es

2.5.1 Fundamental modeling hypotheses of JARA

The usual way of enunciating the mass, energy and momentum balances is by
means of the definition of a control volume (CV) (Bird et al. 1975, Incropera
& DeWitt 1996, Himmelblau & Bischoff 1992). The properties of the medium
inside the control volume are considered time-dependent, but independent of the
spatial coordinates. The only exception to this rule is the pressure inside the
liquids. The control volumes exchange mass and energy with their environment
through certain control planes (CPs). The JARA control volumes and the control
planes are considered macroscopic and fixed in the space. All the interactions
among control volumes, and all the interactions of a control volume with itself
(i.e., chemical reactions inside the control volume), are considered transport phe-
nomena in JARA. This system decomposition into control volumes and transport

phenomena suggests that:

26

2 Object-Oriented Modeling and Interactive Simulation

1. The control-volume models should contain the equations describing the
properties of the medium inside the control volume, as a function of the

mass and energy transport through its control planes.

2. The transport-phenomena models should contain equations describing the
flow of mass, energy and momentum through the control planes, as a

function of the medium properties at these control planes.
Three types of control volumes have been modeled in JARA:
1. Control volume containing a homogeneous solid.

2. Control volume containing an ideal mixture of an arbitrary number of semi-

perfect gases.

3. Control volumes containing an ideal, homogeneous liquid mixture, com-

posed of an arbitrary number of components.

The control volumes containing liquid or gaseous mixtures are considered open
systems (i.e., they can exchange mass and heat with their environment), and
chemical reactions can take place inside them. In both cases, the volume of the
control volume is considered a time-dependent property. The control volume
containing a solid is considered a closed system (i.e., it only exchanges energy,
not mass, with its environment). The only modeled characteristic in solids is the
heat conduction (for modeling the walls of reactors, pipes, etc.).

Two kinds of control planes are distinguished in JARA: mass-flow and heat-
flow control planes. An arbitrary number of flows can flow through each control
plane. The hypotheses made about the properties of the medium inside the

control volume determine the nature and number of the control planes:

1. A solid control volume contains only one heat-flow control plane with the
following considerations: (i) the solid properties are spatially homogeneous,
so that all control planes are equivalent; and (ii) the solid control volume

is a closed system, so it has no mass-flow control planes.

2.5 JARA library 27

2. A gaseous control volume contains one heat-flow control plane and one
mass-flow control plane: all the gaseous mixture properties are spatially

homogeneous.

3. A liquid control volume has two mass-flow control planes and one heat-
flow control plane: (i) as the liquid properties related with the heat-flow
are spatially homogeneous, all the heat flow control-planes are equivalent;
(ii) as the liquid pressure depends on the position, the simplest and most
general control-plane selection is placing a control plane at the control-
volume bottom and the other at the control-volume top. Any arbitrarily
complex configuration can be modeled by decomposition into this kind of

control volume (Urquia 2000).

The JARA models of transport phenomena can be divided into two main
groups: (1) mass transport due to pressure or concentration gradients, gravita-
tional acceleration, chemical reactions, liquid-vapor phase changes, etc.; and (2)
heat transport due to temperature gradients. The interface variables are grouped
into connectors according to this criterion, so that they describe the transport of
mass and heat independently.

A hypothesis related to the stirred-mixture approximation is to assume that
the fluid going out from a control volume has the same properties that the fluid
contained in it. In JARA, this approximation is applied to the calculus of: (1)
the temperature and the composition of the fluid leaving a control volume by
convection; and (2) the temperature of each mixture component leaving the
control volume by diffusion. All the JARA models of transport phenomena make
the flow direction reversible during the simulation run. As a consequence, the
properties of the flow established between two control planes are calculated from
the appropriate control plane at any time.

An important property associated to the transport phenomena is the trans-
port delay. There are different ways of modeling delays in one-dimensional
geometry systems (EPRI 1984). The way used in JARA is the “energy bal-

ance method” (Incropera & DeWitt 1996). It consists in dividing the flow path

28

2 Object-Oriented Modeling and Interactive Simulation

into multiple control volumes. Adjacent control-volumes are connected by the
transport-phenomena models describing the heat and mass transport between
them. As the number of control volumes increases, the solution gets closer to a

transport delay (EPRI 1984).

2.5.2 JARA architecture

The JARA library has been organized in order to facilitate their use and mainte-
nance. The modeling details and the library design rules can be found in (Urquia
2000, Urquia & Dormido 2003). The package hierarchy is shown in Figure 2.4a.

JARA is composed of seven packages (see Figures 2.4b — 2.4h):

— The connectors are defined in the JARA.cuts package (see Figure 2.4b),

and the model interfaces in JARA.interf package (see Figure 2.4c).

— The JARA.gas package (see Figure 2.4g) gathers models of control volumes
containing gaseous mixtures, of gas transport (i.e., gas-flow by convection
and diffusion, valves, pumps, etc.) and boundary conditions (i.e., gas-flow

and pressure sources).

— Similarly, JARA.lig package (see Figure 2.4e) contains the equivalent mod-
els for liquid mixtures. The mixtures of liquids and gases are considered

ideal and they can be composed of an arbitrary number of components.

— The models related with the heat transport are collected in the JARA.heat
package (see Figure 2.4d): models of control volumes containing solids, ther-

mal resistances and boundary conditions (heat and temperature sources).

— The JARA.phase package (see Figure 2.4f) contains models of vapor-liquid

phase-change: boiling and condensation.

— The models of chemical reactions are in JARA.chReac package (see Figure

2.4h).

FPackages

Ié| JARA cutlGash outEasC
CaseStudies
chReac

cutzB

cutHeatFR cutHeathC

e O O s O e O e O = O e OO
e e e N Ea
[I=}
o
=

Bl JE >

cutliquidm

> 00

cutHeatFC

cutLiguidC cutHeatMR

cutE mitker cutReceiver

a) b) cutvolConstivessel cubvolConstilig cutvolConstrGas
X X
» o] o ka A e P Ej:j p Ej:] o -AAr
gasTl gasw1l gasFlowll gasFlow2| solidB s0lidCB solidCER tesistT hemB
Y] L] ¥
& L)
gasFlow2gl liquid1l liquid2! liquidi/2| resistT hermFE RithConsth RthExpTE Fith&bsTE
L' ird
2 2 ka I AN o . E g]
=
C) ligFlowl ligFlovs2! ligFlov2gl heteroFlowel d) convecSiederTateB sourceTermpB sourceHeatFB
1 % % H
vesselLigh liquidCpEE liquidCpEPrefB liquidCpEPrefyB junctLigCpEFeflf convecLigFlowB pumpLigE
Y] Y3 ¥ v s v
D{ }d D{ }“ D{ }ﬂ D{ }“ D{ }ﬂ D{ }“ 3
ciFe ...]
pumphd azsLigB pumptfolLigB pumpholLigl pressEqlLige pipeDyrLigE circSmoothPipeDy.. pipeStatLigB vapPressB phaseChaB
Y] z =
WX g g g g m (=
Cif .. in n
o o T T = e
e) circSmoothPipeSta.. sourceligfB sowceMassLigFB sourceMalligFE sowrceVolligFE sourcePressLigB f) boilingE condensB

H &8 & =

o fof e fed

vesselGasB semiPerfGasCpEB semiPerfGasCpEvE convecGasFlowd

pumpGasB pumphalGasB pumpValGasE pumpMassGasB

ikl

=

:]

n -9- b-.-

m

pipelynG asB

9)

pressEqGasE diffSemiPerfGasBin.. sourceGasFB

sourceMolGasFE sourceVolGasFB sourceMassGasFB sourcePressGash

h)

chReachasb

chReacLigh

Figure 2.4: a) JARA packages; b) JARA.cuts package; c) JARA.interf
package; d) JARA.heat package; e) JARA.liq package; f) JARA.phase
package; g) JARA .gas package; h) JARA.chReac package.

30 2 Object-Oriented Modeling and Interactive Simulation

Packages
= JaFA
CazeStudies
= batchR eactar
£ Eiz
= Physicalt odel
batchReacligitaP
B chReacitoP
|:| sourceLigCntl
{®] sourceliTemp
e themalR esist _/\/\[> .
] Spzquake
4 Buailer
] doublePipeHealE xchanger
H chReac
o cutsE IBAL ——p prod
= gas
+ heat
H interf c nt rl
+ lig
a) 4 phaze b)

Figure 2.5: a) JARA 2i packages; and b) Modelica diagram of the batch
reactor model.

2.5.3 Model of a chemical reactor

The batch reactor model developed by (Urquia 2000), which is based on the
mathematical model described in (Froment & Bischoff 1979), has been translated
into Modelica language and included in the JARA 2i library (see batchReac-
tor. PhysicalModel package in Figure 2.5a).

In a batch reactor having a volume V', an exothermic reaction A — P is
carried out in the liquid phase. The reaction velocity is r4 = kCj, where k
depends on the temperature in the following form: k = kg1 exp(—k—%Q), expressed
in units of second to minus one. The reactor contains a heat exchanger with a

surface A and it can be operated in the following two ways:

1. Using steam with a heat transfer coefficient hps; at a Ty temperature as

heating system.

2. Using cooling water with a heat transfer coefficient hr,, at a T,, temperature

as refrigerator.

2.5 JARA library 31

Package Browser

Packages
=] JARA

=[] CaseStudies
batchReactor
=[] Bailer
Ejz

=[] Physicaltodel
|:| heatSourCntrl
ﬂ prezs0lownStream

|:| zourceligCntrl
zheamPowerB oiler

-E walve
|i| waterBoil

Sysquake
VirtualLab QE

doublePipeH eatE changer

chReac

cutsB

gas cntrl

heat

EaR e

]

B

interf

i cntrl
phaze b)

Figure 2.6: a) JARA 2i packages; and b) Modelica diagram of the boiler
model.

E-#

The Modelica diagram of the chemical reactor model is shown in Figure 2.5b.
The model is composed of a CV containing the liquid stored in the reactor, a
TP modeling the reaction inside the reactor, a pump model and the model of the
heat exchanger. The heat exchanger model is composed of a temperature source

and a resistor.

2.5.4 Model of an industrial boiler

The mathematical model of the boiler is found in (Ramirez 1989), and the object-
oriented model written in the “old” Dymola language in (Urquia 2000). It has
been re-written using JARA 2i components and it has been included in the JARA
2i library (see Boiler.PhysicalModel package in Figure 2.6a).

The input of liquid water is placed at the boiler bottom, and the vapor
output valve is placed at the top. The output valve has the following constitutive

equation: F™ = (F°) x/(p(p — po)), where pg is the valve output pressure. The

32

2 Object-Oriented Modeling and Interactive Simulation

water contained in the boiler is continually heated. The diagram of the boiler

model is shown in Figure 2.6b. Two control volumes are considered:
1. A control volume containing the liquid water stored in the boiler.
2. A gaseous control volume containing the vapor.

The vapor volume is equal to the difference between the boiler-recipient inner
volume and the water volume. The boiling is a transport phenomena represented
by a model connecting both control volumes. The heat-flow into the boiler, the
pressure at the valve output and the water pump are modeled using JARA source

models.

2.5.5 Model of a double-pipe heat exchanger

The model of the heat exchanger described in (Cutlip & Shacham 1999, Urquia
2000) has been re-written using JARA 2i components and it has been included
in the JARA 2i library (see doublePipeHeatExchanger.PhysicalModel package in
Figure 2.7a). The model diagram is shown in Figure 2.7b.

A mixture of carbon dioxide and sulfur dioxide is cooled by water in a double-
pipe heat exchanger (Cutlip & Shacham 1999, Urquia 2000) of length L. The
thermic dynamics of the gas mixture, the water and the wall of the inner pipe
are considered in the model. The following heat flows have been modeled: the
convective heat flow between the gas mixture and the inner wall of the inner pipe,
the convective heat flow between the wall of the inner pipe and the water and,
finally, the conduction heat flow along the wall of the inner pipe.

The heat exchanger has been divided into NV = 10 elements to study the
dependence of the temperature on the axial coordinate. The length of the
elements located at the pipe end, m, is the half of the length of the inner
elements. It is assumed that the gas mixture contained in the elements has
a uniform temperature. The same assumption has been made related to the
temperature of the water and the wall of the inner pipe.

The gas and liquid flow is modeled by pumps that make to flow the established

quantity of matter per unit time between the elements. Two modes of operation

2.6 Virtual-labs for control engineering education 33

Packages

= JERA
= CazeStudies

* batchR eactor

= Bailer F‘
e Eiz
B2 Phyzicaltiodel
B2 Syzquake
+ WirualLab

doubleFipeH eatE schanger
+ Ejz
= Physicaltdodel

DoublePipeH ealE xchanger
[massSourceCrirl

D malSourceChtrl
D purnp-hitr
D purnpkdalChtrl
2 Syzquake
+ YitualLab
* chReac
* cutsB
E gas

2 hieat

2 interf

g

a) E phaze b)

Figure 2.7: a) JARA 2i packages; and b) Modelica diagram of the heat-
exchanger model.

are allowed: cocurrent or parallel low and countercurrent flow. The convective
heat transfer on both the tube and shell sides are calculated from the Dittus-
Boelter correlation (Cutlip & Shacham 1999). The center heat exchanger tube
is made of copper with a constant thermal conductivity, and the exterior of the

steel pipe shell is supposed to be very well insulated.

2.6 Virtual-labs for control engineering education

A virtual-lab is a distributed environment of simulation and animation tools,
aimed to perform the interactive simulation of a mathematical model. Two types

of interactivity can be distinguished:

— Runtime interactivity. The user is allowed to perform actions on the model
during the simulation run. He can change the value of the model inputs,

parameters and state variables, immediately perceiving how these changes

2 Object-Oriented Modeling and Interactive Simulation

affect the model behavior. An arbitrary number of actions can be made on

the model along a simulation run.

— Batch interactivity. The user’s action triggers the start of the simulation,
which is run to completion. During the simulation run, the user is not
allowed to interact with the model. Once the simulation run is finished, the

results are displayed and a new user’s action on the model is allowed.

Virtual-labs provide a flexible and user-friendly way to define the experiments
to be performed on the model (Jimoyiannis & Komis 2001). In particular,
interactive virtual-labs are effective educational resources, well suited for web-
based and distance education (Dormido 2004). Due to the special features of the
automatic control discipline, control education can be strongly benefited by the
use of interactive tools (Navaratna et al. 2001). Some relevant virtual-labs for
control education can be found in (Bodson 2003, Munioz-Gémez et al. 2003, Diaz
et al. 2005, Guzman et al. 2005, Erenturk 2005, Ugalde-Loo 2005, Mazaeda et al.
2006).

Automatic control is a multi-faceted field. A good control engineer should

master a wide range of topics (Johansson et al. 1998, Wittenmark et al. 1998):

— To have a good understanding of dynamical systems and to know how to

describe them.

— To know how different representations of a system (i.e., equations, time

responses, frequency responses) are related.

— To master control concepts such as feedback, stability, controllability, ob-

servability and to develop an intuition about them.

— To know the interplay between process design and control design. The
process design influences strongly the control design. A good process design

may avoid processes intrinsically difficult to control.

This wide range of topics makes control education a difficult task. Virtual-

labs could be a perfect complement to the traditional labs and lectures. They can

2.6 Virtual-labs for control engineering education 35

12 cm+

v, reference (cm)
y2, reference (crn

10 cm+

8cm+

6 cm

4 cm 3
= CParameters

Kp1=03,60 Kp2=08,50
2 cm

Ti1=0,80 Ti2=7,70

Farce (M)

Td1=0,10 Td2=0,10

i

TT1=08,0 TT2=77,0
—»
® automatic) manual [¥l C-Param. ¥ Characl|N1=10.0 N2=10,0
[v] Upper magnet [v] LowerMagnet = T : ! L L
pause play [|E1=1.10 B2=1.00 2 4 & 510 12
Is] yref ["] change m B e Magnet separation {cm)
efi=2, ef2=-2,
[l Polarity m#2 [Polarity m#1 Reset [c=26800,00 [o=a2 |

Figure 2.8: View of the magnetic levitator virtual-lab.

be considered half-way between regular labs and lectures. The main idea is to
have on the computer screen a multiple-view representation of a given dynamic
system, and some of its attributes. These views can then be manipulated directly
while keeping the coherence of the representation (Dormido 2004).

Virtual-labs can be used to explain basic concepts, to provide new perspectives
of a problem, and to illustrate analysis and design topics. An example of a
virtual-lab for control education implemented using Ejs (EJS 2007) is shown in
Figure 2.8 (Dormido et al. 2004). This virtual-lab illustrates the behavior of a
magnetic levitation system. The virtual-lab graphic interface shows the physical
system as realistically as possible. Additionally, it shows diagrams and plots of
some relevant variables. It is possible, by manipulating the graphic interface,
to change the magnets position, the system configuration, the control strategy
(manual o decentralized PID) and the parameters of the two PID controllers.

Several software packages for the interactive learning of automatic control
have been developed (Dormido et al. 2002, Sanchez et al. 2002). Two of them
are ICTools and CCSDemo, from the Automatic Control Department of the

Lund Institute of Technology (Johansson et al. 1998, Wittenmark et al. 1998).

36 2 Object-Oriented Modeling and Interactive Simulation
Control Station (Cooper & Fina 1999, Cooper & Dougherty 2000, Cooper et al.

2003), developed at the Department of Chemical Engineering of the University

of Connecticut, constitutes another good example.

2.7 Interactive simulation tools

The main goal of the interactive simulation tools is to facilitate the virtual-
lab implementation, allowing the lab developer to focus on the concepts to be
illustrated by the virtual-lab, rather than on programming tasks. Next, some
relevant features of the four following interactive simulation tools are discussed:

LabVIEW, Sysquake, Ejs and OOCSMP.

2.7.1 LabVIEW

LabVIEW (Laboratory Virtual Instrumentation Engineering) from National In-
struments is a graphical development environment for creating flexible and scal-
able design, control, and test applications (LabVIEW 2007). The LabVIEW
graphical language, named G, is a dataflow language and cannot be re-interpreted
into a text based language. Currently, there is no alternative program that can
implement any portion of G code. G language, since version 8.2, has object
oriented features.

LabVIEW programs are called virtual instruments (VIs). Each VI has three
components: a block diagram, a front panel and a connector panel. Many
libraries with functions for data acquisition, signal generation, mathematics,
statistics, signal conditioning, analysis and numerous graphical interface elements
are provided in several LabVIEW package options.

LabVIEW can be used to build virtual-labs. Examples can be found in (Kostic

2000, Laterburg 2001)

2.7 Interactive simulation tools 37

2.7.2 Sysquake

Sysquake is a commercial tool developed at the Federal Institute of Technology in
Lausanne (EPFL) by Yves Piguet (Sysquake 2004, Piguet et al. 1999). Sysquake
is a Matlab-like program that has strong support for interactive graphics. It is
based on LME, an interpreter specialized for numerical computation. LME is
widely compatible with the language of MATLAB(R) 4.x and it includes many
features of MATLAB 5 to 7. It implements graphic functions specific to dynamic
systems (such as step responses and frequency responses) and general purpose
functions used for displaying any kind of data. LME provides the following

capacities for modeling systems:

— lti library. This library provides methods to create, combine and analyze
time-invariant dynamical systems (LTI systems). The LTI system can be
defined in three different ways: as a state space model, as a matrix or as a

transfer function.

— ODFE solvers. Sysquake contains the following two ODE solvers: ode23
and ode45. Both ODE solvers are based on a Runge-Kutta algorithm with

adaptative time step.

A Sysquake application typically contains several interactive graphical ob-
jects, which are displayed simultaneously. Additionally, it can include docu-
mentation in form of HTML pages. The graphics contain elements that can be
manipulated using the mouse. While one of these elements is being manipulated,
the other graphics are automatically updated to reflect this change. The content
represented by each graphic, and its dependence with respect to the content of
the other graphics, is programmed using LME.

The main goal of Sysquake is the interactive manipulation of graphics. The
user can define functions, called handlers, intended to perform different tasks
managed by Sysquake. These tasks include the model initialization, manipulation

of figures and selection of menus.

38

2 Object-Oriented Modeling and Interactive Simulation

As input and output, the handlers use variables as well as values directly
managed by Sysquake, such as the position of the mouse. Therefore, only the
code necessary for displaying the figures and processing manipulations from the
user is required. This results in small scripts, developed quickly and easy to
maintain.

LME can be extended by libraries, composed of related functions written in
LME;, or by extensions developed with standard compilers.

There are several interactive tools developed with Sysquake (Dimmler &
Piguet 2000, Dormido et al. 2002, Diaz et al. 2005, Guzman et al. 2005, Longchamp
2006, Piguet & Longchamp 2006, Guzman et al. 2006). Some applications built

by Sysquake users can be downloaded from (Sysquake 2007).

2.7.3 Easy Java Simulations

Easy Java Simulations (Ejs) is an open source, Java-based software tool intended
to implement virtual-labs (EJS 2007, Esquembre 2004). Ejs has been designed to
be used by students, under the supervision of educators with a low programming
level (Martin et al. 2005d). As a consequence, simplicity was a requirement.

Ejs is based on an original simplification of the “model-view-control” para-

digm, structuring the virtual lab in three parts: introduction, model and view.

— Ejs supports including an introductory part, composed of HTML pages, in
the virtual lab. This introduction is intended to provide information about
the simulation and instructions explaining how to use the virtual lab. This

feature is important for pedagogical reasons.
— The model is the mathematical model describing the system behavior.

— The view is the user-to-model interface. It is intended to provide a visual
representation of the model dynamic behavior and to facilitate the user’s

interactive actions on the model.

The graphical properties of the view elements are linked to the model variables,

producing a bidirectional flow of information between the view and the model.

2.7 Interactive simulation tools 39

Any change of a model variable value is automatically displayed by the view.
Reciprocally, any user interaction with the view automatically modifies the value
of the corresponding model variable.

Ejs guides the user during the model definition process, and it includes a
set of ready-to-use visual elements intended to facilitate the virtual-lab view
implementation. Ejs automatically performs all the tasks required to generate
the virtual lab (i.e., generates the Java source code of the virtual-lab program,
compiles the program and packs the resulting object files into a compressed file),
which can be run as a stand-alone Java application or as an applet within an
HTML page. The user then can readily run the virtual-lab and/or publish it on
the Internet.

Ejs includes ODE solvers and algorithms for event detection. Ejs version
3.3 (release 2004) provides a Ejs to Matlab/Simulink interface (Sanchez et al.
2005a,b). Therefore, Ejs 3.3 supports the option of describing and simulating the
model using Matlab/Simulink: (1) Matlab code and calls to any Matlab function
can be used at any point in the Ejs model; and (2) the Ejs model can be partially
or completely developed using Simulink block diagrams.

A description of how to use Ejs with Matlab and Simulink can be found
in (EJS 2007). In this case, the data exchange between the virtual-lab view
(composed using Ejs) and the model (Simulink block diagram) is accomplished
through the Matlab workspace. The properties of the Ejs’ view elements are
linked to variables of the Matlab workspace, which can be written and read from

the Simulink block diagram.

2.7.4 Object-Oriented Continuous Modeling Program

Object-Oriented Continuous Modeling Program (OOCSMP) is a continuous si-
mulation language conceived in 1997 as an object-oriented extension to the stan-
dard CSMP (Lara & Alfonseca 2003). OOCSMP language is causal and can
handle discrete events. A beta version of the compiler and the libraries for Java
can be freely downloaded (OOCSMP 2007). C-OOL is the compiler for OOCSMP

and it is able to generate three different object languages from the OOCSMP

40

2.8

2 Object-Oriented Modeling and Interactive Simulation

models: plain C++, C++4/Amulet and Java. C-OOL automatically generates a
user interface that allows the user to control the simulation execution and change

the value of object parameters, global variables and simulation parameters.

Interactive simulation using Modelica

Some efforts have been carried out by other authors in order to provide Modelica
with visualization and interactive simulation capabilities. MODIC (Modelica
Interactive Control Interface) has been developed for this purpose (Engelson
2000). MODIC allows the user to input and output values via a graphical user
interface (Tcl-Tk based) during the simulation. The interface for input values
allows the user to change the value of input variables during simulation. From the
Modelica side, the communication is performed by using external function calls.
These external functions create or modify graphical windows, output values to

these windows, or read the value of the input variable currently set by the user.

2.9 Conclusions

The background for this dissertation has been examined in this chapter. An
overview of continuous-time modeling and simulation in the context of automatic
control has been presented. Some features of object-oriented modeling languages
have been discussed, with special emphasis in the Modelica language. In relation
to interactive simulation, the concept of virtual-lab and its role in control edu-
cation has been described. Finally, the capabilities of four interactive simulation

tools (i.e., LabVIEW, Sysquake, Ejs and OOCSMP) have been discussed.

3.1

Batch Interactive Simulation,
by Combining the Use of Sysquake

and Modelica/Dymola

Introduction

A novel approach to the implementation of virtual-labs supporting batch in-
teractivity is proposed and it is illustrated by means of four case studies. The
virtual-lab models have been programmed using Modelica language and translated
using Dymola. The virtual-lab views (i.e., the user-to-model interfaces) have been
implemented using Sysquake.

This approach allows taking advantage of the best features of each tool. Mo-
delica capability for physical modeling, Dymola capability for simulating hybrid-

DAE models, and Sysquake capability for:

— Building interactive user interfaces composed of graphical elements (i.e.,
sliders, menus, Nichols diagrams, time and frequency plots, etc.), whose

properties can be linked to the model variables.
— Synthesizing control systems and analyzing linear time-invariant systems.

In order to implement this approach, a Sysquake to Dymosim interface has
been programmed. It consists in a set of functions in LME language which can
be called from the Sysquake applications. These functions can be downloaded

from http://www.euclides.dia.uned.es

42 3 Batch Interactive Simulation, by Combining the Use of Sysquake and Modelica/Dymola

[p, x0, pN, xON, In, On] = getInfo setExperiment(...) setValues(...)

!

dsin.txt dsinl.txt

linearize(..) ——(dymosim.exe)«—— dymosim(...)

dslin.txt dsres.txt

| |

[A, B, C, D, xN, uN, yN] = tloadlin(‘dslin.txt") [N, s] = tload(“dsres.txt")

Figure 3.1: Sysquake-Dymosim interface functions.

3.2 Sysquake to Dymosim interface

A Sysquake to Dymosim interface has been implemented. Dymosim (Dynamic
model simulator) is the executable generated by Dymola in order to simulate
the model, and then used to perform simulations and initial value computations.
It contains the code necessary for continuous simulating and event handling.
The above mentioned interface consists of a set of functions written in LME,
which are gathered in a library named sysquakeDymosimInterface. These func-
tions synchronize the execution of the dymosim.exe file and the Sysquake appli-
cation. They perform the following tasks (see Figure 3.1, and Appendix A for

further details):

— setBExperiment and setValues functions write the experiment description to

a text file. This text file can be used as input file for Dymosim.

— dymosim and linearize functions execute the dymosim.eze file in order to

simulate and linearize the Modelica model, respectively.

— tload and tloadlin functions perform the following two operations. Firstly,
reading the output file generated by dymosim.eze after a model simulation
or linearization, respectively. Finally, saving these results to the Sysquake

workspace, which then can be used by Sysquake applications.

8.8 Case study I: hysteresis-based controller 43

3.3 Case study . hysteresis-based controller

The control loop shown in Figure 3.2 is considered. The constitutive relation
of the hysteresis-based controller is shown in Figure 3.3. The setpoint is the
composition of two signals: a piecewise linear function and a sine function.

The model of the control loop has been programmed using Modelica language
and translated using Dymola. The execution of the dymosim.eze file generated
by Dymola is controlled by the Sysquake application. The view of the virtual-lab

is shown in Figure 3.4:

— The virtual-lab documentation (a set of HTML pages, see Figure 3.5) can

be displayed by pressing the “info” icon.

— The transfer function of the plant can be inserted by writing its numerator
and denominator in a dialog window. This window is displayed by clicking

on the “System” item of the “Settings” menu.

— A new simulation run can be started by clicking on the “Run” item, which

is placed on the “Settings” menu.

The virtual-lab view is composed of four graphics (see Figure 3.4). Three of

them are interactive:

— “Constitutive relation” plot: the position of the {a,b,c,d, e, f} points of the

controller constitutive relation can be changed by dragging the mouse.

— “Roots” plot: the plant’s zeros and poles can be changed by clicking on the

circles and crosses and by dragging the mouse.

— “Reference” plot: the shape of the piecewise linear function, and the ampli-
tude and frequency of the sine function, can be modified by clicking on the

lines and circles that appear in the graphic, and by dragging the mouse.

u SISO plant

r e u . y
—>O—> x=Ax+Bu >

- y=Cx

+
o,

Figure 3.2: Control loop.

[E] Fle Settings Piots Edt Figure Layout View Window Help

=|@|d| o] bBE] o] [EA[0]E

ontrolLoop.q - Untitled

6 info

Constituve Relation SystemTransient
10
— System nput
5 — System output
—Reference
0l
0]
-5
-3 ¢l 5 o] 10 20
Eoots Reference
10]
s ——
qf x
0]
-5
-3 (¢l & o] 10 z0

Figure 3.4: View of the control loop virtual-lab.

8.4 Case study II: control of a chemical reactor 45

archiva Edicién Ver Favoritos Herramientas Ayuds o
\ Al @ <3 o) B] 2
> > \ﬂ Iﬁ () Bisqueds 7 Favortos) - W -3
Direccidn] http: e, ucides.dia, uned.es{SysquakeDymosiminkerface/HysteresisCantroller] i"' Ed I Links > @~
Google (G- Mlre®® @ @ B« € Marcadores» & 153 bloqueados | P Corrector ortogréfico + [a Enviar av () Canfiguracién=

Case Study I: Hysteresis - Based Controller

Author
Carla Martin-Villalba
Departamento de Informética y Automética, TNED
Juan del Eosal 16, 28040 Madnd, Spain

<< Back to Svzquake-Dymeosim Interface

The interactive simulation of the control loop showen in Figure 1 15 implemented by combining the use of Sysquake and Modelica/Dymeola. The constinative
relation of the hysteresis-based controller in shown in FigureZ2, The setpoint is the composition of two signals: a piecewise linear function and a sme function
The meodel of the control loop has been programmed using Modelica language and translated using Dymola. The execution of the dymosin.exe file
generated by Dymola iz controlled by the Syscuake application (1 e, the wirtual-lab view) using syseuakeDymosimInterface finctions

SISO plant i
x=Ax+Bu
¥=0Cx
&] Listo ‘ . & Internet .

Figure 3.5: Documentation of the control loop virtual-lab.

3.4 Case study ll: contfrol of a chemical reactor

The model of a batch chemical reactor has been composed using JARA 2i Mo-
delica library. The diagram of the reactor model is shown in Figure 3.6a. An
exothermic reaction A — P is carried out in the liquid phase. The reactor
contains a heat exchanger, which can be operated with steam and with cooling
water. The plant model was described in Section 2.5.3.

The diagram of the Modelica model describing the closed-loop system is shown
in Figure 3.6b. It has been used the PID controller model included in the standard
Modelica library (Modelica 2007), which has been designed according to the model
described in (Astr('jm & Hagglund 1995). This model has limited output, anti-

windup compensation and setpoint weightings. It has the following parameters:

K, Proportional gain.

=

Integral time constant.

Ty Derivative time constant.

46 3 Batch Interactive Simulation, by Combining the Use of Sysquake and Modelica/Dymola

Wy Setpoint weight for the proportional term.
Wy Setpoint weight for the derivative term.
N; Anti-windup compensator constant.

Ny Derivative filter parameter.

Ymin Lower limit for the output.

Ymaz Upper limit for the output.

The reactor’s operation policy is the following (Froment & Bischoff 1979):

1. Fill up the reactor with the reacting liquid (the inflow is controlled by a
PID).

2. Preheat to certain temperature (77), and let the reaction proceed adiabat-

ically.

3. Start cooling when either the maximum allowable reaction temperature
(Tnaz) occurs or the desired conversion is reached (z4), and cool down to

the desired temperature (T}).
4. Empty the reactor.

The virtual-lab view is shown in Figure 3.7. It contains sliders to change the
model parameters, the initial value of the state variables and the input variables.

The “Settings” menu allows the user to (see Figure 3.7):

1. Change the parameters of the control policy (i.e., T, Tz, T4, Ty and PID

parameters).
2. Set the communication interval and the total simulation time.
3. Launch a simulation run.

The view contains an “info” icon that displays the virtual-lab documentation.
Also, it has three plots representing the time-evolution of the relevant process
variables (i.e., the mass of A, P and water, the mixture temperature, and the

pump throughput).

cntrl

a)

Step

LimPID

L1

Sm— }/ ~——Jp Flart

b)

startTime=flo...

Figure 3.6: Diagram of the reactor Modelica model: a) open-loop system;
and b) closed-loop system.

Run
Experiment settings

Level Cortraller

3
3
3
3

Heater Reactor parameters Pump settings
Chillr is tured on when ether .
hiler is turned off when the liquid tem. i 1nf0 Heat Exch. area (m”2) (3.3) I
hT St 24K (1360] I
Initial conditions - We?m %/m“z/Ki El 7 soi ™ Inlet liquid flow (m"3/s) (2.4) |
.
Mass of A (Kg) (0.0 I 2= o Temperature of the inlet flow (K) (273
Vessel vol. (m™3) (5.0)
Mass of water (Kgy (1.0} | Conecentration in vol. of A (0.4)
£ el e R)) | Concentration invol. of water (0.6) [
s @ fpm(Kg) ow I Heat temp. (K) (303) [T
Temp. of the mixture (E) (293) [| Chiller temp. (K) (288) [—
Mass of A-Water-P Wormalized consumption Conwversion factor
30
—Mass A —Heater
~— Mass Water = Chiller
— MassP
2001 0.5
500
100}
0f
0} OF,
[} 5000 0 5000 0 5000

Figure 3.7: View of the chemical reactor virtual-lab.

48

3 Batch Interactive Simulation, by Combining the Use of Sysquake and Modelica/Dymola

3.5 Case study lll: control of a double-pipe heat

exchanger

The JARA 2i model of a double-pipe heat exchanger was discussed in Section
2.5.5. The model diagram is shown in Figure 3.8a. The goal of this virtual-lab
is to illustrate the application to the heat exchanger of some linearization and
control techniques.

Three different Modelica models has been composed using the JARA 2i library

and components from the standard Modelica library:

1. The open-loop system (see Figure 3.8a).
2. The heat-exchanger controlled using a PID (see Figure 3.8b).

3. The heat-exchanger controlled using a compensator (see Figure 3.8c).

In addition, a Sysquake application has been programmed. It implements
the virtual-lab view and controls the execution of the three Dymosim files: the
Dymosim file that simulates the open-loop plant, and the two Dymosim files that
simulate the plant controlled using a PID and a compensator respectively.

The features of this Sysquake application, that constitutes the virtual-lab

core, include:

1. The application to the heat-exchanger model of several identification tech-

niques.

2. The design of control strategies (using the linear models previously obtained

by applying the identification techniques).

The challenge is to control the gas exit temperature by manipulating the water
flow. In addition, the virtual-lab view contains an “info” icon that displays the

documentation (see Figure 3.9).

8.5 Case study III: control of a double-pipe heat exchanger 49

a) [-]

Pulze1 limPID1 Plantza Pulzel Cortraller Limiter1 Planita
Feedba...
bis)

M H}/}b als) i / ¥
b) petiod=100 ¢) period=100 uha:=0.1 T

Figure 3.8: Diagram of the heat-exchanger Modelica model: a) open-
loop plant; b) plant controlled using a PID; and c) plant controlled using
a compensator.

3.5.1 Plant identification

The virtual-lab supports the automatic calculation of the plant linearized model.

This calculation is performed as follows (see Figure 3.9a):

1. The change in the value of the gas exit temperature, in response to a step

in the water flow, is calculated simulating the heat exchanger model.
2. A transfer function (abbreviated: TF) is fitted to this response.
During this identification procedure, the virtual-lab user is allowed to:

1. Change the parameter values and the input variable values of the heat

exchanger model, the simulation communication interval and the total si-

mulation time.

B‘ﬁ?EIJ - BRI

Input variables 6 !nfo

CO2 molar fraction (0.50) |
Gas flow temp. (360.00) |
Total molar flow(0.16)

Liquid flow temp. (291.00) I

Heat exchanger parameters

Pipe length (1.0) | |
D1(0.018%) [
D2(0.0222) | I
D3 (0.0381) I

Process plant

-0.5 0 0.5

System Step Response (K)
370)

hum = [24084.1-9625.64] Den =[33 14,2 0.4] U0 =0 y0 = 360.05

360)

1] 100 200 time (s

Step Response

150 200 250 time(s)

" . =
9]
Fle Settings Plots Edt Figue Layout Yiew Window Help BEE
=B »| B0 o] B[]X[F
HeRtEXChControleq - Untitled
Process Variable - Temp(K)
O info
— Systern response
— Set-point

Gain margin [dB] inf Critical freq. [rad/s] inf 350 —Approx. system response

Phase margin [deg] 2225 Cross-over freq. [rad/s]: 106.14

Bode Magnitude Bode Fhase
[dB]

2501
200y
200 359
10 0 100 time ()
Contral ble - Mass fl
i T o3 T ontrol variable ass flow (kg's)
0.005]
Myquist
Systemn + PID controller
1 200) o
0O X
- -200) 9
a1
=i 0 i -1000 o 1000 0 100 time (s}

Figure 3.9: View of the double-pipe heat-exchanger virtual-lab: a) plant
linearization; and b) controller synthesis.

8.5 Case study III: control of a double-pipe heat exchanger 51

2. Choose among different identification methods, including “first order TF

bYENA4

with delay’, “second order TF with delay’ and “non-parametric identifica-

tion”.
3. Modify the obtained TF.

4. Analyze the obtained TF by means of Bode and zero-pole diagrams, and

robustness margins.
5. Start the simulation run.

6. Export the calculated TF to another Sysquake application.

3.5.2 Controller synthesis and analysis

In addition, the virtual-lab automates the controller synthesis and analysis. The

virtual-lab supports the following user’s operations (see Figure 3.9b):

1. To import the TF previously identified.

2. To analyze the TF characteristics using Nyquist, Nichols and Bode dia-

grams.

3. To choose the controller type. Possible options are: PID, lead and lag

compensators.
4. To synthesize the controller (i.e., to set the value of the PID’s parameters).

5. To specify the error and the phase margin of the system controlled by the

lead or lag compensators.

6. To simulate the closed-loop linear and non-linear models.

3.5.3 Example of use

An experience using the heat-exchanger virtual-lab will be described below. The
operation conditions of the heat exchanger are shown in Figure 3.9a. A change

in the value of the the water-flow from 0 to 10~* kg/s has been applied at time

52

3 Batch Interactive Simulation, by Combining the Use of Sysquake and Modelica/Dymola

150 s to the heat exchanger. A TF has been fitted to the change in the value
of the gas exit temperature in response to the step change in the water-flow. A
first order identification method, that uses the times to reach 28.3% and 63.2%

response, has been applied. The following TF has been obtained:

24064.1s — 10240
33.352 +15.17s + 0.43

(3.1)

A PID to control the plant has been designed. The TF previously obtained has
been used in the design process. The PID controller has the following parameters:
Kp=10.051T,=1,7T; =001, w, =1, wg =1, N; = 0.9, Ng = 10, Ymin = 0 and
Ymaz = 5 -1073. The evolution of the gas exit temperature tracking the set-point

is shown in Figure 3.9b.

3.6 Case study IV: control of an industrial boiler

JARA 2i Modelica library has been used to compose the model of an industrial
boiler. that was explained in Section 2.5.4. The input of liquid water is located
at the boiler bottom, and the vapor output valve is placed at the boiler top. The
water contained inside the boiler is continually heated.

The model diagram is shown in Figure 3.10a. It is composed of two control
volumes, in which the mass and energy balances are formulated: (1) a control
volume containing the liquid water stored in the boiler; and (2) a control volume
containing the generated vapor. The model of the boiling process connects both
control volumes. The heat flow from the heater to the water, the pressure at the
valve output and the water pump are modeled using JARA source models.

This virtual-lab is intended to illustrate the identification of the industrial
boiler and the synthesis of the boiler control system. This control system is

composed of two decoupled control loops:

1. The water level inside the boiler is controlled by manipulating the pump

throughput.

2. The output flow of vapor is controlled by manipulating the heater power.

8.6 Case study IV: control of an industrial boiler 53

FlowaporPulse PID_flowapor

- P D Lt }/ steamPovwerBoilerCp...
—&%Hﬂ i 5 8
‘

Gaseous period=700 +

control

volume |:
; source
r wolumePulze PID_olume
Boiling | g
process = bl
b)
Heat flow source perioc=350 A
el P | || FlowesaporP... FlowvaporC... limiter
: : n Feedba... steamPowerBoilerd...

b(s)
T p O P 11 oy RS
ontrl | volume f source FEIEER

H ! “olumePulse D Yolume

b=

a) Control module cntrl Control module

N Ti

period=350 Fy

Figure 3.10: Diagram of the boiler Modelica model composed using JARA:
a) open-loop plant; b) plant controlled using two PID; and c) plant controlled
using a PID to control the water level inside the boiler and a compensator
to control the output flow of vapor.

The identification and synthesis procedures are similar to the one discussed
in Section 3.5. The virtual-lab view contains an “info” icon that displays the
documentation.

Three different Modelica models has been built to identify and control the

system:
1. The open-loop system (see Figure 3.10a).
2. The boiler controlled using two PIDs (see Figure 3.10Db).

3. The boiler controlled using a PID to control the water level inside the boiler

and a compensator to control the output flow of vapor (see Figure 3.10c).

The identification and synthesis procedures are briefly described next.

3.6.1 Plant identification

The virtual-lab user is allowed to choose interactively the plant’s operation point.

This is accomplished by setting the value of:

— The mass and temperature of the liquid and the vapor inside the boiler.

3 Batch Interactive Simulation, by Combining the Use of Sysquake and Modelica/Dymola

— The valve opening and its downstream pressure.

— The flow and inlet temperature of the water.

Once the operation point has been set, the user can launch the calculation
of the two TF: (1) a TF from the “pump throughput” (input) to the “water level’
(output); and (2) a TF from the “heater power” (input) to the “vapor flow”
(output). These TF are automatically fitted to simulated step responses by the
virtual-lab. The user can choose among the following identification methods (see
Figure 3.11a): “first order TF with delay’, “second order TF with delay’ and
“non-parametric identification’.

The virtual-lab supports a set of graphical methods to analyze the fitted
TF, including Bode and pole-zero diagrams, and it automatically computes the
robustness margin. In addition, the virtual-lab allows to export the TF to any

other Sysquake application.

3.6.2 Controller synthesis and analysis

The virtual-lab facilitates the design and analysis of the two controllers (see Figure
3.11b). The water level inside the boiler is controlled using a PID. The gas flow
can be controlled using a PID, a lead or a lag compensator. The user can change
the controller parameters, and the error and phase-margin specifications of the

compensation networks.

3.6.3 Example of use

An experience using the industrial boiler virtual-lab will be described below. The
following TF has been considered to describe the changes in the liquid levels due
to changes in the pump flow: % A change in value of the heat flow from 5.8-10°
to 6-10° W has been applied to the heat exchanger at time 9000 s. The operation
conditions of the boiler are shown in Figure 3.11a. A TF has been fitted to the
vapor flow by applying a first order identification method. The following TF has

been obtained:

. System Step Response
info

Liquid flow (m"3/s) (182e-4) [| 10
—

Input variables

Valve opening. (0.7)

Downstream press. (Pa) (1.20e5) ||
DownStreamn temp. (K) (300) |
Inlet water temnp. (K) (300) I |

Boiler parameters

Mum =[1.96e-5] Den =[1114.62 1] u0 = SE0000 Y0 = 3.83

e L |

Vapor moles (700) [I 5
Vaper temp. (K) (450) [|

Water mass (Kg) (1600] | St Rl 3000 le4 time(s)
Water termp. (K (420) | 1

 System response - Vaper flow (molesis)
Process plant 11 — Approximation
1

-0.001 0 0.001

led 12000 14000 time (s}

v
))
[Fle ssttngs Fiots Edt Figure Layout View Window Help x

E|w|d] »| 5| @] o]~ RIAIAJ6

HollerControlisq - Unhtled

Liguid Volurme (controlled variable) [m"3]

. 0.00;
me 17 — System response (m"3)

— Approx. systemn response
— Set-point

NI N
1.4

Liquid flow (manipulated variable) [kg/s]

TF (lig. vol ylig.flow)

Gain margin [dB] 223,53
Critical freq. [rad/s] inf
Phase margin [deg] 2152
Cross-over freq [rad/s]: 354 o
(o] 200 time (g) Q 200

time (s)
Vapor flow (controlled variable) [moles/s] Heat flow (manipulated variable) [W]

TF (vapor flow)/theat flow) 104 —System response

— Approx. system response

L —3et-point
Gain margin [dB] inf 7

Critical freq. [rad/s] inf
Phase margin [deg] 90,63
Cross-over freq [rad/s] 0.12

) [

200 time (s) o 200 time (s)

o

b)

Figure 3.11: View of the boiler virtual-lab: a) plant linearization; and b)
controller synthesis.

56 3 Batch Interactive Simulation, by Combining the Use of Sysquake and Modelica/Dymola

1.96-107°

—_— 2
1114.65s + 1 (3:2)

Two PID controllers have been designed. The PID that controls the liquid
volume inside the boiler has the following parameters: Kp = 1, T; = 9, Ty =
1-1073, wp =1, wg = 1, N; = 0.9, Ng = 10, ypmin = —0.01 and ¥, = 0.01.
The PID that controls the vapor output flow has the following parameters: Kp =
7-10% T, =1.1, Ty =3-1073, wp, = 1, wg = 1, N; = 0.9, Ny = 10, Yynin = 0 and
Ymaz = 5 - 106.

The time evolution of the set-points, the manipulated variables and the control

variables are shown in Figure 3.11b.

3.7 Conclusions

The feasibility of combining Modelica/Dymola with Sysquake, for implement-
ing virtual-labs with batch interactivity has been demonstrated. Sysquake is a
software tool specifically oriented to develop virtual-labs. The use of Modelica
language considerably reduces the modelling effort and facilitates the model reuse.

In order to implement this software combination approach a Sysquake-to-
Dymosim interface has been programmed. This approach has been successfully

applied to the implementation of virtual-labs intended for control education.

Modeling Methodology for Runfime

Inferactive Simulation

4.1 Introduction

Two different approaches for implementing virtual-labs with runtime interactivity

have been proposed in this dissertation:

Approach A. Implementing virtual-labs by combining the use of Fasy Java Sim-
ulations, Matlab/Simulink and Modelica/Dymola. The virtual-lab model is
described using Modelica and the virtual-lab view is implemented using Ejs.
The model-view communication is carried out through Matlab/Simulink.

This approach will be discussed in Chapter 5.

Approach B. Describing virtual-labs using only Modelica language. The virtual-
lab model is described using Modelica. The virtual-lab view is composed
using VirtualLabBuilder Modelica library, which contains Modelica models
implementing graphic interactive elements, such as containers, animated
geometric shapes and interactive controls. These models allow the virtual-
lab developer: (1) to compose the view; and (2) to link the visual properties
of the virtual-lab view with the model variables. The components of the
library contain the code required to perform the bidirectional communica-
tion between the view and the model. In addition, VirtualLabBuilderlibrary

supports including documentation (HTML pages) in the virtual-lab. The

58 4 Modeling Methodology for Runtime Interactive Simulation

design and programming of VirtualLabBuilder is part of the research work

presented in this dissertation. It will be discussed in Chapters 6 and 7.

In both approaches, the virtual-lab model is described using the Modelica
language. A systematic methodology is proposed in this dissertation for adapting
any Modelica model into a description suitable for runtime interactive simulation.
The model modifications required for Approach A and B are slightly different,

due basically to the following two facts:

1. The causality of the Modelica model interface needs to be explicitly set in
Approach A. The reason is that, in Approach A, the Modelica model needs

to be embedded within a Simulink block of DymolaBlock type.

2. The code required to implement the user’s changes in the value of the inter-
active quantities is pre-defined in some components of the VirtualLabBuilder
Modelica library. Therefore, this code does not need to be included in the

virtual-lab model description for Approach B .

The model modification methodologies for Approaches A and B are discussed
in this chapter, and they are applied for adapting JARA Modelica library to
interactive simulation. The adapted library, called JARA 2i, has been used to
compose three of the virtual-labs discussed in Chapters 5 and 6: control of a
chemical reactor, control of an industrial boiler and dynamic behavior of a heat-
exchanger. Finally, support to multiple selections of the model state variables

will be discussed in this chapter and illustrated by means of a case study.

4.2 Model description for interactive simulation

A methodology for transforming any Modelica model into a description suitable
for interactive simulation is proposed in this section. The following terminology
will be used. The original model of the system is called physical model, and its
reformulation for interactive simulation is called interactive model.

The model shown in Figure 4.1 will be used to illustrate the discussion. The

voltage applied to the pump (v) is an input variable (i.e., its value is not calculated

4.2 Model description for interactive simulation 59

| E, av_
. dt "
- h F=a\/m
V =Ah
| F F,=kv

Figure 4.1: Tank model.

from the model equations). The cross-sections of the tank (A) and the outlet hole
(a), the pump parameter (k) and the gravitational acceleration (g) are parameters
(i.e., time-independent quantities of the model). The liquid volume (V'), the input
and output flows (Fj,, F'), and the liquid level (h) are time-dependent variables
of the physical model.

The model of the system shown in Figure 4.1 can be described by the con-

nection of following three components:

1. The pump, modeling the input flow of liquid (F;, = kv).

2. The tank, describing the conservation of the liquid volume (dV/dt = F;;,,—F)

and the relationship between the volume and the liquid level (V = Ah).

3. The pipe, describing the output flow of liquid (F' = a+/2gh).

4.2.1 Interactive quantities

The virtual-lab design process includes selecting the interactive quantities. These
are the model quantities whose values can be interactively changed by the user
during the simulation run. The virtual-lab goal is to illustrate the dependence
between the model dynamic behavior and the value of those quantities.
Interactive quantities can be parameters, input variables, and time-dependent
variables of the physical model. For instance, some interactive quantities of the

model shown in Figure 4.1 could be the following:

— Parameters: the cross-sections of the tank (A) and the outlet hole (a), and

the pump parameter (k).

4 Modeling Methodology for Runtime Interactive Simulation

— Time-dependent variables: the liquid level (h).
— Input variables: the voltage applied to the pump (v).

The interactive model combines the dynamic behavior described in the phys-
ical model and the abrupt changes in the value of the interactive quantities

produced by the user’s actions:

1. The evolution in time of the interactive time-dependent quantities is de-
scribed by the physical model equations. In addition, their value can change

abruptly as a result of the user’s interaction.

2. The value of the interactive model parameters can be abruptly changed
by the user’s action, remaining constant between consecutive interactive

changes.

3. The value of the interactive input variables is interactively set by the user.
Their value changes abruptly as a result of the user’s action, remaining

constant between consecutive changes.

Parameters represent time-independent quantities. Input variables repre-
sent boundary conditions which are not calculated from the model equations.
Although they are conceptually different, the dynamic behavior of interactive
parameters and interactive input variables is the same. Their value change
abruptly at the interaction instants, remaining constant between consecutive
changes. As a consequence, both types of interactive quantities are described

in the same manner in the interactive model.

4.2.2 Description of the interactive quantities

In order to support abrupt changes in their values during the simulation run,
interactive quantities need to be state variables of the interactive model. The
interactive model is obtained from the physical model by reformulating (when
required) the declaration and evaluation of the interactive quantities, so that
they become state variables of the interactive model. To this end, the virtual-lab

developer has to perform the following tasks.

4.2 Model description for interactive simulation 61

model tank
parameter Real Ainitial "Initial value of the tank section";

Real A (start = Ainitial) "Tank section - Interactive quantity";

equation
der(A) = 0;

end tank;

Modelica Code 4.1: Tank section (A) redefined as interactive quantity.

— Time-dependent variables need to be selected as state variables. Modelica
and Dymola support the user’s control on the state variables selection, via
the stateSelect attribute of Real variables (Mattsson et al. 2000, Otter &
Olsson 2002, Dynasim 2006, Fritzson 2004). This attribute values include
“never” (the variable will never be selected as state variable) and “always”
(the variable will always be used as a state). This feature allows the user
to select the model state variables without performing any manipulation on
the model equations. The required model manipulations are automatically

performed by Dymola.

— Parameters and input variables are redefined as time-dependent variables
with zero time-derivative, and they are selected as state variables. For
instance, the parameter A of the tank model shown in Figure 4.1 should
be a Real variable of the interactive model, calculated from the equation

der(A) = 0 (see Modelica Code 4.1).

Let’s consider that all the interactive quantities can be simultaneously selected
as state variables. The description of interactive models without this restriction
will be discussed in Section 4.4. Changes in the interactive quantities are per-
formed as state re-initialization events by using the Modelica’s reinit(x,expr)
operator. It re-initializes an state variable (x) with the value obtained by eval-
uating an expression (expr), at the event instant. These changes are triggered
using when clauses.

The required code to implement the user’s changes in the value of the in-

teractive quantities (i.e., re-initialization events triggered using when clauses)

62

4 Modeling Methodology for Runtime Interactive Simulation

is pre-defined in the interactive control elements contained in the VirtualLab-
Builder Modelica library. Therefore, in case of virtual-labs implemented using
Modelica/Dymola and the VirtualLabBuilder Modelica library, the virtual-lab
developer does not need to perform any further modification in the model. On the
contrary, in case of virtual-labs implemented by combining Ejs, Matlab/Simulink
and Modelica/Dymola, the code to implement the user’s changes in the value
of the interactive quantities has to be included in the interactive model by the
virtual-lab developer.

Defining the interactive parameters and input variables as state variables
increases the number of state variables. This has an unwanted effect: it slows
down the simulation. We could think of redefining the interactive parameters
and input variables as discrete-time variables or, alternatively, as input variables
whose values are provided by the virtual-lab view. In this way, the number of
state variables would not be increased. However, as it is discussed next, this is
not a valid approach. Dymola automatically performs model manipulations in
order to formulate the model according to the requested state selection. The
problem is that these model manipulations can require differentiating an interac-
tive parameter or input variable, which results in an error being generated. An
example is shown next.

Consider the model shown in Figure 4.1. It is formulated according to the
state selection e; = {V'}. In order for h to be a state variable instead of V', the
model can be manipulated as shown below. The variable to be evaluated from

each equation is written within square brackets.

[F] = a\/2gh (4.1)

[Fin] = kv (4.2)
[derV] = Fy, — F (4.3)
V] = Ah (4.4)

derV = Ah + A M (4.5)

4.2 Model description for interactive simulation 63

The time-derivative of the tank cross-section (i.e., A) appears in Eq. (4.5).
If the interactive quantity A is defined as an input variable, then an error is
produced: Dymola can not differentiate an input variable. The same problem
arises if A is defined as a discrete-time variable. A valid approach is the previously
discussed: defining the interactive parameters and input variables as constant
state variables (i.e., A = 0). The interactive changes in the value of these
quantities are implemented by re-initializing their values.

The physical models have to be modified as was described in this section. In
case of the model shown in Figure 4.1, the description of the physical components
composing the physical model could be modified as shown below. It is supposed
that h is selected as state variable.

The selection of h as state variable is controlled via the StateSelect attribute.
The interactive parameters (A, a, k) and the input variable (v) have been defined

as constant state variables (see Modelica Code 4.2).

model tank
Real h (stateSelect = StateSelect.always) "Liquid level";
Real V (stateSelect = StateSelect.never) "Liquid volume";

parameter Real Ainitial "Initial value of the tank section";
Real A (start = Ainitial) "Tank section - Interactive quantity";

equation
der(A) = 0;

end tank;

model pipe
Real F (stateSelect = StateSelect.never) "Liquid flow";
parameter Real alnitial = 1 "Initial value of the pipe section";
Real a (start = aInitial) "Pipe section - Interactive quantity";

equation
der(a) = 0;

end pipe;

model pump
parameter Real vInitial "Initial value of the applied voltage";
Real v (start = vInitial) "Voltage applied to the pump - Interactive";
parameter Real kInitial "Initial value of the pump parameter";
Real k (start = kInitial) "Pump parameter - Interactive quantity";

equation
der(v) = 0;
der(k) = 0;

end pump;

Modelica Code 4.2: Tank model with the following interactive quantities:
A a, v, k.

4.8 Design of JARA 2i 65

4.3 Design of JARA 2i

JARA library (Urquia 2000, Urquia & Dormido 2003) has been translated into
Modelica language and adapted for interactive simulation by applying the method-
ology proposed in Section 4.2. The new version of the library is called JARA
2i. The library code, its on-line documentation and some examples of use are
available at http://www.euclides.dia.uned.es

JARA 2i is intended to be used for batch and runtime interactive simulation.
In order to be adapted for runtime interactive simulation, the model needs to be
modified as described in Section 4.2. These modifications imply the increment of
the number of the state variables, with the unwanted effect of slowing down the
simulation. On the other hand, no model modifications are required for batch
interactive simulation using Sysquake. In consequence, the model modifications
have been coded in a way that they can be conditionally included or removed
from the models.

Two global Boolean parameters have been defined: Ejs and Sysquake. These
two parameters are declared as inner variables to the JARA components and
outer variables to the physical models. if-then-else Modelica clauses are used to
include or remove code from the models depending on the value of these two
variables. An example is shown in Modelica Code 4.3.

If Ejs = true and Sysquake = false, then the equation setting the time
derivative of the tank cross-section to zero is activated. On the other hand, if
Ejs = false and Sysquake = true, then the tank cross-section is calculated

from A = Ainitial. The Ainitial parameter is the initial value of A.

66

4 Modeling Methodology for Runtime Interactive Simulation

model tank
inner Boolean Ejs;
inner Boolean Sysquake;
parameter Real Aintial = 1 "Initial value of the tank section";
Real h (stateSelect = StateSelect.always) "Liquid level";
Real V (stateSelect = StateSelect.never) "Liquid volume";
parameter Real Ainitial "Initial value of the tank section";

Real A (start = Ainitial) "Tank section - Interactive quantity";

equation
if Ejs then
der(A) = 0;
end if;

if Sysquake then
A = Ainitial;

end if;

end tank;

Modelica Code 4.3: Tank model adapted for interactive simulation using
Ejs and Sysquake.

4.4 Supporting several selections of the state variables

As it was discussed in Section 4.2, in some cases all the interactive quantities can

not be selected as state variables. This case is addressed in this section.

4.4.1 Motivating example

The model of a perfect gas is shown in Figure 4.2. The input flow of gas (F), of
heat (@) and the input temperature (7;,,) are input variables. The gas volume (V')
and the heat capacities (Cp, Cy) are parameters, i.e. time-independent properties
of the physical model. The number of gas moles (n), the internal energy (U),
the gas pressure (P) and the gas temperature (') are time-dependent variables
of the physical model.

The evolution in time of the time-dependent quantities is described by the
physical model equations. As was discussed in Section 4.2, the time-dependent
quantities have to be selected as state variables in order to be interactive quanti-

ties, i.e, their value can be changed abruptly as a result of the user’s interaction.

4.4 Supporting several selections of the state variables 67

pV=nRT
dn 0 empty
dt {F not empty
F.T, Z . 0 empty
EE— I —=<F-C, T, ¥Q notempty and F >0
F-C,-T+Q notemptyand /<0

U=n-C.-T

F>O - v
<10‘

Figure 4.2: Model of a perfect gas.

In general, different choices of the model state-variables are possible. As the
model of a perfect gas in a fixed volume has two degrees of freedom, only two
variables can be simultaneously selected as state variables. Possible choices in
the model shown in Figure 4.2 include: e; = {p, T}, ea = {n, T} and e3 = {n,p};
where e; represents one particular choice of the state variables.

The state variable selection should be made so that it includes all the interac-
tive quantities. If the user wants to interactively change p and T, the appropriate
choice is e; = {p,T}. This is also the right choice if the user wants to change
p and to keep constant 7', or if he wants to change T" and to keep constant p.
Likewise, the appropriate choice is eg if the user wants: (1) to interactively modify
n and T'; or (2) to modify n and to maintain constant T’; or (3) to modify 7" and
to maintain constant n. An analogous reasoning is applied to e3. In general,
an interactive model is required to support state changes that correspond with
different choices of the state variables.

In addition, interactive changes of the model parameters, i.e. time-independent
properties of the physical model, can have different effects depending on the state
variable choice. Consider an instantaneous change in the gas volume (V') of the
model shown in Figure 4.2. If the state variables are e; = {p,T}, then the
change in V' produces an instantaneous change in the number of moles (n), while
the pressure (p) and the temperature (7') remain constant. On the contrary, if

the state variables are ey = {n,T'}, then the change of volume produces a change

68

4 Modeling Methodology for Runtime Interactive Simulation

in pressure. In this case, the number of moles (n) and the temperature remain
constant. As a consequence, the interactive model needs to support different

choices of the state variables simultaneously.

4,42 Model description

An approach to implement this capability is the following. Building the interac-
tive model as composed of several instances of the physical model, each one with
a different choice of the state variables. When describing an interactive action
on the model, the user selects the adequate state-variable choice according to his
preference. This information is transmitted from the virtual-lab view to the model.
Then, the interactive model uses the adequate physical-model instantiation (the
one with the chosen state selection) for executing the instantaneous change in the
parameters and state variables, and for solving the re-start problem.

Modelica capability for state-selection control allows easy implementation of
this approach (Otter & Olsson 2002). Three instantiations of the perfect-gas

model (i.e., perfectGas) have been defined (see Figure 4.3):

1. perfectGasSS1, with e = {p,T'}.
2. perfectGasSS2, with e = {n,T}.
3. perfectGasSS3, with e = {n, p}.

The Modelica code of the perfect-gas model is listed in Appendix B.

View-model connection

The schematic description of the model-view connection is shown in Figure 4.3.
There are seven input signals to the model and one output signal. The function
of these signals is explained below. The perfect gas virtual-lab will be used to

illustrate the discussion.

4.4 Supporting several selections of the state variables 69

Virtual-lab view

model perfectGasinteractive (|\/| odelico)
model perfectGasSS1

Iparam|:] ~model perfeciGasl _ _ ____ _
L model perfectGas
Ivar[:]

e={p, T}
CKparam|:]
CKvar]:] .

]State [] end when;
cksate[:] | (Il "oz 7777 smmmo=-

. when change (CKstate[1]) then
reinit (p, Istate[2]);
reinit (T, Istate[3])

end when; _ ; .\ o[:]

|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. . H
. o !
|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
when change (CKparam[1]) then :
reinit ({V, Cp}, Iparam[:]); |
|

|

|

|

end when;
when change (CKvar[l]) then

reinit ({F, Tin, Q}, Ivar[:]);

model perfectGasSS3

model perfectGasl

model perfectGas
e={n.p}
when change (CKparam([3]) then
reinit ({V,Cp}, Iparam[:])
end when;
when change (CKvar[3]) then
reinit ({F, Tin, Q}, Ivar[:]);
end when;

T(,)—» when change (CKstate[3]) then
reinit (n, Istate[l]);
reinit (p, Istate[2]);

end when;

Enabled|:]

Figure 4.3: Schematic description of the model-view connection.

Interactive state variables

Two input variables to the model are used to carry out the interactive changes

in the state: Istate[:] and CKstate|:] (see Figure 4.3).

— The array Istate[:] contains the values used to re-initialize the model state.

In the perfect-gas model: Istate[:] = {n,p,T}.

— The array CKstate[:] is used to trigger the state re-initialization events,

which are performed using the Modelica operator reinit. Each variable of

4 Modeling Methodology for Runtime Interactive Simulation

the array CKstatel:] is used to trigger the events in a different instantiation

of the physical model.

The perfect-gas model contains three instantiations of the physical-model:
perfectGasSS1, perfectGasSS2 and perfectGasSS3. Consequently, the array CK-
state[:] has three components. CKstate[l] triggers the change in the state-
variables of perfectGasSS1. CKstate[2] and CKstate[3] trigger the change in the
state-variables of perfectGasSS2 and perfectGasSS3 respectively (see Figure 4.3).

For instance, the virtual-lab view changes the value of the signal C' K state [1]
and updates the value of the vector Istate[:] when perfectGasSS1 model is enabled

(Enable = [1,0,0]) and a state variable value is changed by the user.

Interactive parameters and input variables

The interactive parameters (V, Cp) and the input variables (F', T;,,,Q) are defined
as constant state-variables (i.e., with zero time-derivative) in the model. Their
values are changed by using the reinit operator. Four input variables to the model

are used (see Figure 4.3):

— Two arrays (Iparam|[:], Ivar|:]) containing the new values.

— Two arrays (CKparam][:], CKvarl:]) for triggering the re-initialization events.

For instance, the virtual-lab view changes the value of the signal C Kparam [1]
and updates the value of the vector Iparam[:] when perfectGasSS1 model is

enabled (Enable = [1,0,0]) and a parameter value is changed by the user.

Changing the state variable selection

When the user changes the state selection, the physical model instantiation
corresponding to the new state choice must be re-initialized to start its trajectory
at the last point described by the physical model instantiation corresponding to

the previous state selection. To this end, the virtual-lab view:

1. Sets the new value of Enable[:].

4.5 Case study: tank system 71

2. Changes the value (from one to zero or vice-versa) of C Kparam [i], C K state [i]
and C'Kwvar [i], where 7 is an integer whose value depends on the state selec-
tion (for instance, ¢ = 1 if the new state selection is the one corresponding

to perfectGasSS1).

3. Updates the value of the vector Istate[:].

Output variables

The output variable array of the model, O[:], contains the value of the variables
linked to the properties of the virtual-lab view. The virtual-lab view uses the
value of this output array (O]:]) to refresh the simulation view.

The value of the input array Enabled[:] is set by the virtual-lab view. It
selects which output is connected to the output signal O[:]. The output array in

the perfect-gas model is the following: O [:] = {n,p,T,V,Cp, Ty, F,Q}.

4.5 Case study: tank system

The tank model shown again in Figure 4.1 is used to illustrate the previous

discussion. Possible choices of the state variables include:

€] = {h} €y — {V} €3 — {F}

where e; represents one particular choice of the state variables.
This virtual-lab is required to support three ways of describing the interactive

changes in the amount of liquid contained in the tank:

1. Changes in the liquid volume (V).
2. Changes in the liquid level (h).

3. Changes in the output flow of liquid (F).

In other words, each time the user needs to change the amount of liquid, he
can choose among describing it in terms of the volume, in terms of the level, or in

terms of the output flow. Different choices are possible during a given simulation

72

4 Modeling Methodology for Runtime Interactive Simulation

model interactiveModel
model physicalModel StateSelectiont
Boolean isState [:] extends setParamVar (isState={ ... }) ;
1[: I i et
1 / i) ;: i isStatel[:] E 3
i ' ' i
CK [1:N] CK[1] i 1 ! i
s~ :
i ' H i
- ; Enabled [1 | Memmmmeea- ! i
Enabled [1:N] nabled [1] ! when {CK[1], Enabled [1]} then |
7 H reinit (ivars [],1[]) ; H
CKstate [1:N] CKstate [1] | endwhen; !
/
7 when { CKstate[1] , Enabled [1] } then
Istate [1] Istate [:] reinit (state1 [], Istate (n11,...,n1M); o []
+ + end when; . \ :
. . +’
a) o
StateSelectionN
extends setParamVar (isState={ ... }) ;
. i
partial model setParamVar : ['1, N '
1 B 1
extends physicalModel !]
Py : CKINI i ! ;
: g A
: : ‘ : ‘
CK ! i Enabled [N] | when { CK [N] . Enabled [N] } then !
> E Ag\ ! 1 reinit (vars [, 1) ; |
Enatied | | H CKstate [N] | endwhen; '
[N N N 1 1 Ittt [S
E» L when { CKstate [N], Enabled [N] } then
Istate [ini N R
when { CK, Enabled } then state [J reinit (§ta1eN [:], Istate (nN1,...,ANM);
L - e 4 end when;
reinit (ivars [:], 1 []]);
end when; Enabled [1:N]
/
b) 0

Figure 4.4: Schematic description of the proposed modeling methodology

for interactive simulation.

run. However, V', h and F can not be simultaneously selected as state variables.

The approach proposed in Section 4.4.2 is applied with slight modifications:

1.

The interactive model is composed of as many instances of the physical
model as different state selections are required. In this case, three selections
of the state variables are required: e; = {h}, ea = {V} and e3 = {F}.
The boolean vector isState[:], declared in physicalModel, allows controlling
the state selection. The size of this vector is equal to the number of
interactive time-dependent quantities. For instance, if isState[:] is set to the
value {false,true,false} when instantiating the physical model, then the liquid
volume (V) is selected as a state variable. Also, the interactive parameters
(A, a) and the input variable (v) have been defined as constant state

variables (see Modelica Code 4.4). This first step in the implementation

of the interactive model is represented in Figure 4.4a.

The setParamVar class is defined (see Figure 4.4b). It inherits from physi-

calModel, and it contains the when-clauses required to change the value of the

model tank
parameter Boolean hIsState

false;

false;
Real h (stateSelect = if hIsState
then StateSelect.always else StateSelect.never)

parameter Boolean VIsState

"Liquid level";

Real V (stateSelect = if VIsState
then StateSelect.always else StateSelect.never)
"Liquid volume";

parameter Real Ainitial "Initial value of the tank section";

Real A (start = Ainitial) "Tank section - Interactive quantity";

equation
der(A) = 0;

end tank;

model pipe
Real F (stateSelect = if FIsState
then StateSelect.always else StateSelect.never)
"Liquid flow";
parameter Real alnitial = 1 "Initial value of the pipe section";
Real a (start = aInitial) "Pipe section - Interactive quantity";

equation
der(a) = 0;

end pipe;

model pump
parameter Real vInitial "Initial value of the applied voltage";
Real v (start = vInitial) "Voltage applied to the pump - Interactive";
parameter Real kInitial "Initial value of the pump parameter";
Real k (start = kInitial) "Pump parameter - Interactive quantity";

equation
der(v) = 0;
der(k) = 0;

end pump;

partial model physicalModel
parameter Boolean[3] isState;
tank tankl (hIsState = isStatel[1],

VIsState = isState[2], ...);
pipe pipel (FIsState = isState[3], ...);
pump pumpl (...);

end physicalModel;

Modelica Code 4.4: Tank model with three different selections of the state
variables.

74 4 Modeling Methodology for Runtime Interactive Simulation

interactive parameters and input variables. These interactive quantities are
represented by the ivars[:] array, and their new values, specified interactively
by the virtual-lab user, are represented by the I[:] array (note that in this
example: | = { Iparam, Ivar }). The size of these arrays is equal to the number
of interactive parameters plus the number of interactive input variables.
The when-clauses are triggered by the boolean variables CK and Enabled.
When the value of any of these two variables changes from false to true,

then the ivars[:] array is re-initialized to the value of the I[:] array.

3. There are defined as many components (StateSelectionl, ..., StateSelectionN)
as different state-variable choices are required (e; = statel[], ..., ey =
stateN[:;]). The number of state-variable choices to be supported by the
virtual-lab is represented by N. The class of these components inherits from
setParamVar (see Figure 4.4c). In addition, it contains the when-clauses
required to re-initialize its state-variable array (i.e., state array) to the values

interactively set by the user (i.e., Istate array).

The CK[1:N] and Enabled[1:N] arrays trigger the re-initialization of the in-
teractive parameters and input variables (note that in this example: CK =
{ CKparam, CKvar }). The CKstate[1:N] and Enabled[1:N] arrays trigger the
re-initialization of the interactive time-dependent quantities. The i — th
component of these arrays controls the ¢ — th instantiation of the physical

system (i.e., StateSelectioni).

The array Enabled[1:N] indicates which state-variable selection is enabled. It
is used to select which output is connected to the output variables (O[]).

These are the variables used to refresh the virtual-lab view.

4.6 Conclusions

A novel modeling methodology, oriented to adapt any Modelica model for runtime
interactive simulation, has been discussed and it has been applied for program-

ming JARA 2i.

Virtual-labs Implemented by
Combining Ejs, Matlalb/Simulink and

Modelica/Dymola

5.1 Introduction

The implementation of virtual-labs supporting runtime interactivity by the com-
bined use of Ejs, Matlab/Simulink and Modelica/Dymola is proposed. The
virtual-lab model is programmed using the Modelica language and translated
using Dymola. The view is developed using Ejs. The model-view communication

is implemented using the following interfaces:

— Modelica/Dymola to Matlab/Simulink interface. The C-code generated by
Dymola for the Modelica model can be embedded within a Simulink block
(Dynasim 2006).

— Ejs to Matlab/Simulink interface. On the other hand, Ejs allows the model
to be partially or completely developed using Simulink block diagrams

(Sanchez et al. 2005a,b).

This approach allows taking advantage of the best features of each tool:

— Ejs capability for building interactive user interfaces composed of graphical

elements, whose properties are linked to the model variables.

— Modelica capability for physical modeling and Dymola capability for simu-
lating hybrid-DAE models.

76 5 Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and Modelica/Dymola

— Matlab/Simulink capabilities for modeling of automatic control systems and

for model analysis.

5.2 Virtual-lab model

The methodology proposed in Chapter 4 has to be applied in order to adapt the
physical model for runtime interactive simulation. In addition, the following two

model modifications have to be carried out:

1. As the Modelica model has to be embedded within a Simulink block, the
computational causality of the model-view interface variables has to be

explicitly set.

2. User’s interactive actions generate abrupt changes in the value of the inter-
active variables. The code (i.e., when clauses) to implement these interactive

changes has to be included in the model.

5.3 Virtual-lab view

The virtual-lab view is implemented using Ejs. Ejs includes a panel for the view

description, which is divided in two parts (see Figure 5.1):
— An area containing the Ejs’ “view elements”.

— An area named “Tree of elements”. The view is composed by instantiating

and connecting with the mouse the “view elements” in this area.

The tree of elements of the perfect-gas virtual-lab is shown in Figure 5.1.

5.4 Virtual-lab set up 7

C Introduction < Model

Tree of Elements : Elements Tor the view @
=2 Simulation Yiew - Containers @
? mainFrame Al = mie
® [panel : =
? cirawin 55 fd =
gPanel :5
Tl Poligonivessel || Basic @
o\ PoligoninputPipeFiled =% ¢ B & m ||«
‘Ol Poligoninputpipe :) =
Z A X B =
D ImageHand : @
d Imagerump | |r Drawables

O\ PoligonResistance
i Cylindervessel
T Textvolume

& [DialogPlots

7
=
L
%

&

L TEALTTL JaT THE LIACT2.S SELAUS UL ST TALTUT RS EET Il::L,LLJd:\J._]d'I
k!
Congratulations! The simulation was generated successfully.
Trying to run simulation DEjs3 . 3beta040607SimulationsyperfectGass bat. .
Congratulations! The simulation seems to run alright.
ou can also run the simulation from the generated html page

I

Figure 5.1: View description of the perfect-gas virtual-lab.

5.4 Virtual-lab set up

The perfect gas model described in Section 4.4.1 is used to illustrate the imple-
mentation of the model-view communication through Matlab/Simulink (Sanchez

et al. 2005a,b). The Simulink model of the perfect-gas is shown in Figure 5.2a:

— The Modelica model (perfectGasInteractive) is embedded within the Dymo-
laBlock block.

— The blocks connected to the DymolaBlock inputs (“MATLAB Fen” blocks)
transmit the value of the input variables from the Matlab workspace to the

Simulink block-diagram window.

78 5 Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and Modelica/Dymola

lparam

Fause Simulink

whiar

Iparam

Ivar

Istate
CKparam Ciparam H
CKvar

CKstate

-l

Releasze 1

Enabled

DymaolaBlack

Clock Time to Wotepace
a)
(mainEranme
n {meles) 5 10g10(P [atm)) agg T -Tin (°C)
250 | _ i | 250 | _
200 i 2001 4
3 4
150] 160 4
2] 4
100 i 1001 4
50| 1 1 /‘/ so0|
1 1 a L L a L L
0 50 100 0 50 100 0 50 100
tirme (s} tirne (s)
¥ (m*3) Flow (moles/s) Heat flow (J/s)
20 10 B
V = 040ml\3 T T T T T T
al
148 i
41
PI P State variables
- ause ()PT ®@nT (inP 1.0 oL 3
n (10,000 P{atm) 0,987 T{"Cy |1DU Reinit 2
0a| b}]
F{moles/s) 20 Tin(°C) (D269 o 2,0
{moles/s) 2, | n{°C} | I ‘ Qisy 2, nn | | 0 | | i | |
0 50 100 0 50 100 0 50 100
W (m43 0,400 Cp (J(Kg.Kp (20,775
b) (m#3) d p (MKg.Kp) b time (s time (s) time (s)

Figure 5.2: Perfect-gas virtual-lab: a) Simulink model; and b) view.

— The blocks connected to the DymolaBlock outputs (“To Workspace” blocks)
transmit the value of the output variables from the Simulink block-diagram
window to the Matlab workspace. The virtual-lab view (programmed in
Ejs) reads the value of these output variables from the Matlab workspace

and writes the value of the input variables in the Matlab workspace.

The view of the virtual-lab is shown in Figure 5.2b. The main window (on
the left side) contains the schematic diagram of the process (above) and the
control buttons (below). Both of them allow the user to experiment with the
model. The vessel volume, represented in the schematic diagram, is linked to

the V variable. Its value can be interactively changed by clicking on the hand

5.5 Case study I: quadruple-tank process virtual-lab 79

picture and dragging the mouse. Three radio buttons allow choosing the state
variables ({p, T}, {n,T} or {n,p}). Text fields allow the user to set the value of
the state variables (n, p, T), the input variables (F, Tj,, @) and the parameters
(V, Cp). The window placed on the right side of the virtual-lab view contains
graphic plots of the model variables.

The dynamic response of the perfect gas to a step change in the gas temper-
ature is shown in Figure 5.2b. This change has been interactively performed by
the virtual-lab user at the simulated time 108 s. The state selection is e = {n,T'}.
The following six plots are shown in Figure 5.2b: (1) the number of moles; (2)
the decimal logarithm of the gas pressure; (3) the value of the gas temperature
and the gas flow temperature; (4) the volume of the recipient containing the gas;

(5) the liquid flow rate generated by the pump; and (6) the heat flow rate.

5.5 Case study I: guadruple-tank process virtual-lab

The quadruple-tank process is represented in Figure 5.3 (Johansson 2000). It can
be used to teach different aspects of the multivariable control theory (Johansson
2000, Dormido & Esquembre 2003). The goal is to control the level of the two

lower tanks (h; and hg) by manipulating the pump voltage (v1 and v9).

5.5.1 Virtual-lab model

In order to illustrate their different dynamic behavior, two different models of the
process have been implemented: a linear model and a non-linear model. The non-
linear model has been composed by using the tankProcessLAB Modelica library
(see Figure 5.4a). Mass balance and Bernoulli’s law are applied to model the
tanks and the flows. The Modelica diagram of the physical model is shown in
Figure 5.4b.

The implementation of the tankProcessLAB Modelica library is part of the
work developed in this dissertation. This library is composed of some basic models

of hydraulic components (i.e., tanks, pipes, valves, etc.) that have been adapted

80

5 Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and Modelica/Dymola

for interactive simulation. The tankProcessLAB library can be downloaded from
http://www.euclides.dia.uned.es

The virtual-lab supports interactive changes in the tank physical parameters
(i.e., cross-section, shape and cross-section of the outlet hole) and in the amount of
liquid stored inside the tanks. T'wo selections of the state variables are supported:

e1 = {volume} and ey = {level}. As a consequence:

— The changes in the stored amount of liquid can be defined in terms of the

liquid level or the liquid volume.

— The tank cross-section and shape changes can take place under one of the
following alternative conditions: (1) the liquid volume inside the tank is

kept constant; or (2) the liquid level is kept constant.

Two different control strategies have been implemented: manual control and
decentralized PID. The switching between these two control strategies can take
place during the simulation run. The parameters of the PID controllers can be

changed interactively.

5.5.2 Virtual-lab set up

The Simulink model containing the DymolaBlock block is shown in Figure 5.5.
Observe that the structure of this Simulink model is analogous to the perfect-gas
model, shown in Figure 5.2a.

The virtual lab is shown in Figure 5.6. The main window (on the left side of
Figure 5.6) contains the schematic diagram of the process (above) and the control
buttons (below). Both of them allow the user to experiment with the model. The
liquid levels, the tank cross-sections and the level setpoints represented in the
schematic diagram are linked to the respective model variables: their values can
be interactively changed by dragging with the mouse.

The sliders placed under the schematic diagram allow interactively changing
the pump voltages (v; and v9) and the valve settings (g1 and g2). The radio-

buttons allow choosing the state variables (liquid volumes or levels) and the

L

g1C|V_‘ ‘—%Dgz

h
. hy

Pump 1 Tank 1 Tank 2 Pump 2

| |

Figure 5.3: Schematic representation of the quadruple-tank process.

= 1..] tankProcessLAR)

cazeStudies

quadrupleT ank.

physicalkdodel
setParam’yar
StateSelection]
StateSelection2
interactivetd odel

H threeT anks

= companentsLIB

= [casUrnits
WolumeFlowR ate
Height
Area
Wolume
Acceleration
Adim

W icFiow

* tank.

-* tank20uputs

——ripe

=yl
oL sink
d flowSource

a) i—-pumpT wolW auh alve b)

Figure 5.4: Quadruple-tank process: a) tankProcessLAB Modelica library;
and b) diagram of the quadruple-tank Modelica model.

yaran_sigial
automatic Mar_sigal
osigal output

Kk _sigial

C Hamam_sigia

Hai_sigal

autoLewel Clte_siial

Rekase_sigial —bl:'

Evabkd s ighal

CRwar

" .

aviciioime
autelume
Subsystem

DOymolaBlock

Pause -

Pauze Simulink

Clock Time ta Wiarkspace

Figure 5.5: Simulink model of the quadruple-tank process virtual-lab.

82

5 Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and Modelica/Dymola

0 400 200 300 400 0 100 200 300 400

. . time (s} time (s}
diameter:s diameter:
&0 .4 0 b1
15| 1 -~ 1s5L]
5 5
210l Fﬁ; 2 10l il
= o
= 2
g i g |
o 1 L 1 L 0 1 1 1 1
0 100 200 300 400 0 100 200 300 400
time (s) time (s)

In=11,22 |h2=388 |ha=001 [n4=287 [Refl=11,2 |Refz=4 |

diaglster:
Kpli=3 Kp2=2,7 1 pQutput Zero Direction
Ti1 =10 Tiz=10
vi=11 v2=2.5 Tdl=0 Tdi=0 0.5
. o & ; G " =100 Ttz=100]
ey
¥ se 0 4 8 11 150 4 8 11 15 [Ni=10 N2=10 05
g1=0,7 42 =07 E1=1 B2=1 1.0
: o= || c fEl—— | [mint =00 vnin2 =00 -0 -05 00 05 1.0
Liguidyol vmaxl =14 vmax2=14% |
 Liauidvolme | 020 g7 1 |0 03 05 07 1 e |
IState Variahle: _Zeros
(@ ligquidLevel il
® automatic) manual -
[v ShowLevels [_] ShowFlow §
-0
[Ci Showvolume (¥ ResizeTanks
[[] outlet holes [v] Sections [v] ControlParam [Z] ShowPumps -0‘.4 d 3 UTU sz Dfd

[Linear [¥] Zeros

Figure 5.6: View of the quadruple-tank process virtual-lab.

control strategy (manual or decentralized PID). The “Linear” box shows and
hides the liquid levels calculated from the linear model simulation.

Clicking the “ResizeTanks” and “Sections” boxes bring-in two graphical gad-
gets (in the form of a hand and of control circles, respectively) that can be dragged
to change the diameter and shape of the tank section. The “Outlet holes” box
opens and closes a secondary window, where the user can interactively modify
the diameter of the outlet holes.

The “DialogZeros” and “DialogControl” windows are displayed by clicking
on the “Zeros” and “ControlParam” boxes respectively (see Figure 5.6). The
“DialogZeros” window shows the zero location and its directionality (Skogestad &
Postlethwaite 1996). The “DialogControl” window allows changing interactively
the PID parameters and the position of the point (g1, g2). This position has
important consequences: above the diagonal (i.e., gl + g2 > 1) the system is
minimum phase (easy control problem), and below it is non-minimum phase

(difficult control problem).

5.6 Case study II: chemical reactor virtual-lab 83

The rest of the check-boxes open and close graphic plots of the liquid levels,
volumes and flows, and plots of the voltage applied to the pumps. Some of these
plots are displayed on the right side of Figure 5.6. The dynamic response of
the four tank system to a step change in the setpoint of the tank 1 liquid level
from 5 cm to 11.2 cm is shown in Figure 5.6. This change has been interactively
performed by the virtual-lab user at the simulated time 204.6 s. The system is

operating in automatic mode.

5.6 Case study Il: chemical reactor virtual-lab

The physical model of the chemical reactor has been composed using the JARA
21 Modelica library. The interactive model has been implemented by extending
the physical model described in Section 2.5.3 and by including the required code
to: (1) be useful as a Simulink block; and (2) implement the user’s changes in the
value of the interactive quantities. The Modelica code of the interactive model is
included in Appendix B.

The Modelica models of the chemical reactor and the controllers are embedded
within the SystemBlock and PIDBlock blocks respectively (see Figure 5.7). The
virtual-lab view is shown in Figure 5.8.

The main window (on the left side of Figure 5.8) contains the schematic
diagram of the process (above) and the control buttons (below). Both of them
allow the user to experiment with the model. The user can interactively choose
between manual and automatic control. The automatic control is intended to

perform the following operation policy (see Figure 5.9):

1. Fill up the reactor with the reacting liquid. The inflow is controlled by a
PID.

2. Preheat to certain temperature, and let the reaction proceed adiabatically.

3. Start cooling when either the maximum allowable reaction temperature
occurs or the desired conversion is reached, and cool down to the desired

temperature.

whrar

>

IparamC1

Its

¥

ySyster
SetPointC1

=t Point
Ckparam

CKparami1 Chis

—

-

Iparam

]

Iparam

automatic

Releaze

Clock

FIDBlock

E

Pulse
Fenerator

Chkar

Time to Workspase

)
]

Switch

lwar
Istate
Istate

CHparan

Chwar

—

Release

]

SystemBlo ok

Pause
Pause Simulink

Figure 5.7: Simulink model of the chemical reactor virtual-lab.

$& plotsContr

P =[] : - x|
X 1[F4 Masses (Kg) 120 Liquid Temp. {°C)
100
3] o
¥ { & 80
5 2 =
E 13 60
1 3 4D
1 20
0 1 L 1 1
n 2 4 & =8 o 2 4 B B
time(s) ¥ 1P time (s) ®1F
10 SourceMassFlow (kg/s) SourceTemp. (°C)
5 8 -1
= 5100]
& 8 1z
£ 2
5 4 1 280
= oo]
vV =5.00m"3 = 2 1
0 i i I I 1 L 1 1
n 2 4 & =8 0 2 4 B
time (s) ¥ 1P time(s) ®1F
Pauce Heater
[| 1, Normalized Consum Conversion
D Parameters [StartConversi... || 1St =130~ hIW = 1180 . o 5_ 1
O Heater © Chiller I | ol |
1 Autornatic ® Manual Section = 3. o i L
—) | 0 2 4 & 8 0 2 4 6 =8
time (s) P g time () x1F
Pump StateVars IsHeater-IsChiller ReactionRate (mol/m*3/s)
i ~3ig) = 1.0p—r ; — ; . S
,,—L'qﬂuw(mﬁm] u,uu—ll) = 0001 —MassP{Kg)=725 . 2 1
| Fracta=0,1 | ‘ﬁ "H" h D.D-] Tt 1
= T z (ky)=3275 T("C)=DA5 ’ n T — o . .
emp- = = 02 4 & &8 0o 2 4 6 8
| L = | ‘ = ‘ T time (s) x 10 time {s) Pali

Figure 5.8: View of the chemical reactor virtual-lab.

5.7 Case study III: industrial boiler virtual-lab 85

@ DialogParam x|

Level Controller

SPiveselHeight = 0,80
[J PID Parameters
L L g

Heater

=}

Turn the hesater off when liguid reachs the following temp. (°C) 55

H

Chiller
[Turn the chiller on when one of the following conditions are met

Temp. of the liguid mixture is (°C):

[}
= o
w =
= =}
= =

The conversion factor is

=}

Turn the chiller off when liguid reachs the following temperature (%C): (45,

Figure 5.9: Window menu to determine the operation policy of the chemical
reactor virtual-lab.

4. Empty the reactor.

The value of the PID-controller parameters, the temperatures defining the
operation policy and the desired conversion can be changed interactively. Also,
the value of the model state-variables (i.e., the temperature and mass of the
reaction mixture, and the concentration of A and P), the model parameters (i.e.,
the reactor volume and section, the area of the heat exchanger, and the physical-
chemical data of the steam and cooling water), and the input variables (i.e., the
inflow temperature and concentration) can be changed interactively during the
simulation run. The secondary windows on the right side of Figure 5.8 contains

plots showing the evolution of some relevant process variables.

5.7 Case study lll: industrial boiler virtual-lab

A boiler virtual-lab has been implemented by the combined use of Ejs, Simulink
and Modelica/Dymola. The physical model of the industrial boiler has been
composed using the JARA 2i Modelica library (see Section 2.5.4). The interactive
model has been implemented analogously to the chemical reactor model (see
Section 5.6). That is, it has been implemented by extending the physical model

described in Section 2.5.4 and by including the required code to: (1) be useful

86

5 Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and Modelica/Dymola

as a Simulink block; and (2) implement the user’s changes in the value of the
interactive quantities.

The Simulink model and the Ejs view of the boiler virtual-lab are shown
respectively in Figures 5.10 and 5.11. The user can interactively choose between
two control strategies: manual and decentralized PID. The control system has
been modeled using Modelica: a PID is used to control the water level and another
PID is used to control the vapor flow. The manipulated variables are the pump
water-flow and the heater heat-flow respectively. The parameters of these PID
controllers can be changed interactively. In addition, the value of the model state-
variables (mass and temperature of the water and the vapor), parameters (inner
volume of boiler), and input variables (temperature of the input water, valve
opening and output pressure) can be changed interactively during the simulation
run.

The dynamic response of the industrial boiler to a step change in the setpoint
of the vapor output flow from 8 to 9.2 moles/s is shown in the right window of
Figure 5.11. This change has been interactively performed by the virtual-lab user

at the simulated time 201.8 s. The boiler is operating in automatic mode.

wlvar

Iparam

>
Iparam
h 5

Iparame: ~ — var .

& Switeh @_bl_. e
HsC1
lparam CHparam] CKparam
ts o Chvar Release
m_'

@".‘J_:sm H g

CKparamt setfoi sty
@"‘.—' Lo deass Switch

CKisCA Cigs Chstate
FID1
Iparame:z
ItsE2 l—b Iparam
o> o
setPointC2 Ly Syst
. Fause ==
Clock Time to Wokspace Fause Simulink
CKparamC2 Chkpar zlease
Chs
CRECZ PID2

Figure 5.10:

Simulink model of the industrial boiler virtual-lab.

3 _Volumes (m'3) £ 19__OutputFlow (molis)
251 1 &8]
520 25]
o 1 - [=]
= 5 4] J
r 5
04 i = 20 |
O 1 1 1 L L O 1 1 1 L L
0 50 100 150 200 250 0 50 100 150 200 250
time(s) time {s)
InpulFlow (liter/s) 8 log{ Heat (J))
§ 200 I I I I [i [i [i
= 0l 6
2
= 0 41
< 1
TR
V = 3.00m3 =)
0 50 100 150 200 250 0 50 100 150 200 250
time (s) time(s)
Pause Heater =y — &3
= G : | 55 Temperatures (K) 25 Pressure (atm.)
[~] Param) puto T Man... 5 [[[[[I [I I I
StateVars £
Pump [gmmmm:mn‘n] wme:g‘m:mﬁl—l % r j
,—'_‘Fuuw\ui-mﬂh}=[l, vaporMol=769 = 45 J
= 1 || C SINE
Tem(K)=300 gasTempiK)=183 2
E y[p—— i 2 T |
Valve Pressure s | | | |] ol | | | | |
| Dpehing 0.0 || outputPr 1 | 0 50 100 150 200 250 0 50 100 150 200 250
C 1 ||] time (s) time (g}

Figure 5.11: View of the industrial boiler virtual-lab.

88 5 Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and Modelica/Dymola

5.8 Case study IV: heat-exchanger virtual-lab

The physical model of the heat-exchanger has been composed using the JARA 2i
Modelica library (see Section 2.5.5). The interactive model has been implemented
analogously to the chemical reactor (see Section 5.6) and industrial boiler (Section
5.7) models. That is, it has been implemented by extending the physical model
described in Section 2.5.5 and by including the required code to: (1) be useful
as a simulink block; and (2) implement the user’s changes in the value of the
interactive quantities.

The Simulink model is shown in Figure 5.12. The interactive model of the
heat exchanger, written in Modelica language, has been embedded within the
DymolaBlock block.

The view of the virtual-lab is shown in Figure 5.13. The main window (on the
left side) contains: (1) a diagram of the heat exchanger; (2) buttons to control the
simulation run (i.e., pause, reset and play); (3) sliders and a text field to modify
the input variables (i.e., liquid and gas flows, liquid and gas input temperatures,
and molar fraction of CO2 and SO; in the gas mixture); and (4) checkboxes to
show and hide three secondary windows: “Geometry Parameters”, “Modify State”
and “Characteristics”.

The “Geometry Parameters” window contains text fields that can be used
to modify the pipe length and diameters. The controls placed in the “Modify
State” window allow changing the temperature of the medium inside each control
volume (i.e., the cooling liquid, the gas mixture or the metal wall). Finally,

“Characteristics” is a window with several plots of the model variables.

m heatexchmodel

File= Edit

Yiew Simulation Format

Toolz

=10 x|

INEEEEE L

Ready

Iparam

Fause

Fause Simulink

Clkparam

%

Ckar

a

Iparam_signal
Iwar_sig
Istate_:
Ckpara
CEwar_

CHKstate_signal

1_zignal

:_zignal

Clstate

DymolaBlock

ClodiTime to Wrokspace

o0z |

| |nde] Bs

rlnpu{ temperature= 17,9

Input temperature=136,9
] [=

Input flow=0,00006 Input ﬂnw:ﬂ,17*|
C il o 3 |

& Geomeliy parameters

Pipe length:
Inner diam. pipe1:
Quter diam. pipe1:
Inner diam. pipe2:

Pause | Geometry Para.. [Modify state

Reset [v] Show diagrams Molar fraction CO2 =‘D,EDD

1

0019

0,022

0,033

Figure 5.12: Simulink model of the heat exchanger virtual-lab.

M [=[FII B Characteristics
50 Liguid temperatures Gas temperatures
S0
100
allle “r 9
an| 50
oL
10 1 1 a 1 L
0 50 100 150 0 50 100 150
tirme(s) time(s)
Wail temperatures Pumps temperatures
T T
100 | 100 |
b4 L
50 | 50|
] 1 1] 1 L
0 50 100 150 0 50 100 150
time(s) time(s)
i Lqumd Ffalw . 0E IGas F.lolnv" ‘
08| 04
o
@ 08 @ 03]
= 2
*pa| 202
02 7 oAl
00 0.0 | |
0 50 100 150 0 50 100 150
time(s) time(s)

Figure 5.13: View of the heat exchanger virtual-lab.

90 5 Virtual-labs Implemented by Combining Ejs, Matlab/Simulink and Modelica/Dymola

5.9 Conclusions

The feasibility of combining Modelica/Dymola, Matlab/Simulink and Ejs for
implementing runtime interactive simulations has been demonstrated. The use
of Modelica language has reduced considerably the modeling effort and it has
permitted better reuse of the models. Ejs’ visual elements have allowed easy
creation of the virtual-lab view. This approach has been successfully applied
to setting up four virtual-labs intended for control education: the quadruple-
tank process, the chemical reactor, the industrial boiler, and the heat-exchanger

virtual-lab.

0.1

VirtualLabBuilder Modelica Library -

User’s Perspective

Intfroduction

A fundamental goal of this research work is to facilitate the description and
implementation of virtual-labs using only the Modelica language. To achieve this
goal, a Modelica library has been designed and programmed. This library, named
VirtualLabBuilder, contains Modelica models implementing graphic interactive
elements, such as containers, animated geometric shapes, basic elements and

interactive controls. These models allow the virtual-lab developer:

1. To compose the virtual-lab view.

2. To link the visual properties of the virtual-lab view with variables of the

virtual-lab model.

3. To link HTML pages to the virtual-lab view. These HTML pages are

intended to serve as virtual-lab user’s documentation.

The discussion about VirtualLabBuilder design and use has been structured

into Chapters 6 and 7:

— A library description oriented to the virtual-lab developers and some cases

of use are provided in Chapter 6.

92 6 VirtualLabBuilder Modelica Library - User’s Perspective

— Details about the design and implementation of the library, that might be

of interest to the VirtualLabBuilder developers, are discussed in Chapter 7.

Finally, the feasibility of setting up virtual-labs of complex Modelica models
by using VirtualLabBuilder is demonstrated in Chapter 8. For that purpose, a
virtual-lab showing the thermodynamic behavior of an experimental house has
been implemented. This model was developed by M. Weiner as part of his M.S.
thesis (Weiner 1992, Weiner & Cellier 1993).

6.2 Design objectives

The purpose of the VirtualLabBuilder library is to facilitate the implementation
and execution of a virtual-lab completely described in Modelica language. The

following objectives have been taken into account for the design of the library:

1. To have a set of Modelica classes representing each one a graphic component

displayed by the virtual-lab view.

2. To allow easy description of the virtual-lab view, using an object oriented

methodology, and to be able to describe complex virtual-lab views.
3. To automatically generate the executable code of the virtual-lab view.

4. To automatically generate, in a way completely transparent to the user, the
code required to perform the runtime communication between the virtual-

lab model and view.

6.3 Overview of the proposed approach

The virtual-lab definition includes the description of the introduction, the model,
the view, and the bidirectional flow of information between the model and the

view. The virtual-lab definition process is outlined next.

6.3 QOwverview of the proposed approach 93

1. Virtual-lab model. Any Modelica model can be transformed into other
Modelica model suitable for interactive simulation. A systematic methodol-
ogy to perform this transformation was proposed in Section 4.2. Essentially,
it consists in modifying the model so that all the variables that need to be
changed interactively during the simulation (i.e., the interactive variables)
are formulated as state variables. In particular, parameters are redefined
as time-dependent variables whose time-derivative is equal to zero. In-
put variables are reformulated analogously in order to become interactive
variables. Modelica’s when clause and reinit operator allow describing
instantaneous changes in the value of the state variables. This feature
is exploited in order to perform the instantaneous changes in the value of
the interactive variables produced by the user’s interaction. Some of these
model manipulations could be performed automatically by a software tool.
However, at the present time, they have to be carried out manually by the

virtual-lab developer.

2. Virtual-lab view. The virtual-lab developer has to define a Modelica
class describing the virtual-lab view. This class has to extend another
class, named PartialView, that is included in VirtualLabBuilder library (see
Figure 6.1a). The communication interval (i.e., time interval between to
consecutive model-view communications) is a parameter of the PartialView
class (T,om), that can be set by the virtual-lab developer. PartialView class
contains a pre-defined component: the root element for the view description.
The classes describing the graphic components are within the Containers,
Drawables, InteractiveControls and BasicElements packages of VirtualLabBuilder
library (see Figures 6.1b, 6.1c, 6.1e and 6.1f respectively). The virtual-
lab designer has to compose the virtual-lab view class by instantiating
and connecting the required graphic components. The graphic components
have to be connected forming a structure, whose root is the root element.
The connections among the graphic components determines their layout
in the virtual-lab view. VirtualLabBuilder’s graphic components and their

connection rules are discussed in Section 6.4.

94

a)

d)

6 VirtualLabBuilder Modelica Library - User’s Perspective

Packages e
= WirtualL abBuild
] virtualLabBuilder i | F X
=] ¥LabModels
VirtualLab
[] Partialview M airFrame Dialog
=] ViewE lements
. ParentRoat L b f:r\/\. L D D JTEXt
() ChidRoot 9 1 J)

[T Containers
H] Drawables
] InteractiveControl:

L,]
[BasicElsments d ‘é:_/j’— | i ;//}ﬁ% E echan...

Fanel DrawingPanel Folygon Owval Text Ao

[T Examples
3 i sic b) PlattingP anel <) Trail Trail5 et Polygon st Mechanics
] L]
- . 3 o= a a
Diamper DamperSet Slider SliderS et MurnberField Label CheckBox
L, L,
. ._fVV_ @ b b Pais...
7= ool 4 4 q q
Spring CpringSet e) | FadioButtan Buttonl&ction ButtonZéctions |)] PauseButtan InfoButtan

Figure 6.1: VirtualLabBuilder library: a) general structure; and classes
within the following packages: b) Containers; c) Drawables; d) Mechanics;
e) InteractiveControls; and f) BasicElements.

3. Virtual-lab set up. The virtual-lab developer has to define a Modelica
class describing the complete virtual-lab. This class has to contain an
instance of the VirtuallLab class, which is within the VirtualLabBuilder library
(see Figure 6.1a). VirtualLab class has the following parameters: the model-
to-view communication interval (7o), the name of the Java file (the
content of this file is generated during the model initialization process), the
class describing the virtual-lab model, and the class describing the virtual-
lab view (see Figure 6.2). These two classes have been programmed in Steps
1 and 2 respectively. The virtual-lab designer has to set the value of these
parameters by writing the name of these two classes. In addition, he has
to specify how the variables of the model and the view Modelica classes are
linked. This is accomplished by writing the required Modelica equations

inside the Modelica class defining the complete virtual-lab.

4. Virtual-lab translation and execution. The virtual-lab developer needs

to translate using Dymola (Dynasim 2006) an instance of the Modelica class

6.3 QOwverview of the proposed approach 95

Component

Marne interactive

Comment
M odel
Path WirtualLabBuilder WLabM odels VirtualLab
Comment
Parameters
Tcom 0.0m } Communication interval
fileM ame > Mame of the java file
Wiewl tank 1 Outputyiew #| Class describing the vittual-lab view
Modell interactivetd odel #| Class describing the vitual-lab model

ok [e || cancs |

Figure 6.2: Parameter window of the VirtuallLab class.

defined in Step 3 into an executable file (i.e., dymosim.eze file). The virtual-

lab is started by executing this file.

5. Automatic code generation and run. At the beginning of the simu-
lation run, some calculations are performed in order to solve the model at
the initial time. The initial sections of the Modelica model describing the
virtual-lab are evaluated. In particular, the initial sections of the interactive
graphic objects composing the virtual-lab view class and of the PartialView
class are executed. These initial sections contain calls to Modelica functions,
which encapsulate calls to external C-functions. These C-functions are
Java-code generators. As a result, during the model initialization, the Java
code of the virtual-lab view is automatically generated, compiled, packed
into a jar file and executed. Also, the communication procedure between the
model and the view is automatically set up. This communication is based on
a client-server architecture: the C-program generated by Dymola (Dynasim
2006) (i.e., dymosim.exe, see Step 4) is the server and the Java program
(which has been automatically generated during the model initialization)
is the client. Once the jar file is executed, the initial layout of the virtual-
lab view is displayed and the client-server communication is established.

Then, the model simulation starts. During the simulation run, there is a

96 6 VirtualLabBuilder Modelica Library - User’s Perspective

bi-directional flow of information between the model and the view. The
model sends the data required to refresh the view and the view sends the
value of the variables modified due to a user action at the time instant when
the communication is performed. The time interval between two consecutive

model-view communications was defined in Step 2.

6.4 VirtualLabBuilder library architecture

VirtualLabBuilder library is composed of the packages shown in Figure 6.1a. Some
of them are intended to be used by the virtual-lab developers (i.e., VirtualLab-

Builder users). These are:

1. ViewElements and VLabModels packages, which contain the classes required

to implement the virtual-lab view and to set up the complete virtual-lab.

2. Examples package, which contains some tutorial material illustrating the

library use.

The documentation of these packages is oriented to the VirtualLabBuilder
users.

On the other hand, the classes within the src package are not intended to be
directly used by the virtual-lab developers. The documentation of this package
describes the implementation details required to modify and extend the Vir-
tualLabBuilder library. In fact, the classes within ViewElements and VLabModels
packages inherit from classes defined within src package, inheriting the structure
and the behavior, and adding only the documentation oriented to the virtual-lab

developer. The content of this package will be described in Section 7.2.

6.5 PartialView and VirtualLab classes

V0LabModels package contains two classes: PartialView and VirtualLab. The purpose

of PartialView and VirtualLab classes was briefly described in Section 6.3. PartialView

6.6 Interactive graphic elements 97

class has to be the super-class of the model defining the virtual-lab view. The
class describing the complete virtual-lab has to contain an instance of VirtualLab
class. Implementation details can be found in Chapter 7. ViewElements package

is discussed in the next section.

6.6 Inferactive graphic elements

ViewElements package contains the graphic elements that can be used to define the
view. The initial sections of these elements contain calls to Modelica functions
that perform calls to external C-functions. These C-functions write the Java code
of the elements to a file, generating automatically the Java application (i.e., a .jar
file) that is the virtual-lab view. The four packages included within ViewElements

are described below.

6.6.1 Containers package

Containers package has those graphic elements that are intended to host other
graphic elements. The container properties are set in the view definition and
they can not be modified during the simulation run. VirtualLabBuilder contains

the following five classes of containers (see Figure 6.1b):

— MainFrame class creates a window where containers and interactive controls
can be placed. The view can contain only one MainFrame object. The user

can stop the simulation by closing this window.

— Dialog class creates a window where containers and interactive controls can
be placed. This class has only two differences with MainFrame class: (1)
simulation run does not stop by closing this window; and (2) there can be

more than one Dialog object.

— Panel class creates a panel where containers, interactive controls and basic

elements can be placed.

6 VirtualLabBuilder Modelica Library - User’s Perspective

— DrawingPanel class creates a two-dimensional container that only can contain
drawable objects. It represents a rectangular region of the plane which is
defined by means of two points: (XMin, YMin) and (Xmax, YMax). The
coordinates of these two points (i.e., the value of XMin, XMax, YMin and

YMax) are parameters of the class whose values can be set by the user.

— PlottingPanel class creates a two-dimensional container with coordinate axes

that only can contain drawable objects.

The MainFrame, Dialog and Panel classes have a parameter that specifies their
layout policy. It sets where the elements placed within the element are located.
Possible values are BorderLayout, GridLayout, HorizontalBox, VerticalBox and FlowLay-
out. Elements hosted inside a container that don’t contain drawable objects have
to specify their position (i.e., north, south, east or west) only if the layout policy

of their container is BorderLayout.

6.6.2 Drawables package

Drawables package contains several classes implementing interactive 2-D shapes,
whose properties (i.e., size, position, rotation angle, aspect ratio, color, etc.) can
be linked to the model variables. They are intended to be used for building
animated and interactive schematic representations of the system. These classes
are: Polygon, PolygonSet, Oval, Text, Arrow, Trail and TrailSet (see Figure 6.1c). These
elements draw a polygon, a set of polygons, an oval, a text, a vector, a trace, and
a set of traces respectively.

Objects of Drawables classes must be placed inside containers that provide a
coordinate system (i.e., containers of DrawingPanel and PlottingPanel classes).

In addition to this general-purpose interactive components, other domain-
specific components can be implemented. In order to demonstrate this capa-
bility, the Mechanics package has been included within Drawables package (see
Figure 6.1d). It contains four classes (i.e., Damper, DamperSet, Spring and SpringSet)
implementing an interactive damper, a set of interactive dampers, an interactive

spring and a set of interactive springs.

6.6 Interactive graphic elements 99

6.6.3 InteractiveControls package

InteractiveControls package contains classes that allow modifying interactively the
value of the model variables. Each class includes the definition of an input real

variable (var) and a boolean variable (event).

— The event variable is true at those time instants at which the interactive
control is manipulated by the virtual-lab user. Otherwise, the event variable

is false.

— The interactive model variable can be linked to the var variable by writing

the corresponding equation.

This package contains the following classes:

— Slider class creates a slider.

— NumberField class creates an element that allows displaying and editing a

numeric value.
— RadioButton class creates a radio-button.

— ButtonlAction class creates a button. The var variable is equal to one when
the button is pressed and it is equal to zero otherwise. This variable can be
used as a condition in a when clause. This way, the when clause is executed

whenever the virtual-lab user presses the button.

— Button2Actions class creates a button. The var variable changes alternatively
from zero to one and from one to zero whenever the button is pressed. By
programming the corresponding when clauses, it is possible to associate two
different actions to this button: an action is triggered when wvar changes
from zero to one, and the other action is triggered when var changes from

one to zero.

— SliderSet class creates a set of N sliders, where IV is a class parameter. This
class contains N instances of the Slider class. Each slider is connected to

the next one following the connection rules described in Section 6.7.

100 6 VirtualLabBuilder Modelica Library - User’s Perspective

6.6.4 BasicElements package

BasicElements package contains classes that can be hosted inside a window or a

panel. This package contains the following classes:

— Label class creates a decorative label.

— CheckBox class creates a checkbox. The checkbox allows to show or hide the

virtual-lab windows.

— PauseButton class creates a button that allows the user to pause or resume

the simulation by clicking on it.

— InfoButton class creates a button that allows the user to show or hide a win-
dow displaying HTML pages. This feature allows including documentation
in the virtual-lab. That is to say, it supports the implementation of the

virtual-lab introduction.

6./ Connection rules

The interface of the interactive graphic components is composed of connectors,
which facilitate the connection among the components. Four connector types have
been defined. Each one has a distinctive icon. Connector icons are squared or
circular, empty or filled. The following two types of interfaces have been defined

(see Figures 6.1b, 6.1c, 6.1d, 6.1e & 6.1f):

1. Interface of container components. It has three connectors (see Figure 6.1b).
Two placed on one side (called “left connectors”) and the third one (called

“right connector”) placed on the opposite side.

2. Interface of interactive controls, basic elements and drawable elements. It
has two connectors (called “left connectors”): one filled and one empty (see

Figures 6.1c, 6.1d, 6.1e & 6.1f).

The virtual-lab programmer must observe the following three rules when

connecting the graphic elements:

6.7 Connection rules 101

1. Only connectors with the same shape (circular or squared) can be con-

nected.

2. Each filled connector must be connected to one and only one empty con-

nector.

3. Each empty connector can be left unconnected or can be connected to one

and only one filled connector.

The meaning of the connections among the graphic components is as follows:

— If two components are connected using their “left connectors”, then both
components are hosted within the same container. The component position
in the chain of connected elements determines its insertion order within the

container.

— If two components are connected using the “right connector” of the first
component and a “left connector” of the second component, then the second

component is hosted within the first component.

Example. The following example tries to illustrate how the graphic elements can
be used to compose the view of a virtual-lab. In particular, the view of the tank
process described in Section 4.2. The Modelica description of the virtual-lab view
and the obtained virtual-lab are shown in Figure 6.3a and Figure 6.3b respectively.
In this case, the model of the tank process has only one state selection and one
state variable (the liquid level).

The mainFrame and dialog components are hosted inside root. The dPanel, panelS
and panelN components are hosted inside mainFrame. The C component is hosted
inside panelN. The pipe, vase, ligPipe and liquid components are hosted inside dPanel.
The a, A, v and h components are hosted inside panelS. The plot component is
hosted inside dialog. Finally, the component trail of the Trail class is hosted inside
plot.

The window showing the component parameters is displayed by double click-
ing on the component icon. The parameter windows of the components trail, a

and mainFrame are shown in Figures 6.4a, 6.4b and 6.4c respectively.

root .
mainFrame

dialog

a)

a=010
= 154
010 025 040 0,55 070 100 175 250 325 400
w-0,01 h =328
. - . , .
G =} 0.0 50 100 150 200
000 025 050 075 100 100 325 550 7,75 10,00 time (s) x10%

Figure 6.3: Tank process: a) Modelica description of the virtual-lab view;
and b) virtual-lab.

Add modifiers |
Comporent Ieon
Add modifiers ‘
Name [a |
Comparent lean Comment | | * Zider
Wame il | oi
. Model
Conmert | | e Path Vituall abBuilder ViewElements InteractiveControls. Slider
o
Model Comment
Path VirtualLabBuilder ViewElements. Drawables. Trail n
F
Carment " . . .
position "CEMTER" |[w¥| Position inside its container
P stringFormat "5=000"¥ Format of the text displayed by the component
asimumPoints 1000/5] Masimum number of points to be crawn tickFarmat U0)] Format of the text displayed with the licks
nSkip 0[] Mumber of points to skip before ploting one tickhumber 3| Number of ticks
ineColor (000255 WIERp Lie colr minimum 07t Minimum valie of the variable finked ta the companent
conEs] Whether te cannect nest point with the previous maximum 0.71» Marimum walue of the varable inked to the component
factr 1 Scale factar
enable Ctre’ syl True if the component is enabled
l oK] l Info] [Cancel]
ok | [e][Cancel
a)

lcon

Virtuall abBuilder WigwE lements. Containers.MainF rame

Component
Mame | mainFrame
Camment |

Model
Path
Comment
title: "MainFrame
#Pasition [
yPosition a
width 500
Height 500
LayoutPolicy |BorderLayout(]” M
rRows 1
nCalurires 1

¥ ¥) 7 ¥ [[

Text display as title

% coordinate of the window upper left comer in pixels
¥ coordinate of the window upper left comer in pizels
Window width in pixels

Window height in pizels

Laypout palicy

MNumber of rows when GridLapout palicy is selected
MNumber of columns when GridLayout policy is selected

<)

[ok][mia][Cancel

Figure 6.4: Parameter window of the following components: a) trail; b) a;

and c) mainFrame.

6.8 Case study I: virtual-lab of an industrial boiler 103

6.8 Case study I: virtual-lab of an industrial boiler

The approach discussed in the previous sections is applied to the implementation
of a virtual-lab for control education. This virtual-lab has been designed to illus-
trate the dynamic behavior of an industrial boiler operating under two different

control strategies: manual and decentralized PID.

6.8.1 Virtual-lab model

The physical model of the industrial boiler has been composed using the JARA 2i
Modelica library (see Section 2.5.4). The Modelica diagram of the boiler model
is shown in Figure 6.5. The control system of the boiler is composed of two
decoupled control loops: (1) the water level inside the boiler is controlled by
manipulating the pump throughput; and (2) the output flow of vapor is controlled
by manipulating the heater power. The two PID have limited output, anti-windup
compensation and setpoint weightings. Each PID has the following interactive
parameters: proportional gain (K,), integral time constant (77), derivative time
constant (Ty), setpoint weight for the proportional term (w,), setpoint weight
for the derivative term (wy), anti wind-up compensator constant (N;), derivative

filter parameter (Ny), lower limit for the output (ym:n) and upper limit for the

output (Ymaz)-

6.8.2 Virtual-lab view

The Modelica description of the virtual-lab view is shown in Figure 6.6. It
automatically generates the Java code of the interactive graphic interface shown
in Figure 6.7. The relationship between the Modelica description and the corre-
sponding graphic interface is briefly explained next.

The Modelica model describing the view must extend the PartialView class,
which contains one pre-defined graphic element: root. The root component has

three components hosted inside it: mainFrame of MainFrame class and dialog and

104

6 VirtualLabBuilder Modelica Library - User’s Perspective

WO

chtrl

heatFlow
licgFlaae
MolF 3P
-WatarSP
}/—‘ : 0

Figure 6.5: Diagram of the boiler model.

TN .

aLtomatic

dialogl of Dialog class. The components mainFrame and dialog generate the two
windows shown in Figure 6.7.

The mainFrame layout policy is set to BorderLayout, in order to allow selecting
the position of the hosted elements (i.e., north, south, center, east or west
positions). In this case, three containers are placed inside mainFrame: drawingPanel

(of DrawingPanel class), and panelNorth and panelSouth (of Panel class).

— drawingPanel is placed in the center of the mainFrame. This component
contains the animated diagram of the plant. This diagram is composed
of drawable elements of Polygon, Oval, Text and Arrow classes. The liquid,
heating system, pump and valve are represented by components of Polygon
class. The two controllers are represented by components of Oval class and
the set-point of the liquid volume is represented by a component of Arrow

class.

— panelNorth hosts interactive controls of RadioButton, InfoButton, PauseButton

and Slider classes. The two radio-buttons allow the user to select the control

L4
o dialog

clialog S

—

2 b1

[

§

§

o

Figure 6.6: Diagram of the Modelica description of the view.

[] control param. @ automatic 2 manual [] Show plots
heatFlow (J) = 1 (liquid (m~3/s) = 0,0
b= pause oin_f()
0 10000000 | -D,02 0,02
-
iog Sox
Kp1=10 Kn2 = 5000000
[: i F [: {)
0,00 D44 0,89 133 1,78 0 10000000
@D Ti1=9,0 Ti2=21
10 30 50 70 90 (1,0 30 50 70 90
Td1=0,1 Td2 =0,02
0,0 1000 0.00 0,22 0,44 0,67 0,89
H1=10 H2=10
pressure (atm) = 11,0 Boiler volume (m*3) = 5,7 d:‘
- p 0,0 1000 | 0,0 100,0
0,00 667 1333 20,00 26,67 1,00 256 4,11 567 7,22 Tt1=10 Tt2=10
opening = 1,00 waterMikg) = 2200 C
] [| 0,0 1000 0,0 100,0
00 02 04 07 09 [|[2000 3778 5556 7333 91 B1-10 B2-10
waterT (K) = 420,0
Set Point —_—l— 00 04 05 13 18 |60 04 09 13 18
<l ol ~ulow1=0,02 ulow? =0
2700 3878 5056 6233 7411 c !
A3)= o
waterSP(m~3) ﬁZ,IJ vaporhol 1':73 00 78 56 -33 11 0 1000000
uhigh1 = 0,02 uhigh=5000000
00 07 13 20 27 0 114 889 1333 1778 {
vaporiol = 4 gasTemp (K) = 463,0 00 22 44 67 89 1] 10000000
=0 : Iy
0 4 a 13 18 2700 3878 5056 6233 7M1

Figure 6.7: View of the boiler virtual-lab

106

6 VirtualLabBuilder Modelica Library - User’s Perspective

strategy (manual or decentralized PID). The two sliders allow the user to
change the pump input flow and the heater heat-flow when the manual
control strategy is selected. The button of the InfoButton and PauseButton
classes allows the user, respectively, to pause and resume the simulation
and to display a window with the information about the virtual-lab (see

figure 6.8).

— panelSouth hosts interactive controls of Label and Slider classes. These sliders
allow the user to perform interactive changes in the value of the boiler
volume, the output pressure, the valve opening, the water volume and the
vapor flow set points, the mass and temperature of the water, and the vapor

moles contained inside the boiler.

The dialog container hosts interactive controls of Slider class. These sliders
allow the user to change the parameter values of the two PID controllers.

The dialogl container generates the graphic interface shown in Figure 6.9.
This container hosts components of PlottingPanel class which contain drawables of
Trail class. These drawables generate traces that show the time evolution of some

relevant system variables (see Figure 6.9).

6.8.3 Virtual-lab set up and launch

The virtual-lab description is obtained as discussed in Section 6.3. It is translated
using Dymola and executed. Then, the jar file containing the Java code of the
virtual-lab view is automatically generated and executed. Then, the virtual-lab
view is displayed (see Figure 6.7).

The dynamic response of the boiler to a step change in the output pressure
is shown in Figure 6.9. This change has been interactively performed by the
virtual-lab user at the simulated time 243 s. The boiler is operating in automatic

control mode. The following four plots are shown in Figure 6.9:
1. Actual value of the vapor flow and its setpoint.

2. Heat generated by the heater.

Boiler Virtual-lab

The following figure shows a schematic diagram of the boier model.
The irgrut of Liguid water is placed at the boiler bottorn, and the sapour output sabve is placed at the top.
The water contained in the boder is continually heated.

The boiler model has been composed using coraponents from JARS 21 a version of JAR& Modelica brary that has

been acdaprted for interacttee sirolation.

T&B4 iz a Modelica hhrary of some findamental phorsical-chernical principles.

J&BRL's main application domain is the modslling of transport, thermo-fluid, phase change and chernical processes in the
g e, |

oark = 4

Figure 6.8: Introduction of the boiler virtual-lab.

S
[Dialog) =
Total molar flow (mols/s) Liguid Volume { m™3)
8.0 3.0
25
8.0
20
an J 1.5
10
2.0
0,5
0.0 T T T T T 0.0 T T T T T
1.0 2,0 30 4.0 4,0 1.0 2,0 30 4.0 4,0
e () 102 102
wio Heat Flow (J/s) Total mass flow (Kg/s)
6.0 30,0
40 20,0
2.0 10,0
0.0 | n.n—k
T T T T T T T T T T
1.0 2,0 30 4.0 4,0 1.0 2,0 30 4.0 4,0
e () ¥10? ¥10?

Figure 6.9: Time evolution of some selected variables of the boiler virtual-
lab.

108 6 VirtualLabBuilder Modelica Library - User’s Perspective

3. Actual value of the water volume contained inside the boiler, and its setpoint

value.

4. Liquid flow rate generated by the pump.

6.9 Case study ll: virtual-lab of a heat-exchanger

This virtual-lab illustrates the dynamic behavior of a double-pipe heat exchanger.
The model of this virtual-lab has been built using the JARA 2i library. This

model was discussed in Section 2.5.5.

6.9.1 Virtual-lab view

The Modelica description of the virtual-lab view and the Java view generated
are shown in Figures 6.10 and 6.11, respectively. The relationship between the
Modelica description and the corresponding graphic interface is briefly explained
next.

The root component has two components hosted inside it: MF of MainFrame
class and dialog of Dialog class. The components MF and dialog generate the two
windows shown in Figure 6.11.

The MF layout policy is set to BorderLayout, in order to allow selecting the
position of the hosted elements (i.e., north, south, center, east or west positions).
In this case, three containers are placed inside mainFrame: DP (of DrawingPanel

class), panelN and panelS (of Panel class).

— DP is placed in the center of the MF. This component contains the animated
diagram of the longitudinal section of the heat-exchanger. This diagram is
composed of drawable elements of Polygon and PolygonSet classes. Each liquid
control volume has been represented by a rectangular polygon whose filling
color depends on the temperature of the liquid inside the control volume.
Analogously, each gas control volume has been represented by a rectangular

polygon whose temperature depends on the temperature of the gas inside

0T

Figure 6.10: Modelica description of the heat-exchanger virtual-lab view.

input Temperature Lig (K)= 291

Input Temperature Gas {(K)= 400

283,00 290,50 298,00 30550
Input Flow Lig (Koi's)= 0,5

. D=

313,00 33300 35300 373,00 39300 413,00

Input Flow Gas {(molis)= 0,2
1

0,00 0,12 0,25 0,38 0,50 0,00 0,10 0,20 0,30 0,40
Show plots
Gas pressure (Pa) = 500000 Molar Fraction CO2 = 0,50
C o c .
100000 1000000 | 0,00 0,25 0,50 0,75 1,00
Pipe Length {m)= 1,0 Inner diameter pipe1 {(m)= 0,02
: o ‘ D=
05 09 1.2 1,6 2,0 0,01 0,01 0,02 0,02 0,02
‘Quter diameter pipe1 (m)= 0,02 ‘Quter diameter pipe2 (m) = 0,04
0,02 0,02 0,03 0,03 0,04 0,04 0,04 0,04 0,05 0,05

wn’ Liguid temperature x10* Gas temperature
i
3,2
384
= g4 = (—;
F Y —
2,89 ——————————
0.0 200 40,0 600 0,0 20,0 400 50,0
time (s) time (s)
¥10? Wall temperature #10% Pump temperature
4,04 4,04
« BiEhT v 3484
3,0 a0
A I T i
| : : : : : :
0,0 20,0 40,0 60,0 00 20,0 40,0 60,0
time (s} time (s)
Liquid flow K02 Gas flow
1,0 50,0
0,89 40,04
o 0,64 30,0
) 5
U.“-J E30,04
0,2 10,04
0.0 T T T o, T T T
0,0 20,0 40,0 60,0 00 20,0 40,0 60,0
time {s) fime ()

Figure 6.11: View of the heat-exchanger virtual-lab.

110

6 VirtualLabBuilder Modelica Library - User’s Perspective

the control volume. Color changes from blue (lower temperatures) to red

(higher temperatures).

— panelN hosts interactive controls of Slider and CheckBox classes. The sliders
allow the user to change the pump input temperature, and flow of liquid and

gas. The checkbox allows the user to show and hide the “Dialog” window.

— panelSouth hosts interactive controls of Slider class. These sliders allow the
user to perform interactive changes in the value of the pipe length, inner
and outer diameter of the inner pipe, outer diameter of the outer pipe, gas

pressure and molar fraction of COs.

The dialog container generates the right window shown in Figure 6.11. This
container hosts components of PlottingPanel class, which contain drawables of Trail
and TrailSet classes. These drawables generate traces that show the time evolution

of some relevant system variables.

6.9.2 Virtual-lab set up and launch

The virtual-lab description is obtained as discussed in Section 6.3. It is translated
using Dymola and executed. Then, the jar file containing the Java code of the
virtual-lab view is automatically generated and executed, and the virtual-lab view
is displayed (see Figure 6.11).

The response to a step change (from 0.3 to 0.5 kg/s) in the liquid flow,
performed interactively at time = 44 s, is shown in Figure 6.11. The following

six plots are shown in the right window of the Figure 6.11:
1. Temperature of each liquid control volume.
2. Temperature of each gas control volume.

3. Temperature of each solid control volume corresponding to the inner pipe

wall.
4. Temperature of the liquid flow generated by the pump.

5. Liquid flow rate generated by the pump.

6.10 Case study III: virtual-lab of a washing machine 111

6. Gas flow rate generated by the pump.

6.10 Case study lll: virtual-lab of a washing machine

The implementation of a virtual-lab for testing designs of drum-type washing
machines is discussed. It is applied to the analysis of an industrial washing
machine (120 Kg load capacity) manufactured by Fagor Industrial. The work
presented in this section is the result of a collaboration with the Mechanical
Engineering Department of the IKERLAN Technological Research Center (Mon-
dragén, Spain). The physical model of the drum-type washing machine and
an important part of the virtual-lab view design has been developed by the
IKERLAN engineers. The adaptation of the physical model to be suitable for
interactive simulation and the implementation of the virtual-lab view have been
part of this thesis work.

The virtual-lab supports interactive changes in the position and properties of
the springs and the dampers, the properties of the inner and outer drums, and
the mass and position of the load. Simulation results are in good agreement with
the experimental data. The virtual-lab has demonstrated to be a valuable design

and analysis tool, allowing the user:
— To get insight into the system behavior.
— To tune the system parameters in order to improve the dynamic behavior.

— To simulate special events, such as a component breakage.

6.10.1 Washing machine dynamic analysis

Drum-type washing machines are widely used in Europe. They are composed of
an inner drum that rotates inside an outer drum, with a horizontal axis, making
the clothes tumble upward and downward during washing cycle (see Figure 6.12).
During the drying cycle, clothes are subjected to both the gravity force (g) and

the centrifugal force, generated by the inner drum rotational speed.

112

6 VirtualLabBuilder Modelica Library - User’s Perspective

Front view Side View

A}‘dr{s

\ /v Motor
D.

ampers

Figure 6.12: Schematic dynamic model of the washing machine.

When the centrifugal force is bigger than “¢”, the clothes tend to stick to the
inner drum wall. In some cases, it results in a non homogeneous distribution of
the clothes’ mass around the periphery of the inner drum. This is mainly due to
the different composition of the tissues. Imbalance occurs when clothes’ center of
mass does not coincide with the inner drum rotation axis, and it induces vibration
to the outer drum.

In order to reduce the vibrations transmitted to the floor, the outer drum
is suspended with springs. The forces transmitted to the frame (floor) can be
drastically reduced if the resulting natural frequency (spring-drum) is very low.
On the other hand, suspended drum movements can become uncontrollable when
passing through the natural frequency and at low rotational speeds, which can
cause collisions against the frame. Friction dampers are normally used to limit
these movements.

Suspended drum movement depends on many factors. For example, the
suspended mass inertia, the spring and damper positions and characteristics, the
unbalanced mass value and location, and the spinning speed profile. All these
parameters must be tuned for each new design, in order to minimize the drum
displacements and the forces transmitted to the frame.

Accurate models of the drum dynamic, including unbalance load effects, can
not be derived analytically due to the complexity of the dynamic behavior, influ-

enced by those parameters and their interactions. This limitation is even more

6.10 Case study III: virtual-lab of a washing machine 113

= ﬁ W azhingh achine
WirtualLab
= [T ModelDezcription
Lavadoratdodelo

seaFriction_Damper_3D

waraSpring
willi Body
=22 5pringT

- at lerat]

@Trapezoid R Centered_Mass
—aFixedTranslation 4[‘
Interactivetodel

A L m=m
= [ViewDescription signal_1
Vi Inner_drum

O Wiew

[:| L doravi N Inlaer_drumi_ ..

avadorayisw
] : period=5 002 r={0.0,-Z_pa}.

]:| spraliaiow =001} Uncentgqre:deass
]:| DamperD atafiew Fiearing=_inner_outer_drum —

D Iniertiaiew —~

[:l OuterD rum'iew Signal_2 e

) Outer_dl..
D Clathes\iew - Quter_drum
. F={0,0,L.

D InnerD rum'iew /__/ Lﬁ‘
]:| PaintGraphicsiew period=5.002 speslSe SO o e
]:‘ CustomPointyiew world

F suelo_centro_lavadara

D DamperGraphicstiew w k=9.543 l l l I I:I:x altura,_lavadora
U UnbalancedClothes'iew >,

D SpringGraphicsiew speedSensor_nubg "PT-OUEr_drum

T JkSpringview

Y
a) D DD amperyizw b) T 540

Figure 6.13: a) WashingMachine library; and b) Modelica diagram of the
washing machine physical model.

evident when analyzing big-size washing machines (40 to 120 kg load capacity),
which are suspended by several couples of springs and dampers. The dynamic
behavior of the suspended drum can be successfully analyzed using rigid-body

dynamic modeling and computer simulation.

6.10.2 Multibody model

The Modelica classes required to describe the washing machine virtual-lab are
contained in the WashingMachine library (see Figure 6.13a). This library is
composed of the following two packages: ModelDescription and ViewDescription.
These packages contain the classes required to describe the model and the view
of the virtual-lab, respectively.

The Modelica diagram of the washing machine is shown in Figure 6.13b. It

has been composed using models contained in the MultiBody library (Otter et al.

114

6 VirtualLabBuilder Modelica Library - User’s Perspective

2003), which is one of the Modelica Standard libraries (Modelica 2007). An
application of MultiBody library to the modeling of a household washing machine
is described in (Ferreti & Schiavo 2006).

All the bodies, except the springs, have been considered rigid. The suspended
drum is composed of the following four bodies: outer drum, inner drum, centered
and un-centered mass. These masses are attached to the inner drum. One
rotational degree of freedom (DoF) is allowed between the inner and the outer
drums.

The suspended drum has six DoF. Its dynamic behavior is governed by the
forces generated by the mass of the uncentered clothes, the gravity, and the
forces exerted by three pairs of springs and dampers. The springs and dampers
are modeled as ideal elements (i.e., the force is proportional to the relative
displacement or speed, respectively). Additionally, an external mass-free frame is
considered. The springs and dampers are attached to this frame. This approach
allows the computation of the floor reaction forces.

The model has been adapted applying the methodology discussed in Section
4.2 to allow interactive changes in the position and properties of the springs
and the dampers, the properties of the inner and outer drums, and the mass and
position of the load. The model is intended to be used for tuning the value of these
parameters, in order to improve the washing machine dynamic behavior. The
evaluation of the suspended system displacement is accomplished for the following
two critical test conditions: spinning start up and spinning at maximum speed.
The dynamic behavior analysis is based on the following two key magnitudes:
(1) the displacement of the suspended system with respect to the external frame;
and (2) the forces transmitted to the floor. These forces can cause vibrations and

relative displacements of the frame.

6.10.3 Virtual-lab view

The Modelica description of the virtual-lab view has been developed modularly,
by extending and connecting the required graphic components of the Virtual-

LabBuilder library. The diagram of the Modelica class describing the virtual-lab

6.10 Case study III: virtual-lab of a washing machine

raot

L

lavadora damperDala innerDrum damperGraphics
i outerDrum _
- CUStomPOIHt RpminnerDrum
UL cClothes _ .
pointGraphics
E |: Springs Length
springData UClothes ’__

~

Figure 6.14: Modelica description of the washing-machine virtual-lab view.

115

view is shown in Figure 6.14. The view contains one main window and 15 dialog

windows. Each window of the virtual-lab view is described by a class. The classes

describing the main window and the dialog windows are briefly described below.

The diagram of the Modelica class describing the main window is shown in

Figure 6.15a. The component MF - of MainFrame class - generates the window

shown in Figure 6.15b. The MF layout policy is set to BorderLayout, in order to

allow selecting the position of the hosted elements (i.e., north, south, center, east

or west positions). It has two components hosted inside it: pCenter and pSouth,

both of Panel class.

— pCenter is placed in the center of the MF. This component contain the two

following containers of the DrawingPanel class: DP1 and DP2. These two

components contain, respectively, the animated diagram of the frontal and

lateral animated diagrams of the washing machine. These two diagrams

are composed of several drawable elements of Polygon, PolygonSet, Oval,

DamperSet and SpringSet classes.

— pSouth hosts several interactive controls of PauseButton, CheckBox, Label and

NumberField classes.

Checkboxes allows the user to show and to hide the

dialog windows. The button allows to pause and resume the simulation.

The spatial coordinates of system points are set using NumberField class

components.

. iMF I»l 'pCenter

pSouth

hlueStick

redStick

a) @,

(= MainkFrame

[Spring data [] pamper data | play |
[_] Inner drum data [] Outer drum data || Grapics of selected points
[] Spring lengths [] Damper length [] inner drum rpm
Customn point: X(my=[o100 [¥(my=lo100 |2 ¢m)=[ot00 |
b) [] Spring constants [] Damper constants [] Custom point graphic

Figure 6.15: Main window of the washing machine virtual-lab: a) Modelica
diagram; and b) Java view.

6.10 Case study III: virtual-lab of a washing machine 117

There are two types of dialog windows: (1) the windows containing plots
that display the time evolution of some model variables; and (2) the windows
containing interactive controls that allow the user to perform interactive changes
in the model variables.

The following windows contain the interactive controls (see Figure 6.16):

— “Spring Data” window allows changing the position of the springs extremi-

ties in relation to the frame and the outer drum.

— “Damper Data” window allows changing the position of the dampers ex-

tremities in relation to the frame and the outer drum.

— “Inner Drum” window allows changing the value of relevant properties of
the inner drum, including radius, mass, length, center of gravity (C.0.G)
position, center position and sheave position. Additionally, this window
contain checkboxes that allow the user to show and hide three dialog win-
dows. These three windows contain interactive control elements that allow
changing the C.O.G. mass and position of the centered and unbalanced load
and the inertia matrix of the inner drum. The Modelica diagram associated
to this window and the graphic interface generated are shown, respectively,

in Figures 6.17a and 6.17b.

— “Outer Drum” window allows changing the value of the properties of the

outer drum (i.e., radius, mass, inertia and position of its C.0.G).
— “Spring constant” window allows changing the value of the spring constants.

— “Damper constant’” window allows changing the value of the damper con-

stants.

The virtual-lab contains five plot windows displaying the time-evolution of

the following variables:

— Damper lengths. The Modelica diagram associated to the window dis-
playing the time evolution of the damper lengths and the graphic interface

generated are shown, respectively, in Figures 6.18a and 6.18b. The Modelica

= Inner drum

Radus (m) © 0,675 mass (Kg) © 318,000

C.0.G. (my X : [o,000 ¥ |o000 Z: 0,374

Z pos. of sheave (m) (0,775 Length of imer dram () |0,800

[]nertia [| Centered clothes [| Unbalanced clothes

Heigth from floor to dmm center (m): *:[0,000 ¥: 1,000 Z: 0,000)

X

=)

= Quter drum

Radius () |0,712) mass (Kg) |2038,000) []inertia

C.O.G. (m):

¥ [ooo0 ¥ 0244 2 [0,081]

= "Damper data

X pos. at outer dram (m): 0,670 ¥ pos. at outer dram (m): |-0,800
Zpos. at outer drum () Front 0,450 Center |0,000) Rear |-0,450]
¥ pos. at frame (m): |0,800) Heigth of damper in ¥ (m): (0,222

7 pos. at frame (m); Front 0,450/ Center |0,000) Rear |-0,450

= Spring data

X pos. at outer drum (m): |0,688) Y pos. at outer dram (m): -1 JES
Z pos. at outer drum (o) Frnnt 58 CE:ntE:r U 0oo Rear U 585
X Pozttion at frame (m): |0,750 Heigth of spring in ¥ (m): D 400
Z Position at frarme (o) Frnnt 58 Center D 0oo Raar D 585
= Spring constant
K1 *{1ed4 Nim) = 100 C1 (M) =250
1
] 1] 1] 1 1 1 1] 1 1
25 269 512 756 1000 1] 1000 |
K2 * {1ed4 N/m) = 100 C2 {N) =250
=} L}
| 0 I 0 I 0 1 0 1 | 0 1
25 269 512 il 1000 | 1] 1000
K3 * {1e4 Nim) = 100 CI{My=0
=0 il © '
| 0 | 0 | 0 I 0 | { 1
25 269 512 756 1000 1] 1000 |
K4 * {1ed4 Nim) = 100 C1{My=0
| 0 I 0 I 0 1 0 1 | 0 1
28 269 512 Fiili] 1000 |] 1000
K5 * {1ed Him) = 100 CH {N) = 250
=) .
| 1 | 1 | 1 1 I 1 I ! 1
25 269 512 Fiili] 1000 1] 1000 |
K6 * {124 N/m) = 100 Cé {N) = 250
| 1 | 1 | 1 1 1 1 | 1 1
28 269 512 Fiili] 1000 |] 1000

Figure 6.16: Windows “Spring Data", “Damper Data”, “Inner Drum”, “Outer
Drum”, “Spring constant” and “Damper constant” of the washing machine
virtual-lab.

6.10 Case study III: virtual-lab of a washing machine 119

= Inner drum

Radus (m) : |1,675 mass (Kg) : |312,000

C.0.G. (my X : 0,000 ¥: (0,000 Z: 0,374

Z pos. of sheave (m) : 0,775 Length of inner drom () (0,800

[nertia [| Centered clothes [| Unbalanced clothes

Heigth from floor to drum center (rm): % [o,o00) ¥: 1,000 Z: [o,000

b)

inertia

a)

Figure 6.17: “Inner drum” window of the washing machine virtual-lab view:
a) Modelica diagram; and b) Java view.

diagram describing this window contain components of the PlottingPanel and

Trail classes.
— Spring lengths.

— Position of a system point, which can be interactively chosen by the virtual-

lab user.
— Position of certain relevant points of the system.

— Rotational speed of the inner drum.

6.10.4 Virtual-lab set up and launch

The virtual-lab description is obtained as discussed in Section 6.3. It is translated

using Dymola and executed. Then, the jar file containing the Java code of the

120 6 VirtualLabBuilder Modelica Library - User’s Perspective

= Lengtiof the dampers E@E

0% Length of damper 1 Length of damper 2
= 3,0
PP1 d

dialog fr

=)
=

w
o

length {mim}
r

length {mmm)
™
W

|
WE R R
J. T

62 B4 65 63 60 63 64 6B ba
Pt time (s} time ()
J wo? Length of damper 3 0! Length of damper 4
4 30 30

= =
PP4 o€ LT | \//\
= =
. Bas [k
— ﬂ 2 o
E‘m T T T T T 2,0 T T T T
PPS 60 62 64 BB 6B 60 62 64 BB 68
| time (s) time (s)
— //‘-/_/i 3_l 2 :
=0 Length of damper 5 *10 Length of damper g
PPA o o
Lo 30
dl=7 ﬁ
o

length {rarmy
o)

length {mm)
~
0

a) b)

T T T T T 2,0+ T T T T
6,0 6,2 6.4 6,6 6.2 B0 6,2 6,4 421 6.2
time (s} time (s}

Figure 6.18: “Inner drum” window of the washing machine virtual-lab view:
a) Modelica diagram; and b) Java view.

virtual-lab view is automatically generated and executed and the virtual-lab view
is displayed (see Figure 6.15b).

The time evolution of the system point whose position can be interactively set
by the virtual-lab user, the spring and the damper lengths are shown respectively
in Figures 6.19, 6.20 and 6.21. The system specifications are the ones displayed
by the windows shown in Figure 6.16. The speed profile of the inner drum is

shown in Figure 6.22.

[ustom point'graphics m

Y component

#1107
1,8

z{mmj}

0’ X component win®
2,049
2,04
1,59 1,54
£ <
= E 1.0
= 1‘D_ -
0.5
0,54
0,04
0‘07 T T T T T
0,0 4,0 10,0 16,0 20,0 0.0 5.0
time ()

T T
10,0 14,0
time (g}

Z component

T T
20,0 1A} 4.0 10,0
time {s)

16,0

200

Figure 6.19: Time evolution of the point whose position can be selected by

the virtual-lab user.

2- engthrotthe springs (m
10

Spring1 length {mm)
2%} = wm
o] = o
1 1l Il

Spring? length {mm)
£

T T T
50 10,0 150
time (s}

50
=
o

Spring3 length {mm)
L) _Jb- _U‘l
o] o] o]
1 1l 1

T T
10,0 150
time (s}

=N
=}
o

Springs length {mm)
_Jh- _U‘l

o o

1l 1

[}
=]
1

T T
10,0 150
time (s}

=N
=
o

wn
[=]
1

[=]
1

eafmife-o

3,04
T T T T
0,0 50 10,0 150 20,0
time (=)
w107
5,0
E
£
=
i<
5 40
=t
=
=
=
m
3,04
T T T T
0,0 a0 10,0 150 20,0
time (=)
#10?
4,0
g
E
=
&
5 4.0+
w
o
IS
=
o
3,0
T T T T
0,0 a0 10,0 150 20,0
time (s}

Figure 6.20: Time evolution of the spring lengths.

engthiof the dampers

xi0? Length of damper 1 xi0? Length of damper 2
4,0
£ 307 £
g E 301
= =
o o
[=4 [=4
@ 204 3
2,0
T T T T T T T T
0,0 5,0 100 150 200 0,0 5,0 100 150 200
tirme (s} tirme (=)
xi0? Length of damper 3 xi0? Length of damper 4
4,01
£ 301 2
£ £ 304
= =
o o
B 2,0 5
2,04
T T T T T T T T
0,0 5.0 100 150 200 0,0 5.0 100 150 200
tirme (s tirne ()
xi0? Length of damper 5 xi0? Length of damper &
4,0
£ 307 £
£ £ 304
= =
o o
2 2
@ 204 3
2,04
T T T T T T T T
0,0 5,0 100 150 200 0,0 5,0 100 150 200
tirne (s tirne (s}

Figure 6.21: Time evolution of the damper lengths.

é Rpminner drum EE

x1 0 Rpm inner drum

T T
00 5.0 10,0 15,0 20,0
time (s)

Figure 6.22: Speed profile of the inner drum.

6.11 Conclusions 123

6.11 Conclusions

This chapter has provided the essential information to build a virtual-lab com-
pletely described in Modelica language using the VirtualLabBuilder Modelica

library. For that purpose, the following topics have been discussed:

— The procedure proposed to build a virtual-lab using the VirtualLabBuilder

library.

— The architecture of VirtualLabBuilder library, the interactive graphic ele-
ments included in the library and the connection rules that the library user

has to follow to build the view description.

Additionally, the following three case studies have been discussed:

— The industrial boiler and the heat-exchanger virtual-labs, useful as educa-

tional tools.

— The drum-type washing machine virtual-lab, a useful design aid.

VirtualLabBuilder Modelica Library -

Developer’s Perspective

/.1 Infroduction

Design and implementation details useful for the developer of the VirtualLab-
Builder library are provided in this chapter. In particular, the following topics

are addressed:

e The procedure to implement new interactive graphic elements.

e The relationship between the structure of the view description in Modelica

and the Java code generation.

e The communication between the model and the Java view.

/.2 Structure of the src package

The VirtualLabBuilder packages containing the classes to be used by the virtual-
lab developers were described in Section 6.4. The structure of the src package is

described below (see Figure 7.1):

VLabModel package includes the PartialView, Root and VirtualLab classes. Par-
tialView and VirtualLab classes are inherited from the classes with the same

name contained in the VirtualLabBuilder.VLabModel package.

126 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

Packages
= ﬁ "irtualLabB wilder

E ﬁ]"v"LabMDdels
+ ﬁ\-’iewElements

+ ﬁExamphﬂ

=] src
2 ﬁ"v’Lathdel
£ ﬁ"u"iewElements

E ﬁ Interfaces

b |j Functions
H |j TypesDef

2 ﬁ CServer

Figure 7.1: Structure of the src package.

ViewElements package includes the Containers, Drawables, InteractiveControls and
BasicElements packages. They contain classes describing the interactive graphic
elements and their base classes. The library developer has to extend these
base classes to implement new interactive graphic elements. The procedure
to implement new interactive graphic elements will be discussed in Section

7.4.

Interfaces package includes the connectors and interfaces of the interactive

graphic elements. They will be discussed in Section 7.3.
Functions package includes:
— Modelica functions embedding external C-functions, which are Java
code generators.

— processingFile Modelica function. It will be described in Section 7.5.

— Some other Modelica functions, which are used by the interactive

graphic elements.

TypesDef package includes type declarations. They are intended to be used for
defining some properties of the interactive graphic elements, such as the

color, the layout, etc.

7.8 Interface of the interactive graphic elements 127

Name Ilcon Variables Interfaces
ParentL nodeReference IContainers
. BorderLayout IContainerDrawables
IViewElements
ChildL nodeRefence IContainers
Q BorderLayout IContainerDrawables
IViewElements
Parent . nodeReference IDrawables
Child nodeReference IContainerDrawables
IDrawables

Figure 7.2: Connectors included in the VirtualLabBuilder library.

CServer package includes Modelica functions encapsulating external C-functions.
The goal of these external C-functions is to implement the communication
between the executable C-file generated by Dymola and the virtual-lab GUI

(i.e., the Java program automatically generated during the initialization

process).

/.3 Interface of the interactive graphic elements

The Interfaces package includes the connectors and interfaces of the interactive
graphic elements. The following four classes of interface have been implemented:
IContainer, IContainerDrawables, IDrawables and IViewElements. The connectors and

interfaces defined in the Interfaces package are discussed below.

7.3.1 Connectors
The following four types of connectors have been defined (see Figure 7.2):
— The ParentL and ChildL connectors have the following two variables:

- The nodeReference variable is an integer number that identifies uni-

vocally each one of the interactive graphic objects that compose the

class describing the virtual-lab view.

128 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

- BorderLayout is a boolean variable whose value is true if the compo-

nent’s layout policy is BorderLayout.

— The Parent and Child connectors have only one variable: nodeReference. The

meaning of this variable is the same as in the ParentL and ChildL connectors.

7.3.2 |Container interface

The IContainer interface is inherited from classes describing containers that don’t

host drawable elements. It contains:

— Two “left” connectors: (1) pLLeft, of ParentL class; and (2) cLLeft, of ChildL
class. The interface contains equations to transmit the value of the pLLeft’s

variables to the cLLeft’s variables (see Modelica Code 7.1).

— An integer variable, called num. Its value is obtained during the model
initialization process. This value identifies univocally each one of the in-
teractive graphic elements composing the Modelica view description. The
computation of the value of the num variable is discussed in Section 7.5.

The num variable is also defined in the other three types of interfaces.

— A String parameter, named LayoutPolicy. The value of this parameter sets
the layout policy of the container (i.e. BorderLayout(), Horizontal Box(),

Vertical Box(), GridLayout or FlowLayout).

— One “right” connector of ChildL class (cLRight). The connector variables are

calculated from num and LayoutPolicy (see Modelica Code 7.1).

7.3.3 IContainerDrawables interface

The IContainerDrawable interface is inherited from classes describing containers that

only host drawable elements. It contains:

— Two “left” connectors: (1) pLLeft, of ParentL class; and (2) cLLeft, of ChildL
class. The interface contains equations to transmit the value of the pLLeft’s

variables to the cLLeft’s variables (see Modelica Code 7.2).

partial model IContainer
import Modelica.Utilities.*;
Interfaces.Parentl pLLeft annotation (extent=[-100,18; -80,38]);
Interfaces.ChildL cLRight annotation (extent=[80,-10; 100,10]);
Interfaces.ChildL cLLeft annotation (extent=[-100,-40; -80,-20]);
parameter TypesDef.LayoutPolicy LayoutPolicy = "BorderLayout()"
"Layout policy of the component";
protected
Integer num "Number identifying the component
in the virtual-lab view description";
initial algorithm
cLRight .nodeReference := num;

cLRight.borderLayout if (Strings.compare(LayoutPolicy, "BorderLayout()")
== Types.Compare.Equal) then true else false;
cLLeft.nodeReference := pLLeft.nodeReference;
cLLeft.borderLayout := pLLeft.borderLayout;
equation
when false then
num = pre(num) ;
cLRight.nodeReference = pre(cLRight.nodeReference);
cLRight.borderLayout = pre(cLRight.borderLayout) ;
cLLeft.nodeReference = pre(cLLeft.nodeReference);
cLLeft.borderLayout = pre(cLLeft.borderLayout) ;
end when;
annotation (Diagram);
end IContainer;

Modelica Code 7.1: Partial model IContainer.

partial model IContainerDrawables
import Modelica.Utilities.*;
Interfaces.Parentl pLLeft annotation (extent=[-100,40; -80,60]);
Interfaces.ChildlL cLLeft annotation (extent=[-100,-40; -80,-20]);
Interfaces.Child cRight annotation (extent=[80,-10; 100,10]);
protected
Integer num "Number identifying the component
in the virtual-lab view description";
initial algorithm
cRight.nodeReference := num;
cLLeft.nodeReference := pLLeft.nodeReference;
cLLeft.borderLayout := pLLeft.borderLayout;
equation
when false then
num = pre(num) ;
cRight.nodeReference = pre(cRight.nodeReference) ;
cLLeft.nodeReference = pre(cLLeft.nodeReference);
cLLeft.borderLayout = pre(cLLeft.borderLayout) ;
end when;
end IContainerDrawables;

Modelica Code 7.2: Partial model IContainerDrawables.

130

7 VirtualLabBuilder Modelica Library - Developer’s Perspective

partial model IDrawable
import Modelica.Utilities.*;
Interfaces.Parent pLeft annotation (extent=[-100,40; -80,60]);
Interfaces.Child cLeft annotation (extent=[-100,-40; -80,-20]);
protected
Integer num "Number identifying the component
in the virtual-lab view description";
Integer dummy;
initial algorithm
cLeft.nodeReference := pLeft.nodeReference;
dummy :=num;
equation
when false then
num = pre(num) ;
dummy = pre (dummy) ;
cLeft.nodeReference = pre(cLeft.nodeReference);
end when;

end IDrawable;

Modelica Code 7.3: Partial model IDrawable.

— The num variable.

— One “right” connector of Child class (cRight). The connector variable is equal

to the num variable (see Modelica Code 7.2).

7.3.4 |Drawable intferface

The IDrawable interface is inherited from classes describing drawable elements. It

contains:

— Two “left” connectors: (1) pLeft, of Parent class; and (2) cLeft, of Child class.
The interface contains equations to transmit the value of the pLeft’s variables

to the cleft’s variables (see Modelica Code 7.3).

— The num variable.

7.3.5 |ViewElement interface

The IViewElement interface is inherited from classes describing basic and interactive

elements. It contains:

7.4 Implementing new interactive graphic elements 131

model IViewElement
import Modelica.Utilities.*;
Interfaces.ParentlL pLLeft annotation (extent=[-100,40; -80,601);
Interfaces.ChildL cLLeft annotation (extent=[-100,-40; -80,-20]);
protected
Integer num;
Integer dummy;

initial algorithm

cLLeft.nodeReference := pLLeft.nodeReference;
cLLeft.borderLayout := pLLeft.borderLayout;
dummy := num;

equation

when false then
num = pre(num);
dummy = pre (dummy) ;
cLLeft.nodeReference = pre(cLLeft.nodeReference) ;
cLLeft.borderLayout = pre(cLLeft.borderLayout) ;
end when;
end IViewElement;

Modelica Code 7.4: Model IViewElement.

— Two “left” connectors: (1) pLLeft, of ParentL class; and (2) cLLeft, of ChildL
class. The interface contains equations to transmit the value of the pLeft’s

variables to the cLeft’s variables (see Modelica Code 7.4).

— The num variable.

/7.4 Implementing new interactive graphic elements

Each interactive element of VirtualLabBuilder has associated the following three

elements:

1. A Modelica class. Details about the Modelica class are discussed in the rest

of this section.

2. A Java class. All the Java classes describing interactive components are
packed in a jar file named graphics.jar. Some of these classes are based on

(Open Source Physics 2007).

132 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

3. A Modelica function encapsulating a C function. Its objective is writing to
a file the code required to create an instance of the Java class describing

the interactive element.

7.4.1 The Modelica class

The structure of the VirtualLabBuilder Modelica classes describing interactive

elements is as follows:

— The class inherits from a base class. The Containers, Drawables, Interac-
tiveElements and BasicElements packages contain the base classes required to
create new interactive graphic elements. These base classes are discussed

in Section 7.4.2.

— The declaration of the parameters needed to set the interactive element

properties.

— The section “initial algorithm”, which has to contain the code required to:

- Calculate the value of the num variable. This is accomplished by

executing the function processingFile.

- Call the Modelica function. This Modelica function calls a C function

which write to a file the Java code.

7.4.2 Base classes

The base classes included in the Containers, Drawables, InteractiveElements and Ba-
sicElements packages are discussed in this section.

The relationship among the interfaces, the base classes, and the classes de-
scribing the interactive graphic elements are shown in Figures 7.3, 7.4 and 7.5.

The following symbol terminology has been used to make these representations:

— Classes are placed inside rectangles.

— Partial class are placed inside rectangles with dashed line borders.

7.4 Implementing new interactive graphic elements 133

IContainer IContainerDrawables
| Window | | Container 1 1 ContainerDrawables !
Lo_- 1 _____ Lo—- _l _____________ [________ !

; Panel
MainFrame DrawingPanel
Dialog PlottingPanel
CONTAINERS

Figure 7.3: Classes included in the Containers package.

— An arrow going from a rectangle A to a rectangle B indicates that the

classes within the rectangle B inherit from the classes within the rectangle

A.

Containers package

The Containers package includes the following three base classes (see Figure 7.3):

Window, Container and ContainerDrawables. These three classes are described below:

— Window class is inherited from classes describing interactive graphic ele-
ments that create windows. This class inherits from the IContainer class. It
contains the declaration of the parameters needed to specify the title of the
window, its width and position, and the number of row and columns if the

GridLayout policy is selected.

— Container class is inherited from classes describing interactive graphic ele-
ments that create panels which can’t host drawables elements. This class

inherits from the IContainer class.

— ContainerDrawables class is inherited from classes describing interactive graphic
elements that create panels which can only host drawables elements. This

class inherits from the IContainerDrawables class.

134

7 VirtualLabBuilder Modelica Library - Developer’s Perspective

|Drawable

\Drawable 1 | Shape i

Polygon
Oval
Text

]

Arrow
Trail
Drawables

Figure 7.4: Classes included in the Drawables package.

Drawables package

The Drawables package includes the following two base classes (see Figure 7.4):

Drawable and Shape. These two classes are described below:

— Drawable class is inherited from classes describing drawables elements. This

class inherits from the IDrawable class. It includes the code required to:

- Send data from the drawable element to the Java program (automat-

ically generated during the model initialization process).
- Finish the simulation when the main window of the Java program is
closed.

These two communication tasks will be discussed in Section 7.6.

— Shape class is inherited from classes describing 2-D drawables with shape
(i.e., Polygon and Oval). This class includes the following parameters in order

to describe the color properties of the drawable element:

7.4 Implementing new interactive graphic elements 135

IViewElement
'BasicElement | | | ControlElement

Label1 Slider l

CheckBox NumberField

PauseButton RadioButton

InfoButton Button1Action
Button2Actions
SliderSet
BASICELEMENTS INTERACTIVECONTROLS

Figure 7.5: Classes included in the InteractiveElements and BasicElements
packages.

- filled “True”’ if the polygon is filled, “False” otherwise.

- lineColorp[4] vector describing the line color of the drawable.

- fillColorp[4] vector describing the color used to fill the component.
- intLineColor 1 if the line color changes in time, 0 otherwise.

- intFillColor 1 if the filling color changes in time, 0 otherwise.

This class includes the declaration of the following two variables: lineColor[4]
and fillColor[4]. If the intlineColor / int fillColor parameter is 0, then the
value of lineColor[4] / fillColor[4] is set to the value of the lineColorp[4]
/ fillColorp[4] parameters. Otherwise, the value of these variables has to

be set by the virtual-lab developer.

InteractiveElements package

The InteractiveElements package includes the ControlElement base class (see Figure
7.5). It is inherited from classes describing interactive control elements; and it
inherits from the IViewElement class.

The ControlElement base class includes the code required to:

136 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

— Obtain the data sent from the Java program (generated automatically dur-
ing the model initialization process). The communication will be discussed

in Section 7.6.

— Perform the state re-initialization event, which re-initializes the value of
the variable defining the state of the element (var). This event is triggered

when the virtual-lab user manipulates the interactive element.

/.5 Java code generation

There is a relationship among the structure of the Modelica description of the
view, the Java code generated and the virtual-lab view obtained by executing this
Java code. This relationship is discussed in this section, taking as an example
the development of the bouncing-ball virtual-lab (which is included in the Vir-
tualLabBuilder. Ezamples package). The Modelica description of the virtual-lab
view and the view obtained by executing the generated Java code are shown in
Figures 7.6 and 7.7 respectively.

The Modelica description of the view is built following the methodology
described in Section 6.3. It is composed of a set of interactive graphic elements
connected following the rules proposed in Section 6.7.

Each interactive graphic element has an “initial algorithm” section. This
section includes a call to a Modelica function that encapsulates a call to an
external C function. This external C function writes in a file the code required
to create an instance of the Java class describing the interactive graphic element.
The file name is a global parameter (i.e., inner to PartialView class and outer to
the interactive graphic elements).

The PartialView class contains the code required to compile the generated Java
application, to pack it in a jar file and to execute it. This code is executed during

the model initialization process.

7.5 Java code generation 137

At l slicer

roat s :ﬁ
s MF
heckBox
infoButton
:reset
q
OF
o =] [T
M
=== FP

-

Figure 7.6: Diagram of the view description of the bouncing ball virtual-lab.

0 X Dialog Ox

ehounce =0,8

N Ball
= | e show plot olnfo Reset T T 17 T 7

0,00 0,25 0,50 0,75 1,00 g

101

X

o= o e @

52 54 55 58 60 B2 B4 BE 68 7,0

Q tirme (s}

Figure 7.7: Bouncing ball virtual-lab

7.5.1 Execution order of the initial algorithm sections

When several interactive graphic elements are used to compose a view, their
“initial algorithm” sections have to be executed in a sequence that satisfies the
rules listed below. The implementation of the interactive elements guarantees

that these rules are fulfilled.

1. The “initial algorithm” section of the root component is executed in the first

place. As a result, the root component writes the first lines of the Java file.

138 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

2. The “initial algorithm” section of a container is executed before executing

the “initial algorithm” sections of the components hosted in it.

3. The “initial algorithm” section of the drawable components are executed

following their drawing order.

4. The “initial algorithm” section of the components placed according to cer-

tain layout policies within containers are executed in the appropriate order.

The term path will be used in the following discussion. This term is used to
designate a sequence of interactive graphic elements so that from each interactive
graphic element there is a connection to the next element. There are not repeated
elements in the path.

For instance, the Modelica description of the view shown in Figure 7.6 contains

the following paths:
— Path 1: root-MF-pNorth-slider- checkBox-infoButton-reset
— Path 2: root-MF-pNorth-DP-oval
— Path 3: root-MF-D-PP-trail

The “initial algorithm” sections of the interactive graphic elements are ex-
ecuted following a sorted sequence. This sequence is determined by the data
dependency among these sections.

The “initial algorithm” section of the elements forming a path, that has as
initial element the root component, are executed in a relative order depending
on the distance of the element to the root component. For instance, the order of
execution of the “initial algorithm” sections in Path 2 is the following: root, MF,
pNorth, DP and oval.

The value of the num variable of a component indicates the order in which
its “initial algorithm” section has been executed. The num variable of the root
component is equal to zero. The value of the variable num of each element of
the path satisfies the following relationship (being numy4 the number associated

to the A Component): NUMpoot < NUMMF < NUMpNorth < RUMDP < NUMoyq] -

7.6 Runtime communication between the model simulation and the interactive GUI 139

/.6 Runtime communication between the model

simulation and the interactive GUI

The communication established between the C program (generated by Dymola
for the Modelica model) and the interactive Java GUI (automatically generated
during the initialization process of the virtual-lab described in Modelica) is based
on a client-server architecture. The C program is the server and the Java program
is the client. The communication is established via TCP sockets.

During the simulation run, there is a bi-directional flow of information between

the model simulation and the interactive GUI. At every communication interval:

— The model simulation (i.e., the server) sends to the GUI (i.e., the client)

the data required to refresh the virtual-lab view.

— The GUI sends to the model simulation the new value of the variables

modified due to the user’s interactive action.

The communication tasks and the classes involved, from the server and the

client side, are discussed in this section.

7.6.1 Server side

The following three Modelica partial classes are involved in the communication
tasks: PartialView, Drawable and ControlElement. These are the super-classes of
the view description in Modelica, the drawable and the interactive elements

respectively. The tasks performed by each class are discussed below.

PartialView class

1. To set-up the server. The startCserver external C function, included in the
CServer package, is called to perform this task. This function waits until
the client ask for a connection. Then, the connection is established. The

function output is the socket description for the established connection.

140 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

2. To generate time events at each communication interval (o), using the
built-in sample(0, T,y) operator. The following two tasks are performed

at each time event (see Figure 7.8):

(a) To call to the getVarValues external function, which is included in the
CServer package. This function receives and processes the data sent

by the Java GUI.

The Java GUI sends the data in a string with the following format:
nChanges, index, valuey, ..., index,Changes, ValuenChanges 7

Where:
— nChanges is the number of interactive variables modified due to
the user’s action.
— wvalue; is the new value of the var variable of the interactive control

element number index;.

The getVarValues function receives these data and generates as output
the CK/:] and I,e,[:] arrays. These two arrays are global variables

(inner to PartialView and outer to ControlElement class).

— If index; is within the string sent by the Java view, then C K [index;]
is set to one. Otherwise, it is equal to zero.
— Ifindez; is within the string sent by the Java view, then I, ¢, [index;]

is set to value;. Otherwise, I [index;] is set to zero.

(b) To change the value of the boolean variable refresh View (from false to
true or vice-versa). This is a global variable (inner to PartialView and

outer to Drawable class).

Drawable class

1. To send information to the Java GUI. Each drawable element sends the

following information:

— The value of the num variable of the drawable element.

7.6 Runtime communication between the model simulation and the interactive GUI 141

partial View

partial model partialView

parameter Real Tcom;

when sample(0,Tcom) then
refreshView = not(pre(refreshView));
(CK, Inew) = getVarValues(...);

end when;
controlElement end partialView: Drawable
partial model controlElement partial model Drawable
Integer index; parameter Integer numint;
input Real var; parameter Integer numintColor;
| fouter Real K7 (outer Boolean refreshview; __[*——

Louter Real Inew(]; protected

Boolean even (start = false); Boolean windowClosed (start =false);

Real out1 (start = 1);

event = CK[index]>0;

when event then when change(refreshView) then
reinit(var, Inew[index]); out1 =if (numint+numintColor)>0 then
end when; sendVarVarlues(...) else 0;
end controlElement; end if;
end when;

when (out1<0.5) then
shutDownConnection(...);

windowClosed = true;

terminate(“Main window closed”);

end when;

end Drawable;

Figure 7.8: Relationship among the PartialView, ControlElement and
Drawable classes.

— The geometric properties of the drawable element (i.e., position of the
vertices of a polygon, position of the center and length of the axis of
an oval, etc.). The value of the numlint parameter sets the number of

data to be sent. These data are stored in the vert/:] vector.

— The color properties of the drawable element (border line and filling
color). The value of the numlIntColor parameter sets the number of

data to be sent. These data are stored in the colors/:] vector.

142

7 VirtualLabBuilder Modelica Library - Developer’s Perspective

This information is sent at each communication interval, when the following
two conditions are satisfied: (1) the refresh View variable value has changed;

and (2) the windowClosed variable value is false.

. To end the model simulation when the Java GUI is closed. A when clause

is triggered when the drawable element sends data to the GUI and, after
waiting for Thsq. seconds, it has not received any reception confirmation

from the GUI. This when clause performs the following tasks:
(a) To call to the Modelica built-in operator terminate, which finishes the
simulation.

(b) To call to the shutDownConnection external function, which is in-

cluded in the CServer package.

(c) To set windowClosed boolean variable to true.

ControlElement class

1. When the value of the event variable becomes true, a when clause including

the code to re-initialize the value of var to ILey[indez] is executed.

— var is the interactive variable.
— index is a number that univocally identifies each interactive control.

— CK[:] and Ipey[:] are global variables whose values are transmitted
from the PartialView class. C'K[index] is equal to one only if the variable
associated to the interactive element has been modified due to a user’s
action. In that case, the new value of the variable is contained in

Iewlindex].

— event is a boolean variable whose value is set to true only when
the interactive element has been manipulated by the user (event =

CKlindez] > 0).

7.6 Runtime communication between the model simulation and the interactive GUI 143

7.6.2 Client side

The following two Java classes are involved in the communication tasks: Client
and Communication. They are included in the graphics.jar file.

The constructor of the Client class contains the code to start the TCP con-
nection with the server. This class includes methods to send and receive data
to/from the server.

The Communication class includes a while loop that is executed until the main
window is closed. The following tasks are sequentially executed inside the loop

(see Figure 7.9):

1. To refresh the interactive GUI.

2. If the user has manipulated any interactive element, then the following

actions are performed:
(a) The counter of the number of changes (nChanges variable) is increased
by one.
(b) Inew[nChanges] is set to the new value.
(c) index[nChanges] value is set to the identification number of the in-

teractive element that has been manipulated by the user.

3. To call the sendVarValues function. This function sends a string with the
new values interactively set by the user. The string format was described

in Section 7.6.1.
4. If the simulation is paused, then go to step 1, else go to step 5.

5. To obtain the data sent by each drawable element included in the view. For

that purpose, the following messages are exchanged with the server:

— When the client gets ready to receive the data, then it sends a string
to the server. The server waits during a limited time (T/4;) for the

string reception.

144 7 VirtualLabBuilder Modelica Library - Developer’s Perspective

Java View

:I UPDATE WINDOWS

!

For each object corresponding to an
Interactive Element:
If the user has manipulated the
object THEN:
«nChanges+=1;
«index[nChanges]=index;
+I,.,[nChanges]=value;

|

Simulation
Is

Yes

No

1
1
1 .
v ! dymosim.exe
sendVarValues (nChanges, index[:], 1

I _[:1) Wait to receive Data
new 1

v

y
For each object corresponding
to a Drawable Element:

For each object corresponding
to a Drawable Element:

SEND_ACK ﬂ‘# RECV_ACK (Wait T,,)
1
Receive data of the Element : Send Data
1
1
! .
1
nChanges = 0 I e e e e e e e e e e e a1

Figure 7.9: Communication between the Java view and the executable file
generated by Dymola.

— Once the server has received the string, it sends the value of its num
variable and the values required to modify the color and the geometric
properties of the corresponding Java object. The GUI receives this

string and modifies the properties of the corresponding Java object.

6. The value of the nChanges variable is set to zero.

7. Go to step 1.

7.7 Conclusions 145

/.7 Conclusions

Chapter 6 was oriented to the VirtualLabBuilder users. The information required
to build a virtual-lab using the library and some virtual-labs illustrating the
proposed approach were discussed.

On the other hand, this chapter was oriented to the library developers. The
design and implementation details of the library were discussed. These details
are useful in order to create new components and to get a better understanding

of the library.

Solar House virtual-lab

8.1 Introduction

The use of VirtualLabBuilder Modelica library for the implementation of a virtual-
lab describing the thermodynamic behavior of a solar house is discussed in this
chapter. The solar house model was developed by Markus Weiner as a part
of his M.S. thesis (Weiner 1992, Weiner & Cellier 1993) and it was included
in the BondLib Modelica library by F.E. Cellier. This Modelica model has
been adapted for interactive simulation by using the methodology discussed in
Chapter 4. The interactive graphic user-to-model interface has been built by using
VirtualLabBuilder. The virtual-lab obtained is completely written in Modelica

language.

8.2 Description of the solar house virtual-lab

The implementation of a virtual-lab intended to illustrate the thermodynamics
of an experimental solar house is discussed. This solar house is located near the
airport in Tucson, Arizona, and has a passive solar heating system. The house
has four rooms: two bedrooms, a living room and a solarium that collects heat

during the winter and releases it during the summer. The living room has an

148 8 Virtual-lab of a solar house implemented using the VirtualLabBuilder library

107
1

26—
B

&}
[[

13-

16"

o T

5| 5} £l .

17°-3"

Figure 8.1: Floor plan of the house (Weiner 1992).

air conditioning unit. The floor plan and perspectives of the house are shown in
Figures 8.1 and 8.2 respectively (Weiner 1992).

The solar-house virtual-lab allows the user to:

e Change the thermodynamic properties of the slab, the outer and inner walls,

and the roof.
e Turn on and off the air conditioning unit, which is placed in the living room.

e Set the parameters of the air conditioning control system (i.e., the setpoints

for the minimum and maximum values of the temperature).

The virtual-lab view contains the floor plan of the house (see Figure 8.5b).
The room colors change between blue and red as a function of the temperature

inside the room. The heat flow through the outer walls are represented by arrows.

8.8 The Modelica model of the solar house 149

A0A0 4040

NORTH ELEVATION

'.v. MUD FLASTEMED ADOER
1
™

EAST ELEVATION

T IO T T

aopzo

L=k 1=} L= 1=}

SOUTH ELEVATIOMN

Figure 8.2: Perspectives of the house (Weiner 1992).

The width and orientation of the arrow are functions of the magnitude and the
direction of the heat flow, respectively. Also, the virtual-lab view contains plots

of some selected variables (see Figure 8.7).

8.3 The Modelica model of the solar house

This solar house model is included within the Bondlib library (Cellier & Nebot
2005). The four rooms of the house are composed using models that describe the
outer and inner walls, the roofs, the windows, the slabs and the outer and inner

doors. A brief description of these models is given below:

150 8 Virtual-lab of a solar house implemented using the VirtualLabBuilder library

Outer wall. This model consists of a boundary convection layer on the outside,
three conduction layers inside the wall, and another boundary convection
layer on the inside. The model computes its own solar position. The solar
radiation model computes the entropy flow to the wall from both direct and
diffuse radiation. The ambient air temperature is also computed inside the

model.

Inner wall. They have the same structure as the outer walls. However, there is

no solar radiation to be taken into account for the interior walls.

Roof. This is exactly the same physical model as the exterior wall model (only

with different values for the physical parameters).

Window. This model has an outside convection layer, but no conduction layers,

as the glass is considered thin and homogeneous.

Slab. In Tucson, houses are built on sand. The house is not thermally insulated
from the ground, thus, the thermal building model ought to take into
account the exchange of heat between the house and the slab underneath
it. The slab is modeled with a single conduction layer connecting the
temperature of the slab to the temperature of the floor. Above the floor,

there is a boundary convection layer.

Outer and inner doors. They are similar to windows, in that they are thin
and homogeneous. Thus the model contains an outside convection layer,

no conduction layers, and no inside convection layer either.

The bond graph technique is used to model the physical laws of heat transfer
between the basic components of the house, regarding conduction, convection
and radiation. A detailed description of the model can be found in (Weiner 1992,
Weiner & Cellier 1993).

8.4 Composing the virtual-lab 151

8.4 Composing the virtual-lab

The solar house model has been adapted to suit interactive simulation. Interactive
parameters and input variables have been re-defined as constant state variables
(i.e., with zero time-derivative).

The Modelica description of the virtual-lab view has been developed mod-
ularly, by extending and connecting the required graphic components of the
VirtualLabBuilder library. Modelica classes have been programmed to describe
the view associated to an inner wall (InWallView), an outer wall (ExWallView), a

slab (SlabView) and a roof (RoofView). These are described next:

e ExWallView class is shown in Figure 8.3a and the graphic interface generated
is shown in Figure 8.3b. The ExWallView class contains instances of graphic
elements contained in VirtualLabBuilderlibrary (i.e., Dialog, DrawingPanel,
Panel, Polygon, Text and Slider). The connection among these elements
determine the layout of the graphic interface. The graphic interface consists
of a window that contains a set of sliders at the bottom and the top (see
Figure 8.3b). These sliders allow the user to modify the wall temperature
and its thermodynamic properties (i.e., specific thermal conductivity of the
dry wall, thickness of the conduction layer, specific heat capacity, density,
thickness of the outer wall and absorption coefficient). The center of the
window contains a graphical representation of the wall model, which is

composed of three conducting layers.

e InWallView class contains sliders that allow the user to change the wall
temperature and its thermodynamic properties (i.e., specific thermal con-
ductivity of the dry wall, thickness of the conduction layer, specific heat

capacity, density and thickness).

e RoofView class contains sliders that allow the user to change the thermody-
namic properties (i.e., specific thermal conductivity, thickness, specific heat

capacity and density) of the three conducting layers that compose the roof.

b)

Text

T

Text

pialyd...

Text

panel

L.

- panet

]

T1(K) = 288

T2 (K) = 288

T3 (K) = 288

|| =

273 295 317 340 362 273 295

317

340 362 273 295 317 340 362

Tl T2

T3

Specific thermal conductivity of dry wall (W{mK)) = 1,7

Thickness of conduction layer {mj) = 0,14

T
L i

T
L i

1.0 1.2 1.4 1.7 19

Specific heat capacity of dry wall {JHKg/K) = 840

T

0,05 0,08 0,12 0,15

Wall density (Ko/m*3) = 1762

™

0,18

L i

L i

700 767 833 900

Wall thickness {m) = 0,41

T

967

1500 1611 1722 1833

Ahsorption = 0,50

™

1944

L i 1

L i

0,10 0,21 0,32 0,43 0,54

0,00 0,22 0,44 0,67 0,89

Figure 8.3: ExWallView class:
b) generated view.

a) diagram of the Modelica description; and

8.4 Composing the virtual-lab 153

- 2
di...
B
A
B
Wyl
p...
Walll2 [Bce
B...
Roof
B
Slab .
5 p
p
a) B..

— BedRoom| 1

[Ml] wal12
b) []Slab [Roof

Figure 8.4: BedRoom1View class: a) diagram of the Modelica description;
and b) generated view.

e SlabView class contains sliders that allow the user to change its thermody-
namic properties (i.e., specific thermal conductivity, thickness of the slab,

specific heat capacity, density and thickness of the conduction layer).

Modelica classes have been programmed to describe the view associated to
the house (HouseView), the living room (LivingRoomView), and bedrooms 1 and 2

(BedRoom1View and BedRoom2View). These are briefly described next:

e BedRoom1View class is shown in Figure 8.4a and the graphic interface gen-

erated is shown in Figure 8.4b. This model contains instances of SlabView,

154

8 Virtual-lab of a solar house implemented using the VirtualLabBuilder library

[] Show Iiving room [] Show bedroom 1 [] Show bedroom 2

b) Show Temperatures ["] Show Heat Flow [_] Show Sunshace

Figure 8.5: HouseView class: a) diagram of the Modelica description; and
b) generated view.

RoofView, ExWallView and InWallView classes. The view consists of a window
that has a set of checkboxes at the bottom and the floor plan of the room
at the center (see Figure 8.4b). The checkboxes allow the user to show and
hide the windows associated to each building component of the room (outer

and inner walls, slab and roof).

HouseView class is shown in Figure 8.5a and the graphic interface generated
is shown in Figure 8.5b. The view consists of a window that has a set
of checkboxes at the bottom and a diagram of the house floor plan in the

center (see Figure 8.5b). The checkboxes allow the user to show and hide the

8.4 Composing the virtual-lab 155

1
houzeiew
LivingRoom
BedRoom1
BedRoom2 E/W
di... Ij,\ﬁ
roat 0
| 2
n,r‘\\.-'—\-\.
U/‘\.r-\-\.
ofi... p—1 b =
u_,.r‘\ﬂ—\-\.
n_,.r‘\ﬂ—\-\.
= o™
n,-‘\ﬂ—\-\.
U/\.,-—H
U/‘\H—\-\.

Figure 8.6: Modelica diagram of the complete virtual-lab view.

windows associated to the bedrooms 1 and 2, and to the living room. Each
room of the floor plan has a color, that change from blue to red depending
on the room temperature. The arrows shown in the floor plan represent
the heat flow through the outer walls (see Figure 8.5b). The width and

orientation of the arrows depend on the magnitude and the direction of the

heat flow, respectively.

The Modelica description of the complete view (i.e, class View) is shown
in Figure 8.6. This model extends the PartialView class, which contains: a)
one pre-defined graphic element: root; and b) the code required to perform

the communication between the model and the view. The View class contains

A Conditioning

CON ®
Low Temperature(K)22
1 ! 1 ! | ! | 1 | 1
10 13 16 19 22
High Temperature {K) = 27
1 ! 1 ! 1 ! | 1 | i
25 27 29 32 3
Bedroom 2 x10 Air Conditiening
40,0
% 0,0 %
= =
50,0
g (1T T i A R W) E
— —
= k)
[=1] [=1]
=200 =
-40.0 T T T 0.0 T T T
0,0 05 1,0 15 0,0 ns 1,0 15
time (h) win? time {h) w0k

500 Living Room Temperature

40,0
5
30,0
= I
2 0.0
2
10,0
00 T T T T
0E 10 12 14
tirne (1) w102
Bedroom 2 Temperature
0
40,0
)
o 30,0
=
o
£ 200 ———t—
2
10,0
o0 T T T T
0E 10 12 14
time (h) i

temp (degc)

temp {deqC)

. Bedroom 1 Temperature

40,0
30,0
20,0
—_
10,0
00 T T T T
0E 10 12 14
tirne (h) w102
Ambient Temperature
50,0
40,0
30,0
20,0
10,0
o0 T T T T
0E 10 12 14
time (h) i

Figure 8.7: Dynamic response of some selected variables.

8.5 Virtual-lab launch 157

instances of BedRoom1View, BedRoom2View and LivingRoomView classes. It also
contains instances of the VirtualLabBuilder library components describing plots.
These plots are used to display the time evolution of the heat flow and the
temperature in the rooms of the house.

The Modelica description of the virtual-lab has to be an instance of VirtualLab
class. This class contains: a) two parametrized generic classes: the classes of the
virtual-lab model and view; and b) the equations that link the variables of the

model and the view classes.

8.5 Virtual-lab launch

The Modelica description of the virtual-lab is translated using Dymola and run.
Then, the jar file containing the Java code of the virtual-lab view is automatically
generated and executed. When the jar file is run, the virtual-lab view is displayed
and the client-server communication is established. Then, the model simulation
starts. During the simulation run, there is a bi-directional flow of information
between the model and the view.

The dynamic response of the solar house when the air conditioning is turned
off is shown in Figure 8.7. This change has been interactively performed by the
virtual-lab user at the simulated time 100 h. The following six plots are shown

in Figure 8.7:

e The heat flow rate in bedroom 2.

e The heat flow rate of the air conditioning;

e The living room temperature and the setpoint value for the minimum and

maximum temperatures.

e The bedroom 1 temperature.

e The bedroom 2 temperature.

e The ambient temperature.

158 8 Virtual-lab of a solar house implemented using the VirtualLabBuilder library

8.6 Conclusions

The feasibility of setting up virtual-labs of complex Modelica models by us-
ing VirtualLabBuilder has been demonstrated. This approach has two strong
points. Firstly, the virtual-lab is completely described using Modelica language,
an object-oriented modeling language aimed to be a de-facto standard for rep-
resenting models and to support model exchange. Secondly, VirtualLabBuilder
library allows performing an object-oriented description of the virtual-lab view,
which facilitates its development, maintenance and reuse.

VirtualLabBuilder has been used to implement a virtual-lab describing the
thermodynamic behavior of a solar house. The model describing the solar house
has been adapted to suit interactive simulation. The view has been implemented

using graphic elements of VirtualLabBuilder.

Conclusions and Future Research

Q.1 Conclusions

Three different approaches to the implementation of virtual-labs using Modelica

language have been proposed:

1. The implementation of virtual-labs with batch interactivity by combining
the use of Sysquake and Modelica/Dymola. This work has resulted in the

following publications: (Martin et al. 2005b,c).

2. The implementation of virtual-labs with runtime interactivity by combining
the use of Ejs and Modelica/Dymola. The obtained results are summarized

in the following publications: (Martin et al. 2004a,b, 2005a,b,c).

3. The implementation of virtual-labs with runtime interactivity using only
Modelica/Dymola. This approach has been proposed in the following pub-
lications: (Martin et al. 2006, Martin-Villalba et al. 2007, Martin et al.

2007).

The methodologies and software tools required to put these three approaches

into practice have been developed:

160 9 Conclusions and Future Research

1. A Sysquake to Dymosim interface has been programmed. It consists in a
set of functions in LME language which can be called from the Sysquake

applications. They are available at http://www.euclides.dia.uned.es

2. A methodology for adapting any Modelica model for runtime interactive
simulation has been proposed. Two cases have been considered: (1) all
interactive quantities can be simultaneously defined as state variables; and
(2) several selections of the state variables need to be simultaneously sup-

ported.

3. A methodology for combining the use of Ejs and Modelica/Dymola has been
proposed. It takes advantage of the existing Ejs-Simulink and Dymola-

Simulink interfaces.

4. VirtualLabBuilder Modelica library has been designed and programmed. Its

on-line documentation is available at http://www.euclides.dia.uned.es

The proposed methodology to adapt Modelica models for interactive simula-
tion has been successfully applied to the libraries shown below. Both libraries

can be downloaded from http://www.euclides.dia.uned.es

1. JARA library has been translated into Modelica language and adapted for
runtime and batch interactive simulation. This new version of the library

is named JARA 2i.

2. tankProcessLAB Modelica library has been programmed and adapted for

runtime and batch interactive simulation.

The proposed approaches have been successfully applied to the development

of several virtual-labs for process control education:

1. Virtual-labs with batch interactivity: hysteresis-based controller, chemical

reactor, double-pipe heat exchanger and industrial boiler virtual-labs.

2. Virtual-labs with runtime interactivity: quadruple-tank system, industrial

boiler, chemical reactor and double-pipe heat exchanger virtual-labs.

9.2 Future research 161

Finally, the proposed approach to the implementation of virtual-labs using

only Modelica/Dymola has been successfully applied to:

1. The solution of a real industrial problem. A virtual-lab aimed to be applied
for testing designs of drum-type washing machines has been implemented.
This application has been developed in cooperation with engineers of the
Mechanical Engineering Department of the IKERLAN Technological Re-

search Center (Mondragén, Spain).

2. The implementation of a virtual-lab based on a complex Modelica model
that has been developed by other authors. A virtual-lab illustrating the
thermodynamic behavior of an experimental solar house has been imple-

mented.

Q.2 Future research

Finally, some ideas about possible extensions of this work are the following:

— To implement a software tool able to automatically perform the model adap-

tation for interactive simulation that has been proposed in this dissertation.

— To develop additional interactive graphic elements and to include them in
the VirtualLabBuilder library. For instance, drawable elements describing

3-D shapes.

— To adapt the libraries included in the Modelica Standard library for in-
teractive simulation and to develop the corresponding graphic interactive

elements.

— To explore the use of VirtualLabBuilder in other Modelica simulation envi-

ronments, such as OpenModelica and DrModelica (Lengquist et al. 2003).

— To support the generation of the virtual-labs implemented using Virtual-

LabBuilder as Java applets.

Bibliography

ABACUSS II (2007). ABACUSS II web-site: http://yoric.mit.edu/

abacuss2/abacuss2.html.

Adams (2007). Adams web-site: http://www.mscsoftware.com/products/

adams.cfm.

Andersson, M. (1989a), An object-oriented modeling environment, in ‘Pro-
ceedings of the 1989 European Simulation Multiconference, The Society for

Computer Simulation International’, Rome, Italy, pp. 77-82.

Andersson, M. (1989b), Omola - An Object-Oriented Modelling Language, Report

TFRT 7417, Dept of Automatic Control, Lund Institute of Technology, Sweden.

Andersson, M. (1990), Omola - An Object-Oriented Language for Model Repre-
sentation, Licentiate Thesis TFRT 3208, Dept of Automatic Control, Lund

Institute of Technology, Sweden.

Andersson, M. (1994), Object-Oriented Modeling and Simulation of Hybrid Sys-
tems, PhD Thesis, Dept. of Automatic Control, Lund Institute of Technology,

Lund, Sweden.

Astrom, K. J., Elmqvist, H. & Mattsson, S. E. (1998), Evolution of continuous-
time modeling and simulation, in ‘Proceedings of the 12! European Simulation

Multiconference’, Manchester, UK, pp. 9-18.

164

Bibliography

Astrém, K. J. & Hagglund, T. (1995), PID Controllers: Theory, Design and
Tuning, ISA Press.

Augustin, D., Fineberg, M., Johnson, B., Linebarger, R., Sansom, F. & Strauss,
J. (1967), ‘The SCi continuous system simulation language (CSSL)’, Simulation
9, 281-303.

Barton, P. & Pantelides, C. (1994), ‘Modeling of combined discrete/continuous

processes’, AIChe Journal 40, 966-979.

Bird, R. B., Stewart, W. & Lightfoot, E. N. (1975), Transport Phenomena, John
Wiley & Sons.

Bodson, M. (2003), Fun control experiments with Matlab and a joystick, in
‘Proceedings of the 42"¢ IEEE Conference on Decision and Control’, Maui,

Hawai, USA, pp. 2508-2513.

Brenan, K. E., Campell, S. L. & Petzold, L. R. (1996), Numerical Solution of

Initial-Value Problems in Differential-Algebraic Equations, STAM.

Breuneuse, A. P. & Broenink, J. F. (1997), ‘Modeling mechatronic systems using
the SIDOPS+ language’, Simulation Series 29(1), 301-306.

Bunks, C., Chancelier, J. P., Delebecque, F., Gomez, C., Goursat, M., Nikoukhah,
R. & Steer, S. (1999), Engineering and Scientific Computing with Scilab,

Birkhauser.

Bunus, P. & Fritzson, P. (2002), Methods for structural analysis and debugging
of Modelica models, in ‘Proceedings of the 2"¢ International Modelica Confer-

ence’, Oberpfaffenhofen, Germany, pp. 157-165.

Bush, V. (1931), ‘The differential analyzer: a new machine for solving differential

equations’, Journal of the Franklin Institute 212, 447-488.

Casella, F. & Leva, A. (2003), Modelica open library for power plant simulation:
design and experimental validation, in ‘Proceedings of the 3"¢ International

Modelica Conference’, Linkoping, Sweden, pp. 41-50.

Bibliography

165

Casella, F. & Leva, A. (2006), ‘Modelling of thermo-hydraulic power generation
processes using Modelica’, Mathematical and Computer Modelling of Dynami-

cal Systems 12(1), 19-33.

Cellier, F. E. (1979), Combined Continuous/Discrete System Simulation by Use
of Digital Computers: Techniques and Tools, Ph.D. Dissertation. Diss ETH

6483, Zurich, Switzerland.
Cellier, F. E. (1991), Continuous System Modeling, Springer-Verlag.

Cellier, F. E., Elmqvist, H., Otter, M. & Taylor, J. H. (1993), Guidelines for
modeling and simulation of hybrid systems, in ‘Proceedings of the 12t IFAC

World Congress’, Sydney, Australia, pp. 1219-1225.

Cellier, F. E. & Kofman, E. (2006), Continuous System Simulation, Springer-

Verlag.

Cellier, F. E. & Nebot, A. (2005), The Modelica bond-graph library, in ‘Pro-
ceedings of the 4" International Modelica Conference’, Hamburg, Germany,

pp. 57-65.

Chancelier, J. P., Delebecque, F., Gomez, C., M.Goursat, Nikoukhah, R. & Steer,

S. (2002), Introduction a Scilab, Springer-Verlag.

Clauss, C., Leitner, T., Schneider, A. & Schwarz, P. (2000), Modelling of electrical
circuits with Modelica, in ‘Proceedings of the Modelica Workshop’, Lund,

Sweden.

Cooper, D. & Dougherty, D. (2000), ‘A training simulator for computer aided

process control education’, Chemical Engineering Fducation 34, 252-257.

Cooper, D., Dougherty, D. & Rice, R. (2003), ‘Building multivariable process
control intuition using Control Station’, Chemical Engineering FEducation

37, 100-105.

Cooper, D. & Fina, D. (1999), Training simulators enhance process control
education, in ‘Proceedings of the American Control Conference’, San Diego,

USA, pp. 997-1001.

166

Bibliography

Cutlip, M. B. & Shacham, M. (1999), Problem Solving in Chemical Engineering

with Numerical Methods, Prentice-Hall.

Dahlquist, G. (1959), ‘Stability and error bound in the numerical integration of
ordinary differential equations’, Transactions No. 130 of the Royal Institute of

Technology, Stockholm, Sweden .

Diaz, J. M., Dormido, S. & Aranda, J. (2005), ‘Interactive computer-aided
control design using quantitative feedback theory: the problem of vertical
movement stabilization on a high-speed ferry’, International Journal of Control

78(11), 813-825.

Dimmler, M. & Piguet, Y. (2000), Intuitive design of complex real-time control
systems, in ‘Proceedings of the 11** IEEE International Workshop on Rapid

System Prototyping (RSP 2000)’, Paris, France, pp. 52-57.

Dormido, S. (2004), ‘Control learning: present and future’, Annual Reviews in

Control 28, 115-136.

Dormido, S. & Esquembre, F. (2003), The quadruple-tank process: an interactive
tool for control education, in ‘Proceedings of the European Control Conference’,

Cambridge, UK.

Dormido, S., Gordillo, F., Dormido-Canto, S. & Aracil, J. (2002), An interactive
tool for introductory nonlinear control systems education, in ‘Proceedings of

the 15" IFAC World Congress’, Barcelona, Spain.

Dormido, S., Martin, C., Pastor, R., Sanchez, J. & Esquembre, F. (2004), Mag-
netic levitation system, in ‘Proceedings of the American Control Conference’,

Boston, USA.

Dynasim (2006), Dymola. User’s Manual, Dynasim AB, Lund, Sweden, http:

//www.dynasim. com.

Eborn, J. (1998), Modelling and Simulation of Thermal Power Plants, Technical
Report - Licenciate Thesis ISRN LUTFD2/TFRT-3219-SE, Dept. of Auto-

matic Control, Lund Institute of Technology, Sweden.

Bibliography

167

Eborn, J. (2001), On Model Libraries for Thermo-Hydraulic Applications, PhD
Dissertation, Dept. of Automatic Control, Lund Institute of Technology,

Sweden.
EJS (2007). Ejs web-site: http://fem.um.es/Ejs.

Elmqvist, H. (1978), A Structured Model Language for Large Continuous System,
PhD Dissertation TFRT-1015, Dept. of Automatic Control, Lund Institute of

Technology, Lund, Sweden.

Elmqvist, H., Bruck, D. & Otter, M. (1996), Dymola. Usert’s Manual. Version
3.0, Dynasim AB, Lund, Sweden.

Elmqvist, H., Cellier, F. E. & Otter, M. (1993), Object-oriented modeling
of hybrid systems, in ‘Proceedings of the ESS’93, European Simulation

Symposium’, Delft, The Netherlands.

Elmqvist, H., Cellier, F. E. & Otter, M. (1994), Object-oriented modeling of
power-electronic circuits using Dymola, in ‘Proceedings of the CISS - First
Joint Conference of International Simulation Societies’, Zurich, Switzerland,

pp. 156-161.

Elmqvist, H. & Otter, M. (1994), Methods for tearing systems of equations in
object-oriented modeling, in ‘Proceedings of the ESM’94, European Simulation

Multiconference’, Barcelona, Spain, pp. 326-332.

Elmqvist, H., Otter, M. & Cellier, F. E. (1995), Inline integration: A new mixed
symbolic /numeric approach for solving differential-algebraic equation systems,
in ‘Proceedings of the ESM’95, European Simulation Multiconference’, Prague,

Czech Republic, pp. 23-34.

Elmqvist, H., Tummescheit, H. & Otter, M. (2003), Object-oriented modeling
of thermofluid systems, in ‘Proceedings of the 37¢ International Modelica

Conference’, Linkoping, Sweden, pp. 269-286.

Empresarios Agrupados (2007a), EcosimPro - EL Modelling Language, EA

International.

168

Bibliography

Empresarios Agrupados (2007b), EcosimPro - Mathemathical Algorithms and

Simulation Guide, EA International.
Empresarios Agrupados (2007¢), EcosimPro - User Guide, EA International.

Engelson, V. (2000), Tools for Design, Interactive Simulation, and Visualization
of Object-Oriented Models in Scientific Computing, PhD Dissertation, Dept. of

Computer and Information Science, Linkoping University, Linkoping, Sweden.

EPRI (1984), Modular Modeling System, Theory Manual, MMS-02 Release,

Electric Power Research Institute, Palo Alto, California, USA.

Erenturk, K. (2005), ‘Matlab-based guis for fuzzy logic controller design and
applications to pmdc motor and avr control’, Computer Applications in

Engineering Education 13(1), 10-25.

Esquembre, F. (2004), ‘Easy Java Simulations: a software tool to create scientific

simulations in Java’, Computer Physics Communications 156, 109-204.

Fehlberg, E. (1964), ‘New high order Runge-Kutta formulas with step size control

for systems of first and second order differential equations’, ZAMM 44.

Ferreti, F. D. G. & Schiavo, F. (2006), Modelling and simulation of a washing

machine, in ‘Proceedings of the 50" Int. Congress ANIPLA’, Rome, Italy.

Fritzson, P. (2004), Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1, IEEE Press - Wiley, John & Sons.

Fritzson, P., Aronsson, P., Bunus, P., Engelson, V., Saldamli, L., Johansson, H.
& Karstrom, A. (2002), The Open Source Modelica project, in ‘Proceedings
of the 27¢ International Modelica Conference’, Oberpfaffenhofen, Germany,

pp. 297-306.

Fritzson, P., Aronsson, P., Pop, A., Lundvall, H., Nystrom, K., Saldamli, L.,
Broman, D. & Sandholm, A. (2006), OpenModelica - a free open-source
environment for system modeling, simulation, and teaching, in ‘Proceedings
of the IEEE International Symposium on Computer-Aided Control Systems

Design’, Munich, Germany.

Bibliography

169

Fritzson, P. & Engelson, V. (1998), The Open Source Modelica project, in ‘Pro-
ceedings of the 12" European Conference on Object-Oriented Programming’,

Brussels, Belgium.

Fritzson, P., Viklund, L. & Fritzson, D. (1995), ‘High-level mathematical
modeling and programming’, IEEE Software 12(4), 77-87.

Froment, G. F. & Bischoff, K. B. (1979), Chemical Reactor Analysis and Design,
John Wiley & Sons, New York, USA.

Gear, C. W. (1971), ‘Simultaneous numerical solution of differential-algebraic

equations’, IEEFE Transactions on Circuit Theory CT-18, 217-225.

Grace, A. C. W. (1991), Simulab, an integrated environment for simulation and
control, in ‘Proceedings of the 1991 American Control Conference’, pp. 1015—

1020.

Guzman, J. L., Astrém, K. J., Dormido, S., Hagglund, T. & Piguet, Y. (2006),
Interactive learning modules for PID control, in ‘Proceedings of the 7t IFAC

Advanced Control Education’, Madrid, Spain, pp. 1015-1020.

Guzman, J. L., Berenguel, M. & Dormido, S. (2005), ‘Interactive teaching of
constrained generalized predictive control’, IEEE Control Systems Magazine

25(2), 79-85.

Hairer, E., Lubich, C. & Roche, M. (1989), ‘The numerical solution of differential-
algebraic systems by Runge-Kutta methods’, Lecture notes in Mathematics

1409.

Henrichi, P. (1962), Discrete Variable Methods in Ordinary Differential Equa-

tions, John Wiley & Sons.

Himmelblau, D. M. & Bischoff, K. B. (1992), Process Analysis and Simulation,
John Wiley & Sons.

IEEE (1997), Standard VHDL Analog and Mized-Signal Extensions, Technical
Report IEEE 1076.1. TEEE.

170

Bibliography

Incropera, F. P. & DeWitt, D. P. (1996), Fundamentals of Heat and Mass
Transfer, John Wiley & Sons.

Jackson, A. S. (1960), Analog Computation, McGraw-Hill.

Jeandel, A., Boudaud., F. & Lariviere, E. (1997), ALLAN Simulation release 3.1
description, M.DEGIMA.GSA1887. GAZ DE FRANCE, DR, Saint Denis La

plaine, France, 1997.

Jimoyiannis, A. & Komis, V. (2001), ‘Computer simulations in physics teaching

and learning’, Computers € Education 36, 183—-204.

Johansson, K. H. (2000), ‘The quadruple-tank process: a multivariable laboratory
process with an adjustable zero’, IEEE Transactions on Control Systems

Technology 8(3), 456-465.

Johansson, M., Gafvert, M. & Astrém, K. J. (1998), ‘Interactive tools for

education in automatic control’, IEEE Control Systems Magazine 18(3), 33-40.

Karayanakis, N. M. (1995), Advanced System Modelling and Simulation with

Block Diagram Languages, CRC Press, Inc.

Karnopp, D. C., Margolis, D. L. & Rosenberg, R. C. (1990), System Dynamics:
A Unified Approach, Second Edition. John-Wiley & Sons.

Karnopp, D. C. & Rosenberg, R. C. (1968), Analysis and Simulation of Multiport
Systems - The Bond Graph Approach to Physical System Dynamics, MIT Press,
Cambrige, MA, US.

Kielkowski, R. M. (1998), Inside SPICE, McGraw-Hill.

Kloas, M., Friesen, V. & Simons, M. (1995), ‘Smile - a simulation environment

for energy sytems’, System Analysis Modelling Simulation 18—19, 503-509.
Korn, G. A. (1989), Interactive Dynamic-System Simulation, McGraw-Hill.

Kostic, M. (2000), Interactive simulation with a LabVIEW virtual instrument,

in ‘Proceedings of the NI Annual Conference’, Texas, USA.

Bibliography

171

LabVIEW (2007). LabVIEW web-site: http://www.ni.com/labview.

Lara, J. & Alfonseca, M. (2003), ‘Visual interactive simulation for distance
education’, SIMULATION: Transactions of the Society for Modeling and

Simulation International 79(1), 19-34.

Laterburg, U. (2001), LabVIEW in Physics Education, http://www.clab.unibe.

ch/labview/whitepaper/LV-PhysicsWPScreen.pdf.

Lengquist, E., Monemar, S., Fritzson, P. & Bunus, P. (2003), DrModelica -
an interactive tutoring environment for modelica, in ‘Proceedings of the 3¢

International Modelica Conference’; Linkdping, Sweden, pp. 125-136.

Longchamp, R. (2006), Commande numérique de systémes dynamiques, PPUR,

Lausanne, Switzerland.

Martin, C., Urquia, A. & Dormido, S. (2003), SPICELib - modeling and analysis
of electric circuits with Modelica, in ‘Proceedings of the 3"¢ International

Modelica Conference’, Linkoping, Sweden, pp. 161-170.

Martin, C., Urquia, A. & Dormido, S. (2004b), JARA 2i - a Modelica library
for interactive simulation of physical-chemical processes, in ‘Proceedings of the

Furopean Simulation and Modelling Conference’, Paris, France, pp. 128-132.

Martin, C., Urquia, A. & Dormido, S. (2005a), Object-oriented modeling of
virtual laboratories for control education, in ‘Proceedings of the 16t IFAC

World Congress’, Prague, Czech Republic, pp. Paper code: Th-A22-TO/2.

Martin, C., Urquia, A. & Dormido, S. (2005b), Modelado orientado a objetos
de laboratorios virtuales con aplicacién a la ensenanza de control de procesos
quimicos, in ‘Proceedings of the 15! Congreso Espaiiol de Informéatica (CEDI-

EIWISA)’, Granada, Spain, pp. 21-26.

Martin, C., Urquia, A. & Dormido, S. (2005c¢), Modeling of interactive virtual
laboratories with Modelica, in ‘Proceedings of the 4 International Modelica

Conference’, Hamburg, Germany, pp. 159-168.

172

Bibliography

Martin, C., Urquia, A. & Dormido, S. (2005d), A distance learning course on
virtual-lab implementation for high school science teachers, in ‘Proceedings
of the 6™ International Conference on Virtual University’, Bratislava, Slovak

Republic, pp. 3-8.

Martin, C., Urquia, A. & Dormido, S. (2006), An approach to virtual-lab
implementation using Modelica, in ‘Proceedings of the 20** Annual European

Simulation and Modelling Conference’, Toulouse, France, pp. 137-141.

Martin, C., Urquia, A. & Dormido, S. (2007), Virtual-lab of a solar house
implemented using VirtualLabBuilder Modelica library, in ‘Proceedings of

the Conference on Systems and Control (CSC’2007)’, Marrakech, Morocco,
p. paper # 130.

Martin, C., Urquia, A., Sanchez, J., Dormido, S., Esquembre, F., Guzman,
J. & Berenguel, M. (2004a), Interactive simulation of object-oriented hybrid
models, by combined use of Ejs, Matlab/Simulink and Modelica/Dymola, in

‘Proceedings of the 18" European Simulation Multiconference’, Magdeburg,

Germany, pp. 210-215.

Martin-Villalba, C., Urquia, A. & Dormido, S. (2007), Implementation of interac-
tive virtual laboratories for control education using Modelica, in ‘Proceedings

of the European Control Conference 2007’, Kos, Greece, pp. 2679-2686.

MathModelica (2007). MathModelica web-site: http://www.mathcore.com/

products/mathmodelica.
Matlab (2007). Matlab web-site: http://www.Mathworks. com.
MATRIXx (2007). MATRIX x web-site: http://www.ni.com/matrixx.

Mattsson, S. E. (1997), On modeling of heat exchangers in Modelica, in ‘Pro-

ceedings of the European Simulation Symposium, ESS’97’, Passau, Germany.

Mattsson, S. E., Olsson, H. & Elmqvist, H. (2000), Dynamic selection of states in

Dymola, in ‘Proceedings of the Modelica Workshop’, Lund, Sweden, pp. 61-67.

Bibliography

173

Mattsson, S. E. & Soderlind, G. (1992), A new technique for solving high-index
differential equations using dummy derivatives, in ‘Proceedings of the IEEE

Symposium on Computer-Aided Control System Design’, California, USA.

Mazaeda, R., Alves, R., Rueda, A., Merino, A., Acebes, L. F. & Prada, C. (2006),
Sugar factory simulator for operators training, in ‘Proceedings of the 7" IFAC

Symposium on Advances in Control Education ACE2006’, Madrid, Spain.
MGA Software (1996), ACSL Graphic Modeller - Version 4.1, MGA Software.

Mitchell, E. E. L. & Gauthier, J. S. (1976), ‘Advanced continuous simulation
language (ACSL)’, Simulation pp. 72-78.

MODE.LA (2007). MODEL.LA web-site: http://www.mit.edu/afs/athena/

org/m/modella/.

Modelica (2005), Modelica - A Unified Object-Oriented Language for Physical

Systems Modeling Language Specification Version 2.2, Modelica Association.
Modelica (2007). Modelica Association web-site: http://www.modelica.org.

Munoz-Gémez, L., Alencastre-Miranda, M. & Rudomin, I. (2003), Defining and
executing practice sessions in a robotics virtual laboratory, in ‘Proceedings of
the 4" Mexican International Conference on Computer Science (ENCS03)’,

California, Mexico, pp. 159-165.

Nagel, L. (1975), SPICE2: A Computer Program to Simulate Semiconductor
Circuits, Memorandum ERL-M520, Electronics Research Laboratory, College

of Engineering, University of California, Berkeley, CA, USA.

Nagel, L. & Pederson, D. O. (1973), Simulation Program with Integrated
Circuit Emphasis (SPICE), Memorandum ERL-M382, Electronics Research

Laboratory, College of Engineering, University of California, Berkeley, CA,
USA.

Navaratna, C., Dayawansa, W. P. & Martin, C. F. (2001), Virtual control systems
laboratory, in ‘Proceedings of the 40" IEEE Conference on Decision and

Control’, Florida, USA, pp. 2839-2843.

174

Bibliography

OOCSMP (2007). OOCSMP web-site: http://www.ii.uam.es/"jlara/

investigacion/download/00CSMP.html.

OpenModelica (2007). OpenModelica project web-site: http://www.ida.liu.

se/“pelab/modelica/OpenModelica.html.

Open Source Physics (2007). Open Source Physics project web-site: http://

WWW.opensourcephysics.org.

OrCAD Inc. (1999), OrCAD PSpice A/D. Reference Guide & User’s Guide,
OrCAD, Inc.

Otter, M., Arzen, K. & Dressler, I. (2005), StateGraph - a Modelica library for
hierarchical state machines, in ‘Proceedings of the 4*" International Modelica

Conference’, Hamburg, Germany, pp. 569-578.

Otter, M., Elmqvist, H. & Mattsson, S. E. (2003), The new Modelica MultiBody
library, in ‘Proceedings of the 37® Int. Modelica Conference’, Linkoping,

Sweden, pp. 310-330.

Otter, M. & Olsson, H. (2002), New features in Modelica 2.0, in ‘Proceedings
of the 27¢ International Modelica Conference’, Oberpfaffenhofen, Germany,

pp. 7.1-7.12.

Pantelides, C. C. (1988), ‘The consistent initialization of differential-algebraic

systems’, STAM J. SCI. STAT. COMPUT. 9(2), 213-231.

Piela, P. C. (1989), ASCEND: An Object-Oriented Environment for Modeling and
Analysis, PhD Thesis EDRC 02-09-89, Engineering Design Reseach Center,

Carnegie Mellon University, Pittsburg, PA, USA.

Piguet, Y., Holmberg, U. & Longchamp, R. (1999), Instantaneous performance
visualization for graphical control design methods, in ‘Proceedings of the 14"

IFAC World Congress’, Beijing, China.

Piguet, Y. & Longchamp, R. (2006), Interactive applications in a mandatory
control course, in ‘Proceedings of the 7" IFAC Advanced Control Education’,

Madrid, Spain.

Bibliography

175

Ragazzini, J. R., Randall, R. H. & Russell, F. A. (1947), ‘Analysis of problems

in dynamics by electric circuits’, Proc. IRE 35(5), 444-452.

Ramirez, W. F. (1989), Computational Methods for Process Simulation, Butter-
worths Publishers, Boston, USA.

Sahlin, P., Brign, A. & Sowell, E. F. (1996), The Neutral Model Format
for Building Simulation, Version 3.02, Technical Report, Dept. of Building

Sciences, The Royal Institute of Technology, Stockholm, Sweden.

Saldamli, L. (2002), PDEModelica - Towards a High-Level Language for Modeling
with Partial Differential Equations, Licenciate thesis, Department of Computer

and Information Science, Linkdping University, Sweden.

Saldamli, L. (2005), A framework for describing and solving PDE models
in Modelica, in ‘Proceedings of the 4" International Modelica Conference’,

Hamburg, Germany, pp. 113-122.

Saldamli, L. (2006), PDEModelica - A High Level Language for Modeling with
Partial Differential Equations, PhD thesis, Department of Computer and

Information Science, Linkdping University, Sweden.

Sanchez, J., Dormido, S. & Esquembre, F. (2005a), ‘The learning of control con-
cepts using interactive tools’, Computer Applications in Engineering Education

13(1), 84-98.

Sanchez, J., Esquembre, F., Martin, C., Dormido, S., Dormido-Canto, R.,
Dormido-Canto, S. & Pastor, R. (2005b), ‘Easy Java Simulations: An open-
source tool to develop interactive virtual laboratories using Matlab/Simulink’,

International Journal of Engineering Education 21(5), 798-813.

Sanchez, J., Morilla, F., Dormido, S., Aranda, J. & Ruiperez, P. (2002), ‘Virtual
control lab using Java and Matlab: A qualitative approach’, IEEE Control

Systems Magazine 22(2), 8-20.

Scilab (2007). Scilab web-site http://www.scilab.org.

176

Bibliography

Selfridge, R. G. (1955), Coding a general purpose digital computer to operate as
a differential analyzer, in ‘Proceedings of the 1955 Western Joint Computer

Conference, IRE’.

Shah, S. C., Floyd, M. A. & Lehman, L. L. (1985), ‘MATRIXx: Control
design and model building cae capability’, Computer-Aided Control Systems

Engineering pp. 181-207.
SIMPACK (2007). SIMPACK web-site http://www.simpack.com.

Skogestad, S. & Postlethwaite, I. (1996), Multivariable Feedback Control, John
Wiley & Sons.

Stephanopoulos, G., Henning, G. & Leone, H. (1990), ‘MODEL.LA. a modeling
language for process engineering. Part I. The formal framework. Part II. Multi-

facetted modeling of processing systems’, Comput. Chem. Engng. 14, 813-869.
Sysquake (2004), Sysquake 3. User’s Manual, Calerga Sarl.
Sysquake (2007). Sysquake web-site http://www.calerga.com/.
Thoma, J. U. (1990), Simulation by Bondgraphs, Springer-Verlag.

Tummescheit, H. (2002), Design and Implementation of Object-Oriented Model
Libraries using Modelica, PhD Thesis, Dept. of Automatic Control, Lund

Institute of Technology, Sweden.

Ugalde-Loo, C. E. (2005), 2x2 individual channel design MATLAB toolbox,
in ‘Proceedings of the 44" IEEE Conference on Decision and Control and

European Control Conference ECC 2005°, Seville, Spain.

Urquia, A. (2000), Modelado Orientado a Objetos y Simulacién de Sistemas
Hibridos en el Ambito del Control de Procesos Quimicos, PhD Dissertation,

Dept. Informatica y Automatica, Facultad de Ciencias, UNED, Madrid, Spain.

Urquia, A. & Dormido, S. (2003), ‘Object-oriented design of reusable model
libraries of hybrid dynamic systems’, Mathematical and Computer Modelling
of Dynamical Systems 9(1), 65-118.

Bibliography

177

Urquia, A., Martin, C. & Dormido, S. (2005), ‘Design of SPICELib: a Modelica
library for modeling and analysis of electric circuits’, Mathematical and

Computer Modelling of Dynamical System 11(1), 43-60.

Weiner, M. (1992), Bond Graph Model of a Passive Solar Heating System, Ms

Thesis, Dept. of Electr. & Comp. Engr, University of Arizona, USA.

Weiner, M. & Cellier, F. E. (1993), Modeling and simulation of a solar energy
system by use of bond graphs, in ‘Proceedings of the 1% SCS International
Conference on Bond Graph Modeling’, San Diego, California, USA, pp. 301—
306.

Wittenmark, B., Haglund, H. & Johansson, M. (1998), ‘Dynamic pictures and

interactive learning’, IEEE Control Systems Magazine 18(3), 26-32.

Zimmer, D. & Cellier, F. E. (2006), The Modelica multi-bond graph library, in
‘Proceedings of the 5" International Modelica Conference’, Vienna, Austria,

pp. 559-568.

Sysguake - Dymosim Interface

The sysquakeDymosimlInterface library contains LME functions to experiment
with the dymosim.eze file. This file is generated by Dymola from the Modelica
model. The sysquakeDymosimInterface library can be freely downloaded from
http: //www.euclides.dia.uned.es. A description of each function is provided be-

low.

A.1 setkExperiment

PURPOSE
To log to a text file the simulation parameters.
USAGE
setExperiment (txtFile, StartTime, StopTime, Increment,
nInterval, Tolerance, MaxFixedStep, Algorithm)
PARAMS

txtFile Name of the file where the simulation parame-

ters are written. By-default value: dsinli.txt.

StartTime Integration start time (and linearization time).
StopTime Integration end time.
Increment Communication step size, provided that Incre-

ment value is greater than zero.

180

nInterval
Tolerance

MaxFixedStep

Algorithm

A.2 getinfo

A Sysquake - Dymosim Interface

Number of communication intervals, if greater
than zero.

Relative precision of signals for simulation, lin-
earization and trimming.

Maximum step size of fixed step size integrators,
provided that MaxFixedStep value is greater
than 0.0.

Integer (1...28) for selecting the integration al-

gorithm, as described in (Dynasim 2006).

PURPOSE

To execute the dymosim.exe file (command dymosim -i) in order to generate the
Dymosim input file (dsin.tzt). In addition, this function reads the names of the

model variables (i.e., inputs, outputs, parameters, states) and their default values

from dsin.tzt file, and saves them as variables to the Sysquake workspace.

USAGE

[p, x0, pN, xON, inputN, outputN] = getInfo

PARAMS

x0

pN

xON

inputN

outputN

Vector that contains the parameter values.
Vector that contains the start values of the state
variables.

Set of strings, each string representing the name
of a parameter.

Set of strings, each string representing the name
of a state variable.

Set of strings, each string representing the name
of an input.

Set of strings, each string representing the name

of an output.

A.4 dymosim 181

A.3 setValues

PURPOSE
To write to a text file the name and the value of the model parameters and the
state variables.
USAGE
setValues(txtFile, pN, p, xON, x0)
PARAMS

txtFile Name of the file where the simulation parame-
ters are written. By-default value: dsinl.tzt).

pN Set of strings, representing each string the name
of a parameter.

p Vector that contains the parameter values.

x0N Set of strings, representing each string the name
of a state variable.

x0 Vector that contains the start values of the state

variables.

A.4 dymosim

PURPOSE
To simulate the Dymola model by executing the following command: dymosim

-d dsin.txt iFile oFile.

USAGE

dymosim()

dymosim(iFile, oFile)

182 A Sysquake - Dymosim Interface

PARAMS
iFile Name of the file that contains the simulation
parameters. By-default value: dsinl.tzt
oFile Name of the file where the results are saved.
Using the command tload the results can be
loaded in the Sysquake workspace. By-default

value: dsres.txt

A.5 linearize

PURPOSE To obtain the linearized model by executing the following command: dymosim -1
iFile oFile.
USAGE
linearize()
linearize(iFile, oFile)
PARAMS

iFile Name of the file that contains the simulation
parameters. By-default value: dsini.txt

oFile Name of the file where the results are saved.
Using the command tload the results can be
loaded in the Sysquake workspace. By-default

value: dsres.txt

A.6 tload

PURPOSE
To read the result file, oF'ile, and to store the signal names and the simulation

results into NV (text matrix) and s (numeric matrix) respectively.

A.7 tloadlin 183

USAGE

[N,s] = tload(oFile)
PARAMS

N Simulation results. NJi] contains the simulation

results of the variable whose name is contained

in sfi].
S Matrix that store the signal names as strings.
oFile Name of the file where the results are loaded.

By-default value: dsres.tzt

A.7 tloadlin

PURPOSE . .
To load the linear model generated by dymosim from the tztfile file (default file
name: dslin.tzt) into the Sysquake workspace.The linear matrix is described by
the following equations:
der(x) =Axx+ Bxu
y=Cxx+Dxu
USAGE
[A,B,C,D,xN,uN,yN] = tloadlin(txtfile)
PARAMS
A.B,C)D Matrices of the linear system.
xN Set of strings, each string representing the name

of a state variable.

ulN Set of strings, each string representing the name
of an input variable.

yN Set of strings, each string representing the name

of an output variable.

Interactive Models

B.1 Perfect gas

model perfectGas

parameter Boolean nIsState;

parameter Boolean pIsState;

parameter Boolean TIsState;

Real n (unit="mol",
stateSelect= if nIsState then StateSelect.always else StateSelect.default,
start=20) "Mol number";

Real p (unit="N.m-2",
stateSelect=if pIsState then StateSelect.always else StateSelect.default,
start=1e5) "Gas pressure";

Real T (unit="K",
stateSelect=if TIsState then StateSelect.always else StateSelect.default,
start=300) "Gas temperature";

Real V (unit="m3", start=1) "Volume";

Real Cp (unit="J/(Kg.K)", start=5*%R/2) "Heat capacity at constant pressure";

Real Cv (unit="J/(Kg.K)") "Heat capacity at constant volume";

Real F (unit="mol.s-1") "Input flow";

Real Tin (unit="K") "Input temperature";

Real Q (unit="J.s-1") "Heat flow";

parameter Real R (unit="J/(mol.K)") = 8.31 "Constant of the perfect gases";

protected
Real U (unit="J", stateSelect = StateSelect.never) "Internal energy";
Boolean empty (start=false);

equation
// Interactive parameters
der(V) = 0;
der(Cp) = 0;
// Input variables
der(F) = 0;

der(Tin) = 0;

186 B Interactive Models

der(Q) = 0;
// State equation
p*V=mnxR*xT;
// Mol balance
der(n) = if empty then O else F;
// Energy balance
der(U) = if empty then O else if F>0 then F*Cp*Tin+Q else F*Cp*T+Q;
// Internal energy
U=n *x Cv *x T;
// Mayer law
Cp - Cv = R;
// Empty-vessel condition
when F > 0 and pre(empty) or n < le-5 and not pre(empty) then
empty = not pre(empty);
end when;
end perfectGas;

model perfectGasI
extends perfectGas;
// Interface
input Real Iparam[2];
input Real Ivar([3];
input Real Istate[3];
Real CKparam;
Real CKvar;
Real CKstate;
output Real 0[8];
protected
Boolean CKparamIsO (start = true, fixed=true);
Boolean CKvarIsO (start = true, fixed=true);
Boolean CKstateIsO (start = true, fixed=true);
equation
// Interactive change of the parameters
when CKparam > 0.5 and pre(CKparamIsO) or CKparam < 0.5 and not pre(CKparamIsO) then
CKparamIsO = CKparam < 0.5;
reinit(V, Iparam[1]);
reinit(Cp, Iparam[2]);
end when;
// Interactive change of the input variables
when CKvar > 0.5 and pre(CKvarIsO) or CKvar < 0.5 and not pre(CKvarIsO) then
CKvarIsO = CKvar < 0.5;
reinit(F, Ivar[i]);
reinit(Tin, Ivar([2]);
reinit(Q, Ivar[3]);
end when;
// Output signal
0={n, p, T, V, Cp, Tin, F, Q };
end perfectGasI;

B.1 Perfect gas 187

model perfectGasSS1
extends perfectGasI (nIsState=false, pIsState=true, TIsState=true);
equation
// Interactive change of the state variables
when CKstate > 0.5 and pre(CKstateIsO) or CKstate < 0.5 and not pre(CKstateIsO) then
CKstateIsO = CKstate < 0.5;
reinit(p, Istate[2]);
reinit (T, Istatel[3]);
end when;
end perfectGasSS1;

model perfectGasSS2
extends perfectGasI (nIsState=true, pIsState=false, TIsState=true);
equation
// Interactive change of the state variables
when CKstate > 0.5 and pre(CKstateIsO) or CKstate < 0.5 and not pre(CKstateIsO) then
CKstateIsO = CKstate < 0.5;
reinit(n, Istatel[1]);
reinit (T, Istatel[3]);
end when;
end perfectGasSS2;

model perfectGasSS3
extends perfectGasI (nIsState=true, pIsState=true, TIsState=false);
equation
// Interactive change of the state variables
when CKstate > 0.5 and pre(CKstateIsO) or CKstate < 0.5 and not pre(CKstateIsO) then
CKstateIsO = CKstate < 0.5;
reinit(n, Istate[1]);
reinit(p, Istate[2]);
end when;
end perfectGasSS3;

model perfectGasInteractive

input Real Iparam[2];

input Real Ivar[3];

input Real Istatel[3];

input Real CKparaml[3];

input Real CKvar[3];

input Real CKstatel[3];

input Real Enabled[3];

output Real 0[8];

output Real Release[1];

perfectGasSS1 SS1(CKparam = CKparam[1], CKvar

perfectGasSS2 SS2(CKparam = CKparam[2], CKvar

perfectGasSS3 SS3(CKparam = CKparam[3], CKvar
equation

CKvar[1], CKstate = CKstate[1]);
CKvar[2], CKstate = CKstate[2]);
CKvar[3], CKstate = CKstate[3]);

Iparam = SS1.Iparam;
Istate = SS1.Istate;
Ivar = SS1.Ivar;

188 B Interactive Models

Iparam = SS2.Iparam;

Istate = SS2.Istate;

Ivar = SS2.Ivar;

Iparam = SS3.Iparam;

Istate = SS3.Istate;

Ivar = SS3.1Ivar;

Release = 4.0;

0 = if Enabled[1] > 0.5 then SS1.0
else if Enabled[2] > 0.5 then SS2.0
else if Enabled[3] > 0.5 then SS3.0
else zeros(size(0, 1));

end perfectGasInteractive;

B.2 Chemical reactor

model batchReacLigAtoPInteractive
// Physical model
extends PhysicalModel.batchReacLigAtoP;
// Interface
input Real Iparam[7];
input Real Ivar[10];
input Real Istate[4];
input Real CKparam;
input Real CKvar;
input Real CKstate;
output Real 0[21];
output Real Release;
protected
Boolean CKparamIsO (start = true, fixed=true);
Boolean CKvarIsO (start = true, fixed=true);
Boolean CKstateIsO (start = true, fixed=true);
equation
// Model release
Release = 1.0;
// Interactive change of the parameters
when CKparam > 0.5 and pre(CKparamIsO) or CKparam < 0.5 and not pre(CKparamIsO) then
CKparamIsO = CKparam < 0.5;
reinit(liq.vessel.vesselVolume,Iparam[1]);
reinit(liq.liquid.section,Iparam[2]);
reinit(resistTherm.hTSteam, Iparam[3]);
reinit(resistTherm.hTWater, Iparam[4]) ;
reinit(resistTherm.heatExchArea,Iparam[5]);
reinit (chRAtoP.kCoef [1],Iparam[6]);
reinit (chRAtoP.kCoef [2],Iparam[7]);
end when;
// Interactive change of the input variables
when CKvar > 0.5 and pre(CKvarIsO) or CKvar < 0.5 and not pre(CKvarIsO) then
CKvarIsO = CKvar < 0.5;
reinit(resistTherm.isHeater,Ivar[1]);
reinit(fluidTemp.isHeater,Ivar[1]);
reinit(resistTherm.isChiller,Ivar[2]);

B.2 Chemical reactor 189

reinit (fluidTemp.isChiller,Ivar([2]);
reinit(fluidTemp.tempHeat,Ivar[3]);
reinit (fluidTemp.tempCool,Ivar[4]);
reinit(sourceliqCtrl.flowVSP, -Ivar[5]);
reinit (sourceLiqCtrl.tempSP,Ivar[6]);
reinit(sourceliqCtrl.fractVSP[1],Ivar([7]);
reinit (sourcelLiqCtrl.fractVSP[2],Ivar[8]);
reinit(sourceliqCtrl.fractVSP[3],Ivar[9]);
reinit(chRAtoP.calcConversion,Ivar[10]);
end when;
// Interactive change of the state variables
when CKstate > 0.5 and pre(CKstateIsO) or CKstate < 0.5 and not pre(CKstateIsO) then
CKstateIsO = CKstate < 0.5;
reinit(liq.liquid.massL[1],Istate[1]);
reinit(liq.liquid.massL[2],Istate([2]);
reinit(liq.liquid.massL[3],Istate[3]);
reinit(liq.liquid.tempL,Istate[4]);
end when;
// Output variables
0 = { liq.liquid.massL[1], 1liq.liquid.massL[2], liq.liquid.massL[3],
liq.liquid.tempL, liq.liquid.liqHeight, liq.liquid.fluidV,
fluidTemp.sourceTemp, fluidTemp.consumHeater, fluidTemp.consumChiller,
fluidTemp.isHeater, fluidTemp.isChiller, -liqSource.inMass.massLF[1],
-ligSource.inMass.massLF[2], -liqSource.inMass.massLF[3],
-ligSource.totalMassF, ligSource.tempF, -chRAtoP.inMass.massLF[1],
-chRAtoP.inMass.massLF[2], -chRAtoP.inMass.massLF[3],
chRAtoP.conversion, chRAtoP.reactionRatel[1] };
end batchReacLigAtoPInteractive;

VirtualLabBuilder - User’s Reference

This appendix contains the documentation of some packages of the VirtualLab-
Builder library as it has been generated by Dymola. Only the packages intended
to be directly used by virtual-lab developers have been included (i.e., all packages
shown in Figure C.1 except the src package). Information about equations and
components has been omitted.

Complete on-line information about the VirtualLabBuilder library is available
at http://www.euclides.dia.uned.es

Packages
= ﬁ"v"irtualLabB vilder

= ﬁ"v"LabM odels
YirtualLab
[] Partialiew

= [T]ViewE lemerts
. ParentR oot
() ChildRoat
*] Cortainers
* (] Drawables
*] InteractiveControls
*] BasicElemerts
=[] Examples

(el

* [T tark] OutputSS S
i src
Figure C.1: Packages of VirtualLabBuilder library.

VirtualL.abBuilder

VirtualLabBuilder

Information

VirtualLabBuilder- A Modelica library that
facilitates the implementation of virtual-labs
using only Modelica

Release 1.0 (2007)

Author

Carla Martin-Villalba

Department of Computer Science and Automatic Control, UNED
Madrid, Spain

email: carla@dia.uned.es

VirtualLabBuilder Modelica library facilitates the implementation of virtual-labs using only
Modelica. It includes Modelica models implementing graphic interactive elements, such as
containers, animated geometric shapes, basic elements and interactive controls. These
models allow the virtual-lab developer:

e To compose the view.
e To link the visual properties of the virtual-lab view with the model variables.

The interactive graphic interface is automatically generated during the model initialization
process. The components of the library contain the code required to perform the bidirectional
communication between the view and the model. In addition, VirtualLabBuilder library
supports including documentation in the virtual-lab. This documentation is composed of
HTML pages.

VirtualLabBuilder Architecture

VirtualLabBuilder library 1s composed of the packages shown in Figure 1a. Some of them are
intended to be used by the virtual-lab developers (i.e., VirtualLabBuilder users). These are:

e ViewElements and VLabModels packages, which contain the classes required to
implement the virtual-lab view and to set up the complete virtual-lab.
e Examples package, which contains some tutorial material illustrating the library use. The

1of4

VirtualL.abBuilder

documentation of these packages is oriented to the VirtuallL.abBuilder users.

On the other hand, the classes within the src package are not intended to be directly used
by the virtual-lab developers. The documentation of this package describes the
implementation details required to modify and extend the VirtualLabBuilder library.

In fact, the classes within ViewElements and VLabModels packages inherit from classes
defined within src package, inheriting the structure and the behavior, and adding only
the documentation oriented to the virtual-lab developer.

Packages om—
=l] VinualL abBuilder E
= CJ¥LabModels
VitualLab
[] Partialview MainFrame Dialog
=] ViewElements
.Pmenmod B -) ‘:.(_) B
() ChidRoot g £4 Sipng .
+ Containers
0 Panel DrawingPanel Polygon Oval Text Brow
* [CJ Drawables
a :
[C]interactiveControls F ; - .
(] BasicElements 4 //;Ff P o D/-':.'.e\ Mechan..
[T Examples
a) * [l se b) PlottingPanel ¢ Trail TrailSet PolygonSet Mechanics
o= e | = = v
= = S pe 4 d
Damper DamperSet Slider SliderSet NumberField Label CheckBox
we it |[© 1]
o y i q fe qQ

dy Spring SpringSet

e)| RadioButton ButtonlAction

Button2éctions

)] PauseButton

InfoButton

Figure 1.VirtualLabBuilder library: a) general structure; and classes within the
following packages: b) Containers; ¢) Drawables; d) Mechanics; e) InteractiveControls;

and f) BasicElements..

Steps to describe a virtual-lab

The virtual-lab definition includes the description of the introduction, the model, the
view, and the bidirectional flow of information between the model and the view. The
virtual-lab definition process is outlined next.

1. Virtual-lab model. Any Modelica model can be transformed into other Modelica
model suitable for interactive simulation. Essentially, the proposed methodology

2 of 4

VirtualL.abBuilder

consists in modifying the model so that all the variables that need to be changed
interactively during the simulation (i.e., the inferactive variables) are formulated as
state variables. In particular, parameters are redefined as time-dependent variables
whose time-derivative is equal to zero. Input variables are reformulated analogously
in order to become interactive variables. Modelica's when clause and reinit operator
allow describing instantaneous changes in the value of the state variables. This
feature is exploited in order to perform the instantaneous changes in the value of the
interactive variables produced by the user's interaction. Some of these model
manipulations could be performed automatically by a software tool. However, at the
present time, they have to be carried out manually by the virtual-lab developer.

. Virtual-lab view. The virtual-lab developer has to define a Modelica class
describing the virtual-lab view. This class has to extend another class, named
PartialView, that 1s included in VirtualLabBuilder library (see Figure 1a). The
communication interval (i.e., time interval between to consecutive model-view
communications) is a parameter of the PartialView class (T¢om), that can be set by
the virtual-lab developer. PartialView class contains a pre-defined component: the
root element for the view description. The classes describing the graphic
components are within the Containers, Drawables, InteractiveControls and
BasicElements packages of VirtualLabBuilder library (see Figures 1b, 1c, le and 1f
respectively). The virtual-lab designer has to compose the virtual-lab view class by
instantiating and connecting the required graphic components. The graphic
components have to be connected forming a structure, whose root is the root
element. The connections among the graphic components determines their layout in
the virtual-lab view.

. Virtual-lab set up. The virtual-lab developer has to define a Modelica class
describing the complete virtual-lab. This class has to contain an instance of the
VirtualLab class, which is within the VirtualLabBuilder library (see Figure 1a).
VirtualLab class has the following parameters:

® Model-to-view communication interval (7¢om).

= Name of the java file (the content of this file is generated during the model

initialization process).

m Class describing the virtual-lab model.

m Class describing the virtual-lab view.
These two classes have been programmed in Steps 1 and 2 respectively. The
virtual-lab designer has to set the value of these parameters by writing the name of
these two classes. In addition, he has to specify how the variables of the model and
the view Modelica classes are linked. This is accomplished by writing the required
Modelica equations inside the Modelica class defining the complete virtual-lab.

. Virtual-lab translation and execution. The virtual-lab developer needs to translate
using Dymola an instance of the Modelica class defined in Step 3 into an executable
file (i.e., dymosim.exe file). The virtual-lab is started by executing this file.

. Automatic code generation and run. At the beginning of the simulation run, some
calculations are performed in order to solve the model at the initial time. The initial
sections of the Modelica model describing the virtual-lab are evaluated. In
particular, the initial sections of the interactive graphic objects composing the
virtual-lab view class and of the PartialView class are executed. These initial
sections contain calls to Modelica functions, which encapsulate calls to external

3of4

VirtualL.abBuilder

C-functions. These C-functions are Java-code generators. As a result, during the
model initialization, the Java code of the virtual-lab view is automatically generated,
compiled, packed into a jar file and executed. Also, the communication procedure
between the model and the view is automatically set up. This communication is
based on a client-server architecture: the C-program generated by Dymola (i.e.,
dymosim.exe, see Step 4) is the server and the Java program (which has been
automatically generated during the model initialization) is the client. Once the jar
file is executed, the initial layout of the virtual-lab view is displayed and the
client-server communication is established. Then, the model simulation starts.
During the simulation run, there is a bi-directional flow of information between the
model and the view. The model sends the data required to refresh the view and the
view sends the value of the variables modified due to a user action at the time
instant when the communication is performed. The time interval between two
consecutive model-view communications was defined in Step 2.

References

Dynasim (2004): Dymola. User's Manual. Dynasim AB.Version 5.3a.

Dynasim (2006): Dymola. User's Manual. Dymola 6 Additions Dynasim AB.Version
5.3a.

Martin, C. and A. Urquia and S. Dormido (2007): Implementation of Interactive Virtual
Laboratories for Control Education Using Modelica. Proceedings of European Control
Conference 2007, Kos (Greece), pp. 2679-2686.

Martin, C. and A. Urquia and S. Dormido (2007): Virtual-lab of a Solar House
implemented using VirtuallLabBuilder Modelica library. Proceedings of Conference on
Systems and Control (CSC'2007), Marrakech (Morocco), paper #130.

Martin, C., Urquia, A., and Dormido, S. (2004): An Approach to Virtual-Lab
Implementation using Modelica. In: Proceedings of the 2006 European Simulation and
Modelling Conference (ESM'2006), Toulouse (France), pp. 137-141.

Package Content

Name Description
O VLabModels |Classes to describe the virtual-lab view and to set-up the virtual-lab

O ViewElements Package including interactive graphic elements

B Examples Some examples of use

M src Source code

HTML-documentation generated by Dymola Mon Aug 27 18:14:34 2007.

4of4

VirtualL.abBuilder. VL.abModels

VirtualLL.abBuilder.VLabModels

Classes to describe the virtual-lab view and to set-up the virtual-lab

Information

VLabModels package

VLabModels package includes the PartialView and the VirtualLab classes. These two
classes are required to describe the virtual-lab view and to set-up the virtual-lab,
respectively.

Package Content

Name Description

VirtualLab Class containing instances of the model and view description

[Partial View Super-class of the model describing the virtual-lab view

VirtualLLabBuilder.VLabModels.VirtualLab

Class containing instances of the model and view description
Information

The class describing the complete virtual-lab has to contain an instance of VirtualLab class.
The virtual-lab designer has to set the name of the model and the view classes.

Parameters

Type Name Default Description

Real |Tcom 0.1 Communication interval

String |fileName "gui.java" Name of the java file

replaceable model NULL Class describing the virtual-lab view
Viewl
replaceable model NULL Class describing the virtual-lab model
Modell

"C:/Program Path where the C-functions,

String |sourceCodePath graphics.jar and delayrun.exe are

Files/Dymola/Sou... located

1of2

VirtualL.abBuilder. VL.abModels

VirtualLabBuilder.VLabModels.PartialView

Super-class of the model describing the virtual-lab view
Information

PartialView class has to be the super-class of the model describing the virtual-lab view. The
communication interval (i.e., time interval between to consecutive model-view
communications) is a parameter of this class (7¢om), that can be set by the virtual-lab
developer. PartialView class contains a pre-defined component: the root element for the
view description.

Parameters
Type Name Default Description
Real |Tcom 0.1 Communication interval
Integer | serverPort 4242 Server Port number
‘ "C:/Program Path v.vhe.re the C-functions,
String |sourceCodePath Files/Dymola/Sou... graphics.jar and delayrun.exe are
located
String |fileName "gui.java" Java file name

HTML-documentation generated by Dymola Mon Aug 27 18:14:34 2007.

20f2

VirtualL.abBuilder. ViewElements

VirtualLabBuilder.ViewElements

Package including interactive graphic elements

Information

ViewElements package
ViewElements package includes the Containers, Drawables, InteractiveControls
and BasicElements packages. These packages contain classes describing the

interactive graphic elements.

Package Content

Name Description
@ ParentRoot Connector Parent
{2 ChildRoot Connector Child
1 Containers Container elements
1 Drawables Drawable elements
[InteractiveControls Interactive control elements
[BasicElements Basic elements

VirtualLabBuilder.ViewElements.ParentRoot

Connector Parent
Information

Contents

‘ Type ‘ Name Description

1of2

VirtualL.abBuilder. ViewElements

Integer

nodeReference

Number identifying the component hosting the element

Boolean

borderLayout

True if the component hosting the element has the
BorderLayout layout policy

VirtualL.abBuilder.ViewElements.ChildRoot O

Connector Child
Information
Contents
Type Name Description
Integer nodeReference| Number identifying the component
Boolean borderLayout g;lli }i]f the component has the BorderLayout layout

HTML-documentation generated by Dymola Mon Aug 27 20:57:40 2007.

20f2

VirtualLabBuilder. ViewElements. Containers

VirtualLabBuilder.ViewElements.Containers

Container elements

Information

Containers package

Containers package has those graphic elements that are intended to host other graphic
elements. The container properties are set in the view definition and they can not be
modified during the simulation run.

Package Content

Name Description
¥ MainFrame |Main window
{3 Dialog Dialog window
£} Panel Panel container

£ DrawingPanel Drawing-panel

L4 PlottingPanel |Plotting-panel

T

VirtualL.abBuilder.ViewElements.Containers.MainFrame

Main window

Information

Creates a window where containers, basic elements and interactive controls can be placed.
The view can contain only one MainFrame object. The user can stop the simulation by

closing this window.

Parameters

Type Name Default Description

LayoutPolicy LayoutPolicy|"BorderLayout()" |Layout policy

String title "MainFrame" Text displayed as title

1of6

VirtualLabBuilder. ViewElements. Containers

Integer <Position 0 X cqordmate of the window upper left corner
in pixels

Integer yPosition 0 Y cgordmate of the window upper left corner
in pixels

Integer Width 400 Window width in pixels

Integer Height 400 Window height in pixels

Integer ARows | Number of rows when GridLayout policy is
selected

Integer nColumns |1 Number of columns when GridLayout policy
1s selected

Connectors

Type | Name Description

ParentL |pLLeft

Connector of non drawable components - Parent information

ChildL |cLRight

Connector of non drawable components - Child information

ChildL |cLLeft

Connector of non drawable components - Parent information

VirtualL.abBuilder.ViewElements.Containers.Dialog

Dialog window

Information

This class, like MainFrame, creates a window where containers, basic elements and
interactive controls can be placed. This class has only two differences with MainFrame class:
simulation run doesn't stop by closing this window and there can be more than one Dialog

object.
Parameters
Type Name Default Description
LayoutPolicy|LayoutPolicy|"BorderLayout()" Layout policy
String title "Dialog" Text displayed as title
Integer <Position 0 X cqordlnate of the window upper left corner
n pixels

20f6

VirtualLabBuilder. ViewElements. Containers

Integer yPosition 0 Y cqordmate of the window upper left corner
in pixels

Integer Width 400 Window width in pixels

Integer Height 400 Window height in pixels

Integer nRows | Number of rows when GridLayout policy is
selected

Integer nColumns |1 Number of columns when GridLayout policy
1s selected
String variable that can be linked to the

Strin varName - corresponding variable of a check-box in

& order to show and hide the window by

clicking on the check-box

Connectors

Type | Name Description

ParentL [pLLeft |Connector of non drawable components - Parent information

ChildLL |cLRight|Connector of non drawable components - Child information

ChildLL |cLLeft |Connector of non drawable components - Parent information

VirtualLabBuilder.ViewElements.Containers.Panel

Panel container

Information

Lok

Panel model creates a panel where containers, basic elements and interactive controls can be

placed.

Parameters

Type Name

Default

Description

LayoutPolicy

LayoutPolicy

"BorderLayout()"|Layout policy

positioninLayout|position

"SOUTH"

If the element hosting the panel has
BorderLayout policy, this parameter sets
the panel location respect to its container
(i.e., north, south, west or east)

Integer

nRows

Number of rows if GridLayout policy is
selected

30f6

VirtualLabBuilder. ViewElements. Containers

Integer nColumns |1 Number of columns if GridLayout policy
is selected
Connectors
Type | Name Description

ParentL |pLLeft |Connector of non drawable components - Parent information

ChildLL |cLRight/Connector of non drawable components - Child information

ChildL |cLLeft Connector of non drawable components - Parent information

g F

VirtualL.abBuilder.ViewElements.Containers.DrawingPane

Drawing-panel
Information

DrawingPanel model creates a two-dimensional container that only can contain drawable
objects. It represents a rectangular region of the plane which is defined by means of two
points: (XMin, YMin) and (Xmax, YMax). The coordinates of these two points (1.e., the value
of (XMin, YMin) and (Xmax, YMax)) are parameters of the class whose value can be set by
the user.

Parameters

Type Name | Default Description

Position inside its container when this container has

L S " ‘
positioninLayout|position|"CENTER the BorderLayout layout policy

Real XMin |-1 Minimum X
Real XMax |1 Maximum X
Real YMin |-1 Minimum Y
Real YMax |1 Maximum Y
Connectors

Type | Name Description

ParentL |pLLeft|Connector of non drawable components - Parent information

ChildLL |cLLeft|Connector of non drawable components - Parent information

4of6

VirtualLabBuilder. ViewElements. Containers

‘Child ‘cRight ‘Connector of drawable components - Child information

VirtualL.abBuilder.ViewElements.Containers.PlottingPanel

Plotting-panel

Information

PlottingPanel model creates a two-dimensional container with coordinate axes that only can

contain drawable objects.

Parameters

Type Name Default Description
positioninLavout posiion "CENTER" | 28 o1 0 o sty
String title " Title to display at the top
fontType font name |"Dialog" Title font
Integer font_size |14 Size of the title font
fontStyle font_style |"BOLD" Style of the title font
axesType axesType |"cartesian2" The type of axis to be displayed
String titleX " Label of the X axis
xyaxesType xAxisType |"linear" The type (linear or log) for cartesian X axis
booleanValue |gridX "true" Whether to display the grid for the X axis
String titleY " Label of the Y axis
xyaxesType yAxisType |"linear" The type (linear or log) for cartesian Y axis
booleanValue |gridY "true" Whether to display the grid for the Y axis
Real deltaR 2 The separation in R for the polar axis
Real deltaTheta |3.14159/8 The separation in Theta for polar axis
booleanValue |autoScaleX|"true" Whether to automatically adjust X scale
Real marginX |0 Margin to be left in the X scale
booleanValue |autoScaleY|"true" Whether to automatically adjust Y scale
Real marginY 0 Margin to be left in the Y scale
Real minX 0 The minimum X value that can be displayed
Real maxX 1 The maximum X value that can be displayed

Sof6

VirtualLabBuilder. ViewElements. Containers

Real minY 0 The minimum Y value that can be displayed
Real maxyY 1 The maximum Y valued taht can be displayed
booleanValue | coordinates "true” Whether to display coordinates when the mouse
— is pressed
booleanValue |showGrid |"true" Whether to show or not the grid
Connectors

Type | Name Description

ParentL |pLLeft

Connector of non drawable components - Parent information

ChildL |cLLeft

Connector of non drawable components - Parent information

Child |cRight

Connector of drawable components - Child information

HTMIL-documentation generated by Dymola Mon Aug 27 20:57:40 2007.

6 0of6

VirtualLabBuilder. ViewElements. Drawables

VirtualLabBuilder.ViewElements.Drawables

Drawable elements

Information

Drawables package

Drawables package contains several classes implementing interactive 2-D shapes, whose
properties (i.e., size, position, rotation angle, aspect ratio, colour, etc.) can be linked to the
model variables. They are intended to be used for building animated and interactive schematic
representations of the system. Objects of Drawables classes must be placed inside containers
that provide a coordinate system (i.e., containers of DrawingPanel and PlottingPanel classes).

Package Content

Name Description

Lo Polygon |Draws a polygon

5= Oval Draws an oval
{1 Text Displays a string
= Arrow Draws an arrow
= Trail Draws a trail

== TrailSet Draws a set of trails

#= PolygonSet|Draws a set of polygons

] Mechanics |Mechanic drawable elements

1

VirtualLLabBuilder.ViewElements.Drawables.Polygon

Draws a polygon

Information
Draws a polygonal curve specified by the coordinates of its vertexes points. The x and y
coordinates of the vertexes points of the polygon (x/:/ and y/:/ vectors) can be linked to model

variables.

Parameters

1of7

VirtualLabBuilder. ViewElements. Drawables

Type Name Default Description
booleanValue filled "rue" True 1f'the drawable is filled and false
—_— otherwise
Color lineColorp[4] {0.0,0.255} The color used for the lines of the
component

Color fillColorp[4] [{0,0,255,255} The color used to fill the component

Integer infLineColor 0 1 1fthe'11ne color changes in time and 0
otherwise

Integer intFillColor 0 1 1fthe'ﬁ111ng color changes in time and 0
otherwise

Integer nPoints 1 Number of vertices

booleanValue closed "rue" True 1f_the polygon is closed and false

—_— otherwise

Integer intVertexesX[:]|zeros(nPoints) mtVertfe xesX[i] - ! .lf coordinate x of
vertex 1 changes in time

Integer intVertexesY|[:] |zeros(nPoints) mtVertexngD] = 1 if coordinate y of vertex
1 changes in time

Real stroke 1.0 Stroke used to draw the lines

Integer gradient 0 1 if there is a gradient in the filling color

Real pl[2] {0,0} Position where the color gradient starts

Color colorl[4] {192,192,192,255} | Color at point p1

Real p2[2] {0,10} Position where the color gradient finishes

Color color2[4] {64,64,64,255} Color at point p2

booleanValue |cyclic "true" True if the color gradient is cyclic

Connectors

Type Name Description

Parent|pLeft Connector of drawable components

Child |cLeft Connector of drawable components

VirtualLabBuilder.ViewElements.Drawables.Oval

Draws an oval

Information

Oval class draws an oval. The position of the oval center (Center/:] variable) and the lengths of
the axes (Axes/: [variable) can be linked to the model variables.

Parameters

20f7

VirtualLabBuilder. ViewElements. Drawables

Type Name Default Description

booleanValue filled "rue" True if.the drawable is filled and false

—_— otherwise

Color lineColorp[4]/{0,0,0,255} The color used for the lines of the component
Color fillColorp[4] 1{0,0,255,255} The color used to fill the component

Integer infLineColor 0 (l)ti}fetrlliiliene color changes in time and 0
Integer infFillColor |0 (l)ti}fetfviifiling color changes in time and 0
Integer intCenter 0 intCenter = 1 ==> the center changes in time
Integer intAxes 0 intAxes = 1 ==> the axes change in time
Real stroke 1.0 Stroke used to draw the lines

Integer gradient 0 1 if there is a gradient in the filling color
Real pl[2] {0,0} Position where the color gradient starts
Color colorl[4] {192,192,192,255} Color at point p1

Real p2[2] {0,10} Position where the color gradient finishes
Color color2[4] {64,64,64,255} Color at point p2

booleanValue |cyclic "true" True if the color gradient is cyclic
Connectors

Type |Name Description

Parent|pLeft |Connector of drawable components

Child |cLeft |Connector of drawable components

VirtualLabBuilder.ViewElements.Drawables.Text

Displays a stri

Information

ng

L |
Text
o

Text class displays a string. The position of the string center (Center/: | variable) can be linked to
the model variables.

Parameters
Type Name Default Description
Color |textColor[4]]{0,0,0,255} string color
Integer |intCenter |0 = 0 if the center change in time and O otherwise
String |textString | "" String displayed by the element

30f7

VirtualLabBuilder. ViewElements. Drawables

Connectors

Type Name Description

Parent|pLeft |Connector of drawable components

Child |cLeft |Connector of drawable components

VirtualLabBuilder.ViewElements.Drawables.Arrow

Draws an arrow

Information

Arrow class displays a vector. The position of the origin (Origin/:] variable) and horizontal and
vertical components of the vector (Length/:] variable) can be linked to the model variables.

Parameters

Type | Name Default Description

Color |color[4] {0,0,0,255}|string color

Integer intOrigin |0 = 0 if the center change in time and 0 otherwise
Integer |intLength |0 = 0 if the center change in time and O otherwise
Real |[stroke0 |2 Stroke used to draw the lines

Integer intStroke |0 = 0 if the stroke change in time and O otherwise
Connectors

Type Name Description

Parent|pLeft |Connector of drawable components

Child |cLeft Connector of drawable components

VirtualLLabBuilder.ViewElements.Drawables.Trail

Draws a trail

Information
Creates a drawing element that displays a sequence of points at given coordinates of the hosting

container. The position of the new point (point[: | variable) can be linked to the model
variables.

4 0of7

VirtualLabBuilder. ViewElements. Drawables

Parameters
Type Name Default Description

Integer maximumPoints| 100 Maximum number of points to be drawn
Integer nSkip 100 Number of points to skip before plotting one
Color lineColor[4] {0,0,0,255} |Line color

booleanValue |connected "true" Whether to connect next point with the previous
Connectors

Type |Name Description

Parent|pLeft Connector of drawable components

Child |cLeft Connector of drawable components

VirtualLabBuilder.ViewElements.Drawables.TrailSet

Draws a set of trails
Information

Draws a set of N_trails elements of the 7rail class. The position of the new point of the trail 7 (i
= 1,.N trails)(point[i,:] variable) can be linked to the model variables.

Parameters
Type Name Default Description

Integer N_trails 2 Number of trails

Integer maximumPoints | 100 Maximum number of points to be drawn
Integer nSkip 1 Number of points to skip before plotting one
Color lineColor[4] {0,0,0,255} |Line color

booleanValue |connected "true" Whether to connect next point with the previous
Connectors

Type Name Description

Parent|parent| Connector of the drawable elements

Child |child |Connector of the drawable elements

Sof7

VirtualLabBuilder. ViewElements. Drawables

=

VirtualLabBuilder.ViewElements.Drawables.PolygonSet

Draws a set of polygons

Information

Draws a set of N elements of the Polygon class. The x and y coordinates of the vertexes points
of the polygon i (i = 1,..N) (x/i:,:] and y/i,: | vectors) can be linked to model variables.

Parameters
Type Name Default Description

booleanValue filled "rue" True 1fAthe polygon is filled and false

— otherwise

Color lineColorp[4] | {0.0,0.255} The color used for the lines of the

E— component

Color fillColorp[4] |{0,0,255,255} The color used to fill the component

Tnteger intLineColor 0 1 1fthe'11ne color changes in time and 0
otherwise

Tnteger intFillColor 0 1 1fthe'ﬁll1ng color changes in time and 0
otherwise

Integer N 2 Number of polygons

Integer nPoints 1 Number of vertices

booleanValue | closed "rge" True 1f_the polygon is closed and false

—_— otherwise

Integer intVertexesX|[:] |zeros(nPoints) 1ntVert§ xesX[i] B ! .lf coordinate x of
vertex 1 changes in time

Integer intVertexesY|[:] |zeros(nPoints) %ntVertexce_sY[l] = 1 if coordinate y of vertex
1 changes in time

Real stroke 1 Stroke used to draw the lines

Integer gradient 0 1 if there is a gradient in the filling color

Real pl[2] zeros(2) Position where the color gradient starts

Color colorl[4] {192,192,192,255} | Color at point p1

Real p2[2] {0,10} Position where the color gradient finishes

Color color2[4] {64,64,64,255} Color at point p2

booleanValue |cyclic "true" True if the color gradient is cyclic

6of7

VirtualLabBuilder. ViewElements. Drawables

Connectors

Type Name Description

Parent|parent| Connector of the drawable elements

Child |child |Connector of the drawable elements

HTMI-documentation generated by Dymola Mon Aug 27 18:14:34 2007.

7 of 7

VirtualLabBuilder. ViewElements. Drawables Mechanics

Virtuall.abBuilder.ViewElements.Drawables.Mechanics

Mechanic drawable elements

Information

Mechanics package

Mechanics package contains several classes implementing an interactive damper, a set of interactive
dampers, an interactive spring and a set of interactive springs.

Package Content

Name Description
= Damper Draws a damper

#= DamperSet Draws a set of dampers

#- Spring Draws a spring

SpringSet |Draws a set of springs

Virtuall.abBuilder.ViewElements.Drawables.Mechanics.Damper

Draws a damper
Information

Creates a damper. The position of the two damper extremities (p//:] and p2/:] variables) can be linked to
the model variables.

Parameters

Type | Name Default Description
Real |d 1/3 Length of the damper fixed part divided by the damper length
Real |L1 0.02 Distance from the wide to the narrow part of the damper
Real [L2 0.02 Width of the narrow part of the damper
Integer|intX1Y1 |0 = 0 if the point (x1, y1) change in time and 0 otherwise
Integer|intX2Y2 |0 = 0 if the point (x2, y2) change in time and 0 otherwise
Color |color1[4]|{255,0,255,255} |The damper color changes form this color to color2
Color |color2[4]/{249,204,202,255} | The damper color changes form this color to colorl

Connectors

‘ Type ‘Name‘ Description

1of4

VirtualLabBuilder. ViewElements. Drawables Mechanics

Parent pLeft |Connector of drawable components

Child |cLeft |Connector of drawable components

%

VirtualL.abBuilder.ViewElements.Drawables.Mechanics.DamperSet

Draws a set of dampers
Information

Creates a set of dampers. The position of the two extremities of each damper (p!//:, :/ and p2/:, ;]
variables) can be linked to the model variables.

Parameters

Type | Name Default Description
Integer|N_dampers|2 Number of dampers
Real |d 1/3 length of the damper fixed part divided by the damper length
Real |[L1 0.02 distance from the wide to the narrow part of the damper
Real |[L2 0.02 width of the narrow part of the damper
Integer|intX1Y1 |0 = 0 if the point (x1, y1) change in time and 0 otherwise
Integer|intX2Y2 |0 = 0 if the point (x2, y2) change in time and 0 otherwise

Color |colorl[4] [{255,0,255,255} |The damper color changes form this color to color2
Color |color2[4] [{249,204,202,255}|The damper color changes form this color to colorl

Connectors

Type Name Description

Parent parent| Connector of the drawable elements

Child |child |Connector of the drawable elements

-

Virtuall.abBuilder.ViewElements.Drawables.Mechanics.Spring

Draws a spring
Information

Creates a spring. The position of the two spring extremities (p//:] and p2/:] variables) can be linked to
the model variables.

2 of 4

VirtualLabBuilder. ViewElements. Drawables Mechanics

Parameters
Type | Name Default Description
Real |d 119 length of the spring without picks divided by the damper length
and two
Integer|N 4 pick number
Real |A 0.05 amplitude of the picks
Integer|intX1Y1 |0 = 0 if the point (x1, y1) change in time and 0 otherwise
Integer|intX2Y?2 0 = 0 if the point (x2, y2) change in time and 0 otherwise
Real [stroke 2 Stroke used to draw the lines
Color |[lineColor[4][{192,192,192.255} |Line Color
Connectors
Type Name Description
Parent pLeft |Connector of drawable components

Child

cLeft |Connector of drawable components

Virtuall.abBuilder.ViewElements.Drawables.Mechanics.SpringSet

Draws a set of springs

Information

Creates a set of dampers. The position of the two extremities of each spring (p1/:, ./ and p2/:, ;]
variables) can be linked to the model variables.

Parameters
Type | Name Default Description
Integer|N_springs |2 Number of springs
Real |d 119 length of the spring without picks divided by the damper length
and two
Integer|N 4 pick number
Real |A 0.05 amplitude of the picks
Integer|intX1Y1 0 = 0 if the point (x1, y1) change in time and 0 otherwise
Integer|intX2Y?2 0 = 0 if the point (x2, y2) change in time and 0 otherwise
Real |[stroke 2 Stroke used to draw the lines
Color |[lineColor[4][{192,192,192.255} |Line Color
Connectors

3of4

VirtualLabBuilder. ViewElements. Drawables Mechanics

Type |Name Description

Parent|parent|Connector of the drawable elements

Child |child |Connector of the drawable elements

HTMIL-documentation generated by Dymola Mon Aug 27 20:57:41 2007.

4of4

VirtualLabBuilder. ViewElements. InteractiveControls

VirtualLabBuilder.ViewElements.InteractiveControls

Interactive control elements

Information

InteractiveControls package

InteractiveControls package contains classes that allow modifying interactively the value of model variables.
Each class includes a definition of an input real variable (var) and a boolean variable (event). The value of the
event variable is true at those time instants at which the interactive control is manipulated by the virtual-lab user.
Otherwise, the event variable is false The interactive model variable can be linked to the var variable by writing
the corresponding equation.

Package Content

Name Description
*= Slider Creates a slider
%= SliderSet Creates a set of sliders

™ NumberField |Allows editing a numeric value
@ RadioButton |Creates a radio-button
Ul ButtonlAction |Creates a 1 action button

4 Button2Actions|Creates a 2 actions button

VirtualLabBuilder.ViewElements.InteractiveControls.Slider

Creates a slider

Information

Creates a slider.

Parameters
Type Name Default Description
positioninLayout |position "CENTER"|Position inside its container
String stringFormat|"0.00" Format of the text displayed by the component
String tickFormat |"0.00" Format of the text displayed with the ticks
Integer tickNumber (9 Number of ticks
Real minimum |0 Minimum value of the variable linked to the component
Real maximum |1 Maximum value of the variable linked to the component
Real factor 1 Scale factor
booleanValue |enable "true" True if the component is enabled
Connectors
‘ Type ‘ Name ‘ Description

1of5

VirtualLabBuilder. ViewElements. InteractiveControls

ParentL|pLLeft| Connector of non drawable components

ChildL. |cLLeft|Connector of non drawable components

VirtualLabBuilder.ViewElements.InteractiveControls.SliderSet

Creates a set of sliders

Information

Creates a set of sliders.

Parameters
Type Name Default Description

Integer N 2 Number of sliders
String stringFormat[N] Format of the text displayed by the component
String tickFormat "0.00" Format of the text displayed with the ticks
Integer tickNumber|[N] [9*ones(N) Number of ticks
Real minimum[N] |zeros(N) |[Minimum value of the variable linked to the component
Real maximum|[N] |ones(N) |Maximum value of the variable linked to the component
Real factor[N] ones(N) |Scale factor
booleanValue|enable "true" True if the component is enabled
Connectors

Type | Name Description
ParentL |parentL|Connector of drawables
ChildL |childL |Connector of drawables

VirtualLabBuilder.ViewElements.InteractiveControls.NumberField

Allows editing a numeric value
Information

Creates an element that allows editing a numeric value.

Parameters

Type Name Default Description
positioninLayout position "CENTER"|Position inside its container
String stringFormat|"0.00" Format of the displayed number
boolecanValue |enable "true" 1: enabled, 0: disabled

20f5

VirtualLabBuilder. ViewElements. InteractiveControls

Connectors

Type | Name Description

ParentL|pLLeft| Connector of non drawable components

ChildL. |cLLeft|Connector of non drawable components

©

VirtualL.abBuilder.ViewElements.InteractiveControls.RadioButton

Creates a radio-button

Information

Creates a radio-button. The var variable of this element can have the value 0 or 1.

Parameters

Type Name Default Description

positioninLayout |position "CENTER" |Position inside its container

boolecanValue |buttonValue |"true Initial value

String text "radioButton" |Text displayed by the element
String buttonGroup |"buttonGroup" | The radio-button belongs to this group
Connectors

Type | Name Description

ParentL|pLLeft| Connector of non drawable components

ChildL. |cLLeft|Connector of non drawable components

jn]

VirtualLabBuilder.ViewElements.InteractiveControls.ButtonlAction

Creates a 1 action button

Information

Creates a button. The var variable is equal to one when the button is pressed and it is equal to zero otherwise.
This variable can be used as a condition in a when clause. This way, the when clause is executed whenever the

virtual-lab user presses the button.

Parameters

Type Name Default Description

30f5

VirtualLabBuilder. ViewElements. InteractiveControls

positioninLayout |position "CENTER" Position inside its container
booleanValue selected "false" Whether the button is selected or not
String label "info" Text displayed by the button
alignmentType |alignment |"0.00" Text alignment
String image " Path of the image of the button
Color bgceolor[4] 1{192,192,192,255} Background color
String tooltip " Tooltip
Color lettercolor[4] {0,0,0,255} String color
fontType typeFont "Times New Roman"| Type of font
fontStyle styleFont |"Plain" Style of font
Integer sizeFont 20 Size of font
Connectors
Type | Name Description
ParentL|pLLeft| Connector of non drawable components
ChildL |cLLeft|Connector of non drawable components

VirtualLabBuilder.ViewElements.InteractiveControls.Button2Actions

Creates a 2 actions button

Information

This class creates a button. The var variable changes alternatively from zero to one and from one to zero
whenever the button is pressed. By programming the corresponding when clauses, it is possible to associate two
different actions to this button: an action is triggered when var changes from zero to one, and the other action is

triggered when var changes from one to zero.

Parameters

Type Name Default Description
positioninLayout |position "CENTER" Position inside its container
booleanValue |selected "false" Whether the button is selected or not
String label "info" Text displayed by the button
alignmentType |alignment |"0.00" Text alignment
String image " Path of the image of the button
Color bgeolor[4] [{192,192,192,255} |Background color
String tooltip " Tooltip
Color lettercolor[4]/{0,0,0,255} String color
fontType typeFont "Times New Roman" Type of font
fontStyle styleFont |"Plain" Style of font
Integer sizeFont 20 Size of font

4of5

VirtualLabBuilder. ViewElements. InteractiveControls

Connectors

Type | Name Description

ParentL|pLLeft| Connector of non drawable components

ChildL. |cLLeft|Connector of non drawable components

HTML-documentation generated by Dymola Mon Aug 27 20:57:41 2007.

Sof5

VirtualLabBuilder. ViewElements.BasicElements

VirtualLabBuilder.ViewElements.BasicElements

Basic elements

Information

BasicElements package

BasicElements package contains classes that can be hosted inside a window or a panel.

Package Content
Name Description
™ Label Decorative label

CheckBox |Check-box
T PauseButton [Button to pause and resume the simulation

U InfoButton (Button that allows the user to display the virtual-lab documentation

VirtualLabBuilder.ViewElements.BasicElements.Label

Decorative label

Information

Creates a decorative label.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
String text "text" Text to be displayed
alignmentType |alignment "0.00" Alignment of the text
Color background[4]|{255,255,255,255} |Background color
Color foreground[4] |{0,0,0,255} Foreground color
fontType typeOfFont |"Times New Roman"|Type of font of the text
fontStyle styleOfFont |"Plain" Style of font of the text
Integer sizeOfFont 10 Size of font
Connectors
‘ Type ‘ Name ‘ Description

1of4

VirtualLabBuilder. ViewElements.BasicElements

ParentL|pLLeft Connector of non drawable components

ChildL |cLLeft Connector of non drawable components

e

VirtualLabBuilder.ViewElements.BasicElements.CheckBox

Check-box
Information

Creates a check-box. The checkbox allows to show or hide the virtual-lab windows by clicking
on it.

Parameters
Type Name Default Description

positioninLayout position "CENTER"|Position inside its container

booleanValue |initialValue|"false" Initial value

String label " String displayed by the element
String variable that can be linked to the

Strin varName "var" corresponding variable of a dialog window in order to

g show and hide the window by clicking on the

check-box

Connectors

Type |Name Description

ParentL |pLLeft Connector of non drawable components

ChildL |cLLeft Connector of non drawable components

VirtualLabBuilder.ViewElements.BasicElements.PauseButton

Button to pause and resume the simulation
Information

Creates button that allows the user to pause and resume the simulation by clicking on it.

2 of 4

VirtualLabBuilder. ViewElements.BasicElements

Parameters
Type Name Default Description

positioninLayout position "CENTER"|Position inside its container
booleanValue |buttonPause|"false" Initial value
Connectors

Type |Name Description
ParentL |pLLeft| Connector of non drawable components
ChildL |cLLeft Connector of non drawable components

I

VirtualLabBuilder.ViewElements.BasicElements.InfoButton

Button that allows the user to display the virtual-lab documentation

Information

Creates a button that allows the user to show or hide a window displaying HTML pages. This
feature allows including documentation in the virtual-lab. That is to say, it supports the
implementation of the virtual-lab introduction.

Parameters

Type Name Default Description
positioninLayout position "CENTER" Position inside its container
booleanValue |selected "false" Whether the button is selected or not
String label "info" Text displayed by the button
alighmentType |alignment |"0.00" Text alignment
String image " Path of the image of the button
Color bgceolor[4] |{255,255,255,255} |Background color
String tooltip " Tooltip
Color lettercolor[4] {0,0,0,255} String color
fontType typeFont ;{l;llrjr:;z"l\lew Type of font
fontStyle styleFont "Plain" Style of font
Integer sizeFont 20 Size of font
String path " location of the html file

3of4

VirtualLabBuilder. ViewElements.BasicElements

Position of the dialog window displayed

Integer xPos 400 by the button
Position of the dialog window displayed

Integer yPos 0 by the button

Integer «Width 400 Width of the dialog window displayed by
the button

. Height of the dialog window displayed by

Integer yWidth 400 the button

String title "Info window" Title of the dialog window displayed by
the button

Connectors

Type |Name Description
ParentL |pLLeft| Connector of non drawable components
ChildL |cLLeft Connector of non drawable components

HTMIL-documentation generated by Dymola Mon Aug 27 20:57:41 2007.

4 of4

VirtualL.abBuilder Examples

VirtualL.abBuilder.Examples

Some examples of use
Information

Examples package
Example package includes two examples of use.

Package Content

Name Description
B BBall | Bouncing ball
[tank |Tank with multiple state sclections

HTMIL-documentation generated by Dymola Tue Aug 28 10:10:29 2007.

lofl

Virtuall.abBuilder Examples. BBall

VirtualLabBuilder.Examples.BBall

Bouncing ball

Information

BBall package

BBall package includes the description of the bouncing-ball virtual-lab. The
BBModel has been extracted from (Dynasim 2004) and have been adapted for
interactive simulation.

References
Dynasim (2004): Dymola. User's Manual. Dynasim AB.Version 5.3a.

Package Content

Name Description
BBModel Virtual-lab model
L1 BBView Virtual-lab view description

BBInteractive Interactive model

VirtualL.abBuilder.Examples.BBall. BBModel

Virtual-lab model

Information

This model has been extracted from (Dynasim 2004). It has been adapted for
interactive simulation. The interactive variables of the models are shown in Table
1.

1of3

Virtuall.abBuilder Examples. BBall

Table 1. Interactive variables.

X Ball position.

\4 Ball velocity.

ebounce Elasticity coefficient.
References

Dynasim (2004): Dymola.

User's Manual. Dynasim AB.Version 5.3a.

Parameters
Type Name | Default Description
Height xStart 10 [m]
Velocity vStart 0 [m/s]
Mass |m 2 [ke]
Real ebouncelni 0.8 Initial value of the elasticity coefficient
Real vsmall le-4

VirtualL.abBuilder.Examples.BBall. BBView

Virtual-lab view description

Information

This model has been composed by extending the PartialView class and by
instantiating and connecting the required components of the Virtuall.abBuilder
library. The connection rules are described in the documentation of the
ViewElements package.

Parameters

20f3

Virtuall.abBuilder Examples. BBall

Type Name Default Description
Real Tcom 0.1 Communication interval
Integer serverPort 4242 Server Port number
. "C:/Program Path V.vhe.re the C-functions,
String |sourceCodePath Files/Dymola/Sou. . graphics.jar and delayrun.exe
are located
String fileName "gui.java" Java file name

VirtualLabBuilder.Examples.BBall. BBInteractive

Interactive model

Information

This model has been composed by instantiating the Virtuall.ab Model, which is
included in the VirtuallL.abBuilder library. The BBInteractive model includes the
equations required to link the model and the view variables.

HTML-documentation generated by Dymola Mon Aug 27 20:57:41 2007.

30f3

VirtualL.abBuilder Examples.tank

VirtualLabBuilder.Examples.tank

Tank with multiple state selections

Information

tank package

This model intends to illustrate the case of a model supporting several state selections. This
model describes a tank with one output at the bottom and one pump placed at the top.

Package Content

Name Description
tank 1OutputModel Physical model
StateSelection h: state variable
StateSelection2 V: state variable
StateSelection3 F: state variable
interactiveModel Interactive model
D tank1OutputView | Virtual-lab view
tank 1 OutputInteractive| Virtual-lab model
setParamVar When clauses to change interactive parameters and input variables

VirtualLabBuilder.Examples.tank.tank1OutputModel

Physical model

Information

This model describes a tank with one output at the bottom and one pump placed at the top.
It has been adapted for interactive simulation. The boolean vector isState/:], declared in
tankOutputModel, allows controlling the state selection. The size of this vector is equal to
the number of interactive time-dependent quantities. The interactive variables of the
models are shown in Table 1.

Table 1. Interactive variables.

1of7

VirtualL.abBuilder Examples.tank

a Output hole section.
Tank section.

k Input valve parameter.

vin Input voltage.
Parameters

Type = Name Default Description

Boolean|isState[3] {true,false,false} This vector allows controlling the state selection
Boolean|hlsState |isState[1] true: h is the state variable
Boolean|VIsState (isState[2] true: V is the state variable
Boolean|FIsState |isState[3] true: F is the state variable

Real alnitial 0.4 Initial value of the output hole section
Real Alnitial |2 Initial value of the tank section

Real Klnitial 100 Initial value of the pump parameter
Real vInitial 0.01 Initial value of the pump voltage

Real |hlnitial |3 Initial value of the liquid level

Real Vlnitial |20 Initial value of the liquid volume
Real FlInitial 140 Initial value of the liquid flow

Real g 981 Constant of gravity [cm/s2]

VirtualLabBuilder.Examples.tank.StateSelection1

h: state variable

Information

This model inherits from the setParamVar model. The liquid level (%) is the state variable
of this model. It includes the code to reinitialize the value of the state variable.

Parameters

Type = Name Default Description
Boolean isState[3] |{true,false,false} | This vector allows controlling the state selection

20f7

VirtualL.abBuilder Examples.tank

Boolean hlsState |isState[1] true: h is the state variable
Boolean|VIsState (isState[2] true: V is the state variable
Boolean|FIsState |isState[3] true: F is the state variable

Real alnitial 0.4 Initial value of the output hole section
Real Alnitial |2 Initial value of the tank section
Real Klinitial 100 Initial value of the pump parameter
Real |vInitial 0.01 Initial value of the pump voltage
Real |hlnitial |3 Initial value of the liquid level
Real Vlnitial |20 Initial value of the liquid volume
Real FlInitial 140 Initial value of the liquid flow

Real |g 981 Constant of gravity [cm/s2]

VirtualLabBuilder.Examples.tank.StateSelection2

V: state variable

Information

This model inherits from the setParamVar model. The liquid volume (V) is the state
variable of this model. It includes the code to reinitialize the value of the state variable.

Parameters

Type = Name Default Description
Boolean|isState[3] {true,false,false} This vector allows controlling the state selection
Boolean hisState |isState[1] true: h is the state variable
Boolean|VIsState (isState[2] true: V is the state variable
Boolean|FIsState |isState[3] true: F is the state variable
Real alnitial 0.4 Initial value of the output hole section
Real Alnitial |2 Initial value of the tank section
Real Klnitial 100 Initial value of the pump parameter
Real vInitial 0.01 Initial value of the pump voltage
Real |hlnitial |3 Initial value of the liquid level
Real Vlnitial |20 Initial value of the liquid volume
Real FlInitial 140 Initial value of the liquid flow
Real g 981 Constant of gravity [cm/s2]

30f7

VirtualL.abBuilder Examples.tank

VirtualLabBuilder.Examples.tank.StateSelection3

F: state variable

Information

This model inherits from the setParamVar model. The liquid flow (/) is the state variable
of this model. It includes the code to reinitialize the value of the state variable.

Parameters

Type = Name Default Description
Boolean isState[3] |{true,false,false} | This vector allows controlling the state selection
Boolean|hlsState |isState[1] true: h is the state variable
Boolean VIsState |isState[2] true: V is the state variable
Boolean|FIsState |isState[3] true: F is the state variable
Real alnitial 0.4 Initial value of the output hole section
Real Alnitial |2 Initial value of the tank section
Real Klnitial 100 Initial value of the pump parameter
Real vInitial |0.01 Initial value of the pump voltage
Real |hlnitial |3 Initial value of the liquid level
Real Vlnitial |20 Initial value of the liquid volume
Real FlInitial 140 Initial value of the liquid flow
Real |g 981 Constant of gravity [cm/s2]

VirtualLabBuilder.Examples.tank.interactiveModel

Interactive model

Information

This model is composed of three instantiations of the physical-model: SS/, SS2 and SS3.
Each model has a different choice of the state variables.

4 0of7

VirtualL.abBuilder Examples.tank

[]
VirtualLabBuilder.Examples.tank.tank1OutputView

Virtual-lab view

Information

This model has been composed by extending the PartialView class and by instantiating and
connecting the required components of the VirtualLabBuilder library. The connection rules
are described in the documentation of the ViewElements package.

Parameters

Type Name Default Description
Real |Tcom 0.1 Communication interval
Integer|serverPort 4242 Server Port number

" Path where the C-functions,
Stri CodePath |/ rogram raphics jar and delayrun
ing |sourceCodePa Files/Dymola/Sou... graphics.jar and delayrun.exe are
located
String |fileName "gui.java" Java file name
. Interactive x components of the

Integer|liquidIX][6] {1,1,1,1,1,1} liquid polygon
Tnteger liquidIY[6] (1.0,0.1,1.1} Interactive y components of the

liquid polygon

Sof7

VirtualL.abBuilder Examples.tank

Interactive x components of the

Integer|vaselX[6] {1,1,1,1,1,1} vase polygon

Interactive x components of the

Integer|vasel Y[6] {0,0,0,0,0,0} vase polygon

Interactive x components of the
liquidFromPipe polygon

Integer|liquidFromPipelx[4]/{1,1,1,1}

VirtualLabBuilder.Examples.tank.tank1OutputInteractiv

Virtual-lab model

Information

This model has been composed by instantiating the VirtualLab Model, which is included in
the VirtuallL.abBuilder library. The tanklOutputinteractive model includes the equations
required to link the model and the view variables.

VirtualLabBuilder.Examples.tank.setParamVar

When clauses to change interactive parameters and input variables

Information

The setParamVar class inherits from physicalModel, and it contains the when-clauses
required to change the value of the interactive parameters and input variables. The new
values of the interactive quantities, specified interactively by the virtual-lab user, are
included in the array //:/. The size of these arrays is equal to the number of interactive
parameters plus the number of interactive input variables. The when-clauses are triggered
by the boolean variables CK and Enabled. When the value of any of these two variables
changes from false to true, then the interactive quantities are re-initialized to the value of
the //:] array.

Parameters

Type = Name Default Description
Boolean isState[3] {true,false,false} | This vector allows controlling the state selection

6of7

VirtualL.abBuilder Examples.tank

Boolean hlsState |isState[1] true: h is the state variable
Boolean|VIsState (isState[2] true: V is the state variable
Boolean|FIsState |isState[3] true: F is the state variable

Real alnitial 0.4 Initial value of the output hole section
Real Alnitial |2 Initial value of the tank section
Real Klinitial 100 Initial value of the pump parameter
Real |vInitial 0.01 Initial value of the pump voltage
Real |hlnitial |3 Initial value of the liquid level
Real Vlnitial |20 Initial value of the liquid volume
Real FlInitial 140 Initial value of the liquid flow

Real g 981 Constant of gravity [cm/s2]

HTMIL-documentation generated by Dymola Tue Aug 28 10:19:46 2007.

7 of 7

