
+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

42

Introducing Messages in Modelica for Facilitating Discrete-Event
System Modeling

Victorino Sanz, Alfonso Urquia, Sebastian Dormido, ETSII Informática, UNED, Spain
{vsanz,aurquia,sdormido}@dia.uned.es

The work performed by the authors to provide to Modelica more discrete-event system modeling functional-
ities is presented. These functionalities include the replication of the modeling capacities found in the Arena
environment, the SIMAN language and the DEVS formalism. The implementation of these new functional-
ities is included in three free Modelica libraries called ARENALib, SIMANLib and DEVSLib. These librar-
ies also include capacities for random number and variates generation, and dynamic memory management.
They are freely available for download at http://www.euclides.dia.uned.es/. As observed in the work
performed, discrete-event system modeling with Modelica using the process-oriented approach is difficult
and complex. The convenience to include a new concept in the Modelica language has been observed and is
discussed in this contribution. This new concept corresponds to the model communication mechanism using
messages. Messages help to describe the communication between components in a discrete-event system.
They do not substitute the current discrete-event modeling capabilities of Modelica, but extend them. The
proposed messages mechanism in Modelica is discussed in the manuscript. An implementation of the mes-
sages mechanism is also proposed.

Introduction
Several Modelica libraries have been developed by
the authors in order to provide to Modelica more
discrete-event system modeling capabilities. The
work performed is specially based in modeling sys-
tems using the process oriented approach, reproduc-
ing the modeling functionalities of the Arena simula-
tion environment [10] in a Modelica library called
ARENALib. The functionalities of the SIMAN mod-
eling language [18], used to describe components in
Arena, have also been reproduced in a Modelica
library called SIMANLib. One objective of the de-
velopment of this library is to take advantage of the
Modelica object-oriented capabilities to modularize
as much as possible the development of discrete-
event system models. Also, the use of a formal speci-
fication to describe SIMANLib components helped to
understand, develop and maintain them. SIMANLib
blocks can be described using DEVS specification
formalism [21]. Event communication in DEVS and
block communication in SIMANLib match perfectly.
An implementation of the Parallel DEVS formalism
[23] has been developed in a Modelica library called
DEVSLib, and used to describe the components in
SIMANLib. All the performed work with Modelica
has been developed using the Dymola modeling envi-
ronment [1]. The problems encountered during the
development of the ARENALib, SIMANLib and
DEVSLib Modelica libraries, and the solutions ap-
plied to those problems are discussed.

The Modelica language includes several functional-
ities for discrete-event management, such as if ex-
pressions to define changes in the structure of the
model, or when expressions to define event condi-
tions and the actions associated with the defined
events [16].

Other authors have contributed to the discrete-event
system modeling with Modelica. Depending on the
formalism used to define the discrete-event system,
contributions can be found using finite state machines
[7, 14, 17], Petri nets [15] or the DEVS formalism [2,
3, 4, 8]. On the other hand, other authors have devel-
oped tools to simulate discrete event systems in con-
junction with Modelica. For example, translating
models developed using a subset of the Modelica
language to the DEVS formalism. The translated
models are then simulated using the CD++ DEVS
simulator [5]. Also, other authors describe the dis-
crete-event system with an external tool that trans-
lates a block diagram to Modelica code [19].
All these contributions use the event-scheduling ap-
proach for describing the discrete-event systems [12].
Events are scheduled to occur in a future time instant.
The simulation evolves executing the actions associ-
ated with the occurrence of the events.

Due to the difficulties and problems encountered
during the development of the mentioned Modelica
libraries, the convenience of introducing a new con-
cept in Modelica has been identified. This new con-

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

43

N
SN

E 18/2, A
ugust 2008

cept will facilitate the development of discrete-event
systems, extending the current Modelica capacities.
This new concept is the model communication using
the messages mechanism. The main characteristics
and functionalities of this mechanism are also dis-
cussed in this manuscript.

1 Process-oriented modeling in Modelica
A discrete-event system modeled using the process-
oriented approach is described from the point of view
of entities [10]. These entities flow through the com-
ponents of the system, and some processes are ap-
plied to them using the available resources of the
system. Some of the information associated with the
entities are the serial number, the type, the statistical
indicators, the attributes, the creation time, and the
processing time among others. An example of this
kind of system can be a beverage manufacturing
system. The entities of this system are the bottles. A
tank fills bottles with the beverage. Once filled, the
bottles are labeled and quality controlled before they
are accepted for distribution (first and second class
bottles). Bottles without the required quality are
cleaned and re-labeled. The components of this kind
of systems are usually stochastic. For example, the
labeling and cleaning processes are modeled using
the Triangular probability distribution. The quality
controls are represented by two-way decisions whose
percentage is based on the values of uniform random
variates.
The process-oriented approach is supported by the
Arena simulation environment to model discrete-
event systems. Arena has data modules, that represent
the entities, the resources, and some other static ele-
ments of the system, and flowchart modules, that
represent the processes performed on the entities
across the system. The implementation of the bever-
age manufacturing system using Arena is shown in
Figure 1a. It is modeled as a hybrid system, because
the tank is represented by a continuous time model.

Arena allows some simple hybrid modeling by de-
scribing level variables that change continuously over
time, and rate variables, that represent how fast the
level variable changes its value. Each pair of
level/rate variables represents a differential equation
that is simulated using Euler, RKF or any user-
implemented integration method.

1.1 ARENAlib
ARENALib reproduces the Arena data and flowchart
modules that have to be combined and connected to

model the system. This library is freely available for
download at [6]. At the moment, the Create, Process,
Dispose and Decide flowchart modules and the En-
tity, Queue, Resource and Variable data modules, of
the Arena Basic Process panel, have been imple-
mented.

The library also allows hybrid system modeling,
combining the current Modelica continuous-time
system modeling functionalitieswith the components
of ARENALib.A detailed description of the library
can be found in [20]. The model of the beverage
manufacturing system composed using ARENALib is
shown in Figure 1b. In this figure, the Bottle_filling
module corresponds to a Create module, Labeling and
Cleaning correspond to Process modules, Qual-
ity_control and Quality_control_2 are Decide mod-
ules and the FirstClass_bottle and Second-
Class_bottle are Dispose modules. Entities, queues
and resources contain the data modules required for
this system.

The main tasks accomplished during the development
of the ARENALib library were: a) the model com-
munication mechanism; b) the entity management; c)
the management of the statistical information and; d)
the generation of stochastic data. These tasks and the
solutions proposed and implemented to the problems
encountered during the development of the ARE-
NALib library are discussed below.

a)

b)

Figure 1. Beverage manufacturing system. An example of
hybrid discrete-event system developed using: a) Arena;

and b) ARENALib.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

44

1.2 Model communication mechanism
Entities are generated in the system during the simu-
lation, flow across the components of the system and,
if necessary, are disposed. Generally, the number of
entities in the system changes during the simulation
run, depending on the behavior of the system.

Usually an entity arrives to a module, is processed
and sent to the following module. Entity communica-
tion is an important part of the simulation process.

Model interaction in Modelica can be performed
using connectors. A connector is an special class and
contains some variables that are linked with the ones
in another connector using a connect equation. The
connect equation relates variables either equaling
them, or summing them and equaling the sum to zero.

Several approaches have been studied, implemented
and evaluated during the development of ARENALib
in order to perform the entity transmission between
modules. The approach used to perform the entity
transmission is completely transparent for the end
user. At the user level, the communication is just
defined by connecting the output ports of some mod-
ules to the input ports of other modules. The men-
tioned approaches are discussed next.

Direct transmission
It consists of specifying all the variables that define a
type of entity inside the connector. The values as-
signed to the variables of one connector represent an
entity. These values are assigned, because of the con-
nect equation, to the connector of the next model. In
this way, an entity is directly transmitted from one
model to another. Different types of entities require
different connectors, one for each type. This is the
simplest way for communicating models, but presents
a problem: the simultaneous reception of several
entities at one model. There are three possible situa-
tions for this problem:

One-to-one connection: one model sends several
entities to another model at the same time.
Many-to-one connection: several models simul-
taneously send one entity to another model.
A combination of the previous cases: several
models simultaneously send one, or more, enti-
ties to another model.

The two following solutions have been applied to this
problem:

1. Synchronizing the entity transmission between
models using semaphores. The synchronization
allows the sender and receiver to manage the
flow of entities between both models, using a
send/ACK mechanism like in the TCP/IP com-
munication. Thus, the sender model will send an
entity to the receiver and wait for an ACK. On
the other hand, the receiver model will receive
entities when it is ready to process them, and
only send the ACK back if still ready to continue
processing more entities. A model of the sema-
phore synchronizationmechanism, based on a
previous work by Lundvall and Fritzson [9], has
been implemented and is freely available for
download at [6]. A disadvantage of this solution
is the performance degradation due to the event
iteration that takes place during the synchroniza-
tion phase of the entity transmission.

2. Including in the connector a flow variable that
represents the number of entities sent from a
model. So, the model receiving the entities will
know the number of entities received, even with
many senders. However, the information that de-
scribes several entities can not be transmitted si-
multaneously using the direct transmission ap-
proach. The variables of the connector that de-
scribe the entity can not be assigned with differ-
ent values, that represent the different transmitted
entities, at the same time. Anyway, the text file
storage and dynamic memory storage ap-
proaches, discussed below, allow to solve this
problem using the flow variable.

Text file storage
The idea is to define an intermediate storage for the
transmitted entities. This storage behaves as a com-
munication buffer between two or more modules.

The storage is implemented in a text file that stores in
each line of text the information related to each
transmitted entity. The connector contains a reference
to the text file, its file-name, and the flow variable
indicating the number of entities received. This refer-
ence is shared between the models connected to that
connector, allowing them to access the file. Each
module is able to receive entities, creates an storage
text file and sets the reference to that file in the con-
nector. Functions to read/write entities from/to the file
have been developed. A model writes one or several
entities to the file using the write function. Another
function is used by the receiver to check the number

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

45

N
SN

E 18/2, A
ugust 2008

of entities in the file. When there is any entity to be
read, the receiver reads the entities and processes
them. Thus, this approach allows the simultaneous
reception of several entities.

A disadvantage associated with this approach is the
poor performance due to the high usage of I/O opera-
tions to access the files. Also, the structure of the
information stored in the files is not very flexible if
any additional information has to be included. If new
types of entities need to be used, or the attributes of
an entity have to be changed, the file management
functions (i.e. read and write) have to be re-
implemented to correctly parse the text file to support
these new changes.

Dynamic memory storage
In order to improve the performance of the text file
approach, the intermediate storage was moved from
the file system to the main memory. Using the Mode-
lica external functions interface, a library in C was
created to manage the intermediate storage using
dynamic memory allocation. An entity is represented
in Modelica using a record class, and in C using its
equivalent struct data structure. Entities are stored
using linked-lists structures during their transmission
from one model to another. This library is freely dis-
tributed together with the ARENALib Modelica li-
brary.

Instead of a reference to the file, the connector con-
tains a reference to the memory space that stores the
entities, together with the flow variable that indicates
the number of entities received. That reference is the
memory address pointing to the beginning of the
linked-list. It is stored in an integer variable in the
connector. Similarly to the text file approach, each
model able to receive entities initializes the linked-list
and sets the reference to it in the connector. Entities
can be transferred to the queue using the write func-
tion, and can be extracted using the read function.
Another function is used to check the availability of
received entities, in order to process them.

This approach also allows the simultaneous reception
of several entities. The performance is highly in-
creased compared to the text file approach. And, the
structure of the information only depends on the data
structures managed by the functions. To modify any
attribute or entity type, it is only necessary to change
a data structure and not all the functions used to man-
age that structure.

1.3 Entity management
Regarding the entity management, it has to be men-
tioned that an additional problem appears when im-
plementing processes that delay the entity. Arena
process module can include a delay time that repre-
sents the time spent processing the entity. This delay
time is usually randomly selected from a probability
distribution. It has to be noticed that since the delay
time is usually random, the order of the arrived enti-
ties need not correspond to the order of the entities
leaving the process. These processes have to include a
temporal storage for the entities that are being de-
layed. This problem can be solved using the text file
storage or the dynamic memory storage as an addi-
tional storage for delayed entities. Due to perform-
ance reasons, the dynamic memory approach was
used to manage entity storage during delays in ARE-
NALib and SIMANLib.

Together with the initialization of the linked-queue
for entity communication, a process module initial-
izes a temporary storage, represented by a linked-list
in memory, for delayed entities. The reference to that
list is also stored in an integer variable. Every time
the process module has to delay an entity, it stores the
entity in the list using a write function. Entities are
inserted in the list in increasing order, according to
the time they must leave the process. The insertion of
an entity in the list returns the leaving-time for the
first entity in the queue. When the simulation time
reaches the next leaving-time, the entity or entities
leaving the process are extracted from the list and
sent to the next module.

1.4 Stochastic data generation
Discrete-event models usually contain some kind of
stochastic information. Random processing times,
delays or inter-arrival times help to construct a more
realistic model of a given system.

The Modelica language specification does not include
any functionality for random number generation.
Dymola, the modeling environment used to develop
and test the mentioned Modelica libraries, includes
two functions for generating random uniform and
random normal variates [1]. The generation of ran-
dom variates following other probability distributions
is not covered by these random number generation
functions. Also, the application of variance reduction
techniques is not supported by these functions.

A random number generator (RNG) was developed
by the authors. The RNG algorithm selected for its

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

46

implementation in Modelica is the same that is used
in the Arena environment. This allows the validation
of the ARENALib models using the Arena environ-
ment, because both use the same source of random
numbers. This RNG algorithm was proposed by Pi-
erre L’Ecuyer and is called Combined Multiple Re-
cursive Generator. A detailed description of the RNG
is given in [13].

Additionally to the implementation of the RNG, some
functions for generating random variates were also
developed by the authors of this manuscript. The new
RNG and the random variates generation functions
are packaged in a Modelica library called Random-
Lib, which is freely available for download at [6].

1.5 Statistical information management
Simulation results are usually reported using statisti-
cal indicators, due to the stochastic nature of discrete-
event systems. Some of these statistical indicators
have to be calculated during the simulation and some
others at the end. The amount of data that has to be
stored to calculate some of these indicators changes
depending on the length of the simulation.

Modelica does not allow the declaration of variables
with an undefined length or size, which are required
to store the statistical data. A mechanism to declare
variables of undefined length in Modelica needs to be
defined, giving the possibility to increase or decrease
the size of the variable during the simulation run.

This problem is very similar to the previously men-
tioned one about intermediate entity storage for
transmission or delay management. So, the mentioned
dynamic memory storage has been used in ARE-
NALib to record the information regarding the statis-
tical indicators of the simulation. The indicators cal-
culated in each ARENALib module are shown in Tab.
1. Statistical indicators calculated include the number
of entities arrived, the number of entities departed,
processing times, the number of entities in queue, and
the number of entities in the ystem, among others.
The information calculated for each indicator is the
mean, the maximum value, the minimum value, the
final value and the number of observations. These
values are updated during the simulation. On the
other hand, all the intermediate values have to be
recorded and used to calculate the confidence interval
at the end of the simulation. A variable in Modelica
stores a reference to the memory space that contains
the stored data for each indicator. That space is man-
aged using external functions written in C.

1.6 SIMANLib
The first approach for the development of ARE-
NALib was to write all its components, except the
mentioned external functions and data types which
are written in C, in plain Modelica code. This gener-
ated large and complex models that were difficult to
understand, maintain and extend.

The idea then was to divide the actions performed by
each module into simpler actions that combined will
offer the same functionality than the original module.

The same structure can be observed in the Arena
environment, where the modules are based and con-
structed using a lower level simulation language
called SIMAN [18].

SIMANLib contains low-level components for dis-
crete event system modeling and simulation. These
are low-level components compared to the modules
in ARENALib, which represent the high-level mod-
ules for system modeling. Flowchart modules of both
libraries are shown in Figure 2. ARENALib modules
can be described using a combination of SIMANLib
components. For example, the process module of
ARENALib is composed by the Queue, Seize, Delay
and Release blocks of SIMANLib, as shown in Fig. 3.

Components in SIMANLib are divided, as well as in
the SIMAN language, in two groups: blocks and
elements. The blocks represent the dynamic part of
the system, and are used to describe its structure and
define the flow of entities from their creation to their
disposal. The elements represent the static part of the
system, and are used to model different components
such as entities, resources, queues, etc.

Module Indicator Values
Create System.NumberIn Obs
Process NumberIn

NumberOut
VATime Per Entity
NVATime Per Entity
TotalTime Per Entity
Queue.NQ
Queue.WaitTime

Obs
Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final
Avg, Min, Max, Final, Obs

Dispose System.NumberOut Obs
EntityType NumberIn

NumberOut
VATime
NVATime
TranTime
WaitTime
OtherTime
Work In Progress

Obs
Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final

Table 1. Statistical indicators and values calculated in the
ARENALib modules

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

47

N
SN

E 18/2, A
ugust 2008

An example of a model developed using SIMANLib
is shown in Figure 4. This system is very similar to
the beverage manufacturing system mentioned above.
The entities are pieces to be machined. The pieces
arrive to the system and are processed by a machine,
one at a time. After processed, the pieces are in-
spected by a supervisor and classified as Good, Re-
ject and Repair. Repaired pieces are sent back for re-
processing.

2 Parallel DEVS in Modelica
The main objective of the implementation of the
DEVSLib library has been to closely follow the defi-
nition of the Parallel DEVS formalism and implement
all its features without restrictions. The functionalities
of DEVSLib are similar to the ones offered by other
DEVS environments such as DEVSJAVA [24] or
CD++ [22]. These similarities include the new atomic
and coupled models construction based on predefined
classes, the redefinition of the internal, external, out-
put and time advance functions in each atomic model
as required by the user and the management of model

input and output ports as needed. However, due to the
capacities of the Modelica language, DEVSLib still
presents some restrictions that will be discussed be-
low.

2.1 DEVSLib architecture
The architecture of the library is rather simple. It is
shown in Figure 5a. It contains two main models,
atomicDraft and coupledDraft, that represent the
basic structures for building any new atomic or cou-
pled DEVS models. Together with the main models
there are several auxiliary models and functions for
managing event transmission. Additionally, some
examples of atomic and coupled systems have been
included. One of the included examples is the hybrid
model of a pendulum clock [11], which is shown in
Figure 5b. In this system a continuous-time model of
a pendulum generates tics, acting as the motor of the
clock. The rest of the clock receives the tics, calcu-
lates the current time (in hours and minutes) and
manages the alarm of the clock.

2.2 Model development with DEVSLib
When building a new atomic model, the user has to
specify the actions to be performed by the external

a) b)

Figure 2. Flowchart modules: (a) ARENALib; and (b)
SIMANLib

a) b)

Figure 5. The DEVSLib Modelica library: a) architecture;
b) case of use (model of a pendulum clock).

a)

b)

Figure 3. ARENALib process module: a) icon; b) internal
structure composed using SIMANLib components.

Figure 4. Manufacturing system model composed using
SIMANLib components

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

48

transition, internal transition, output and time advance
functions. This can be performed by re-declaring the
functions Fext, Fint, Fout and Fta, initially declared
in the atomicDraft model. The user can specify any
desired behavior for these functions, while maintain-
ing the defined function declaration. Any new atomic
model has to extend the AtomicDEVS model and to
re-declare the mentioned functions. The Modelica
code of a processor system [23] developed using
DEVSLib is shown in Listings 1, 2 and 3.

The desired number of input and output ports can also
be included in the new model and managed with the
mentioned functions. The user can drag and drop new
input and output ports into the model. The prototypes
of the external transition and the output function
allow the user to check the port where an incoming
event has been received, or to specify the output port
to send the event. All these ports could be connected
later to other models.
A coupled DEVS model, like the one shown in Figure
5b, can be easily build using previously defined
atomic or coupled models, and connecting them as
required. The input and output ports have to be in-
cluded and connected to any of the model compo-
nents

2.3 DEVSLib modeling restrictions
One restriction in DEVSLib is the impossibility to
perform one-to-many connections. These kinds of
connections are not considered in ARENALib or
SIMANLib because neither Arena nor SIMAN per-
mits them. However, the Parallel DEVS formalism
allows this kind of connection so they have been
taken into account.

model processor
extends AtomicDEVS(redeclare record State = st);

redeclare function Fcon = con;
redeclare function Fint = int;
redeclare function Fext = ext;
redeclare function Fta = ta;
redeclare function initState =

 initst(dt=processTime);
parameter Real processTime = 1;
Interfaces.outPortManager outPortManager1(

redeclare record State = st,
redeclare function Fout = out, n=1);

Interfaces.outPort outPort1; // output port
Interfaces.inPort inPort1; // input port
equation

 iEvent[1] = inPort1.event;
 iQueue[1] = inPort1.queue;
 connect(outPortManager1.port, outPort1);
end processor;

Listing 1. Modelica code of a processor system modeled
using DEVSLib

function con "Confluent Transtition Function"
input st s, Real e, Integer q, Integer port;
output st sout, soutput;

algorithm
 soutput := s;
 sout := ext(int(s),e,q,port);
end con;

function int "Internal Transition Function"
 input st s;
 output st sout;
algorithm
 sout := s;
 sout.phase := 1; sout.job := 0;
 sout.delta := Modelica.Constants.inf;
end int;

function ext "External Transition Function"
input st s, Real e, Integer q, Integer port;
output st sout;

protected
Integer numreceived;

 stdEvent x;
algorithm
 sout := s;
 numreceived := numEvents(q);

if s.phase == 1 then
for i in 1 : numreceived loop

 x := getEvent(q);
if i == 1 then

 sout.job := x.Value;
Modelica.Utilities.Streams

 .print("* Event to process");
else

Modelica.Utilities.Streams
 .print("* Event balked");

end if;
 sout.received := sout.received + 1;

end for;
 sout.phase := 2; // active
 sout.delta := s.dt; // processing_time

else
 sout.delta := s.delta -e;

end if;
end ext;

function out "Output Function"
input st s, Integer port, Integer queue;
output Boolean send;

protected
 stdEvent y;
algorithm

if s.phase == 2 then
 send := true;
 y.Type := 1;
 y.Value := s.job;
 sendEvent(queue,y);

else
 send := false;

end if;
end out;

function ta "Time Advance Function"
input st s;
output Real delta;

algorithm
 delta := s.delta;
end ta;

Listing 2. Modelica code of the functions redeclared in the
processor system.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

49

N
SN

E 18/2, A
ugust 2008

This restriction appears because the way the port and
the event communication mechanism is managed,
using dynamic memory storage. As mentioned before,
each receiver initializes its linked-queue to receive
entities. A one-to-many connection cannot be per-
formed because the sender can not store in just one
integer variable the references to all the linked-queues
created by the receivers. A solution has been imple-
mented in the DEVSLib library. This solution con-
sists in an intermediate model that can be used to
duplicate the events and send them to the receivers.
Examples of this intermediate model are the Min-
Value and the HourValue models shown in Figure 5b.

By default, the information transmitted between
models in DEVSLib, at event instants, is composed
by two values: the type of the event and a real value.
The information communication mechanism using
dynamic memory is relatively complex. It will not be
easy for a user to change the structure of the informa-
tion, type and value, transmitted in events. Anyway, it
can be performed modifying the Modelica and C data
structures that support the communication mecha-
nism. In order to improve the mechanism for manag-
ing the information transmitted in events, additional
information structures will be included to the
DEVSLib library, e. g., giving the possibility to trans-
mit arrays or matrices instead of only real values.

3 Introducing messages in Modelica
A conclusion of the performed work is that discrete
event system modeling with Modelica, using the
process-oriented approach, is not an easy task. The
components required for modeling these kind of sys-

tems and the solutions proposed for the problems are
relatively complex. The developed libraries provide
some functionalities for discrete-event system model-
ing with Modelica, using the process-oriented ap-
proach. Still, there are some problems without a solu-
tion, like the one-to-many connections in DEVSLib
and the polymorphism of the information transmitted
at event instants.

In this section the model communication using mes-
sages in Modelica is presented. The authors also
propose a possible implementation of this mechanism
that will be discussed in Section 4.

3.1 Motivation
The main difficulty observed in the presented work is
the model communication mechanism. This is the
way models are connected and communicate.

The connection of models in Modelica is represented
by the connect equation. In a connection equation
the value of the variables at the ends of the connec-
tion are either equaled, or summed and equaled to
zero. A connection between discrete-event models
does not establish any relation between variables of
both models, but is used to communicate some in-
formation that has been generated in one model and is
transmitted to another. Both connection concepts
mean different things.

Event management is also different between Mode-
lica and DEVS discrete-event systems. An event in
Modelica involves a change in the value of a boolean
condition that either makes the structure of the model
to change, or performs a change in the discrete time
variables or the state variables of themodel. Events in
DEVS discrete-event systems represent a change in
the state of the system or its discrete time variables,
and usually also involves the exchange of information
between models. This is an instantaneous transmis-
sion/reception of an impulse of information between
models at the time of an event. Event management in
discrete-event systems involve additional things than
in Modelica, because of this information communica-
tion.

In order to make the development of discrete-event
systems more simple and easy, a new concept is pro-
posed and introduced in Modelica. This concept is the
messages communication mechanism. The messages
mechanism provides the capacity for communicating
impulses of information between models at event
instants.

record st "State of the model"
Integer phase; // 1 = passive, 2 = active
Real delta; // internal transitions interval
Real job; // current processing job
Real dt; // default processing time
Integer received; // num of jobs received

end st;

function initst "State Initialization Function"
input Real dt;
output st out;

algorithm
 out.phase := 1; // passive
 out.delta := Modelica.Constants.inf;
 out.job := 0;
 out.dt := dt;
 out.received := 0;
end initst;

Listing 3. Modelica code of the state and state initialization
of the processor system.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

50

3.2 Messages and mailboxes
The model communication mechanism using mes-
sages involves two parts: the message itself and the
mailbox. The message represents the information
either traveling from one model to another, or inside a
model itself. The mailbox receives the incoming
messages and stores them until they are read. The
mailbox also represents the concept of a bag of events
in the Parallel DEVS formalism.

The characteristics of the model communication us-
ing messages are the following:

A message can be sent to any available mailbox.
Available mailboxes are the ones that can be ref-
erenced from the model that sends the message,
either accessing directly or using a connection.
The mailbox warns the model when new incom-
ing messages are received.
Once received, the message can be read from the
mailbox.
The transmission of messages between models
has to be performed instantly. Any message sent
from one model will be immediately received by
another model.
Messages can be received simultaneously, either
in the same or different mailboxes.
The information transported by a message, the
content, is independent from the message com-
munication mechanism. It is a task of the user to
define the structure of that information using the
existing components of the Modelica language,
so it can be managed by the models.
Messages can be of different types. A mailbox
can store any message independently of its type.
The type of the message has also to be independ-
ent from the content of the message.
Received messages have to be stored temporarily
in the mailbox, until they are read.
Message communication has to be performed in
two stages: sending and reception. The sending
involves the transmission of any message in the
system at a given point in time, so all the mes-
sages sent are stored in the mailbox at the end.
After the sending, all the messages are available
for reception in each mailbox and can be read
and managed as required. If a model sends sev-
eral messages to the same mailbox, all the sent
messages have to be stored in the mailbox before
the first message can be read by the receiver.

3.3 Message sending, transmission, detection
and treatment

A message can be sent from one model to any other
model that contains a mailbox, even if no connection
between models is available.

Mailboxes can also be shared between models. Shar-
ing a mailbox represent that several models can ac-
cess to the message storage that it represents. Each
model sharing the mailbox can access the messages
stored, reading or extracting them from it. Read mes-
sages are kept in the mailbox until they are extracted,
or fetched, from it.

A special case of mailboxes are the ones defined
inside connectors. Two mailboxes, inside connectors,
connected using a connect equation represent a bidi-
rectional message communication pipe. They will act
as input/output mailboxes instead of only receiving
messages. A message sent to one end of the pipe will
be transported to the opposite end, and vice-versa. If
more than two models are connected to the same
pipe, a copy of the message will be transported to
each receiver connected to the pipe. This provides a
message broadcast functionality that also emulates
the event transmission in DEVS, however in DEVS
the communication is not bidirectional. The connect
equation functionalities in Modelica have to be ex-
tended in order to support this mailbox behavior. An
example of this behavior is shown in Figure 6.

The detection of a message is implicit in the action of
sending it, since they are transferred instantly. Every
time a model sends a message to a mailbox, the simu-
lator knows that the message will be received by
another model and will have to be treated properly.

The treatment of each message has to be defined by
the user. The mailbox warns when a new message has
arrived. The mailbox activates a listener function that
can be used as a condition to detect any incoming
message, used with statements like when or if in
Modelica. This does not mean that the new message
condition has to be effectively checked at each simu-
lation step, because it is notified by the send message
operation. Once a new message arrives to a mailbox,
the arrived message or messages have to be read and
treated.

4 Proposal of implementation
This section contains a proposal of implementation in
Modelica of the previously described message com-
munication mechanism. This implementation is based

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

51

N
SN

E 18/2, A
ugust 2008

on the definition of data structures that support the
message and mailbox concepts, and the definition of
the operations that can be performed with both data
structures. Messages and mailboxes have to be de-
fined as new predefined classes that have to be
treated in a singular way, allowing objects of type
message or mailbox. Due to the current Modelica
language specification, the proposed implementation
differs from the mechanism described above. The
Modelica language will need to be extended in order
to support the messages mechanism.

4.1 Data structures
There are two data structures needed to manage the
messages mechanism. These are the definition of the
message itself and the structure to support the mail-
box that receives the defined messages.

The message structure contains two components: the
type and the content. The type of a message can be
represented with an integer value. It is used to sepa-
rate the messages of the system in different classes.
The content represents the information transported by
the message. The content of a message is defined by
the user and has to be independent from the message
management mechanism. Thus, any mailbox can
receive messages with any content and of any type. It
is a task of the user to distinguish between the types
of the messages and their contents. The content of the
message is represented by a reference to an external
data structure in C defined by the user. The user has

to provide this data structure and the functions re-
quired to manage it using the reference in Modelica.
Because of this definition, a message will be com-
posed by two integer values: the type and the refer-
ence to the content.

The second structure required in the messages
mechanism is the mailbox. A mailbox is a temporary
storage for messages. If a message is sent to a mail-
box, it is stored in the mailbox until the receiver reads
it. The number of stored messages in a mailbox is not
limited, so this structure has to be able to change its
dimension depending on the number of stored mes-
sages. The implementation of a mailbox is very simi-
lar to the currently implemented linked-lists for stor-
ing delayed entities during processes.

4.2 Operations
The operations that can be performed with the previ-
ously described structures are defined below. Each
operation is defined with its parameters and a short
description of its behavior.

Mailbox operations
newmailbox(mailbox). Initializes the mailbox.

checkmsg(mailbox). Warns about the arrival of a
new message. It changes its value from false to
true and immediately back to false at each mes-
sage arrival event.

newmsg(). Detects the arrival of a message to any
of the mailboxes declared in the model. This
helps to manage the simultaneous arrival of mes-
sages in different mailboxes.

nummsg(mailbox). Returns the number of wait-
ing messages stored in the mailbox.

readmsg(mailbox,select). Reads a message
from the mailbox. The select parameter repre-
sents a user-defined function used to select the
desired message to be read from the mailbox.

getmsg(mailbox,select). Fetches a message
from the mailbox, deleting it. The select parame-
ter is used in the same way as in the readmsg
function.

putmsg(mailbox,message). Sends the message
to the mailbox.

Figure 6. Model communication with messages using
connectors.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

52

Message operations
newmsg(content,type). Creates a new message
with the defined type and content.

gettype(message). Returns the type of the mes-
sage.

settype(message,newtype). Updates the type of
the message to the value of newtype.

getcontent(message). Reads the content of the
message.

setcontent(message,newcontent). Inserts the
newcontent into the message.

An example of a SIMAN single-queue system, with
the Create, Queue, Seize, Delay, Release and Dispose
blocks, modeled using the described messages
mechanism is shown in Figure 7. Each block of the
figure contains the pseudo-code that implements the
basic actions for the entity management and commu-
nication. The select function, in the readmsg and
getmsg functions, has been simplified and only
represents the type of message to be read or extracted.

5 Conclusions
It has been observed that process-oriented modeling
of discrete-event systems in Modelica is a difficult
task. Several Modelica libraries have been developed
to provide more discrete-event system modeling func-

tionalities to Modelica, especially for modeling sys-
tems using the process-oriented approach. The im-
plementation of these libraries present some problems
and restrictions, and the solutions proposed and im-
plemented are complex, hard to understand and diffi-
cult to maintain. In order to facilitate the development
of discrete-event system models in Modelica, the
message communication mechanism has been intro-
duced and described. A possible implementation of
this mechanism in Modelica has also been proposed.

Acknowledgments
This work has been supported by the Spanish CICYT,
under DPI 2007-61068 grant, and by the IV PRICIT
(Plan Regional de Ciencia y Tecnología de la Comu-
nidad de Madrid 2005-2008), under S-0505/DPI/0391
grant.

References
[1] Dynasym AB. Dymola Dynamic Modeling Laboratory

User’s Manual. http://www.dymola. com/ , 2006.
[2] T. Beltrame. Design and Development of a Dymola/

Modelica Library for Discrete Event-Oriented Sys-
tems Using DEVS Methodology. Master’s thesis, ETH
Zürich, March 2006.

[3] T. Beltrame, F.E. Cellier. Quantised State System
Simulation in Dymola/Modelica using the DEVS For-
malism. In Proceedings of the 5th International Mode-
lica Conference, pages 73–82, 2006.

Figure 7. Example of a SIMAN single-queue system modeled using messages.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

53

N
SN

E 18/2, A
ugust 2008

[4] F.E. Cellier, E. Kofman. Continuous System Simula-
tion. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[5] M.C. D’Abreu, G.A. Wainer. M/CD++: Modeling
Continuous Systems Using Modelica and DEVS. In
Proc. 13th IEEE International Symposium on Model-
ing, Analysis, and Simulation of Computer and Tele-
communication Systems, pages 229–236, 2005.

[6] http://www.euclides.dia.uned.es/.
[7] J.A. Ferreira and J.P. Estima de Oliveira. Modelling

Hybrid Systems using Statecharts and Modelica. In
Proc. 7th IEEE International Conference on Emerging
Technologies and Factory Automation, pages 1063–
1069, 1999.

[8] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Com-
puter Society Pr, 2003.

[9] H. Lundvall, P. Fritzson. Modelling concurrent activi-
ties and resource sharing in Modelica. In Proceedings
of the SIMS 2003 - 44th Conference on Simulation
and Modeling, 2003.

[10] W.D. Kelton, R.P. Sadowski, D.T. Sturrock. Simula-
tion with Arena (4th ed.). McGraw-Hill, Inc., New
York, NY, USA, 2007.

[11] J. Kriger. Trabajo práctico 1: Antiguo reloj des perta-
dor. http://www.sce.carleton.ca/faculty
/wainer/wbgraf/samplesmain_1.htm.

[12] A.M. Law. Simulation Modelling and Analysis (4th
ed.). McGraw-Hill, 1221 Avenue of the Americas,
New York, NY, 2007.

[13] P. L’Ecuyer. Good Parameters and Implementations
for Combined Multiple Recursive Random Number
Generators. Oper. Res., 47(1):159–164, 1999.

[14] S.E. Mattsson, M. Otter, H. Elmqvist. Modelica Hy-
brid Modeling and Efficient Simulation. In Proc. 38th
IEEE Conference on Decision and Control, pages
3502–3507, 1999.

[15] P.J. Mosterman, M. Otter, H. Elmqvist. Modelling
Petri Nets as Local Constraint Equations for Hybrid
Systems using Modelica. In Proceedings of the Sum-
mer Computer Simulation Conference, pages 314–
319, 1998.

[16] M. Otter, H. Elmqvist, S.E. Mattsson. Hybrid Model-
ing in Modelica Based on the Synchronous Data Flow
Principle. In CACSD’99, pages 151–157, 1999.

[17] M. Otter, K.-E. Årzén, I. Dressler. StateGraph - A
Modelica Library for Hierarchical State Machines. In
Proc. 4th International Modelica Conference, pages
569–578, 2005.

[18] C.D. Pegden, R.P. Sadowski, R.E. Shannon. Introduc-
tion to Simulation Using SIMAN. McGraw-Hill, Inc.,
New York, NY, USA, 1995.

[19] M.A. Pereira Remelhe. Combining Discrete Event
Models and Modelica - General Thoughts and a Spe-
cial Modeling Environment. In Proc. 2nd International
Modelica Conference, pages 203–207, 2002.

[20] V. Sanz, A. Urquia, S. Dormido. ARENALib: A Mode-
lica Library for Discrete-Event System Simulation. In
Proc. 5th International Modelica Conference, pages
539–548, 2006.

[21] V. Sanz, A. Urquia, S. Dormido. DEVS Specification
and Implementation of SIMAN Blocks Using Modelica
Language. In Proc. Winter Simulation Conference
2007, pages 2374–2374, 2007.

[22] G. Wainer. CD++: A Toolkit to Develop DEVS Mod-
els. Softw. Pract. Exper., 32(13):1261–1306, 2002.

[23] B.P. Zeigler, Tag Gon Kim, H. Praehofer. Theory of
Modeling and Simulation. Academic Press, Inc., Or-
lando, FL, USA, 2000.

[24] B.P. Zeigler, H.S. Sarjoughian. Introduction to DEVS
Modeling & Simulation with JAVA: Developing Com-
ponent-based Simulation Models.
http://www.acims.arizona.edu/PUBLICATIONS/.93

Corresponding author: Victorino Sanz
Dpto. Informática y Automática,
ETSII Informática, UNED
Juan del Rosal 16, 28040 Madrid, Spain
vsanz@dia.uned.es

Accepted EOOLT 2008, June 2008
Received: July 30, 2008
Revised: August 15, 2008
Accepted: August 20, 2008

