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Abstract

The challenges of climate change and increasing energy demand will require solutions
based around renewable energy sources and a renovation of the ageing grid infrastructure.
A promising solution is distributed and centralized photovoltaic systems coupled with
energy storage.

Thinking up and validating new solutions to any problem greatly benefits from mod-
elling and simulation, decreasing costs and development time. Modelica is a non-
proprietary, object-oriented, equation based language to conveniently model complex
physical systems.

This thesis describes the development and contents of a Modelica library for photovoltaic
system modelling. The library has a focus on power electronics and is aimed at developers
of control software for power converters in the photovoltaic domain.

The library includes models for a generic photovoltaic array, a simple Li-ion battery
and switched and averaged power electronics. Some basic control blocks are also included
to support the creation of application examples.

The library was developed using Dymola 2017 and OpenModelica 1.12 and requires
Modelica Standard Library 3.2.2. The library is made freely available on GitHub using
an MIT license.

Keywords: Modelica, Modelling, Simulation, Solar Photovoltaic Energy, Battery
Energy Storage, Power Electronics.






Resumen

Los retos del cambio climatico y una creciente demanda de energia requeriran solu-
ciones basadas en recursos renovables y una renovacion de la envejecida red eléctrica.
Una solucién prometedora es la tecnologia solar fotovoltaica distribuida y centralizada
combinada con almacenamiento de energia.

El modelado y simulacién aporta muchos beneficios en la concepcion y desarrollo de
nuevas soluciones, como la reduccion de coste y el tiempo de desarrollo. Modelica es un
lenguaje no propietario, basado en ecuaciones y orientacion a objetos, para el modelado
fisico de sistemas complejos.

Este trabajo fin de master describe el desarrollo y el contenido de una libreria Modelica
para el modelado de sistemas fotovoltaicos. La libreria presta especial atencion a la
electronica de potencia y esta dirigida a los desarrolladores de software de control de
convertidores de potencia en aplicaciones fotovoltaicas.

La libreria incluye modelos de un array fotovoltaico genérico, una bateria sencilla de
litio y electronica de potencia conmutada y promediada. También se incluyen bloques
béasicos de control para permitir la creacion de ejemplos de aplicacion.

La libreria ha sido desarrollada con Dymola 2017 y OpenModelica 1.12 y require la
libreria estandar de Modelica 3.2.2. La libreria se hace disponible en GitHub usando una
licencia MIT.

Palabras clave: Modelica, Modelado, Simulacién, Energia Solar Fotovoltaica, Alma-
cenamiento de Energia, Electronica de Potencia.
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1 Introduction, goals and structure

1.1 Introduction

We need energy. That’s a fact. The evolution of technology and the abundance it
creates is fuelled by energy. For most of human history, we’ve accessed this energy
by burning things. We have recently come to the realization that this is not a good
idea [Urb15|.

Moving to renewable energy sources seems crucial, as it provides numerous benefits and
solves many problems: creation of local environmental and health benefits; facilitation
of energy access, particularly for rural areas; advancement of energy security goals by
diversifying the portfolio of energy technologies and resources; and improving social and
economic development through potential employment opportunities [EAB14].

An inspiring story about the power of technology to create abundance can be found
in [DK14]:

Gaius Plinius Cecilius Secundus, known as Pliny the Elder, was born in Italy
in the year AD 23. He was a naval and army commander in the early Roman
Empire, later an author, naturalist, and natural philosopher, best known for
his Naturalis Historia, a thirty-seven-volume encyclopedia describing, well,
everything there was to describe. His opus includes a book on cosmology,
another on farming, a third on magic. It took him four volumes to cover world
geography, nine for flora and fauna, and another nine for medicine. In one of
his later volumes, Earth, book XXXV, Pliny tells the story of a goldsmith
who brought an unusual dinner plate to the court of Emperor Tiberius.

The plate was a stunner, made from a new metal, very light, shiny, almost as
bright as silver. The goldsmith claimed he’d extracted it from plain clay, using
a secret technique, the formula known only to himself and the gods. Tiberius,
though, was a little concerned. The emperor was one of Rome’s great generals,
a warmonger who conquered most of what is now Europe and amassed a
fortune of gold and silver along the way. He was also a financial expert who
knew the value of his treasure would seriously decline if people suddenly had
access to a shiny new metal rarer than gold. “Therefore,” recounts Pliny,
“instead of giving the goldsmith the regard expected, he ordered him to be
beheaded.”

This shiny new metal was aluminum, and that beheading marked its loss to
the world for nearly two millennia. It next reappeared during the early 1800s
but was still rare enough to be considered the most valuable metal in the
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world. Napoléon III himself threw a banquet for the king of Siam where the
honored guests were given aluminum utensils, while the others had to make
do with gold.

Aluminum’s rarity comes down to chemistry. Technically, behind oxygen and
silicon, it’s the third most abundant element in the Earth’s crust, making up
8.3 percent of the weight of the world. Today it’s cheap, ubiquitous, and used
with a throwaway mind-set, but—as Napoléon’s banquet demonstrates—this
wasn’t always the case. Because of aluminum’s high affinity for oxygen, it
never appears in nature as a pure metal. Instead it’s found tightly bound as
oxides and silicates in a claylike material called bauxite.

While bauxite is 52 percent aluminum, separating out the pure metal ore was
a complex and difficult task. But between 1825 and 1845, Hans Christian
Oersted and Frederick Wohler discovered that heating anhydrous aluminum
chloride with potassium amalgam and then distilling away the mercury left a
residue of pure aluminum. In 1854 Henri Sainte-Claire Deville created the
first commercial process for extraction, driving down the price by 90 percent.
Yet the metal was still costly and in short supply.

It was the creation of a new breakthrough technology known as electrolysis,
discovered independently and almost simultaneously in 1886 by American
chemist Charles Martin Hall and Frenchman Paul Héroult, that changed
everything. The Hall-Héroult process, as it is now known, uses electricity to
liberate aluminum from bauxite. Suddenly everyone on the planet had access
to ridiculous amounts of cheap, light, pliable metal.

Save the beheading, there’s nothing too unusual in this story. History’s
littered with tales of once-rare resources made plentiful by innovation. The
reason is pretty straightforward: scarcity is often contextual. Imagine a
giant orange tree packed with fruit. If I pluck all the oranges from the lower
branches, I am effectively out of accessible fruit. From my limited perspective,
oranges are now scarce. But once someone invents a piece of technology
called a ladder, I've suddenly got new reach. Problem solved. Technology
is a resource-liberating mechanism. It can make the once scarce the now
abundant.

I believe this is the role of technology and the responsibility for engineers, scientists
and technologists is to tackle the most pressing problems by working on the progress of
technology. Some argue this is also just a smart career choice [Tod16].

To create the requisite breakthroughs to make this abundance a reality, technologists
need tools that make this work easier. Model-based engineering is one of those powerful
tools, even though the biggest part of its potential remains unrealized. As argued
in [Vicl5], modelling and simulation (M&S) could play a big role in solving climate
change. One can also envision a future in which M&S is present in many ways [Mus+14].
Even today, in the field of embedded software development, the benefits of model-based
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engineering are clear, despite the usability and interoperability issues of the present
tools |Lie+14].

Modelica is non-propietary, object-oriented, declarative, multi-domain modelling lan-
guage for component-oriented modelling of complex systems, e.g., systems containing
mechanical, electrical, electronic, hydraulic, thermal, control, electric power or process-
oriented subcomponents [16]. It enables equation-based description of systems, which
greatly improves usability for model developers.

These ideas are the inspiration behind the effort to create PVSystems, on the one
hand to understand photovoltaic (PV) technologies better and on the other to provide
something useful to the advancement of those technologies.

1.2 Goals

This thesis has the following three goals:

1. Develop a Modelica library of models for PV systems focused mainly on developers
of power electronic converters.

2. Provide a review of the current technology both related to PV systems and to M&S.
In the case of photovoltaics, this includes the techniques and methods of analysis
and design as well as the devices and systems currently available. In the case of
M&S, the focus will be on practices, tools and languages. The intersection of both
will cover the review of models relevant in the PV domain and in both cases, a
review of the most immediate future will also be provided.

3. Explore and showcase best practices of software engineering relevant to the devel-
opment of the library. This includes practices pertaining documentation, library
architecture, as well as validation techniques.

1.3 Document structure

This document can be conceptually divided in two main parts: the first part includes
Chapters 1-3 and provides some context for the development of this work; the second
part includes Chapters 4-7 and details the work undertaken, that is, the development of
the PVSystems Modelica library.

This first chapter, Introduction, goals and structure, provides the motivation for this
thesis, and outlines its goals and structure. In the second chapter, Technology review,
a brief technology review is presented both of photovoltaics and of M&S. This chapter
address goal 2. In the third chapter, Photovoltaic systems modelling, the physics of the
different photovoltaic system elements is discussed.

This physics discussion serves as the basis for the models that are presented in the
fourth chapter, PVSystems library, which presents a detailed description of each of the
components of the PVSystems library. The fifth chapter, Development and verification,
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describes the work undertaken to validate the correctness of the models developed. This
chapter also provides a short discussion of best practices related with the development
of libraries of models, addressing goal 3. In chapter six, Application, application of the
library is presented through the description of the example systems included with it.
Finally, chapter seven, Conclusions and future work, presents some concluding remarks
and ideas for future work.

In the electronic version of this document, most of the cross-references, citations and
URLs are clickable.

The library discussed in this document is available for download at GitHub:

https://github.com/raulrpearson/PVSystems
An online version of the documentation for the latest release is available at:

https://raulrpearson.github.io/PVSystems/


https://github.com/raulrpearson/PVSystems
https://raulrpearson.github.io/PVSystems/

2 Technology review

2.1 Introduction

In this chapter, a review of photovoltaic as well as modelling and simulation technologies
will be presented.

2.2 PV systems

2.2.1 PV technology

A good high-level overview of the state and prospects of PV technology is provided
in [Sme+16]. As presented in Figure 2.1, installed PV is growing exponentially and
currently dominated by European countries.

Several metrics are used to establish how energy inputs relate to energy outputs of
an energy technology, of which two are most prominent. First, the Net Energy Ratio
(NER) value, expressed as a ratio, which evaluates the amount of energy an energy source
contributes to society over its life-cycle, relative to the inputs required to establish the
technology. Second, Energy Payback Time (EPT), an estimate of the duration of time
expressed in months or years at which an energy source has “paid back” its initial energy
input. It is expressed by taking the energy input necessary to produce and operate the
energy technology and dividing by the outputs produced over a fixed period of time.

It seems that studies frequently underestimate the performance of current PV technol-
ogy and it seems that current EPT for PV plants falls around 2.4 years, and its NER
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Figure 2.1: Global installed PV capacity [Sme+16]
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Figure 2.2: Learning curve for PV modules and systems [Sme-+16]

around 11.4 |[Kopl6].

An uncontroversial fact is that the cost of PV systems is falling. Figure 2.2 shows the
learning curve of the technology.

Even though PV systems comprise a whole host of technologies, including power
electronics and energy storage, the main stage is occupied by PV cells and modules. The
working principle of solar cells is based on the photovoltaic effect, i.e. the generation of a
potential difference at the junction of two different materials in response to electromagnetic
radiation. The photovoltaic effect is closely related to the photoelectric effect, where
electrons are emitted from a material that has absorbed light with a frequency above a
material-dependent threshold frequency.

The photovoltaic effect can be divided intro three basic processes [Sme-+16]:

1. Generation of charge carriers due to the absorption of photons in the materials
that form a junction: since electrons can only occupy specific energy levels, only
photons with a certain amount of energy are absorbed. The absorption of a photon
leads to the creation of an electron-hole pair.

2. Subsequent separation of the photo-generated charge carriers in the junction: usually,
the electron-hole pair will recombine. If one wants to use the energy stored in
the electron-hole pair for performing work in an external circuit, semipermeable
membranes must be present on both sides of the absorber, such that electrons
can only flow out through one membrane and holes can only flow out through
the other membrane. In most solar cells, these membranes are formed by n- and
p-type materials. A solar cell has to be designed such that the electrons and holes
can reach the membranes before they recombine, i.e. the time it requires the
charge carriers to reach the membranes must be shorter than their lifetime. This
requirement limits the thickness of the absorber.

3. Collection of the photo-generated charge carriers at the terminals of the junction:
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finally, the charge carriers are extracted from the solar cells with electrical contacts
so that they can perform work in an external circuit.

Solar cell technologies are traditionally divided into three generations [Mad]. First
generation solar cells are mainly based on silicon wafers and typically demonstrate a
performance about 15-20%. These types of solar cells dominate the market and are
mainly those seen on rooftops. The benefits of this solar cell technology lie in their good
performance, as well as their high stability. However, they are rigid and require a lot of
energy in production.

The second generation solar cells are based on amorphous silicon, CIGS and CdTe,
where the typical performance is 10 - 15%. Since the second generation solar cells avoid
use of silicon wafers and have a lower material consumption it has been possible to reduce
production costs of these types of solar cells compared to the first generation. The second
generation solar cells can also be produced so they are flexible to some degree. However,
as the production of second generation solar cells still include vacuum processes and high
temperature treatments, there is still a large energy consumption associated with the
production of these solar cells. Further, the second generation solar cells are based on
scarce elements and this is a limiting factor in the price.

Third generation solar cells uses organic materials such as small molecules or polymers.
Thus, polymer solar cells are a sub category of organic solar cells. The third generation
also covers expensive high performance experimental multi-junction solar cells which
hold the world record in solar cell performance. This type has only to some extent a
commercial application because of the very high production price. A new class of thin
film solar cells currently under investigation are perovskite solar cells and show huge
potential with record efficiencies beyond 20% on very small area. Polymer solar cells or
plastic solar cells, on the other hand, offer several advantages such as a simple, quick and
inexpensive large-scale production and use of materials that are readily available and
potentially inexpensive. Polymer solar cells can be fabricated with well-known industrial
roll-to-roll (R2R) technologies that can be compared to the printing of newspapers.
Although the performance and stability of third generation solar cells is still limited
compared to first and second generation solar cells, they have great potential and are
already commercialized.

PV cells are grouped into solar modules, which are clustered into solar panels. A group
solar panels is called a PV array. Together with the rest of the components needed to
convert solar radiation into useful and safe electrical energy, they form the PV system,
as depicted in Figure 2.3.

The connection of cells to form modules, of modules to form panels and panels to form
arrays can be made in series or parallel, or a mixture of both, at the different levels. This
interconnection is made in a way that provides the required voltage and current levels
for the final PV array.

A group of elements connected in series is also called a string. The total current in a
string of solar cells is equal to the smallest current generated by one single solar cell, but
their voltages add up. On the other hand, if cells are connected in parallel, the voltage is
the same over all solar cells, while the currents of the solar cells add up.
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Figure 2.3: From a solar cell to a PV system |[Rfal4|

Modern PV modules often contain 60, 72 or even 96 solar cells that are usually all
connected in series in order to minimize resistive losses and to enable high voltages that
are required for an efficient operation of the inverter [Sme+16].

PV modules have so-called bypass diodes integrated. These diodes are necessary,
because in real-life conditions, PV modules can be partially shaded. The shade can be
from an object nearby, like a tree, a chimney or a neighbouring building. It also can be
caused by a leaf that has fallen onto the module. Partial shading can have significant
consequences for the output of the solar module. As mentioned above, in a string of cells,
the current is limited by the cell that generates the lowest current; a shaded cell thus
dictates the maximum current flowing through the module.

[Sme-+16] provides a very good example of this, as shown in Figure 2.4. In this case,
6 solar cells are connected in a string and one of them is shaded. The five unshaded
solar cells act like a reverse bias source on the shaded solar cell, which can be graphically
represented by reflecting their -V curve through the V = 0 axis (see dashed line in
Figure 2.4 (b)). Hence, the shaded solar cell is operated at the intersection of its I-V
curve and the reflected curve. As this operating point is in its reverse-bias area, it does
not generate energy, but starts to dissipate energy and heats up. The temperature can
increase to such a critical level that the encapsulation material cracks, or other materials
wear out. Further, high temperatures generally lead to a decrease of the PV output. In
addition, a large reverse bias applied to the cell may induce junction breakdown, which
can potentially damage the cell.

These problems occurring from partial shading can be prevented by including bypass
diodes in the module, as illustrated in Figure 2.4 (c). If no cell is shaded, no current is
flowing through the bypass diodes. However, if one cell is (partially) shaded, the bypass
diode starts to pass current through because of the biasing from the other cells. As a
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Figure 2.4: Bypass diodes and shading in PV modules [Sme+16|

result, current can flow around the shaded cell and the module can still produce the
current equal to that of an unshaded single solar cell.

In real PV modules, not every solar cell is equipped with a bypass diode, but groups of
cells share one diode. For example, a module of 60 cells, connected in series forming one
string, can contain three bypass diodes, where each diode is shared by a group of 20 cells.

[Sme-+16] also provides a great overview of PV systems. PV systems can be small
and very simple, consisting of just a PV module and load, as in the direct powering of
a water pump motor which only needs to operate when the Sun shines. On the other
hand, PV systems can also be built as large power plants with a peak power of several
MW; these are connected to the electricity grid. Many systems are placed on residential
homes. When a whole house needs to be powered and is not connected to the electricity
grid, the PV system must be operational day and night. It may also have to feed both
AC and DC loads, have reserve power, and may even include a backup generator.

Depending on the configuration, [Sme+16| establishes the following three categories
por PV systems:

e Stand-alone systems: also called off-grid, rely on solar power only. They can consist
of the PV modules and a load only or they can include batteries for energy storage.
In that case, they also typically include a charge controller. They can also include
an inverter if the system needs to power Alternating Current (AC) loads.

e Grid-connected systems: these are connected to the grid through inverters. De-
pending on the size, the systems in this category could range between a residential
rooftop system and a big PV power plant. They don’t require batteries since they
interface with the grid, but they increasingly do include energy storage for its
benefits.
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o Hybrid systems: which combine PV modules with a complementary method of
electricity generation such as a diesel, gas or wind generator.

Although the solar panels are the heart of a PV system, many other components
are required for a working system, as we discussed very briefly above. Together, these
components are called the Balance of System (BOS). Which components are required
depends on whether the system is connected to the electricity grid or whether it is
designed as a stand-alone system. The most important components belonging to the
BOS are [Sme+16]:

e A mounting structure in order to place the modules. This mounting structure is
sometimes static and sometimes includes moving elements so that the panels can
track the movement of the Sun.

e (ables to connect the different components of the PV system with each other and
to the electrical load. Thicker cables minimize resistive losses but increase the cost.

e [nergy storage is not technically required but might be needed in order to increase
the reliability of the power supply. It’s increasingly present in modern PV systems
and usually in the form of batteries.

e Power converters including Direct Current (DC)-DC converters to regulate the
voltage output of the PV array as well as DC-AC converters, also known as inverters,
to interface with the grid or to feed AC loads.

e Charge controllers that are used in stand-alone systems to control charging and often
also discharging of the battery. They prevent the batteries from being overcharged
and also from being discharged via the PV array during night. High end charge
controllers also contain DC-DC converters together with a Maximum Power Point
Tracker (MPPT) in order to make the PV voltage and current independent from
the battery voltage and current.

2.3 Modelling and simulation

M&S is the discipline of developing models of systems and using those models to analyse
and study those systems through the computation of key features. The process of
computing these features is called simulation. A model is a simplified representation of a
system, focused on the aspects of the system that are of interest. In the context of this
thesis, the models will be of mathematical nature and focused on capturing the evolution
of the system with time. The simulation of these models will consist in the numerical
solution of the system of differential equations that arise with this modelling.

[AEMQS] provides an overview of the history of continuous-time modelling and simula-
tion. The first simulations, at the beginning of the 20th century, were analog. The idea
was to model a system in terms of ordinary differential equations and then make a physical
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device that obeyed the equations. The physical system was initialized with proper initial
values and its development over time then mimicked the differential equations.

Later in the century, with the advent of digital computers, digital simulation was made
possible. When this happened, it was natural that the first efforts emulated the systems
created for analog simulation. Eventually, this led to languages and applications based
on this paradigm of which Simulink is a current prime example.

The disadvantage of this paradigm is that it requires the manual derivation of explicit
state models, an Ordinary Differential Equations (ODEs) description of a system, whereas
the natural models for dynamical systems are Differential Algebraic Equations (DAEs),
i.e. a mixture of differential and algebraic equations. This manipulation also means that
it is cumbersome to build physics based model libraries in these block diagram languages.
A general solution to this problem required a paradigm shift.

To address this shortcoming and improve usability, many domain-specific languages
and tools were created. These focus on a specific domain like electrical or mechanical
systems and provide a better user experience by constraining things in this way.

Another solution that is more recent is physical modelling languages and tools. A
typical procedure for physical modeling is to cut a system into subsystems and to account
for the behavior at the interfaces. Each subsystem is modelled by balances of mass,
energy and momentum and material equations. The complete model is obtained by
combining the descriptions of the subsystems and the interfaces. A model is considered as
a constraint between system variables. This approach leads naturally to DAE descriptions
and is very convenient for building reusable model libraries.

Modelica is one of these languages and has gained wide support and adoption in the last
decade. It is intended for modelling within many application domains such as electrical
circuits, multi-body systems, drive trains, hydraulics, thermodynamical systems, and
chemical processes etc. It supports several formalisms: ODEs, DAEs, bond graphs, finite
state automata, and Petri nets etc. Modelica is intended to serve as a standard format
so that models arising in different domains can be exchanged between tools and users.

The variety and scope of modelling languages and tools is immense. Several reviews
can be found in the literature. For example, [MT16] presents a review of tools for
modeling electric vehicle energy requirements and their impact on power distribution
networks, [All+15| presents a review of modelling approaches and tools for the simulation
of district-scale energy systems, and [SC14| presents a review of software tools for hybrid
renewable energy systems.

2.4 Related Modelica libraries

In order to keep the scope of this text manageable, this section will just go over other
Modelica libraries already developed, relevant to the area of PV systems.

The library most close to the vision of this library is the PhotoVoltaics li-
brary [Kral7|. As of this writing, it’s under active development and provides models for
PV cells, modules and arrays, Modelica record classes with commercial values for quick
parametrization of PV panel models as well as a couple of simple converter models. It
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Figure 2.5: Example system included in PhotoVoltaics

also enables modelling of partially shadowed cells. Some of the blocks lack documentation,
but the documentation that is there is good and it has a healthy examples package.

In several ways, PhotoVoltaics is superior to PVSystems. It includes a similar
set of models: PV cells, modules and arrays, power converters, battery energy storage
and some relevant control blocks. Figure 2.5 presents one of the examples included in
this library. A similar system could be constructed with PVSystems.

The basic modelling of PV cells, modules and arrays is based on the same 1-diode model,
but the approach used in PhotoVoltaics relies more heavily on component-based
modelling. One advantage of this approach is that it reuses blocks and electrical models
from Modelica Standard Library (MSL). This provides, out of the box, a conditional
heat port that is used to model the thermal aspect of PV devices. An additional nice
feature is that irradiance is also implemented conditionally - the user can select a constant
irradiance value and disable the irradiance input.

Irradiance is also best modelled in PhotoVoltaics, including blocks that model the
change in irradiance with the changing position of the Sun. No such model is included
with PVSystems.

Regarding models for power converters and control blocks, the library is a bit more
lacking. This can’t really be held against it, since the library aims at modelling PV
components and these could seem reasonably out of its scope. The AC components
are limited to quasi-static characteristics, ignoring transients and switching components.
These are better modelled in PVSystems because its scope was conceived with power
electronics designers in mind. The control blocks included with PhotoVoltaics are
limited to an MPPT controller and some ancillary blocks, whereas PVSystems includes
a more comprehensive collection of blocks.

Finally, PhotoVoltaics also includes 39 records of parameter values for commercially
available PV modules. This records package constitutes an easy addition to the library
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and one that would likely provide much value to users. As mentioned in Section 7.2,
such a package is considered a worthy addition to PVSystems in the future.

ElectricalEnergyStorage |Eint11; Mod17a] is free library that contains models
with different complexity for simulation of electric energy storage devices like batteries
(single cells as well as stacks) interacting with battery management systems, loads and
charging devices.

The package with the battery models is divided into Cells and Stacks, which are
just arrays of cells connected in series and parallel. The cell models can be either a
simple cell model with just a static ohmic impedance or a more complex cell model with
basic self discharge, a variable ohmic impedance and a variable number of variable RC
elements. They are also equipped with a bus interface based on expandable connectors. A
CellBus is available for simple monitoring of a battery and a ControlBus is available
for a more sophisticated interface with a battery management sytem.

The CellRecords are included for appropriate grouping of cell parameters and
additional models and blocks exist in the categories of sensors, loads and chargers,
battery management. Figure 2.6 presents one of the examples included with the library
and simulation results.

The MSL includes many of the elements needed to create models similar to those
that can be built with PVSystems. The latest version, 3.2.2 at the time of this writing,
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includes models for power converters, a comprehensive set of basic electric and electronic
components, as well as multiphase, quasi-stationary and electrical machine models, all
under the Electrical package.

Of special interest is the PowerConverters package, as it compares with the power
electronics models included in PVSystems. It provides 16 different converter models,
constructed from IdealDiode, IdealThyristor and IdealGTOThyristor. The
last one used as a switching transistor model. All of these blocks have an Ron, Goff
and Vknee parameters, modelling conduction losses, and the heat ports of components
are propagated to the higher levels.

On the other hand, this package doesn’t provide averaged version of the converter
models, which PVSystems does. Additionally, the structure and architecture of the
package could be improved. Most of the converters follow a very similar topology. In
fact, all converters in the library, except for the centre-tapped rectifiers, are constructed
with an H-bridge topology. It seems that grouping and reusing models around topology
instead of conversion function would make a more compact, simple and user-friendly
package.

The control blocks included are limited, but that could be due to intentional constraint
of the scope of the package. The interfaces could also be simplified, though they do
provide both regular and multiphase versions of electrical ports. Figure 2.7 presents one
of the examples included in with the library and simulation results. A similar example is
included in PVSystems and discussed in Section 6.3.

PowerSystems |[FW14; FW16] is a free (standard conform) library that is intended
to model electrical power systems at different levels of detail both in transient and
steady-state mode. It’s mainly aimed at modelling of grid level power systems and it’s
scope is that of bigger systems and longer simulation times than PVSystems. It's a
very comprehensive library and features support for models in different reference systems
(i.e. abc, dq0).

The EDrives library [HK14] presents models for electric motor drives. This provides
models for inverters at three levels: quasi static (neglecting electrical transients), averaging
(neglecting switching effects) and switching, which is similar to the goal of PVSystems.
It’s focus is on the application of this model for driving of electric machines. This library
is only available commercially.
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3 Photovoltaic systems modelling

This chapter will cover the fundamental concepts regarding the modelling of the compo-
nents outlined in Chapter 2. For each of these elements, a corresponding subsection will
go over the equations to model it.

3.1 PV source

The term PV source is used here to refer to the device where the PV effect is taking
place, from the PV cell to the PV array. As it will be shown, a single model is sufficient
to model any of these devices, hence the use of this umbrella term.

One of the traditional ways to model a PV source defined in this way is to use the
equivalent circuit presented in Figure 3.1. This is known as the single-diode circuit model
of the solar cell. A two-diode model also exists, but the the single-diode version provides
a decent approximation and is simpler [VGF09|.

The relationship between the voltages and currents in Figure 3.1 can be established in
the form of the following equation:

V + R, V + R,
I=1,—1 —_— -1 - 3.1
: o[exp( ) - 1)
R, I
AN\NN—>—
+
[pv Rp V

Figure 3.1: Equivalent circuit of a PV source
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In this equation, each of the terms take the following form:

Ly = (Ipon + K1 A7) G% (3.2a)
Ipun = RR%R Lo (3.2)

Iy = - é85nn‘£§1A§§ — (3.2¢)
V, = %T N, (3.2d)
Ap=T-T, (3.2¢)

Where the values of I, ,, K;, Ky and V., can be established from the data-sheet,
as presented in Table 3.1. Additionally, the values of the following terms are known:
G, = 1000 W/m? and T,, = 298.15 K are the Standard Testing Conditions (STC) values
of solar irradiation and temperature, respectively; k = 1.3806503 x 10723 J/K is the
Boltzmann constant and ¢ = 1.602 176 46 x 1071° C is the electric charge of the electron;
N and N,, are the number of cells in series and in parallel, respectively; finally, G, T" are
the actual solar irradiation and ambient temperature, normally considered inputs to the
model, and  and V are the actual panel/array current and voltage.

Table 3.1: Typical PV panel data-sheet parameters and values for Kyocera
KC200GT [Kyol7|

Parameter Symbol Value
Nominal open-circuit voltage Voen 329V
Nominal short-circuit current Isen 8.21A
Voltage at MPP Vinp 26.3V
Current at MPP I'np 7.61 A
Open-circuit voltage/temperature coefficient Ky —0.1230 V/K
Short-circuit current/temperature coefficient K 0.0032A/K

Maximum experimental peak output power P,  200.143W

After all this, we are still left with three unresolved symbols: a is the diode ideality
factor, is determined experimentally and is not normally supplied in data-sheets, and R,
and R, are the series and parallel resistances. These are also not supplied and need to
be figured out from the available data-sheet information.

This is where [VGF09| provides a convenient solution, proposing the algorithm displayed
in Figure 3.2 to reach values of R, and R, that provide a nice fit of the model to the
data-sheet data by guaranteeing that the fit goes through the salient points of the I-V
curve (0, Isen), (Vip, Imp) and (Voen, 0), as well as coinciding with the maximum power
point of the P-V curve (Vi,p, Praz.e)- To kick the algorithm off, the starting value for R,
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Initialization
G and T are inputs
Iy from (3.2¢)
Rs =0
Ry = Rp,min from (3.3)

yes

no

Loop
Ipy,n from (3.2b)
Ipy from (3.2a)
R, from (3.4)

I for 0 <V < Voe,n using (3.1)
PforO<V < Voc,n
€Pmazx — ||maX(P) - Pmaa:,e”
Increment R

Figure 3.2: Algorithm to determine R, and R,

is specified by:
Vm ‘/ocn - Vm
Ry min = e : (3.3)

[sc,n - [mp [mp

Subsequent value of R, are computed by equating the Maximum Power Point (MPP)
predicted by the model, P43 m, with the MPP provided in the data-sheet, Pz c. An
expression for R, can be achieved through algebraic manipulation of (3.1), reaching the

following expression:
Vmp + Rs Imp

R, = 3.4

P vmp Imp - Vmp ]d,mp - Pmaz,e ( )
where 14, is just the diode current when in the MPP,
Vinp + Linp R

A Ymp T Lmp fls ) 35

Applying this algorithm to the Kyocera KC200GT referenced in [VGF09], a very good
fit is obtained with the values of Ry = 0.221Q and R, = 415.405€).

3.2 Power electronics

The discipline of power electronics comprises the study of the technology and devices
aimed at processing power. These devices are mainly made up of switches, magnetics like
coils and transformers, and capacitors. This section will focus on the switching devices
and the discussion will be based upon the ideas presented in [EMO01] and [EMA16].
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Figure 3.3: Poles and throws: (a) two types of switches and (b) SPST implementation of
a SPDT switch.

3.2.1 Switch realization

In the applications explored in this text, all the switches that will appear will be, in
abstract terms, of two types: Single-pole single-throw (SPST) and Single-pole double-
throw (SPDT). Figure 3.3a depicts both types of switches. Since SPDT switches can be
implemented with a pair of coordinated SPST switches, as shown in Figure 3.3b, these
last ones will be the single subject of the following discussion.

SPST switches can be further classified depending on their current and voltage charac-
teristics into four groups: single-quadrant, current-bidirectional two-quadrant, voltage-
bidirectional two-quadrant and four-quadrant switches. An additional distinction will be
made between active and passive switches. In the former, the switch state is controlled
exclusively by a third terminal (control terminal), in the latter, the switch state is
controlled by the applied current and/or voltage at the switch terminals. This taxonomy
of switches is not comprehensive but will suffice for the purpose of this work.

In practical terms, these switches are implemented with semiconductor devices. Again,
from the point of view of this discussion, we will consider only a few of these devices. The
goal of this work is not to provide a comprehensive library of all of the semiconductor
devices but to provide as few generic models as possible to capture their relevant features,
and to make these models configurable in a way that accommodates the modelling of
this wide range of possible devices. Figure 3.4 displays some examples of switches and
their realizations with semiconductor devices.

3.2.2 Switch network concept

Modelling these switches will be done by constructing assemblies of semiconductor devices
models from MSL, as explained in Section 4.2.

Additionally, average switching models will be provided for a general switch network
that will enable the construction of different power converters. The advantage of this
approach is that, in the cases were the goal of the simulation is to provide validation for a
control algorithm, for example, faster simulations can be performed by creating a model
that ignores everything happening at high frequencies like the switching frequencies.
Further details will be presented in Section 4.2.

20



3.2 Power electronics

i
BJT ! i
1 Yy i +
on C
+ i v on
off v -
off v
v > 0
IGBT 1
0 ri .
C t
v
Symbol instantaneous i-v characteristic 0 instantaneous i-v characteristic
(a) (b)
i | I
! 1
1 on zgns:smrcomuas) i y
i (transistor conducts) 4 x
i v C
+ ud .—I 4 0—'|
C off v on -
v (diode conducts)
0
- on Power MOSFET Power MOSFET, Use of external diodes
0 (diode conducts) characteristics and its integral to prevent conduction
body diode of body diode
(c) (d)
1 i
i + on
c v it
off off
(diode (transistor
blocks voltage) blocks voltage) 7 1 L
0 1 + + ! +
LY
v v
BJT / series instantaneous i-v B I . . B -
diode realization characteristic o o x
(e) (f)
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3.3 Energy storage

Energy storage in PV systems can take many forms. In this work, the focus will stay on
Li-ion batteries. Although the models presented here are often adequate to represent
other battery chemistries. The following description is based on the work presented
in [TDDO7|.

A decent approximation of a battery for system level studies can be created based on
the circuit presented in Figure 3.5, where the value of the controlled voltage source, F,
takes the following expression:

Q
Q— i

E=E - K + AeBi (3.6)

where Ej is the battery constant voltage in V, K is the battery polarization voltage in V,
@ is the battery capacity in A h, ; is the actual depth of discharge also in Ah, A is the
exponential zone amplitude in V and B is the inverse of the exponential zone equivalent
time constant, in A~'h~!,

These parameters are obtained from the battery discharge curve, typically available in
manufacturer’s datasheets. A generic discharge curve is presented in Figure 3.6.
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3.4 Control blocks

3.4.1 Switching waveforms generation

The switching waveforms are the signals that drive the opening and closing of the power
switches. In this library, two switching waveforms generation schemes are considered:
Pulse Width Modulation (PWM) and Current Programmed Mode (CPM) modulation.
In the first, a control signal is compared with a sawtooth waveform to generate the PWM
signal (Figure 3.7).

In the second, the switching signal is generated as shown in Figure 3.8. From exploring
the details of this scheme, it is established that an artificial ramp signal more stability
and better behaviour across a wider spectrum of values of the control signal.

This artificial ramp can either be added to the measured current (as in Figure 3.8b)
or can be subtracted from the control signal (as in Figure 3.8a), to equal effect. Some
digital logic is added so that, at the beginning of every switching period, the switching
signal is set. When the measured current (plus the artificial ramp) reaches the control
signal (minus the artificial ramp), the switching signal is reset.

3.4.2 Coordinate transforms

In the control of AC power converters, two coordinate transformations are useful and
popular. Power systems are three-phase in many high-power grid related applications.

For a three-phase system, the Clarke transform is defined with the following equa-
tion [TLR11]:

1 -1 _1
Vo 2 2 2 Vg,
vs | =3 0 \/73 —‘/73 Up (3.7)
v a1 v
0 V2 V2 V2 ¢

The af0 coordinate system is called the static reference frame, because it remains
static. The Park transform takes things a bit further by creating a rotating coordinate
system. The system rotates at the frequency of the power system, which is why it also
receives the name of synchronous reference frame.
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Delay -
T/4 dq

Figure 3.9: T'/4 delay quadrature signal generator used in the phase detection part of a
Phased-Locked Loop (PLL) [TLR11]

The transformation matrix to translate a voltage vector from the a0 stationary
reference frame to the dq0 synchronous reference frame is given by [TLR11]:

Vg cosf) sinf O Vg
vy | = | —sinf cosf 0 vg (3.8)
Vo 0 0 1 Vo

The advantage of the dq0 reference frame is that the magnitudes for a balanced
steady-state system will be DC quantities instead of AC time-varying quantities.

In the case of single-phase systems, a mathematical trick used to enable the application
of synchronous reference frame control is to create a second signal by effecting a 90° shift
on the original single-phase voltage or current signal. This is called a T'//4 quadrature
signal generator (Figure 3.9).

3.4.3 Controllers

A popular control strategy for grid-tied PV inverters is based on using Proportional
Integral (PI) controllers in the synchronous reference frame, as depicted in Figure 3.10.
This diagram presents the complete general controller for this kind of application.

From the DC voltage and current, the MPPT block establishes the DC voltage setpoint,
which feeds a PI controller structure that generates the setpoint for the internal current
controller on the d axis, 74. The setpoint on the ¢ axis is typically set to 0 or established
by some other means, depending on the grid regulations.

A PLL block is applied to the measured grid voltage to establish the phase, which
is then used in the Park and inverse Park transformations. These transformations are
applied to the measured AC current before and after the PI controllers. Lastly, the
output, which represents the control effort, is scaled and offset to create the appropriate
levels for the control circuitry controlling the switching semiconductors.
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4 PVSystems library

4.1 Overview and architecture

This chapter will provide a description of the PVSystems library. Figure 4.1 presents
an overview of the library structure and contents, which comprises the following main
packages:

e UsersGuide: includes documentation providing an overview of the library, a list
of references and the license and contact information.

e Examples: contains two sub-packages, Application, with system models that
are aimed at showcasing the use of the library, and Verification, with system
models providing some form of unit testing for the component models from the
Electrical and Control sub-packages.

e Electrical: contains models of electrical components and subsystems, mainly
different variants (switched and averaged) of the switch network concept.

e Control: contains basic control blocks, like PWM, CPM modulator, coordi-
nate transformations, PLL, MPPT controller and a couple of inverter controller
assemblies.

For the sake of clarity, the full contents is only shown for Electrical and Control.
The Examples package will be explored further in Chapters 5 and 6 since they contain
models relevant to the validation and application of the library.

The Modelica language provides a range of possible classes, from records and types to
models and packages. With regards to models, a useful classification can be made, as
suggested in [Till17]:

e Components: models representing atomic components. They typically can’t be
simulated on their own, they preferably represent only one physical effect and are
intended to be included in assemblies to form subsystems or systems.

e Subsystems: models created by assembling other models. These models are also
not meant for simulation, but as convenient reusable subsystems.

e Systems: these are models that completely represent a system and are aimed at
simulation. In PVSystems, this kind of models will be included in the Examples
package. All other models are component or subsystem models.
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4.2 Electrical models

This chapter will describe each of the models in the Electrical and Control
sub-packages. Listings are included for those models created directly using Modelica
code and figures are included for those created using the block diagram in Dymola. The
listings included in this chapter have had their annotations removed to make them easier
to follow. For a complete version of the listings, see the Source code appendix.

4.2 Electrical models

4.2.1 Interfaces

The Interfaces package in Electrical holds three classes. The
BatteryInterface class inherits from the OnePort interface from the MSL
and also provides a battery icon. This class is included to accommodate other
battery implementations, apart from the SimpleBattery model included.

%name

Listing 4.1: Electrical/Interfaces/BatterylInterface.mo

1 partial model BatteryInterface "Partial model for battery"
2 extends Modelica.Electrical.Analog.Interfaces.OnePort;
3 end BatteryInterface;

The SwitchNetworkInterface is included with the same intention. All
of the switch network models inherit from this class, both the switched versions :a
and the averaged ones. Since the switch network concept can be used to build ?
converters, this results in a very convenient architecture that enables the user
to instantiate a converter model and modify it to use any switched or averaged variant
right from the diagram. This greatly improves the user experience.

Listing 4.2: Electrical /Interfaces/SwitchNetworkInterface.mo

1 partial model SwitchNetworkInterface "Interface for the averaged switch network models"
2 extends TwoPort;

3 parameter Real dmin (final unit "1") = le-3 "Minimum duty cycle";

4 parameter Real dmax (final unit "1") = 1 "Maximum duty cycle";
5
6
7

Modelica.Blocks.Interfaces.RealInput d "Duty cycle";
protected
Real dsat (final unit = "1") = smooth (0, if d > dmax then dmax else if d < dmin then dmin
else d) "Saturated duty cycle";
¢ end SwitchNetworkInterface;

The TwoPort class provides a common interface for several two-port com-
ponents, including the converters in the Assemblies package as well the
SwitchNetworkInterface itself. The reason that the equivalent two-port
interface included in MSL wasn’t used is because that one includes a current conservation
equation for each port. When that class is used to build a model through composition
using diagram blocks, this results in redundant equations and an overdetermined system.

Except for that, the TwoPort class included in this library is equal to the one from the
MSL.

(m]
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4 PVSystems library

Listing 4.3: Electrical /Interfaces/TwoPort.mo

1 partial model TwoPort "Common interface for power converters with two ports"

2 Modelica.SIunits.Voltage vl "Voltage drop over the left port";

3 Modelica.SIunits.Voltage v2 "Voltage drop over the right port";

4 Modelica.SIunits.Current il "Current flowing from pos. to neg. pin of the left port";

5 Modelica.SIunits.Current 12 "Current flowing from pos. to neg. pin of the right port";

6 Modelica.Electrical.Analog.Interfaces.PositivePin pl "Positive pin of the left port (
potential pl.v > nl.v for positive voltage drop vl1)";

7 Modelica.Electrical.Analog.Interfaces.NegativePin nl "Negative pin of the left port";

8 Modelica.Electrical.Analog.Interfaces.PositivePin p2 "Positive pin of the right port (
potential p2.v > n2.v for positive voltage drop v2)";

9 Modelica.Electrical.Analog.Interfaces.NegativePin n2 "Negative pin of the right port";

10 equation

11 vl = pl.v - nl.v;

12 v2 = p2.v - n2.v;

13 il = pl.1i;

14 i2 = p2.1;

15 end TwoPort;

4.2.2 Switching components

Figure 4.2 presents the four switching components included in Electrical.

R The first one, Figure 4.2a is the diagram of IdealCBSwitch, an ideal current-

’ bidirectional switch. This is one of the most basic switch realizations. It’s
typically used in inverters, which is why it’s included in the library.

e The other three figures present the diagrams of the three available switch-

;H ZE ing realizations of the switch network concept. They all extend from

}} SwitchNetworkInterface, for plug in compatibility with the averaged

implementations. 4.2b is the most basic implementation, using an closing switch

on port 1 and a diode on port 2. 4.2c¢ provides a synchronous version, with two com-

plementary closing switches with optional dead-time. 4.2d is the most complex version,
providing a current-bidirectional switch realization for each port.

4.2.3 Averaged components

The averaged switch network implementations are created directly with Modelica code,
codifying the appropriate equations for each version. Table 4.1 lists the different variants
and provides a short description of each. For an in-depth review of the process of arriving
at those equations, see Section 3.2.2.

The most basic version, CCM1, assumes no losses and no transformer, so it ends up
in the simple equivalent DC transformer equations. Notice that dg, is just a satu-
rated version of the duty cycle, d, input. The equation to establish d,,; is provided in
SwitchNetworkInterface (Listing 4.2), from which the switch network implemen-
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Table 4.1: Averaged switch network models [EMA16]

Model Mode Parameters Limitations

CCM1 CcCM Ideal switches, no transformer

CCM2 CCM R,., Vb, Rp No switching losses, no trans-
former

CCM3 CCM n Ideal switches

CCM4 CCM R,., Vb, Rp, n No switching losses

CCM5 CCM Ron, Vp, Qr, t,, fs  No transformer

CCM_DCM1 CCM or DCM L, f, Ideal switches, no transformer

CCM_DCM2 CCMor DCM L, fs, n Ideal switches

tations extend.

U1 7 2 (4.1a)
sat

gy L e (4.1b)
dsat

Listing 4.4: Electrical/CCM1.mo

1 model CCM1l "Average CCM model with no losses"
2 extends Interfaces.SwitchNetworkInterface;
3 equation

4 0 =pl.i+ nl.i;

5 0 = p2.i + n2.i;
6

7

8

vl = (1 - dsat) / dsat * v2;
-i2 = (1 - dsat) / dsat * il;
end CCM1;

The equations for CCM2 account for conduction losses, with the transistor on resistance,
R,,, and the diode on resistance, Rp, and forward voltage, Vp.

1 1 - dsat . 1 - dsat
v = (@ Ron, + W RD) 1+ W (ve + Vp) (4.2a)
1 —dsgt .
—ig = A 21 (42b)
dsat

Listing 4.5: Electrical/CCM2.mo

1 model CCM2 "Average CCM model with conduction losses"

2 extends Interfaces.SwitchNetworkInterface;

3 parameter Modelica.SIunits.Resistance Ron = 0 "Transistor on resistance";
4 parameter Modelica.SIunits.Resistance RD = 0 "Diode on resistance";

5 parameter Modelica.SIunits.Voltage VD = 0 "Diode forward voltage drop";
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4.2 Electrical models

6 equation
7 0 =pl.i + nl.i;
8 0 =p2.i + n2.1;

9 vl =il » (Ron / dsat + (1 - dsat) * RD / dsat ~ 2) + (1 - dsat) / dsat x (v2 + VD);

10 -i2 = il * (1 - dsat) / dsat;
11 end CCM2;

CCM3 provides the same lossless equations but with an added optional transformer

ratio, n, for converters that include a transformer.

11— dsat
n/dsat

. 1_dsat .
—lyg=——11

v =

Tldsat

Listing 4.6: Electrical/CCM3.mo

(4.3a)

(4.3b)

1 model CCM3 "Average CCM model with no losses and tranformer"
2 extends Interfaces.SwitchNetworkInterface;

3 parameter Real n(final unit = "1") = 1 "Transformer turns ratio l:n (primary:secondary)"

equation
0 =pl.i + nl.i;
0 =p2.i + n2.1;
vl = (1 - dsat) * v2 / dsat / n;
-i2 = (1 - dsat) * il / dsat / n;
end CCM3;

© O 9 u o

In ccM4, both the transformer ratio and the conduction losses are included.

1 1_dsa . 1_dsa
V1 = —Ron+—2tRD 21+—t

dsat TL2 d (U2 * VD)

sat n dsat

i _1_dsatl.
02 = 1
7ldsat

Listing 4.7: Electrical/CCM4.mo

(4.4a)

(4.4b)

model CCM4 "Average CCM model with conduction losses and tranformer"
extends Interfaces.SwitchNetworkInterface;
parameter Modelica.SIunits.Resistance Ron = 0 "Transistor on resistance";
parameter Modelica.SIunits.Resistance RD = 0 "Diode on resistance";
parameter Modelica.SIunits.Voltage VD = 0 "Diode forward voltage drop";

LG N N

7 equation
8 0 =pl.i+ nl.i;
9 0 = p2.i + n2.i;

parameter Real n(final unit = "1") = 1 "Transformer turns ratio l:n (primary:secondary)"

10 vl =il * (Ron / dsat + (1 - dsat) » RD / n ~ 2 / dsat ~ 2) + (1 - dsat) / dsat / n * (

v2 + VD);
11 -i2 = il % (1 - dsat) / dsat / n;
12 end CCM4;
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In the case of CCM5, conduction losses are taken into account with the transistor
on resistance, R,,, and the diode forward voltage drop, Vp. Switching losses are also
estimated by providing the switching frequency, fs, and the reverse diode recovery time,
t,., and charge, Q..

il_fsQr 1_dsat
— LT s po o - Csat 4.
E dsat + fs tr R * dsat (U2 T VD) ( 5a)
. 1_dsat_fstr. fsQr
—iy = - 4.5b
" dsat + fs tr " dsat + fs tr ( )

Listing 4.8: Electrical/CCM5.mo

1 model CCM5 "Average CCM model with conduction losses and diode reverse recovery"
2 extends Interfaces.SwitchNetworkInterface;

3 parameter Modelica.SIunits.Resistance Ron = 0 "Transistor on resistance";

4 parameter Modelica.SIunits.Voltage VD = 0 "Diode forward voltage drop";

5 parameter Modelica.SIunits.Charge Qr "Diode reverse recovery charge";

6 parameter Modelica.SIunits.Time tr "Diode reverse recovery time";

7 parameter Modelica.SIunits.Frequency fs "Switching frequency";

8 equation

9 0 =pl.i + nl.i;

10 0 =p2.1i + n2.1;

11 vl = (i1 - fs * Qr) * Ron / (dsat + fs * tr) + (1 - dsat) / dsat * (v2 + VD);
12 -i2 = il * (1 - dsat - fs * tr) / (dsat + fs * tr) - fs * Qr / (dsat + fs * tr);
13 end CCM5;

The first of the Continuous Conduction Mode (CCM)-Discontinuous Conduction Mode
(DCM) models assumes no losses and no transformer. As explained in Section 3.2.2, the
averaged model valid for DCM obeys the following equations:

2Le s
R, = —— J (4.6a)
dsat
d ! (4.6b)
=max | dgot, ———— )
: “1+R.1
L—p
v = (%) (460)
7
. I—p .
—1l9 = 11 (46(1)
1%

Listing 4.9: Electrical/CCM_DCM1.mo

1 model CCM_DCM1 "Average CCM-DCM model with no losses"

2 extends Interfaces.SwitchNetworkInterface;

3 parameter Modelica.SIunits.Inductance Le "Equivalent DCM inductance";
4 parameter Modelica.SIunits.Frequency fs "Switching frequency";

5 protected

6 Real mu "Effective switch conversion ratio";

7 Real Re "Equivalent DCM port 1 resistance";
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8 equation

9 0 =pl.i + nl.i;

10 0 =p2.i + n2.1;

11 Re =2 x Le x fs / dsat * 2;

12 mu = max(dsat, 1 / (1 + Re » max (0, 1il) / v2));
13 vl (1 — mu) / mu x v2;

14 -i2 = (1 — mu) / mu * il;

15 end CCM_DCM1;

In CCM_DCM2, an optional transformer ratio, n, is added.

R — 2L fs (4.7a)
e d2 .
sat
M = max dsata H—ﬁ (47b)
€ Vg
1 —p
V1 = Vo (47C)
np
1—p
—1l9 = 11 (47d)
n
Listing 4.10: Electrical/ CCM _DCM2.mo
1 model CCM _DCM2 "Average CCM-DCM model with no losses and transformer"
2 extends Interfaces.SwitchNetworkInterface;
3 parameter Modelica.SIunits.Inductance Le "Equivalent DCM inductance";
4 parameter Modelica.SIunits.Frequency fs "Switching frequency";
5 parameter Real n(final unit = "1") = 1 "Transformer turns ratio l:n (primary:secondary)"

4
6 protected
7 Real mu "Effective switch conversion ratio";
8 Real Re "Equivalent DCM port 1 resistance";
9 equation
10 0 =pl.i+ nl.i;
11 0 p2.1i + n2.1i;
12 Re =2 x Le » n » fs / dsat ~ 2;
13 mu = max(dsat, 1 / (1 + Re * max (0, il) / v2));
14 vl (1 — mu) » v2 / mu / n;
15 -i2 = (1 - mu) * il / mu / n;
16 end CCM_DCM2;

4.2.4 Photovoltaic arrays

The model included in PVSystems for the modelling of general PV arrays is PVArray.
It extends from the OnePort interface, from the Modelica.Electrical.Analog
library. It includes two Real inputs, the solar irradiance, G, and the ambient temperature,
T.

The parameters correspond to the ones previously presented in Table 3.1 and in the
discussion of Section 3.1. Additionally, the if statement at the end of the model provides
some conditions to manage the behaviour in the boundaries.
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Listing 4.11: Electrical/PVArray.mo

1 model PVArray "Flexible PV array model"

2 extends Modelica.Electrical.Analog.Interfaces.OnePort;

3 Modelica.Blocks.Interfaces.ReallInput G "Solar irradiation";

4 Modelica.Blocks.Interfaces.RealInput T "Panel temperature";

5 constant Modelica.SIunits.Charge g = 1.60217646e-19 "Electron charge";
6 constant Real Gn = 1000 "STC irradiation";

7 constant Modelica.SIunits.Temperature Tn = 298.15 "STC temperature";

8 parameter Modelica.SIunits.Current Imp = 7.61 "Maximum power current";
9 parameter Modelica.SIunits.Voltage Vmp = 26.3 "Maximum power voltage";
10 parameter Modelica.SIunits.Current Iscn = 8.21 "Short circuit current";
11  parameter Modelica.SIunits.Voltage Vocn = 32.9 "Open circuit voltage";
12 parameter Real Kv = -0.123 "Voc temperature coefficient";

13 parameter Real Ki
14 parameter Real Ns

3.18e-3 "Isc temperature coefficient";
54 "Number of cells in series";

15 parameter Real Np = 1 "Number of cells in parallel";

16 parameter Modelica.SIunits.Resistance Rs = 0.221 "Equivalent series resistance of array"
i

17 parameter Modelica.SIunits.Resistance Rp = 415.405 "Equivalent parallel resistance of
array";

18 parameter Real a = 1.3 "Diode ideality constant";

19 parameter Modelica.SIunits.Current Ipvn = Iscn "Photovoltaic current at STC";

20 Modelica.SIunits.Voltage Vt "Thermal voltage of the array";

21 Modelica.SIunits.Current Ipv "Photovoltaic current of the cell";
22 Modelica.SIunits.Current I0 "Saturation current of the cell";

23 Modelica.SIunits.Current Id "Diode current";

24 Modelica.SIunits.Current Ir "Rp current";

25 equation

26 Vt = Ns » Modelica.Constants.k = T / qg;

27 Ipv = (Ipvn + Ki * (T - Tn)) = G / Gn;

28 I0 = (Iscn + Ki * (T - Tn)) / (exp((Vocn + Kv » (T — Tn)) / a / Vt) - 1);
29 Id = I0 » (exp((v — Rs » 1) / a / Vt) - 1);

30 Ir = (v -— Rs * 1) / Rp;

31 if v < 0 then

32 i=v / ((Rs + Rp) / Np);

33 elseif v > Vocn then

34 i = 0;

35 else

36 i = -Np * (Ipv - Id - Ir);

37 end if;
38 end PVArray;

4.2.5 Energy storage

The SimpleBattery model extends from the BatteryInterface model, which
itself extends from OnePort from the MSL (Listing 4.1). In this version, this battery
interface model is currently not adding much. It’s included to provide a common class
from which other battery implementations can extend in the future.

It includes the parameters discussed in Section 3.3, and the output voltage is calculated
as a function of the state of charge, according to the equation presented in that section:

Q

F=FK —K——
Q-

+ Ae B (4.8)

Listing 4.12: Electrical /SimpleBattery.mo

1 model SimpleBattery "Simple battery model"
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extends Interfaces.BatteryInterface;

type BatteryCapacity = Real (final quantity = "Energy", final unit = "A.h");
parameter .Modelica.SIunits.Resistance Rint = 0.09 "Internal resistance";
parameter .Modelica.SIunits.Voltage EO = 3.7348 "Constant battery voltage";
parameter .Modelica.SIunits.Voltage K = 0.00876 "Polarization voltage";
parameter BatteryCapacity Q = 1 "Rated battery capacity";

parameter .Modelica.SIunits.Voltage A = 0.468 "Exponential region amplitude";
9 parameter Real B = 3.5294 "Exponential zone time constant inverse";

10 parameter BatteryCapacity DoDini = 0 "Initial Depth of Discharge";

11 .Modelica.SIunits.Voltage E;

12 BatteryCapacity it (start = DoDini, fixed = true) "Actual depth of discharge";
13 equation

14 v = E + 1 * Rint;

15 der(it) = -i / 3600;

16 E = max(0, EO — K = Q / (Q - it) + A » exp(-B * it));

17 end SimpleBattery;

© 9 o oA W N

4.2.6 Power converters

Under the Assemblies sub-package, four models for two different converters are
included. Both converters are topologically quite similar, both use 4 switches that can
be modelled using 2 switch network models.

The first model, HBridge (Figure 4.3a), is an implementation of the H-
bridge topology with replaceable switch network models. This means that
this model can be used to create both switching and averaged models and the
implementation can be changed very easily through a dialogue available from
the block diagram.

The second model, HBridgeSwitched (Figure 4.3b), is a switched imple-
mentation of the H-bridge topology. This model is not as versatile as the
previous one and is included mainly for comparison and validation purposed.
This model might be removed in future releases of the library.

The third model, BidirectionalBuckBoost (Figure 4.4a), is a non-
inverting bidirectional buck boost that is also implemented with replaceable
switch network models. Apart from the switch elements, it also includes the
input and output ripple filtering capacitors and the power inductor, as well as
Equivalent Series Resistance (ESR) for all three.

The fourth and final model, CPMBidirectionalBuckBoost (Figure 4.4b),
is just an instantiation of the previous buck boost model with the requisite
control blocks around it.

5

s

5

4.3 Control models

The control blocks included in this library are not meant to be comprehensive. The
vision for PVSystems is to provide models of physical components of PV systems to
build models to validate converter or supervisory control software.

This control software is not typically developed with Modelica or within a Modelica
Integrated Development Environment (IDE). It could be some C source code, code
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Figure 4.3: H-bridge converters in Electrical.Assemblies
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Figure 4.5: Basic switching control blocks in Control

written in Simulink or a LabVIEW program. In all of these cases, developers don’t want
to reproduce their work in Modelica, they want to test it directly. This can be achieved
through model exchange and co-simulation, using the FMI, for example.

The reason to include a few control blocks is to be able to construct basic examples to
showcase the use of the library.

4.3.1 Basic components

wme  The first three blocks are shown in Figure 4.5. SwitchingPWM (Figure 4.5a),
,jdﬁﬁ is a very basic implementation of a PWM generator. The input is optionally
-l saturated and compared with a sawtooth signal with fixed frequency. The
output is the PWM signal.
e SwitchingCPM (Figure 4.5b) is a regular switching version of the CPM
NI modulator. As explained in Section 3.4.1, this works by measuring the current
-—-I'" over a switch or inductor of interest and creating the PWM signal by comparing
that with a control input value. This implementation also features saturation of the
control input and artificial ramp. This block, as many others, is taken from [EMA16].

i DeadTime (Figure 4.5¢c) is a block that prevents two switches in series from
R } being closed at the same time. From a single PWM firing signal, it creates

- two complementary signals and introduces an on-delay to both to perform this

functionality.

>
4
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CPM_CcCM (Listing 4.13) is an averaged version of the CPM modulator, valid e
only in CCM operation. As explained in Section 3.4.3, it obeys the following :ﬁ
equation: A

d = 2 (vc'_'US) (4n9)

T (U1 + Um2) (1= d) +2V,

Notice also that an if statement is used to disable the block. This is useful in some
applications like the non-inverting bidirectional buck boost, which can be operated as a
buck in series with a boost converter by disabling a pair of switches. It also removes the
non-linear equation from the list of equations to be solved, which prevents convergence
issues and speeds up simulation.

Listing 4.13: Control/CPM _CCM.mo

1 model CPM_CCM "Current Peak Mode modulator for averaged CCM models"

2 extends Interfaces.CPMInterface;

3 parameter Real d_disabled(final unit = "1") "Value of duty cycle when disabled";
4 Modelica.Blocks.Interfaces.BooleanInput enable "Block enable/disable";

5 equation
6
7
8
9

if enable then
d=2 % (vc —vs) / (RE / L / fs * (vml + vm2) %= (1 - d) + 2 * Va);

d = d_disabled;
10 end if;
11 end CPM_CCM;

CPM (Listing 4.14) is also an averaged version of the CPM modulator, but e
valid both in CCM and CPM. The equations determining its behaviour are now MR

the following;: B8
(Lf (v.—V,d
dy = min fs (ve = Va ),1—d (4.10a)
}%flhng
Ve (d+da) —v
d=2 C< 2) Sdg (d+d2)+2%(d+d2) (410b)
Unﬂ,+'vnﬂ
Listing 4.14: Control/CPM.mo
1 model CPM "Current Peak Mode modulator for averaged models"
2 extends Interfaces.CPMInterface;
3 protected
4 Real d2;
5 equation
6 d2 = min(L * fs * (vc - Va = d) / Rf / vm2, 1 - d);
7 d=2 % (vc * (d + d2) —vs) / (RE / L / fs » (vml + vm2) * d2 * (d + d2) + 2 x Va * (d
+ d2));
8 end CPM;
Both the Park (Listing 4.15) and InversePark (Listing 4.16) blocks are
built around the same equations, the only difference being which signals are » m,—

defined as inputs and which are defined as outputs. The solver will take care "




4

of working with whatever causality is defined. As explained in Section 3.4.2,

PVSystems library

they obey the following equation:

d cosf) sinf «Q
q —sinf cosf 6]

Listing 4.15: Control/Park.mo

(4.11)

© ® 9 s W N R
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block Park "Park transformation"
extends Modelica.Blocks.Icons.Block;
Modelica.Blocks.Interfaces.ReallInput alpha;
Modelica.Blocks.Interfaces.RealInput beta;
Modelica.Blocks.Interfaces.RealOutput d;
Modelica.Blocks.Interfaces.RealOutput qg;
Modelica.Blocks.Interfaces.RealInput theta;
equation
d = alpha % cos(theta) + beta » sin(theta);
g = (-alpha * sin(theta)) + beta * cos(theta);
end Park;

Listing 4.16: Control/InversePark.mo

© ©® 9 U W N e
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block InversePark "Inverse Park transformation"
extends Modelica.Blocks.Icons.Block;
Modelica.Blocks.Interfaces.ReallInput d;
Modelica.Blocks.Interfaces.RealInput g;
Modelica.Blocks.Interfaces.RealOutput alpha;
Modelica.Blocks.Interfaces.RealOutput beta;
Modelica.Blocks.Interfaces.RealInput theta;
equation
d = alpha % cos(theta) + beta » sin(theta);
g = (-alpha » sin(theta)) + beta * cos(theta);
end InversePark;

%name

>

QvAy

The last of the control basic building blocks is the PLL (Figure 4.6). The
purpose of the block is to extract the phase of a given signal with which we want
to be synchronised. This is done by a very simple Quadrature Signal Generator

(QSG), delaying the input signal by a quarter of a cycle. These two signals are used as
input for a Park block, which is closed to make the ¢ coordinate equal to zero, using a
Proportional Integral Derivative (PID) controller.

4.3.2 Controllers

Y%name

>

>

MPPT

Three controllers are available in the library. MPPTController (Listing 4.17)
provides a simple implementation of the Perturb and Observe (P&O) algorithm
for MPP tracking. The power output from the PV array is measured and an

increase or decrease of the DC bus voltage is effected. If the power decreases, the opposite
action is effected in the next step. If the power increases, the same action is repeated. If
the power doesn’t change (i.e. it’s below a certain threshold), voltage is not changed.
This algorithm is not the most efficient or effective, but it has reasonable performance
and is easy to implement.
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Figure 4.6: Phase-locked loop in Control

Listing 4.17: Control/ MPPTController.mo

1 block MPPTController "Maximum Power Point Tracking Controller"

2 extends Modelica.Blocks.Interfaces.SI2SO;

3 parameter Modelica.SIunits.Time sampleTime = 1 "Sample time of control block";

4 parameter Modelica.SIunits.Voltage vrefStep = 5 "Step of change for vref";

5 parameter Modelica.SIunits.Power pkThreshold = 1 "Power threshold below which no change
is considered";

6 parameter Modelica.SIunits.Voltage vrefStart = 10 "Voltage reference initial wvalue";
7 protected

8 discrete Modelica.SIunits.Voltage vk;

9 discrete Modelica.SIunits.Current ik;

10 discrete Modelica.SIunits.Power pk;

11 discrete Modelica.SIunits.Voltage vref (start = vrefStart);

12 equation

13 when sample (sampleTime, sampleTime) then

14 vk = pre(ul);

15 ik = pre(u2);

16 pk = vk x ik;

17 if abs(pk - pre(pk)) < pkThreshold then

18 vref = pre(vref);

19 elseif pk - pre(pk) > 0 then

20 vref = pre(vref) + vrefStep * sign(vk - pre(vk));
21 else

22 vref = pre(vref) - vrefStep * sign(vk - pre(vk));
23 end if;

24 end when;
25 y = vref;
26 end MPPTController;

InverterlphCurrentController (Figure 4.7a) provides current control
in the synchronous reference frame for a 1-phase inverter. This is achieved by
calculating the dg coordinates of the output current, using a PI controller for A
each coordinate. With this setup, the d coordinate can be used to control the
active power and the ¢ coordinate to control the reactive power. The output of this block
is the duty cycle, which can then drive an inverter.

InverterlphCompleteController (Figure 4.7b) build upon the previ-
ous by adding an outer voltage control loop to the active power control (i), ¥
using an MPPTController block. It also adds a PLL block for synchronization
with the grid.

%name

YVY

Y%name
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5.1 Introduction

A quick and rough measure for the size of software projects is the Lines Of Code (LOC).
By that measure, PVSystems is a small project. It has also been developed by one
programmer alone, which obviates the need for communication and coordination among
team members.

For such a project, not a lot of software engineering considerations have to be made.
The development and maintenance workload remains small enough that no specific
organizing strategy needs to be followed to make it manageable.

On the other hand, this is also a learning project. With the goal of exploring and
showcasing good practices, this chapter will explore some software engineering topics.
Two aspects are of interest:

e Library architecture: the way software is organized has a big impact on its quality,
maintainability and extensibility. A good architecture can be created through
thoughtful design. From an Agile perspective, a good architecture can also be
evolved in time, as new considerations and requirements arise. The library archi-
tecture was discussed in Section 4.1.

e Development tools and practices: these will be covered in this chapter. A special
emphasis will be placed on verification and validation, in Section 5.1.2.

5.1.1 Development tools and practices

In it’s simplest form, the development of PVSystems could be carried out with a text
editor and a Modelica compiler. This could be quite painful, though. Modelica specific
tools and IDEs exist to provide convenience for the developer. Convenience is typically
translated into fewer developer mistakes and software bugs, as well as saved time.

The main IDE used in the development of PVSystems is Dymola [Dasl7|, from
Dassault Systemes. It was used almost exclusively except for a couple of features
available in OpenModelica [Opel7], another popular Modelica IDE, which is open source
and is maintained by the Open Source Modelica Consortium.

In addition to these, Emacs has been used for some source code editing tasks and Git has
been used for version control. The source has also been hosted and made publicly available
on GitHub [Rod17al, together with the Dymola exported documentation [Rod17b|. Even
for a one-developer project, source code version control is key. This is probably by now
an uncontroversial remark, but it wasn’t always like this. Source code version control
still has some footing to gain within professionals not trained as computer scientists.
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5.1.2 Verification and validation

Verification and validation are normally used interchangeably, but the IEEE Standard
for System and Software Verification and Validation [[EE+12|, provides the following
definitions:

e Verification: (A) The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions imposed
at the start of that phase. (B) The process of providing objective evidence that the
system, software, or hardware and its associated products conform to requirements
(e.g., for correctness, completeness, consistency, and accuracy) for all life cycle
activities during each life cycle process (acquisition, supply, development, operation,
and maintenance); satisfy standards, practices, and conventions during life cycle
processes; and successfully complete each life cycle activity and satisfy all the
criteria for initiating succeeding life cycle activities. Verification of interim work
products is essential for proper understanding and assessment of the life cycle phase
product(s).

e Validation: (A) The process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies specified
requirements. (B) The process of providing evidence that the system, software,
or hardware and its associated products satisfy requirements allocated to it at
the end of each life cycle activity, solve the right problem (e.g., correctly model
physical laws, implement business rules, and use the proper system assumptions),
and satisfy intended use and user needs.

In simpler terms, verification is checking that we're doing the thing right, validation is
checking that we're doing the right thing.

It is assumed, from the experience of the author, that the models provided in
PVSystems are indeed useful for simulation and verification of PV systems and converter
control software. Validation of the models developed will be explored in the following
section.

5.2 Validation models and results

5.2.1 IdealCBSwitch

The model IdealCBSwitch provides an ideal current bidirectional switch, implemented
with an ideal diode in anti-parallel with an ideal closing switch, both taken from MSL.
The switch should provide bidirectional current flow when the boolean control signal is
high and negative current flow when the boolean control signal is low. The validation
diagram and results are shown in Figure 5.1.

46



5.2 Validation models and results

—— sineVoltage.v (V)—— resistor.i (A) —— booleanStep.y
1

0.5 A A
0

0.5 v v
-1 T T T T T T T T T 1

0 0.2 0.4 0.6 0.8 1
time (s)

(a) (b)

Figure 5.1: Validation of IdealCBSwitch

booleanStep

abejlopauls

5.2.2 Switching switch network models

The validation of the three switching variants of the switch network concept can be done
with a similar setup. The validation diagrams and results are displayed on Figure 5.2.
SW1 includes an ideal closing switch in port 1 and an anti-parallel diode in port 2.
Connecting them in parallel and providing the right setup, switching frequency and duty
cycle should produce the same result as the one obtained with TdealCBSwitch. This
can be confirmed by comparing Figure 5.1b with Figure 5.2b.

SW2 is formed with a single ideal closing switch in each port. The firing signals for
those switches are complementary and include a dead time so that both switches are not
closed at the same time. SW3 is the same but includes anti-parallel diodes with each
switch.

Setting up both validation diagrams equally (Figure 5.2¢c and Figure 5.2e), the results
are similar and as expected (Figure 5.2d and Figure 5.2f). The difference lies in the fact
that SW2 blocks both positive and negative current, whereas SW3 allows negative current
through the diodes.

5.2.3 CCM averaged switch network models

For convenience, validation of the CCM averaged switch networks is done in a single
model, CCMXVerification, displayed in Figure 5.3. This model includes one simple
circuit for each of the 5 versions, parametrized with the values presented in Table 5.1.
An input source with constant voltage and a resistive load are provided. Duty cycle is
provided as a ramp starting at 0.1 for the first 0.1s and ending at 0.9 for the last 0.1s.

Figure 5.4 presents the output voltage and input current for each switch network.
These are the variables of interest, since the model works as a transformer and the input
voltage and output current are being established with the voltage source and the load,
respectively.

An equivalent circuit is created with the use of LTspice, using the original library
of switch network models [EMA16|. The results from LTspice and Dymola are both
imported into MATLAB and compared. Figures 5.5 and 5.6 confirm that the relative
differences between applications are small.
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Figure 5.3: CCMXVerification diagram
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Figure 5.4: CCMXVerification
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Figure 5.5: LTspice and PVSystems output voltages differences
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Figure 5.6: LTspice and PVSystems input currents differences
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Table 5.1: Parametrization in CCMXVerification

duty

Parameter Value

R, 10

Rp 0.01Q

Vb 0.8V

n 2

Q- 0.75nC

t, 75 ns
Ri1

0L=LA

ccm_dem1
A i
C}
C]

0

0L=CA

ccm_dem2
N it
C}
C]

duration=0.

Figure 5.7: CCM_DCMXVerification diagram

5.2.5 PVArray

5.2.4 CCM-DCM averaged switch network models

The CCM-DCM models can be tested with the same setup, using the diagram from
Figure 5.7. Setting the parameters according to Table 5.2, it can trigger a CCM-DCM
transition. This transition generates a sudden change in the slope of the equivalent
transformer ratio and is marked with a circle for each curve in Figure 5.8. The differences
with LTspice simulation of equivalent circuits are shown in Figures 5.9a and 5.9b, and
are also reasonably small.

The diagram shown in Figure 5.10a is created to validate the PVArray model. Irradiance
and temperature are set at constant values (STC) and the voltage source connected to
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Table 5.2: Parametrization in CCM_DCMXVerification

Parameter Value

L, 0.6 nH
fs 100 kHz
n 2

the PV array provides a voltage sweep. Plotting current and power against voltage yields
Figure 5.10b. The waveforms and notable points, which have been tagged, agree with
those presented in [VGF09].

5.2.6 SimpleBattery

The diagram for SimpleBatteryVerification is shown in Figure 5.11a. A current
source is set at £2 A for charging/discharging. A simple feedback mechanism is included
to put the battery through full charge and discharge cycles. The waveforms and values
correspond to those presented in [TDDO07].

5.2.7 SwitchingPWM

The validation of SwitchingPWM can be done by exciting the block with a varying duty
cycle and measuring the actual duty cycle of the output control signal. The diagram to
perform this operation and the result are displayed in Figure 5.12.

5.2.8 SwitchingCPM

The validation of SwitchingCPM requires a slightly more sophisticated setup, as
displayed in Figure 5.13a. The output of the CPM block is used to switch between
two different constant values as the input to an integrator block whose output is fed
back as an measurement signal. The constants vdT and vdpT correspond to the voltage
values that an inductor would be subjected to in each of the pwm periods. In a real
application, these values would not be constant, but this setup provides a simple and
decent approximation. The constant of the integrator block represents to the inverse of
the emulated inductance value. In this example, L = 400 nH.

The results displayed in Figure 5.13b illustrate how the PWM output signal is con-
ditioned by the rising and falling of the measured signal (what would normally be an
inductor current), resetting the signal when the measured current reaches the control
signal minus the artificial ramp.

5.2.9 DeadTime

The DeadTime block is also quite simple. An appropriate dead time interval is set with
the block’s corresponding parameter and the input pulse signal is compared with the
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Figure 5.10: PVArrayVerification: (a) diagram and (b) results.
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Figure 5.11: SimpleBatteryVerification: (a) diagram and (b) results.
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Figure 5.12: SwitchingPWMVerification: (a) diagram and (b) results.
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Figure 5.13: SwitchingCPMVerification: (a) diagram and (b) results.
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Figure 5.14: DeadTimeVerification: (a) diagram and (b) results.

output signals. These signals are the complement of each other with an added dead time
in between that, in practical applications, will prevent series switches from being closed
at the same time causing a short-circuit.

5.2.10 Park transforms

In order to validate the Park transforms blocks, the block diagram from Figure 5.15a is
developed. A reference 6 is generated with a sawtooth generator, driving sine and cosine
blocks to provide the input for Park. The output of this block is used as the input for
InversePark. As displayed in Figure 5.15b, the results fit what’s to be expected from
these transforms. Since no initial phase is added to the sine and cosine signals and the
angle between them is 90°, d matches the amplitude of the signals and ¢ is equal to 0.

5.2.11 PLL

The verification of this block is done with the diagram displayed in Figure 5.16a. A
sinusoidal input is provided to the PLL block which, parametrized correctly, synchronizes
with that input signal. The output of the PLL block is the phase, so it’s input into a
cosine block to compare results, as displayed in Figure 5.16b.
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Figure 5.15: ParkTransformsVerification: (a) diagram and (b) results.
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Figure 5.16: PLLVerification: (a) diagram and (b) results.

5.2.12 MPPTController

The validation of MPPTController requires a more complex setup, as displayed in
Figure 5.17. For comparison, two PVArray blocks are included. They both are exposed
to the same varying conditions of irradiance and temperature, shown at the top of
Figure 5.18a. The values start at STC and gradually deviate from that.

The voltage point of one of the PVArray blocks is set at a constant value of 26 V,
which at STC temperature and irradiance is very close to the MPP. The other PVArray
block is set by the MPPTController, which is also subjected to a perturbation in the
final stage of the simulation, as can be seen at the bottom of Figure 5.18a.

Finally, Figure 5.18b displays voltage, current and power values for both circuits. The
static PVArray starts at the MPP but is no longer at it, once the temperature and
irradiance conditions change by the end of the simulation. The PVArray block controlled
by the MPPTController adapts to changing conditions.

5.3 Regression tests

A goal regarding verification and validation has been to provide a somewhat automatic
process that can be run frequently and comfortably, in order to raise an early warning
and insure that bugs don’t remain unnoticed and unfixed for a long time.

This is achieved with the use of regression tests. Regression testing is a type of software
testing which verifies that software which was previously developed and tested still
performs correctly after it was changed or interfaced with other software. In contrast,
non-regression testing aims to verify whether, after introducing or updating a given
software application, the change has had the intended effect [Wik17].
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Figure 5.17: MPPTControllerVerification diagram
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Figure 5.19: Dialog for the checkLibrary function

Regression testing is a very convenient way to provide verification for Modelica code.
Test models are created (included in the Verification sub-package in PVSystems)
and reference simulation results are generated and manually validated by the developer.
Once those reference results have been obtained, future verifications can be performed
automatically by the verification program, by comparing the new results with the reference
ones.

One approach is to create Modelica models and scripts (.mos files) to perform these
checks. This is indeed a popular approach and many solutions have already been
implemented. One of those solutions is the Mode1Management library, included with
the appropriate Dymola license.

This library provides the function checkLibrary, which can be called directly from
the Graphical User Interface (GUI) in Dymola, by right-clicking and selecting Call
Function..., spawning the dialog shown in Figure 5.19.

This function runs some checks on all or part of a selected library. It also runs regression
tests on system models by simulating them and comparing the results with references. It
assumes models having a StopTime annotation to be system models.

Apart from regression testing, this function provides some other features:

e (lass coverage: providing information about the classes that were exercised during
regression tests. This points out to the developer classes that might not have been
tested.

e Condition coverage: at a lower level, some branches of if statements or other
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conditional structures might have not been exercised.

e Style checking: providing checks pertaining the style of the Modelica code. This
will include acceptable class names, appropriate documentation, etc.

e Translation statistics: using this option, the statistics of the translated model can
be included in the regression testing to detect changes in, for example; the number
and sizes of linear and nonlinear system of equations and the number of state
variables.

Once the reference results have been generated, running the test on an intermediate
version of PVSystems yielded the following report:

Library check log

TASKS

o Regression testing
e Model structure testing
e Class coverage analysis

e Condition coverage analysis

REGRESSION TEST RESULTS

o PVSystems.Examples. Application.BuckOpen: Validation ok. Structural validation ok. Translation time
validation ok.

o PVSystems.Examples. Application.InverterlphOpen: Validation ok. Structural validation ok. Translation
time validation ok.

e PVSystems.Examples.Application.InverterlphOpenSynch: Validation ok.  Structural validation ok.
Translation time validation ok.

o PVSystems.Examples.Application.InverterlphClosedSynch: Validation ok. Structural validation ok.
Translation time validation ok.

o PVSystems.Examples.Application.PVInverterlph: Validation ok. Structural validation ok. Translation
time validation ok.

o PVSystems.Examples.Application.PVInverterlphSynch: Validation ok. Structural validation ok. Trans-
lation time validation ok.

o PVSystems.Examples.Application.USBBatteryConverter: Validation ok. Structural validation ok. Trans-
lation time validation ok.

o PVSystems.Examples. Verification.Ideal CBSwitchValidation: Validation ok. Structural validation ok.
Translation time validation ok.

e PVSystems.Examples.Verification. MPPTControllerValidation: Validation ok. Structural validation ok.
Translation time validation ok.

o PVSystems.Examples.Verification.PLLValidation: Validation ok. Structural validation ok. Translation
time validation ok.

e PVSystems.Examples.Verification.PVArrayValidation: Validation ok. Structural validation ok. Transla-
tion time validation ok.

o PVSystems.Examples.Verification.SignalPWM Validation: Validation ok. Structural validation ok. Trans-
lation time validation ok.
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e PVSystems.Examples.Verification.SwitchingCPM Validation:

Translation time validation ok.

STATISTICS
26 tests performed on 13 test cases.
All tests ok, validation of PVSystems, successful.

CLASS COVERAGE

36 of 50 classes are covered by the test suite. 14 classes are not covered.

Of the not covered classes

14 are models

Listing classes in PVSystems

e package UsersGuide

e package References

e package ReleaseNotes

e package Examples

e package Application

model BuckOpen, used 1 time.

model InverterlphOpen, used 1 time.

model InverterlphOpenSynch, used 1 time.
model InverterlphClosed, not used.

model InverterlphClosedSynch, used 1 time.
model PVInverterlph, used 1 time.

model PVInverterlphSynch, used 1 time.
model USBBatteryConverter, used 1 time.

e package Verification

model Ideal CBSwitchValidation, used 1 time.
model MPPTControllerValidation, used 1 time.
model ParkValidation, not used.

model PLLValidation, used 1 time.

model PVArrayValidation, used 1 time.

model SignalPWMValidation, used 1 time.
model SwitchingCPMValidation, used 1 time.

model SimpleBatteryValidation, not used.

e package Electrical

model Ideal CBSwitch, used 9 times.
model SW1, not used.

model SW2, not used.

model SW3, not used.

model CCM1, used 12 times.

model CCM2, not used.

model CCM3, not used.

model CCM4, not used.

model CCM5, not used.

model CCM_DCML1, used 1 time.

Validation ok.

Structural validation ok.

68
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— model CCM_DCM2, not used.
— model PVArray, used 5 times.
— model SimpleBattery, not used.
e package Assemblies
— model HBridge, used 5 times.
* model SwitchModel, used 10 times.
— model HBridgeSwitched, used 2 times.
— model BidirectionalBuckBoost, used 1 time.
* model SwitchModel, used 2 times.
* model CPMBidirectionalBuckBoost, used 1 time.
e package Interfaces
— model BatteryInterface, not used.
— model SwitchNetworkInterface, used 13 times.
* model TwoPort, used 22 times.
e package Control
— block SwitchingPWM, used 4 times.
— block SwitchingCPM, used 1 time.
— block DeadTime, used 2 times.
— model CPM_CCM, used 2 times.
— model CPM, not used.
— block Park, used 8 times.
— block InversePark, used 3 times.
— block PLL, used 5 times.
— block MPPTController, used 3 times.
— package Assemblies
* block InverterlphCurrentController, used 3 times.
* block InverterlphCompleteController, used 2 times.
— package Interfaces
+* model CPMInterface, used 2 times.

e package Icons

CONDITION COVERAGE

e not (PV.v < 0) and PV.v > PV.Vocn is always false

e not (pVArrayl.v < 0) and pVArrayl.v > pVArrayl.Vocn is always false

e not HBsw.idealCBSwitch.idealClosingSwitch.useHeatPort is always true
e not HBsw.idealCBSwitch.idealDiode.useHeatPort is always true

e not HBsw.idealCBSwitchl.idealClosingSwitch.useHeatPort is always true
e not HBsw.idealCBSwitchl.idealDiode.useHeatPort is always true

e not HBsw.idealCBSwitch2.idealClosingSwitch.useHeatPort is always true

e not HBsw.idealCBSwitch2.idealDiode.useHeatPort is always true

69



5 Development and verification

e not HBsw.idealCBSwitch3.idealClosingSwitch.useHeatPort is always true
e not HBsw.idealCBSwitch3.idealDiode.useHeatPort is always true

e not R.useHeatPort is always true

e not Rav.useHeatPort is always true

e not Rbatt.useHeatPort is always true

e not Rdc.useHeatPort is always true

e not Rload.useHeatPort is always true

e not Rsw.useHeatPort is always true

e not conv.conv.inESR.useHeatPort is always true

The first part of the report lists the classes on which regression tests are performed, as
well as their results. In this run, all regression tests turn out to be successful.

The next section reports on class coverage. Things are not going so well, since only
36 out of the 50 classes are being exercised by the tests. It turns out that even several
models from the Application and Verification packages are not run, which is not
what was intended. This is due to these models not including the StopTime annotation,
since the default time of 1s was used. This needs to be fixed.

Additionally, many of the models from Electrical and some from Control are
not tested either since they are not called by the models that were run. This is not ideal,
since bugs in these classes will go unnoticed.

The final section goes deeper and lists the conditional branches that remained inactive
in classes that were tested. This will also provide a hiding place for bugs.

The library style check log, checking for missing documentation, invalid class names
and other style issues, is the following:

Library style check log

o PVSystems.UsersGuide
— Documentation missing

o PVSystems.UsersGuide.References
— Documentation missing

e PVSystems.UsersGuide.References. EM01
— Documentation missing

e PVSystems.UsersGuide.References. EMA16
— Documentation missing

e PVSystems.UsersGuide.References. TDDO07
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— Documentation missing
PVSystems.UsersGuide.References. VGF09

— Documentation missing
PVSystems.UsersGuide.ReleaseNotes, Check ok
PVSystems.UsersGuide.ReleaseNotes.Version 0_6_1

— Bad class name Name shall not contain ’_’.
PVSystems.UsersGuide.ReleaseNotes.Version 0 6 0

— Bad class name Name shall not contain ’ ’
PVSystems.UsersGuide.Contact, Check ok
PVSystems.UsersGuide.License, Check ok
PVSystems.Examples

— Documentation missing
PVSystems.Examples.Application

— Documentation missing
PV Systems.Examples. Application.BuckOpen, Check ok
PVSystems.Examples. Application.InverterlphOpen, Check ok
PVSystems.Examples. Application.InverterlphOpenSynch, Check ok
PVSystems.Examples.Application.InverterlphClosed, Check ok
PVSystems.Examples. Application.Inverter1phClosedSynch

— Documentation missing
PV Systems.Examples. Application.PVInverterlph

— Documentation missing
PVSystems.Examples. Application.PVInverterlphSynch

— Documentation missing
PVSystems.Examples.Application.USBBatteryConverter

— Documentation missing
PVSystems.Examples. Verification

— Documentation missing
PV Systems.Examples. Verification.Ideal CBSwitchValidation, Check ok
PVSystems.Examples. Verification. MPPT ControllerValidation, Check ok
PVSystems.Examples. Verification.ParkValidation, Check ok
PVSystems.Examples. Verification.PLLValidation, Check ok
PVSystems.Examples. Verification.PVArrayValidation, Check ok
PVSystems.Examples. Verification.Signal PWM Validation, Check ok
PV Systems.Examples. Verification.SwitchingCPM Validation, Check ok
PV Systems.Examples. Verification.SimpleBattery Validation

— Documentation missing
PVSystems.Electrical

— Documentation missing
PVSystems.Electrical.Ideal CBSwitch, Check ok
PVSystems.Electrical. SW1

— Documentation missing

PV Systems.Electrical. SW2
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— Documentation missing
e PVSystems.Electrical. SW3
— Documentation missing
e PVSystems.Electrical. CCM1, Check ok
e PVSystems.Electrical. CCM2, Check ok
o PVSystems.Electrical. CCM3, Check ok
o PVSystems.Electrical. CCM4, Check ok
e PVSystems.Electrical. CCM5, Check ok
o PVSystems.Electrica. CCM_DCM1
— Bad class name Name shall not contain ’_’
e PVSystems.Electrical. CCM__DCM2
— Bad class name Name shall not contain ’_’
e PVSystems.Electrical. PVArray, Check ok
e PVSystems.Electrical.SimpleBattery
— Documentation missing
e PVSystems.Electrical.SimpleBattery.BatteryCapacity, Check ok
e PVSystems.Electrical. Assemblies
— Documentation missing
e PVSystems.Electrical. Assemblies.HBridge, Check ok
e PVSystems.Electrical. Assemblies. HBridge.SwitchModel
— Documentation missing
— Class description string missing
e PVSystems.Electrical. Assemblies. HBridgeSwitched, Check ok
e PVSystems.Electrical. Assemblies. BidirectionalBuckBoost
e PVSystems.Electrical. Assemblies. BidirectionalBuckBoost.SwitchModel
— Documentation missing
— Class description string missing
e PVSystems.Electrical. Assemblies. CPMBidirectional BuckBoost
e PVSystems.Electrical. Interfaces
— Documentation missing
e PVSystems.Electrical. Interfaces.BatteryInterface
e PVSystems.Electrical.Interfaces.SwitchNetworkInterface
— Documentation missing
o PVSystems.Electrical. Interfaces. TwoPort
— Documentation missing
e PVSystems.Control
— Documentation missing
e PVSystems.Control.SwitchingPWM, Check ok
e PVSystems.Control.SwitchingCPM, Check ok
e PVSystems.Control.DeadTime, Check ok
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e PVSystems.Control. CPM_CCM

— Bad class name Name shall not contain ’_’
e PVSystems.Control. CPM, Check ok
e PVSystems.Control.Park, Check ok
e PVSystems.Control.InversePark, Check ok
o PVSystems.Control. PLL

— Description string missing for

* frequency

o PVSystems.Control. MPPTController, Check ok
e PVSystems.Control. Assemblies, Check ok
o PVSystems.Control. Assemblies.Inverterl1 phCurrentController, Check ok
e PVSystems.Control. Assemblies.Inverterl phCompleteController, Check ok
e PVSystems.Control.Interfaces

o PVSystems.Control.Interfaces. CPMInterface

e PVSystems.Icons, Check ok

e PVSystems.Icons.AssembliesPackage, Check ok
e PVSystems.Icons.Converterlcon

— Documentation missing

In order to get closer to the one-click testing ideal, a small caller script is created
(Listing 5.1) and made accessible through the GUI using a Dymola annotation in the
root package of the library that makes the script executable from the Commands dialog.

Listing 5.1: Resources/Scripts/Dymola/callCheckLibrary.mos

1 cd("Resources/Tests");
2 ModelManagement.Check.checkLibrary (name="PVSystems", referenceFileDirectory="RefData")

Making it easier to run tests will increase the probability that they will be run.
Maximizing coverage and minimizing run time are two other important aspects to focus
on.
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6 Application

6.1 Introduction

The PVSystems library has a healthy amount of example models (Figure 6.1) that
showcase application of the library component and assembly models. Some of the examples
are also specifically created for verification purposes through the use of regression tests
(Section 5.3).

The examples are ordered in increasing complexity. This chapter will present an
in-depth discussion of three notable examples.

6.2 Open-loop buck converter

The buck converter is a switched converter used to produce a reduced DC output voltage
from a given DC input voltage. Figure 6.2a presents the circuit diagram of a typical
buck converter implementation. The transistor will be governed by a PWM signal with
a duty cycle D and a period T}, as shown in Figure 6.2b. Lets assume that the signal
logic is such that during the first interval, D T}, the transistor is closed and the diode is
open. This results in a circuit like the one displayed in Figure 6.2c. During the second
interval, D' Ty, the positions are switched, having the transistor open and the diode
closed, resulting in the circuit displayed in Figure 6.2d.

In general terms, the equations for the state variables (inductor voltage and capacitor
current) will be the following:

v =V, — v,

U during D T; (6.1)
e =11, — E
Vr, = — Uy
. U, during D' T} (6.2)
e = 11, — E

In order to perform the DC analysis of the converter, lets assume CCM and apply the
small-ripple approximation. In steady-state, volt-seconds balance in the inductor and
charge balance in the capacitor yield the following equations:

0=(v) =DV, V, (6.3)
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[:J Application
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Figure 6.1: Examples in PVSystems library
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6.2 Open-loop buck converter

DT, D' Ts—

Figure 6.2: Buck converter diagrams: (a) typical implementation, (b) PWM signal, (c)
circuit state during D T interval, (d) circuit state during D’ T.
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Switched model

i - 3

duty gav
ne 5e-4 then 0.1 feana
L r

Figure 6.3: BuckOpen diagram

An interesting feature is that DC analysis results in CCM don’t depend on the
inductance or capacitance values. These will play a role in determining the dynamic

properties of the system. In the case of DCM, the conversion ratio can be obtained
as [EMO1]:

V, 2
Yo _ (6.5)
Voo 14+./1+ ROT:

The diagram for BuckOpen is presented in Figure 6.3. It includes a switched and a
modifiable version of the converter. The modifiable version can be made to instantiate a
switched or an averaged model. Out of the box, the switch network is configured with
CCM1, that is, averaged and no losses. Running the simulation and plotting duty cycle,
output voltage and inductor current produces Figure 6.3.

With either Dymola or OpenModelica, one can measure the value of the average voltage
output as 3.07V in DCM operation and 14.4V in CCM operation, which is exactly what
can be obtained from the analytical results using (6.5) and (6.3), respectively. The average
inductor current corresponds with the average load current, which can be obtained by
dividing those output voltage values by the resistor value. This gives 1.02 A and 4.8 A,
respectively, which also agrees exactly with simulation results.
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Figure 6.4: BuckOpen simulation results: (a) duty cycle, (b) output voltage, (c) inductor
current.
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Figure 6.5: PVInverterlphSynch diagram

6.3 Grid-tied PV inverter

This example provides a model of a very simple single-phase grid-tied photovoltaic system
(Figure 6.5). On the DC side, a single PV panel is modelled with PVArray placed in
series with a small resistor. A capacitor is used to model the capacitance placed in the
DC bus of the inverter. On the AC side, the output filter is modelled with an inductor
in series with a small resistor. The grid is modelled with an ideal voltage source.

The control is implemented with an instance of the InverterlphCompleteCon—
troller, available as an assembly in the Control package. For more details on this
block, see Section 4.3.2.

The simulation is configured to run for 28s. The grid frequency is set at 50 Hz, which
makes this time quite long compared with the time-scale of the grid dynamics. On
the other hand, the MPPT control and corresponding power changes are on the scale
of seconds, which is why the stop time is set at that value, in order to observe some
interesting dynamics at that level.

Figure 6.6a displays the variation of the DC voltage imposed by the inverter, controlled
by the MPPT and current controller loop. The steps in voltage correspond to the
adjustments that the MPPT controller is making (following the P&O algorithm). These
steps are translated into the power steps shown in Figure 6.6b. Eventually, since the
irradiance and ambient temperature conditions are not changing, the controller finds
the MPP. This is close to the 200 W of the default PVArray parameter values. Finally,
Figure 6.6¢ displays a close-up of the output voltage and current, to emphasize the fact

80



6.3 Grid-tied PV inverter

——PVv V]
35
30
25
20
15
10 r r ————— r r —
0 5 10 15 20 25 3C
time [s]
(a)
—— DCPower.y meanACPower.y

3C
time [s]
—— ACv[V] ——ACi [A]
20
10
0
-10
-20
T T T T T T
25.68 25.69 25.7 25.71 25.72 25.73
time [s]
(c)

Figure 6.6: PvInverterlphSynch simulation results: (a) PV array voltage, (b) input
and output power, (c) grid voltage and output current.
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Figure 6.7: USBBatteryConverter diagram

that the output current is controlled to stay in phase with the grid voltage, providing
only active power to the grid.

6.4 USB battery converter

A battery, simulated with a controlled voltage source in series with a small resistance,
is interfaced with a USB device, simulated with a resistive load. The converter is a
component included in the Electrical.Assemblies package and is discussed in
Section 4.2.6. Figure 6.7 presents the block diagram.

This example is borrowed from [EMA16]. The application is not that related with
photovoltaics, but provides a good showcase of the power electronics models in this
library. The converter is specified to have three operating modes:

1. Battery voltage 12.6 V, USB voltage 5 + 0.1V at 2 A, converter supplies bus.
2. Battery voltage 9.6 V, USB voltage 20 £ 0.1V at 3 A, converter supplies bus.

3. Battery voltage 11.1V, USB voltage 20 V, bus supplies 60 W to charge battery.

An efficient solution to these step-down and bidirectional step-up requirements is a
non-inverting buck-boost converter with bi-directional switches operated in a buck/boost
modal fashion (i.e. the boost switches are disabled while in buck mode and vice versa).
A possible solution to these requirements using this topology is expressed through the
parametrization of CPMBidirectionalBuckBoost (Figure 6.8).
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6.4 USB battery converter
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Figure 6.8: Converter parametrization in USBBatteryConverter
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Figure 6.9: USBBatteryConverter simulation results: (a) output voltage, (b) output
current.

This converter model includes both the electrical and control components of a CPM
controlled modal non-inverting buck-boost. The default stop time is set at 20s. Running
the simulation and plotting the output voltage and current produces Figure 6.9.
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7.1 Conclusions

Technology creates abundance. This point was made in the opening chapter, with the
story of how aluminium was scarce before the right technology made it abundant. The
decision to create a Modelica library for photovoltaic systems with a focus on power
electronics and with a model for battery energy storage was based on the belief that
these technologies will be at the centre of an energy abundant future. Providing tools for
scientists and engineers to develop these technologies is one strategy to accelerate the
advent of this future.

Modelica supports this purpose perfectly. With it’s open non-propietary nature, it’s
readily available to users and tool developers without costly fees or complicated license
agreements. This kind of openness can drive a thriving ecosystem that eventually creates
solutions that surpass the commercially available traditional ones.

Modelica is also developed with composability and reusability in mind, with the
inclusion of object orientation and acausal equation based modelling and connection of
components. This makes it easy to create models integrating several physical domains.

The following list presents a comprehensive list of the tasks accomplished in this work:

e A brief review of the current PV energy market and trends as well as of the
technology was performed and an overview provided in Section 2.2.

e A brief review of the current M&S technology, practices and tools was performed
and an overview provided in Section 2.3.

e An overview of the Modelica language and ecosystem was provided in Section 2.4.
This includes a review of existing Modelica libraries relevant to the PV domain.

e A discussion of the generic PV source model from [VGF09]| was presented in
Section 3.1.

e Some basic concepts related to power electronics switches and topologies were
presented in Section 3.2. Notably, this includes the switch network concept
from [EMA16], presented in Section 3.2.2, which provides a versatile way of creating
averaged power converter models.

e A discussion of the generic Battery Energy Storage (BES) model from [TDDO07]
was presented in Section 3.3.
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e A basic collection of control elements relevant to the PV and power electronics

domains is described in Section 3.4.

All these models are implemented in the Modelica language, to conform the
PVSystems library.

The source code of the library is made available under the MIT license in a GitHub
repository [Rod17a).

An HTML version of the documentation of the library is exported using Dymola
and made available online at [Rod17b].

A thorough description of the library is compiled and presented in Chapter 4.

The fitness of these models to represent PV systems is demonstrated with a
collection of application and verification examples, presented in Chapter 6 and
Section 5.2, respectively.

Throughout the development, an effort was made to explore and apply best software
and model development practices. This resulted in the use of Git for version
control, the creation of a fairly automated test strategy and the application of
ideas from [Til17| for the design of the library structure and architecture. A brief
discussion of this topic is presented in Section 5.1.1 and the use of regression tests
is discussed in Section 5.3.

Following is a list of conclusions that were drawn from the work performed in this

thesis:
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e All of the relevant behaviours of the elements included in the original scope of the

library (photovoltaic array, power electronics and battery energy storage) could be
modelled with the use of equivalent circuits. Many physical processes where left
out, but the goal of providing models for converter control development is achieved
with this level of modelling.

The switch network concept becomes really valuable when modelling the power
electronics components, since it provides a generalized and composable structure
for the modelling of power converters. Coupled with Modelica language features
like redeclare, it also provides a way of creating very user-friendly models that
can be instantiated as switched or averaged variants.

Taking into account the implicit size and time scales that were assumed as a
consequence of the goal of the library (supporting converter control development),
it seems that the modelling of battery energy storage might not even be required.
The reason for this is that BES is normally designed with capacities that take
several hours to charge or discharge. Typically, this is a time range that a converter
control software developer wouldn’t want to simulate, even when using the faster
averaged models. For the time range relevant for this application, a constant voltage
source might be good enough.



7.2 Future work

e Regression testing in Dymola can provide a very quick and convenient way to
verify the correctness of models as changes are made. To be fair, this is true when
considering changes that don’t substantially change the functionality of a given
model and assuming the reference data generated represents a run of a correct
model. Regression tests will be most helpful in mature projects in which changes
mainly correspond to optimizations of the code.

e From experience and from observing other Modelica libraries [HG14| and [Mod17b],
it seems that packaging the collection of Verification and Validation (V& V) examples
in a separate Modelica library would be better than the approach taken in this
work (creating a Verification package inside the Examples package). The
package quickly becomes crowded and increases the size of the library. These are
not typically models that the end user will be interested in. Additionally, by using
a separate package, verification can be performed against models created with other
Modelica libraries without introducing extra dependencies in the main Modelica
library.

e The development of the library has made evident the power of some of the features of
the Modelica language like object-orientation and acausal equation based modelling.
These features together with the use of the redeclare directive enabled a nice
extensible and user-friendly architecture of power electronics modelling based on
the switch network concept.

7.2 Future work

The list of possible extensions and enhancements that could be made to PVSystems is
too big to fit in this document. Some of the most interesting explorations are listed here:

e Some of the features available in Modelica have not been explored and the quality
of the library could probably improve with their use. For example, records could
be used to group parameters and provide an easy way to parametrize models with
values corresponding to commercially available products. This approach would
probably be very productive in PVArray and SimpleBattery.

e Models should be extended from single-phase to multi-phase. Many of the photo-
voltaic systems are three-phase. This extension should probably be made taking
into account the multi-phase interfaces included already in MSL.

e New models would probably be demanded by users wanting to model typical
photovoltaic systems which, in many occasions, form part of micro-grids that also
include a line transformer and an induction machine and synchronous generator.

e The available models could be made more sophisticated by making losses explicit
in a thermal port.
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The library would benefit from feedback from users. Some attempts have been
made to promote the library with not a lot of success. The feedback from users
could be used to validate that the library is in fact accomplishing its goal and to
improve and extend it.

The averaged models of power electronics could be used to perform linear analysis,
using Dymola 2017, to support the use of techniques from classical control. Examples
should be provided where Bode plots, transfer functions and poles and zeros are
obtained.

The use of the Functional Mock-up Interface (FMI) standard was explored by
trying to generate exported Functional Mock-up Unit (FMU) versions of some of
the models, for use in other tools. This effort was not successful, but having this
kind of application example would be quite powerful, since it would showcase a
use case that would be quite popular - having the model developed in Modelica
but used in some other tool (MATLAB, LabVIEW) where the control software is
developed.

V&V would greatly benefit from extending two approaches to more models in
the library. Models of the same systems could be developed in another tool like
LTspice or with other Modelica libraries like [Kral7] and [FW16], to gain a stronger
conviction that the results are correct. The library could also be used to model
real-life systems that are in operation, as opposed to examples from the literature,
to compare simulation and experimental results. As mentioned in Section 7.1, the
library would also benefit from using a separate V&V library.

The averaged models based on the switch network concept would probably be
helpful in projects outside of the PV domain. Since they would probably have wide
appeal, inclusion in the MSL could be explored.
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Acronyms and abbreviations

AC Alternating Current.

BES Battery Energy Storage.

BOS Balance of System.

CCM Continuous Conduction Mode.

CPM Current Programmed Mode.

DAE Differential Algebraic Equation.
DC Direct Current.

DCM Discontinuous Conduction Mode.

EPT Energy Payback Time.

ESR Equivalent Series Resistance.

FMI Functional Mock-up Interface.

FMU Functional Mock-up Unit.

GUI Graphical User Interface.

IDE Integrated Development Environment.
LOC Lines Of Code.

M&S modelling and simulation.

MIT Massachusetts Institute of Technology.
MPP Maximum Power Point.

MPPT Maximum Power Point Tracker.

MSL Modelica Standard Library.
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Acronyms and abbreviations

NER Net Energy Ratio.
ODE Ordinary Differential Equation.

P&O Perturb and Observe.
Pl Proportional Integral.

PID Proportional Integral Derivative.

PLL Phased-Locked Loop.
PV photovoltaic.

PWM Pulse Width Modulation.
QSG Quadrature Signal Generator.

SPDT Single-pole double-throw.
SPST Single-pole single-throw.
STC Standard Testing Conditions.

V&V Verification and Validation.
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Source code

Control/Assemblies/InverterlphCompleteController.mo

1 within PVSystems.Control.Assemblies;

2 block InverterlphCompleteController

3 "Complete synchronous reference frame inverter controller"

extends Modelica.Blocks.Icons.Block;

// Parameters

parameter Real ik=0.1 "Current PI gain";

parameter Modelica.SIunits.Time iT=0.01 "Current PI time constant";
parameter Real idMax=Modelica.Constants.inf "Maximum effort for id loop";
parameter Real igMax=Modelica.Constants.inf "Maximum effort for ig loop";
10 parameter Real vk=0.1 "Voltage PI gain";

11 parameter Modelica.SIunits.Time vT=0.01 "Voltage PI time constant";

12 parameter Real vdcMax=Modelica.Constants.inf "Maximum effort for vdc loop";
13 parameter Modelica.SIunits.Frequency fline=50 "Line frequency";

14 // Interface

15 Modelica.Blocks.Interfaces.Reallnput iac "AC current sense" annotation (

[CRN- NG I SRS

16 Placement (transformation (extent={{-140,-60}, {-100,-20}}, rotation=0)));
17 Modelica.Blocks.Interfaces.Reallnput vac "AC voltage sense" annotation (

18 Placement (transformation (extent={{-140,-100}, {-100,-60}}, rotation=0)));
19 Modelica.Blocks.Interfaces.Reallnput idc "DC current sense" annotation (

20 Placement (transformation (extent={{-140,20}, {-100,60}}, rotation=0)));

21 Modelica.Blocks.Interfaces.ReallInput vdc "DC voltage sense" annotation (

22 Placement (transformation (extent={{-140,60}, {-100,100}}, rotation=0)));
23 Modelica.Blocks.Interfaces.RealOutput d "Duty cycle" annotation (Placement (
24 transformation (extent={{100,-10}, {120,10}}, rotation=0)));

25 // Components
26 Modelica.Blocks.Sources.Constant igs(k=0) annotation (Placement (

27 transformation (extent={{-40,-30}, {-20,-10}}, rotation=0)));

28 PVSystems.Control .MPPTController mppt (

29 sampleTime=1,

30 vrefStep=0.5,

31 pkThreshold=0.5,

32 vrefStart=15) annotation (Placement (transformation (extent={{-80,36}, {-60,56}},
33 rotation=0)));

34 Modelica.Blocks.Continuous.LimPID vdcPI (

35 k=vk,

36 controllerType=Modelica.Blocks.Types.SimpleController.PI,

37 Ti=vT,

38 yMax=vdcMax) annotation (Placement (transformation (extent={{-40,56},{-20,36}},
39 rotation=0)));

40 InverterlphCurrentController currentController (

41 k=ik,

42 T=iT,

43 fline=fline,

44 idMax=idMax,

45 igMax=igMax)

46 annotation (Placement (transformation (extent={{60,-10},{80,10}})));

47 PLL pLL(frequency=fline)

48 annotation (Placement (transformation (extent={{-80,-90}, {-60,-70}})));
49 Modelica.Blocks.Sources.RealExpression vdcClone (y=vdc)

50 annotation (Placement (transformation (extent={{-40,-100}, {-20,-80}})));
51 Modelica.Blocks.Math.Gain invertIds (k=-1)

52 annotation (Placement (transformation (extent={{0,36},{20,56}})));
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Source code

53 equation
connect (currentController.d, d)

54
59
56
87
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
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annotation
connect (idc,
annotation
connect (vdc,

(Line (points={{81,0},{110,0}}, color={0,0,127}));

mppt .u2)

(Line (points={{-120,40}, {-120,40}, {-82,40}},color={0,0,127}));
mppt.ul) annotation (Line(points={{-120,80},{-90,80},{-90,52},{-82,

52}}, color={0,0,127}));

connect (iac,
{=70,0

currentController.i) annotation (Line (points={{-120,-40},{-70,-40},
},{58,0}}, color={0,0,127}));

connect (igs.y, currentController.igs) annotation (Line (points={{-19,-20}, {40,
-20},{40,-6},{58,-6}}, color={0,0,127}));

connect (vac,
color={0

pLL.v) annotation (Line(points={{-120,-80},{-120,-80},{-82,-80}},
,0,127}));

connect (pLL.theta, currentController.theta)

annotation

(Line (points={{-59,-80}, {66,-80}, {66,-12}}, color={0,0,127}));

connect (vdcClone.y, currentController.vdc) annotation (Line(points={{-19,-90},
{-19,-90},{74,-90},{74,-12}}, color={0,0,127}));

connect (mppt
annotation
connect (vdc,
annotation

.y, vdcPI.u_s)

(Line (points={{-59,46}, {-42,46}}, color={0,0,127}));
vdcPI.u_m)

(Line (points={{-120,80}, {-30,80},{-30,58}}, color={0,0,127}));

connect (vdcPI.y, invertIds.u)

annotation

(Line (points={{-19,46}, {-10,46},{-2,46}}, color={0,0,127}));

connect (invertIds.y, currentController.ids)

annotation

(Line (points={{21,46},{40,46}, {40,6},{58,6}}, color={0,0,127}));

annotation (Icon (coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},

{100,

100}}), graphics={

Rectangle (
extent={{-48,50}, {12,-10}},
lineColor={0,0,127},
fillColor={255,255,255},
fillPattern=FillPattern.Solid),
Line (points={{-38,40}, {-38,-4}}, color={192,192,192}),

Polygon (

points={{-38,40}, {-42,32},{-34,32}, {-38,40}},
lineColor={192,192,192},
fillColor={192,192,192},
fillPattern=FillPattern.Solid),
Line (points={{-42,0},{2,0}}, color={192,192,192}),
Line (points={{-38,0}, {-38,14}, {-30,24}, {2,24}}, color={0,0,127}),

Line (

visible=strict,
points={{-30,24},{2,24}},

color=
Polygon (

{255,0,0}),

points={{0,4},{-4,-4},{4,-4},{0,4}},
lineColor={192,192,192},
fillColor={192,192,192},
fillPattern=FillPattern.Solid,
origin={-2,0},
rotation=270),
Line (points={{12,20}, {52,20}}, color={0,0,127}),
Line (points={{-88,20}, {-48,20}}, color={0,0,127}),
Line (points={{-68,20},{-68,-30}, {32,-30}, {32,20}}, color={0,0,127}),

Polygon (

points={{0,4},{-4,-4},{4,-4},{0,4}},
lineColor={0,0,127},
fillColor={0,0,127},
fillPattern=FillPattern.Solid,
origin={56,20},

rotation=270),

Polygon (

points={{0,4}, {-4,-4}, {4,-4},{0,4}},
lineColor={0,0,127},
fillColor={0,0,127},
fillPattern=FillPattern.Solid,



119 origin={-52,20},

120 rotation=270),

121 Rectangle (

122 extent={{-18,10},{42,-50}},

123 lineColor={0,0,127},

124 fillColor={255,255,255},

125 fillPattern=FillPattern.Solid),

126 Line (points={{-8,0},{-8,-44}}, color={192,192,192}),

127 Polygon (

128 points={{-8,0},{-12,-8},{-4,-8},{(-8,0}},

129 lineColor={192,192,192},

130 fillColor={192,192,192},

131 fillPattern=FillPattern.Solid),

132 Line (points={{-12,-40}, {32,-40}}, color={192,192,192}),

133 Line (points={{-8,-40},{-8,-26},{0,-16},{32,-16}}, color={0,0,127}),

134 Line (

135 visible=strict,

136 points={{0,-16},{32,-16}},

137 color={255,0,0}),

138 Polygon (

139 points={{0,4}, {-4,-4},{4,-4},{0,4}},

140 lineColor={192,192,192},

141 fillColor={192,192,192},

142 fillPattern=FillPattern.Solid,

143 origin={28,-40},

144 rotation=270),

145 Line (points={{42,-20}, {82,-20}}, color={0,0,127}),

146 Line (points={{-58,-20}, {-18,-20}}, color={0,0,127}),

147 Line (points={{-38,-20},{-38,-70},{62,-70},{62,-20}}, color={0,0,127}),

148 Polygon (

149 points={{0,4},{-4,-4},{4,-4},1{0,4}},

150 lineColor={0,0,127},

151 fillColor={0,0,127},

152 fillPattern=FillPattern.Solid,

153 origin={86,-20},

154 rotation=270),

155 Polygon (

156 points={{0,4}, {-4,-4}, {4,-4},{0,4}},

157 lineColor={0,0,127},

158 fillColor={0,0,127},

159 fillPattern=FillPattern.Solid,

160 origin={-22,-20},

161 rotation=270),

162 Text (

163 extent={{-100,80}, {100,70}},

164 lineColor={0,0,255},

165 textString="PV control")}), Documentation (info="<html>

166 <p>

167 An

168 additional <a href=\"modelica://Modelica.Blocks.Continuous.LimPID\">LimPID</a
>

169 block is used to closed the DC voltage loop around the <i>d</i>

170 component of the AC current,

171 using <a href=\"modelica://

PVSystems.Control.Assemblies.InverterlphCurrentController\">
InverterlphCurrentController</a>.

172 </p>

173

174 <p>

175 Currently, this block doesn’t provide control of the <i>g</i>
176 component, which is set to 0.</p>

177 </html>"));

178 end InverterlphCompleteController;
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Source code

Control/Assemblies/InverterlphCurrentController.mo

1 within PVSystems.Control.Assemblies;

2 block InverterlphCurrentController

3 "Simple synchronous reference frame PI current controller"

4 extends Modelica.Blocks.Icons.Block;

5 parameter Real k(final unit="1") = 0.1 "PI controllers gain";

6 parameter Modelica.SIunits.Time T (final min=Modelica.Constants.small) = 0.01
7 "PI controllers time constant (T>0 required)";

8 parameter Modelica.SIunits.Frequency fline=50 "AC line frequency";

9 parameter Real idMax=Modelica.Constants.inf "Maximum effort for id loop";

10 parameter Real igMax=Modelica.Constants.inf "Maximum effort for ig loop";

11 Park park annotation (Placement (transformation (extent={{-70,-14}, {-50,6}},

12 rotation=0)));

13 Modelica.Blocks.Nonlinear.FixedDelay T4Delay (delayTime=1/4/fline) annotation (
14 Placement (transformation (extent={{-108,-30},{-88,-10}}, rotation=0)));

15 Modelica.Blocks.Continuous.LimPID idPT (

16 k=k,

17 controllerType=Modelica.Blocks.Types.SimpleController.PI,

18 Ti=T,

19 yMax=idMax) annotation (Placement (transformation (extent={{-40,50}, {-20,70}},
20 rotation=0)));

21 Modelica.Blocks.Continuous.LimPID igPTI (

22 k=k,

23 controllerType=Modelica.Blocks.Types.SimpleController.PI,

24 Ti=T,

25 yMax=igMax) annotation (Placement (transformation (extent={{-40,-50},{-20,-70}},
26 rotation=0)));

27 InversePark inversePark

28 annotation (Placement (transformation (extent={{8,-14},{28,6}}, rotation=0)));
29 Modelica.Blocks.Sources.Constant dOffset (k=0.5) annotation (Placement (

30 transformation (extent={{50,20}, {70,40}}, rotation=0)));

31 Modelica.Blocks.Interfaces.ReallInput i "Sensed current" annotation (Placement (
32 transformation (extent={{-160,-20}, {-120,20}}, rotation=0),

33 iconTransformation (extent={{-140,-20}, {-100,20}})));

34 Modelica.Blocks.Interfaces.RealInput ids "Current d component setpoint"

35 annotation (Placement (transformation (extent={{-160,40},{-120,80}}, rotation=
36 0), iconTransformation (extent={{-140,40},{-100,80}})));

37 Modelica.Blocks.Interfaces.RealInput igs "Current g component setpoint”

38 annotation (Placement (transformation (extent={{-160,-80}, {-120,-40}},

39 rotation=0), iconTransformation (extent={{-140,-80}, {-100,-40}})));

40 Modelica.Blocks.Interfaces.RealInput theta "Sensed AC voltage phase"

41 annotation (Placement (transformation (

42 origin={-40,-120},

43 extent={{-20,-20}, {20,20}},

44 rotation=90)));

45 Modelica.Blocks.Interfaces.ReallInput vdc "Sensed DC voltage" annotation (
16 Placement (transformation (

47 origin={40,-120},

48 extent={{-20,-20}, {20,201} },

49 rotation=90)));

50 Modelica.Blocks.Interfaces.RealOutput d "Duty cycle output" annotation (

51 Placement (transformation (extent={{120,-10}, {140,10}}, rotation=0),

52 iconTransformation (extent={{100,-10}, {120,10}})));

53 Modelica.Blocks.Math.Division dScaling annotation (Placement (transformation (
54 extent={{50,-16},{70,4}}, rotation=0)));

55 Modelica.Blocks.Math.Add dCalc annotation (Placement (transformation (extent={{
56 88,-10},{108,10}}, rotation=0)));

57 equation

58 // Connections

59 connect (park.beta, T4Delay.y) annotation (Line(points={{-72,-8},{-80,-8},{-80,

60 -20},{-87,-20}}, color={0,0,127}));
61 connect (1igPI.y, inversePark.q) annotation (Line(points={{-19,-60},{0,-60},{0,
62 -8},{6,-8}}, color={0,0,127}));

63 connect (1dPI.y, inversePark.d)
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64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

annotation (Line (points={{-19,60},{0,60},{0,0},{6,0}},color={0,0,127}));
connect (i, park.alpha)
annotation (Line (points={{-140,0},{-140,0},{-72,0}}, color={0,0,127}));
connect (i, T4Delay.u) annotation (Line (points={{-140,0},{-116,0},{-116,-20}, {
-110,-20}}, color={0,0,127}));
connect (inversePark.theta, theta) annotation (Line(points={{18,-16},{18,-80},
{-40,-80}, {-40,-120}},color={0,0,127}));
connect (inversePark.alpha, dScaling.ul)
annotation (Line (points={{29,0},{48,0}}, color={0,0,127}));
connect (vdc, dScaling.u2)
annotation (Line (points={{40,-120},{40,-12},{48,-12}}, color={0,0,127}));
connect (dScaling.y, dCalc.u2)
annotation (Line (points={{71,-6},{86,-6}}, color={0,0,127}));
connect (dCalc.y, d)
annotation (Line (points={{109,0},{109,0},{130,0}}, color={0,0,127}));
connect (theta, park.theta) annotation (Line (points={{-40,-120}, {-40,-80},{-60,
-80}, {-60,-16}}, color={0,0,127}));
connect (dOffset.y, dCalc.ul)
annotation (Line (points={{71,30},{80,30},{80,6},{86,6}}, color={0,0,127}));
connect (idPT.u_s, ids)
annotation (Line (points={{-42,60}, {-140,60}}, color={0,0,127}));
connect (idPI.u_m, park.d)
annotation (Line (points={{-30,48},{-30,0},{-49,0}}, color={0,0,127}));
connect (park.q, igPI.u_m)
annotation (Line (points={{-49,-8},{-30,-8},{-30,-48}}, color={0,0,127}));

connect (igPI.u_s, igs) annotation (Line (points={{-42,-60}, {-86,-60},{-140,-60}},

color={0,0,127}));
annotation (
Icon (coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{100,
100}}), graphics={
Rectangle (
extent={{-48,50},{12,-10}},
lineColor={0,0,127},
fillColor={255,255,255},
fillPattern=FillPattern.Solid),
Line (points={{-38,40}, {-38,-4}}, color={192,192,192}),
Polygon (
points={{-38,40}, {-42,32},{-34,32},{-38,40}},
lineColor={192,192,192},
fillColor={192,192,192},
fillPattern=FillPattern.Solid),
Line (points={{-42,0}, {2,0}}, color={192,192,192}),
Line (points={{-38,0}, {-38,14},{-30,24},{2,24}}, color={0,0,127}),
Line (
visible=strict,
points={{-30,24},{2,24}},
color={255,0,0}),
Polygon (
points={{0,4}, {-4,-4}, {4,-4},{0,4}},
lineColor={192,192,192},
fillColor={192,192,192},
fillPattern=FillPattern.Solid,
origin={-2,0},
rotation=270),
Line (points={{12,20}, {52,20}}, color={0,0,127}),
Line (points={{-88,20}, {-48,20}}, color={0,0,127}),
Line (points={{-68,20}, {-68,-30}, {32,-30}, {32,20}}, color={0,0,127}),
Polygon (
points={{0,4},{-4,-4},{4,-4},{0,4}},
lineColor={0,0,127},
fillColor={0,0,127},
fillPattern=FillPattern.Solid,
origin={56,20},
rotation=270),
Polygon (
points={{0,4},{-4,-4},{4,-4},{0,4}},
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130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192
193
194
195
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lineColor={0,0,127},
fillColor={0,0,127},
fillPattern=FillPattern.Solid,
origin={-52,20},
rotation=270),
Rectangle (
extent={{-18,10},{42,-50}},
lineColor={0,0,127},
fillColor={255,255,255},
fillPattern=FillPattern.Solid),
Line (points={{-8,0},{-8,-44}}, color={192,192,192}),
Polygon (
points={{-8,0}, {-12,-8},{-4,-8},{-8,0}},
lineColor={192,192,192},
fillColor={192,192,192},
fillPattern=FillPattern.Solid),
Line (points={{-12,-40}, {32,-40}}, color={192,192,192}),
Line (points={{-8,-40},{-8,-26},{0,-16},{32,-16}}, color={0,0,127}),
Line (
visible=strict,
points={{0,-16},{32,-16}},
color={255,0,0}),
Polygon (
points={{0,4}, {-4,-4}, {4,-4},{0,4}},
lineColor={192,192,192},
fillColor={192,192,192},
fillPattern=FillPattern.Solid,
origin={28,-40},
rotation=270),
Line (points={{42,-20}, {82,-20}}, color={0,0,127}),
Line (points={{-58,-20},{-18,-20}}, color={0,0,127}),
Line (points={{-38,-20},{-38,-70},{62,-70},{62,-20}}, color={0,0,127}),
Polygon (
points={{0,4},{-4,-4},{4,-4},{0,4}},
lineColor={0,0,127},
fillColor={0,0,127},
fillPattern=FillPattern.Solid,
origin={86,-20},
rotation=270),
Polygon (
points={{0,4},{-4,-4},{4,-4},{0,4}},
lineColor={0,0,127},
fillColor={0,0,127},
fillPattern=FillPattern.Solid,
origin={-22,-20},
rotation=270),
Text (
extent={{-100,80}, {100,70}},
lineColor={0,0,255},
textString="Idg control")}),

Documentation (info="<html>

<p>
Synchronous reference frame current controller for a l-phase
inverter. It takes the measured and the dg setpoints and
calculates the duty cycle, which can be then used as the input to
the <a href=\"modelica://PVSystems.Control.SignalPWM\">SignalPWM</a>
block in switching models or directly as the input of the switch
or converter in averaged models.

</p>

<p>
The control is performed with
two <a href=\"modelica://Modelica.Blocks.Continuous.LimPID\">LimPID</a>
blocks (one per component) configured as a PI controller.</p>
</html>"),

Diagram(coordinateSystem(extent={{-120,-100},{120,100}}, initialScale=0.1)));



196 end InverterlphCurrentController;

Control/Assemblies/package.mo

1 within PVSystems.Control;

2 package Assemblies "Block assemblies useful in PV and power electronics"
3 extends Icons.AssembliesPackage;

4

5

6 annotation (Documentation (info="

7 <html>

8 <p>

9 Block assemblies useful in PV and power electronics</p>

10 </html>"));

11 end Assemblies;

Control/Assemblies/package.order

1 InverterlphCurrentController
2 InverterlphCompleteController

Control/CPM.mo
1 within PVSystems.Control;
2 model CPM "Current Peak Mode modulator for averaged models"
3 extends Interfaces.CPMInterface;
4 protected
5 Real d2;
6 equation
7 d2 = min(L*fsx (vc - Vaxd)/Rf/vm2, 1 - d);
8 d = 2% (vex(d + d2) - vs)/(Rf/L/fs*(vml + vm2)*d2x(d + d2) + 2xVa=*(d + d2));
9 annotation (Icon (graphics={
10 Line (points={{-80,20}, {-70,0}, {-50,0}, {-30,60}, {10,0},{30,0}, {50,601}, {
11 80,20}}, color={255,0,0}),
12 Line (points={{-52,-140}}, color={0,0,255}),
13 Line (points={{-80.1563,45.078}, {-50,30}, {-50,70}, {30,301}, {30,701}, {
14 79.531,45.234}}, color={0,0,255}),
15 Line (
16 points={{-50,80}, {-50,-30}},
17 color={0,0,255},
18 pattern=LinePattern.Dash),
19 Line (
20 points={{-30,80}, {-30,-30}},
21 color={0,0,255},
22 pattern=LinePattern.Dash),
23 Line (
24 points={{30,80}, {30,-30}},
25 color={0,0,255},
26 pattern=LinePattern.Dash),
27 Line (
28 points={{50,80}, {50,-30}},
29 color={0,0,255},
30 pattern=LinePattern.Dash),
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31 Line (

32 points={{-80,-80}, {-50,-80}, {-50,-40}, {-30,-40}, {-30,-80}, {30,-80}, {
33 30,-40}, {50,-40}, {50,-80}, {80,-801}},

34 color={255,0,255},

35 pattern=LinePattern.Dot),

36 Line (points={{-80,-70},{80,-70}}, color={0,0,0})1}),

37 Documentation (info="<html>

38 <p>

39 Current-Programmed-Mode controller model. Computes duty ratio

40 based on averaged inductor current, voltages applied to the

41 inductor, and amplitude of the artificial ramp. The CPM controller
42 model is valid <b>for CCM and DCM operation</b> of the power

43 converter. All parameters and inputs are referred to the primary

44 side.

45 </p>

46

47 <p>

48 <i>Limitation</i>: does not include sampling effects or preditions
49 of period-doubling instability.

50 </p>

51

52 <p>

53 Model taken

54 from <a href=\"modelica://PVSystems.UsersGuide.References.EMOI1\">EM01</a>
55 and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL6\">EMAl6</a>.</p>
56 </html>"));

57 end CPM;

Control/CPM_CCM.mo

1 within PVSystems.Control;
2 model CPM_CCM "Current Peak Mode modulator for averaged CCM models"
3 extends Interfaces.CPMInterface;

4 parameter Real d_disabled(final unit="1") "Value of duty cycle when disabled";
5 Modelica.Blocks.Interfaces.BooleanInput enable

6 "Block enable/disable" annotation (Placement (transformation (

7 extent={{-20,-20}, {20,20}},

8 rotation=90,

9 origin={0,-120}), iconTransformation (

10 extent={{-20,-20}, {20,201} },

11 rotation=90,

12 origin={0,-120})));

13 equation
14 if enable then

15 d = 2x(ve — vs)/(Rf/L/fsx(vml + vm2) (1 - d) + 2xVa);
16 else
17 d = d_disabled;

18 end if;
19 annotation (Icon (graphics={

20 Line (points={{-80,20}, {-50,-20}, {-30,60}, {30,-20}, {50,601}, {80,20}},
21 color={255,0,0}),

22 Line (points={{-52,-140}}, color={0,0,255}),

23 Line (points={{-80.1563,45.078},{-50,30}, {-50,70}, {30,30}, {30,70}, {
24 79.531,45.234}}, color={0,0,255}),

25 Line (

26 points={{-50,80}, {-50,-30}},

27 color={0,0,255},

28 pattern=LinePattern.Dash),

29 Line (

30 points={{-30,80}, {-30,-30}},

31 color={0,0,255},

32 pattern=LinePattern.Dash),
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33
34
83
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
S5
56
57
58
59
60
61
62
63
64
65
66

Line (
points={{30,80}, {30,-30}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (
points={{50,80}, {50,-30}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (

points={{-80,-80}, {-50,-80}, {-50,-40}, {-30,-40}, {-30,-80}, {30,-80}, {

30,-40}, {50,-40}, {50,-80}, {80,-80}},
color={255,0,255},
pattern=LinePattern.Dot),

Line (points={{-80,-70}, {80,-70}}, color={0,0,0})1}),
Documentation (info="<html>
<p>

Current-Programmed-Mode controller model. Computes duty ratio
based on averaged inductor current, voltages applied to the
inductor, and amplitude of the artificial ramp. This CPM

controller model is valid <b>only for CCM operation</b> of the

powerconverter. All parameters and inputs are referred to the
primary side.
</p>

<p>

<i>Limitation</i>: does not include sampling effects or preditions

of period-doubling instability.
</p>

<p>
Model taken

from <a href=\"modelica://PVSystems.UsersGuide.References.EMOI\">EM01</a>

and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL6\">EMALl6</a>.</p>

</html>"));

67 end CPM_CCM;

Control/DeadTime.mo

1 within PVSystems.Control;

2 block DeadTime "Introduces a dead time in complementary PWM firing signals"

22
23

extends Modelica.Blocks.Icons.Block;
parameter Modelica.SIunits.Time deadTime=0 "Dead time";
Modelica.Blocks.Interfaces.BooleanInput ¢ "PWM input”

annotation (Placement (transformation (extent={{-140,-20},{-100,20}})));

Modelica.Blocks.Interfaces.BooleanOutput cl "PWM output" annotation
Placement (transformation (
extent={{-10,-10}, {10, 10}},
rotation=0,
origin={110,40})));

Modelica.Blocks.Interfaces.BooleanOutput c2 "PWM complement" annotation

Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=0,
origin={110,-40})));
Modelica.Blocks.MathBoolean.OnDelay cl_onDelay (delayTime=deadTime)
annotation (Placement (transformation (extent={{56,36},{64,44}})));
Modelica.Blocks.MathBoolean.OnDelay c2_onDelay (delayTime=deadTime)

annotation (Placement (transformation (extent={{56,-44},{64,-36}})));

Modelica.Blocks.Logical.Not notBlock

annotation (Placement (transformation (extent={{-10,-50},{10,-30}})));
equation

connect (cl_onDelay.y, cl)

(

(
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25 annotation (Line (points={{64.8,40},{110,40}}, color={255,0,255}));

26 connect (c2_onDelay.y, c2)

27 annotation (Line (points={{64.8,-40},{110,-40}}, color={255,0,255}));

28 connect (notBlock.y, c2_onDelay.u)

29 annotation (Line (points={{11,-40},{54.4,-40}}, color={255,0,255}));

30 connect (¢, cl_onDelay.u) annotation (Line (points={{-120,0},{-60,0},{-60,40}, {
31 54.4,40}}, color={255,0,255}));

32 connect (¢, notBlock.u) annotation (Line (points={{-120,0},{-60,0},{-60,-40},{-12,
33 -40}}, color={255,0,255}));

34 annotation (Icon (coordinateSystem(preserveAspectRatio=false, extent={{-100,-100},
35 {100,100}}),graphics={

36 Rectangle (

37 extent={{-20,80},{20,-80}},

38 pattern=LinePattern.None,

39 fillColor={255,255,255},

40 fillPattern=FillPattern.Backward,

41 lineColor={0,0,255}),

42 Line (points={{-70,70},{-20,70},{-20,10},{70,10}}, color={255,0,255}),
43 Line (points={{-70,-70},{20,-70}, {20,-10}, {70,-10}}, color={255,0,255}),
44 Line (

45 points={{20,80},{20,-80}},

46 color={0,0,255},

47 pattern=LinePattern.Dash),

48 Line (

49 points={{-20,80}, {-20,-80}},

50 color={0,0,255},

51 pattern=LinePattern.Dash) }),

52 Documentation (info="<html>

53 <p>

54 Given an input boolean firing signal, output that signal and it’s
55 complement with <i>deadTime</i> seconds of dead time.</p>

56 </html>"));

57 end DeadTime;

Control/Interfaces/CPMInterface.mo

1 within PVSystems.Control.Interfaces;
2 partial model CPMInterface "Common interface for averaged CPM block"
3 extends Modelica.Blocks.Icons.Block;

4 parameter Modelica.SIunits.Inductance L

5 "Equivalent inductance, referred to primary";

6 parameter Modelica.SIunits.Frequency fs

7 "Switching frequency";

8 parameter Modelica.SIunits.Voltage Va

9 "Amplitude of the artificial ramp, Va=Rfxma/fs";

10 parameter Modelica.SIunits.Resistance Rf

11 "Equivalent current-sense resistance";

12 Modelica.Blocks.Interfaces.RealInput vc

13 "Control input, vc=Rfxic"

14 annotation (

15 Placement (transformation (extent={{-140,80}, {-100,120}}, rotation=0),
16 iconTransformation (extent={{-140,80}, {-100,120}})));

17 Modelica.Blocks.Interfaces.ReallInput vs

18 "Sensed average inductor current vs=RfxiL"

19 annotation (

20 Placement (transformation (extent={{-140,20}, {-100,60}}, rotation=0),
21 iconTransformation (extent={{-140,20}, {-100,60}})));

22 Modelica.Blocks.Interfaces.ReallInput wvml

23 "Voltage across L in interval 1, slope ml=vml/L"

24 annotation (Placement (transformation (extent={{-140,-60}, {-100,-20}},
25 rotation=0), iconTransformation (extent={{-140,-60},{-100,-20}})));

26 Modelica.Blocks.Interfaces.Reallnput vm2
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27 "(-) Voltage across L in interval 2, slope m2=vm2/L"

28 annotation (Placement (transformation (extent={{-140,-120}, {-100,-80}},
29 rotation=0), iconTransformation (extent={{-140,-120},{-100,-80}})));
30 Modelica.Blocks.Interfaces.RealOutput d

31 "Duty cycle"

32 annotation (Placement (

33 transformation (extent={{100,-10}, {120,10}}, rotation=0)));

34 annotation (Documentation (info="

35 <html>

36 <p>

37 Common interface for averaged CPM block</p>

38 </html>"));

39 end CPMInterface;

Control/Interfaces/package.mo

Common interfaces for control blocks</p>
</html>"));
10 end Interfaces;

1 within PVSystems.Control;

2 package Interfaces "Common interfaces for control blocks"
3 extends Modelica.Icons.InterfacesPackage;

4

5 annotation (Documentation (info="

6 <html>

7 <p>

8

9

Control/Interfaces/package.order

1 CPMInterface

Control/InversePark.mo

1 within PVSystems.Control;
2 block InversePark "Inverse Park transformation"
3 extends Modelica.Blocks.Icons.Block;

4 Modelica.Blocks.Interfaces.Reallnput d annotation (Placement (transformation (
5 extent={{-140,20}, {-100,60}}, rotation=0)));

6 Modelica.Blocks.Interfaces.Reallnput g annotation (Placement (transformation (
7 extent={{-140,-60}, {-100,-20}}, rotation=0)));

8 Modelica.Blocks.Interfaces.RealOutput alpha annotation (Placement (

9 transformation (extent={{100,30}, {120,50}}, rotation=0)));

10 Modelica.Blocks.Interfaces.RealOutput beta annotation (Placement (

11 transformation (extent={{100,-50}, {120,-30}}, rotation=0)));

12 Modelica.Blocks.Interfaces.Reallnput theta annotation (Placement (

13 transformation (

14 origin={0,-120},

15 extent={{-20,-20}, {20,20}},

16 rotation=90)));

17 equation

18 d = alphax*cos(theta) + betaxsin(theta);
19 g = -alphax*sin(theta) + betaxcos(theta);
20 annotation (
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21 Diagram(graphics),

22 Icon (graphics={

23 Line (

24 points={{0,0},{15,60},{30,0}, {45,-60},{60,0}},

25 color={0,0,255},

26 smooth=Smooth.Bezier),

27 Line (

28 points={{-96,-234}},

29 color={255,0,0},

30 smooth=Smooth.Bezier),

31 Line (points={{-80,20},{-20,20}}, color={128,0,255}),
32 Line (points={{-80,-20}, {-20,-20}}, color={0,255,0}),
33 Line (

34 points={{15,0}, {30,60}, {45,0},{60,-60},{75,0}},

35 color={255,0,0},

36 smooth=Smooth.Bezier) }),

37 Documentation (info="<html>

38 <p>

39 Perform inverse Park transformation. This transformation translates
40 from the synchronous reference frame (d-g) to the static reference
41 frame (alfa-beta).

42 </p>

43 </html>"));

44 end InversePark;

Control/MPPTController.mo

1 within PVSystems.Control;

2 block MPPTController "Maximum Power Point Tracking Controller"

3 extends Modelica.Blocks.Interfaces.SI2SO;

4 parameter Modelica.SIunits.Time sampleTime=1 "Sample time of control block";
5 parameter Modelica.SIunits.Voltage vrefStep=5 "Step of change for vref";
6 parameter Modelica.SIunits.Power pkThreshold=1

7 "Power threshold below which no change is considered";

8 parameter Modelica.SIunits.Voltage vrefStart=10

9 "Voltage reference initial value";

0 protected

11 discrete Modelica.SIunits.Voltage vk;

12 discrete Modelica.SIunits.Current ik;

13 discrete Modelica.SIunits.Power pk;

14 discrete Modelica.SIunits.Voltage vref (start=vrefStart);

15 equation

16 when sample (sampleTime, sampleTime) then

17 vk = pre(ul);

18 ik = pre(u2);

19 pk = vkxik;

20 if abs(pk - pre(pk)) < pkThreshold then

21 // power unchanged => don’t change vref

22 vref = pre(vref);

23 elseif pk - pre(pk) > 0 then

24 // power increased => repeat last action

25 vref = pre(vref) + vrefStepxsign(vk - pre(vk));
26 else

27 // power decreased => change last action

28 vref = pre(vref) - vrefStepxsign(vk - pre(vk));
29 end if;

30 end when;
31 y = vref;
32 annotation (

33 Diagram(graphics),
34 Documentation (info="<html>
35 <p>

108



36 Maximum power-point tracking controller. Given the DC voltage and

37 current, this controller will output a moving reference for a DC
38 voltage control loop in order to maximize the power extracted from a
39 PV array for a given (unknown) solar irradiation and junction

40 temperature.

41 </p>

42

43 <p>

44 The operation of the block can be customized by setting the

45 following parameters:

46 </p>

47

48 <ul class=\"org-ul\">

49 <li><i>sampleTime</i>: sample time of the control block. The control
50 output will be updated with this period.

51 </1li>

52 <li><i>vrefStep</i>: amount of change to vref when updated.

53 </1li>

54 <li><i>pkThreshold</i>: amount of power below which it is considered
55 that no change in power has occurred.

56 </1li>

57 </ul>

58 </html>"),

59 Icon (graphics={

60 Line (points={{-80,80}, {-80,-80}, {80,-80}}, color={0,0,0}),

61 Line (

62 points={{-80,-80}, {40,801}, {60,-80}},

63 color={0,0,255},

64 smooth=Smooth.Bezier),

65 Line (

66 points={{-80,40}, {30,401}, {30,-801}},

67 color={255,0,0},

68 pattern=LinePattern.Dash),

69 Text (

70 extent={{-60,80}, {60,40}},

71 lineColor={0,0,255},

72 pattern=LinePattern.Dash,

73 fillColor={95,95,95},

74 fillPattern=FillPattern.Solid,

75 textString="MPPT") }));

76 end MPPTController;

Control/package.mo

1 within PVSystems;

2 package Control "Control elements for power converters"
3 extends Modelica.Icons.Package;

4

© © 9 o W’

10
11

12

13

14

15

16

17 annotation (Icon (coordinateSystem(preserveAspectRatio=true, extent={{-100.0,-100.0},
18 {100.0,100.0}}), graphics={
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19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Rectangle (
origin={0.0,35.1488},
fillColor={255,255,255},
extent={{-30.0,-20.1488},{30.0,20.1488}}),
Rectangle (
origin={0.0,-34.8512},
fillColor={255,255,255},
extent={{-30.0,-20.1488},{30.0,20.1488}1}),
Line (origin={-51.25,0.0}, points={{21.25,-35.0},{-13.75,-35.0}, {-13.75,
35.0},{6.25,35.0}}),
Polygon (
origin={-40.0,35.0},
pattern=LinePattern.None,
fillPattern=FillPattern.Solid,
points={{10.0,0.0},{-5.0,5.0},{-5.0,-5.0}1}),
Line (origin={51.25,0.0}, points={{-21.25,35.0},(13.75,35.0},{13.75,-35.0},
{-6.25,-35.0}1}),
Polygon (
origin={40.0,-35.0},
pattern=LinePattern.None,
fillPattern=FillPattern.Solid,
points={{-10.0,0.0},{5.0,5.0},{5.0,-5.0}})1}));
end Control;

Control/package.order

1 SwitchingPWM
2 SwitchingCPM
3 DeadTime
4 CPM_CCM
5 CPM
6 Park
7 InversePark
8 PLL
9 MPPTController
10 Assemblies
11 Interfaces
Control/Park.mo
1 within PVSystems.Control;
2 block Park "Park transformation"
3 extends Modelica.Blocks.Icons.Block;
4 Modelica.Blocks.Interfaces.Reallnput alpha annotation (Placement (
5 transformation (extent={{-140,20}, {-100,60}}, rotation=0)));
6 Modelica.Blocks.Interfaces.ReallInput beta annotation (Placement (
7 transformation (extent={{-140,-60}, {-100,-20}}, rotation=0)));
8 Modelica.Blocks.Interfaces.RealOutput d annotation (Placement (transformation (
9 extent={{100,30}, {120,50}}, rotation=0)));
10 Modelica.Blocks.Interfaces.RealOutput g annotation (Placement (transformation (
11 extent={{100,-50}, {120,-30}}, rotation=0)));
12 Modelica.Blocks.Interfaces.RealInput theta annotation (Placement (
13 transformation (
14 origin={0,-120},
15 extent={{-20,-20}, {20,20}},
16 rotation=90)));
17 equation
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27
28
29
30
31
32
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35
36
37
38
39
40
41
42
43

d = alphax*cos(theta) + betaxsin(theta);
g = —alphax*sin(theta) + betaxcos(theta);
annotation (

Diagram(graphics),

Icon (graphics={

Line (
points={{-75,0}, {-60,60}, {-45,0}, {-30,-60}, {-15,0}},
color={0,0,255},
smooth=Smooth.Bezier),

Line (
points={{-96,-234}},
color={255,0,0},
smooth=Smooth.Bezier),

Line (points={{20,20}, {80,20}}, color={128,0,255}),

Line (points={{20,-20}, {80,-20}}, color={0,255,0}),

Line (
points={{-60,0},{-45,60},{-30,0}, {-15,-60}, {0,0}},
color={255,0,0},
smooth=Smooth.Bezier) }),

Documentation (info="<html>

<p>
Perform Park transformation. This transformation translates from the
static reference frame (alfa-beta) to the synchronous reference
frame (d-qg).

</p>

</html>"));

44 end Park;

Control/PLL.mo

1 within PVSystems.Control;
2 block PLL "Phase-locked loop"

3

© O 9 » s

extends Modelica.Blocks.Icons.Block;

parameter Modelica.SIunits.Frequency frequency=50;
Modelica.Blocks.Continuous.Integrator integrator annotation (Placement (
transformation (extent={{60,-10}, {80,10}}, rotation=0)));
Modelica.Blocks.Continuous.FirstOrder firstOrder (T=1le-3, k=100) annotation (
Placement (transformation (extent={{-4,-10}, {16,10}},rotation=0)));
Modelica.Blocks.Nonlinear.FixedDelay QuarterTDelay (delayTime=1/frequency/4)
annotation (Placement (transformation (extent={{-80,-30},{-60,-10}}, rotation=
0)));
Modelica.Blocks.Interfaces.Reallnput v annotation (Placement (transformation (
extent={{-140,-20}, {-100,20}}, rotation=0)));
Modelica.Blocks.Interfaces.RealOutput theta annotation (Placement (
transformation (extent={{100,-10}, {120,10}}, rotation=0)));
Park park annotation (Placement (transformation (extent={{-40,-14},{-20,6}},
rotation=0)));
Modelica.Blocks.Math.Add add annotation (Placement (transformation (extent={{30,
48}, {50,68}}, rotation=0)));
Modelica.Blocks.Sources.Constant lineFreq(k=2xModelica.Constants.pixfrequency)
annotation (Placement (transformation (extent={{-30,54},{-10,74}}, rotation=0)));
equation
connect (v, park.alpha)
annotation (Line (points={{-120,0}, {-42,0}}, color={0,0,127}));
connect (QuarterTDelay.y, park.beta) annotation (Line(points={{-59,-20},{-50,-20},
{-50,-8},{-42,-8}}, color={0,0,127}));
connect (QuarterTDelay.u, v) annotation (Line (points={{-82,-20},{-96,-20},{-96,
0},{-120,0}}, color={0,0,127}));
connect (integrator.y, theta)
annotation (Line (points={{81,0},{110,0}}, color={0,0,127}));
connect (park.theta, integrator.y) annotation (Line (points={{-30,-16},{-30,-30},
{90,-30},{90,0}, {81,0}}, color={0,0,127}));
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
83
54
55)
56

connect (add.y, integrator.u)

annotation (Line (points={{51,58},{54,58},{54,0},{58,0}}, color={0,0,127}));
connect (firstOrder.y, add.u2)

annotation (Line(points={{17,0},{22,0},{22,52},{28,52}}, color={0,0,127}));
connect (lineFreq.y, add.ul)

annotation (Line(points={{-9,64},{28,64}}, color={0,0,127}));
connect (park.q, firstOrder.u) annotation (Line(points={{-19,-8},{-12,-8},{-12,
0},{-6,0}}, color={0,0,127}));
annotation (

Diagram(graphics),
Icon (graphics={Line (
points={{-70,0}, {-50,60},{-30,0}, {-10,-60},{10,0}, {30,60}, {50,0}, {70,
-60},{90,01}1},
color={0,0,255},
smooth=Smooth.Bezier), Line(

points={{-90,0},{-64,60}, {-44,0}, {-18,-60}, {2,0}, {22,60}, {44,0},{64,-60},
{88,0}},
color={255,0,0},
smooth=Smooth.Bezier) }),
Documentation (info="<html>

<p>
Phase-locked loop. Given a sinusoidal input, extract the phase.

</p>

</html>"));

57 end PLL;

Control/SwitchingCPM.mo

1 within PVSystems.Control;
2 block SwitchingCPM "Current Peak Mode modulator for switching models"

112

extends Modelica.Blocks.Icons.Block;
parameter Real dMin (

final min=Modelica.Constants.small,

final max=1) = 0 "Minimum duty cycle";
parameter Real dMax (

final min=Modelica.Constants.small,

final max=1) = 1 "Maximum duty cycle";
// TODO: assert dMax > dMin
parameter Modelica.SIunits.Frequency fs(final min=Modelica.Constants.small)

"Switching frequency";
parameter Modelica.SIunits.Time startTime (final min=0) = 0

"Time instant of first pulse";
parameter Modelica.SIunits.Voltage Va(final min=0)

"Amplitude of artificial ramp";
parameter Modelica.SIunits.Voltage vcMax "Maximum control voltage";
Modelica.Blocks.Interfaces.RealInput vc "Control voltage"

annotation (Placement (transformation (

extent={{-140,20}, {-100,60}}, rotation=0)));

Modelica.Blocks.Interfaces.RealInput vs "Sensed voltage"

annotation (Placement (transformation (

extent={{-140,-60}, {-100,-20}}, rotation=0)));

Modelica.Blocks.Interfaces.BooleanOutput ¢ "Boolean firing signal"

annotation (Placement (

transformation (extent={{100,30}, {120,50}}, rotation=0)));

Modelica.Blocks.Interfaces.RealOutput ramp "Artificial ramp signal"

annotation (Placement (

transformation (extent={{100,-50}, {120,-30}}, rotation=0)));

Modelica.Blocks.Logical.GreaterEqual greaterEqual

annotation (Placement (transformation (extent={{-10,38},{10,58}})));
Modelica.Blocks.Logical .RSFlipFlop rSFlipFlop

annotation (Placement (transformation (extent={{70,36},{90,56}})));
Modelica.Blocks.Math.Add addvVa
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annotation (Placement (transformation (extent={{-50,-56},{-30,-36}1})));
Modelica.Blocks.Sources.SawTooth artificialRamp (
amplitude=Va,
period=1/fs,
nperiod=-1,
offset=0,
startTime=startTime)
annotation (Placement (transformation (extent={{-90,-80},{-70,-60}1})));
Modelica.Blocks.Nonlinear.Limiter vcLimiter (uMax=vcMax, uMin=0)
annotation (Placement (transformation (extent={{-50,30},{-30,50}})));
Modelica.Blocks.Sources.BooleanPulse dMinLimiter (
period=1/fs,
startTime=startTime,
width=100+dMin)
annotation (Placement (transformation (extent={{32,0},{52,20}})));
Modelica.Blocks.Sources.BooleanPulse dMaxLimiter (
period=1/fs,
startTime=startTime + dMax/fs,
width=100+ (1 - dMax))
annotation (Placement (transformation (extent={{-10,66},{10,86}})));
Modelica.Blocks.Logical.Or orBlock
annotation (Placement (transformation (extent={{32,66},{52,86}})));
equation
connect (addvVa.ul, vs)
annotation (Line (points={{-52,-40}, {-120,-40}}, color={0,0,127}));
connect (artificialRamp.y, addVa.u2) annotation (Line (points={{-69,-70},{-60,-70},
{-60,-52},{-52,-52}}, color={0,0,127}));
connect (ramp, artificialRamp.y) annotation (Line (points={{110,-40},{80,-40}, {
80,-70},{-69,-70}}, color={0,0,127}));
connect (rSFlipFlop.QI, c)
annotation (Line (points={{91,40},{110,40}}, color={255,0,255}));
connect (addVa.y, greaterEqual.ul) annotation (Line (points={{-29,-46},{-20,-46},
{-20,48},{-12,48}}, color={0,0,127}));
connect (vc, vcLimiter.u)
annotation (Line (points={{-120,40},{-52,40}}, color={0,0,127}));
connect (vcLimiter.y, greaterEqual.u2)
annotation (Line (points={{-29,40},{-12,40}}, color={0,0,127}));
connect (dMinLimiter.y, rSFlipFlop.R) annotation (Line (points={{53,10},{60,10},
{60,40},{68,40}}, color={255,0,255}));
connect (greaterEqual.y, orBlock.u2) annotation (Line (points={{11,48},{20,48},
{20,68},{30,68}},color={255,0,255}));
connect (orBlock.y, rSFlipFlop.S) annotation (Line (points={{53,76},{60,76}, {60,
52},{68,52}}, color={255,0,255}));
connect (dMaxLimiter.y, orBlock.ul)
annotation (Line (points={{11,76},{30,76}}, color={255,0,255}));
annotation (Icon (graphics={
Line (points={{-80,20}, {-50,-20}, {-30,60}, {30,-20}, {50,601}, {80,20}},
color={255,0,0}),
Line (points={{-52,-140}}, color={0,0,255}),
Line (points={{-80.1563,45.078},{-50,30},{-50,70}, {30,30}, {30,70},{
79.531,45.234}}, color={0,0,255}),
Line (
points={{-50,80}, {-50,-80}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (
points={{-30,80}, {-30,-80}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (
points={{30,80}, {30,-80}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (
points={{50,80}, {50,-80}},
color={0,0,255},
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101 pattern=LinePattern.Dash),

102 Line (points={{-80,-80}, {-50,-80}, {-50,-40}, {-30,-40}, {-30,-80}, {30,-80},
103 {30,-40}, {50,-40}, {50,-80},{80,-80}}, color={255,0,255})}),

104 Documentation (info="<html>

105 <p>

106 Current-programmed mode (CPM), i.e. Peak Current Mode modulator

107 switching model. Generates PWM signal based on sensed current

108 signal <i>vs</i> and control current signal <i>vc</i>. Also

109 outputs the artificial ramp signal.

110 </p>

111

112 <p>

113 Model taken

114 from <a href=\"modelica://PVSystems.UsersGuide.References.EM01\">EM01</a>
115 and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL16\">EMAl6</a>.</p>
116 </html>"));

117 end SwitchingCPM;

Control/SwitchingPWM.mo

1 within PVSystems.Control;
2 block SwitchingPWM
3 "Generates a pulse width modulated (PWM) boolean fire signal"
extends Modelica.Blocks.Icons.Block;
parameter Real dMax=1 "Maximum duty cycle";
parameter Real dMin=0 "Minimum duty cycle";
parameter Modelica.SIunits.Frequency fs "Switching frequency";
parameter Modelica.SIunits.Time startTime=0 "Start time";
Modelica.Blocks.Interfaces.RealInput vc "Control voltage"

annotation (Placement (transformation (extent={{-140,-20},{-100,20}1})));
11  Modelica.Blocks.Interfaces.BooleanOutput cl "Firing PWM signal" annotation (
12 Placement (transformation (
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-

13 extent={{-10,-10}, {10,101} },

14 rotation=0,

15 origin={110,0})));

16 Modelica.Blocks.Nonlinear.Limiter limiter (uMax=dMax, uMin=dMin)

17 annotation (Placement (transformation (extent={{-60,-10}, {-40,10}})));
18 Modelica.Blocks.Logical.Less greaterEqual annotation (Placement (

19 transformation (extent={{-10,10},{10,-10}}, origin={50,0})));

20 Modelica.Blocks.Sources.SawTooth sawtooth (

21 final period=1/fs,

22 final amplitude=1,

23 final nperiod=-1,

24 final offset=0,

25 final startTime=startTime) annotation (Placement (transformation (origin={0,-50},
26 extent={{-10,-10}, {10,10}})));

27 equation

28 connect (vc, limiter.u)

29 annotation (Line (points={{-120,0},{-94,0},{-62,0}}, color={0,0,127}));

30 connect (sawtooth.y, greaterEqual.ul) annotation (Line (points={{11,-50},{20,-50},
31 {20,0},{38,0}}, color={0,0,127}));

32 connect (limiter.y, greaterEqual.u2)

33 annotation (Line(points={{-39,0},{0,0},{0,8},{38,8}}, color={0,0,127}));

34 connect (greaterEqual.y, cl)

35 annotation (Line(points={{61,0},{110,0}}, color={255,0,255}));

36 annotation (Icon (graphics={

37 Line (points={{-80,40},{80,40}},

38 color={255,0,0}),

39 Line (points={{-52,-140}}, color={0,0,255}),

40 Line (points={{-80.1563,54.922},{-50,70}, {-50,30}, {30,70}, {30,30},{79.531,
41 54.766}}, color={0,0,255}),

42 Line(
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points={{-50,80}, {-50,-80}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (
points={{-30,80}, {-30,-80}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (
points={{30,80},{30,-80}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (
points={{50,80}, {50,-80}},
color={0,0,255},
pattern=LinePattern.Dash),
Line (points={{-80,-80},{-50,-80}, {-50,-40}, {-30,-40}, {-30,-80}, {30,-80},
{30,-40}, {50,-40}, {50,-80},{80,-80}}, color={255,0,255})}),
Documentation (info="<html>
<p>
Generate boolean firing signal from duty cycle input. Adapted
from <a href=\"modelica://

Modelica.Electrical.PowerConverters.DCDC.Control.SignalPWM\">SignalPWM</a>.

P>
</html>"));

65 end SwitchingPWM;

</

Electrical/Assemblies/BidirectionalBuckBoost .mo

1 within PVSystems.Electrical.Assemblies;
2 model BidirectionalBuckBoost "Bidirectional Buck Boost converter"

3

(RN R S
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16
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19
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22
2]
24
29
26
27
28
29
30
31
32
33
34

extends Interfaces.TwoPort;

extends PVSystems.Icons.ConverterIcon;

parameter Modelica.SIunits.Capacitance Cin "Input capacitance"
annotation (Dialog(group="Power stage"));

parameter Modelica.SIunits.Resistance Rcin
"Series resistance of input capacitor"
annotation (Dialog(group="Power stage"));

parameter Modelica.SIunits.Capacitance Cout "Output capacitance"
annotation (Dialog(group="Power stage"));

parameter Modelica.SIunits.Resistance Rcout
"Series resistance of output capacitor”
annotation (Dialog(group="Power stage"));

parameter Modelica.SIunits.Inductance L "Inductance"
annotation (Dialog(group="Power stage"));

parameter Modelica.SIunits.Resistance RL "Series resistance of inductor"
annotation (Dialog(group="Power stage"));

parameter Modelica.SIunits.Voltage vCin_ini=0
"Guess for initial voltage of Cin"
annotation (Dialog(group="Initialization"));

parameter Modelica.SIunits.Voltage vCout_ini=0
"Guess for initial voltage of Cout"
annotation (Dialog(group="Initialization"));

parameter Modelica.SIunits.Current iL_ini=0 "Guess for initial current of L"
annotation (Dialog(group="Initialization"));

parameter Real dmax (final unit="1") = 1 "Maximum duty cycle"
annotation (Dialog(group="Switches"));

parameter Real dmin(final unit="1") = le-3 "Minimum duty cycle"
annotation (Dialog(group="Switches"));

Modelica.Electrical.Analog.Basic.Capacitor outCap (C=Cout, v (start=vCout_ini))
annotation (Placement (transformation(
extent={{-10,10}, {10,-10}},
rotation=270,
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35 origin={80,20})));

36 Modelica.Electrical.Analog.Basic.Capacitor inCap (C=Cin, v (start=vCin_ini))
37 annotation (Placement (transformation (

38 extent={{-10,-10}, {10,10}},

39 rotation=270,

40 origin={-80,20})));

41 Modelica.Electrical.Analog.Basic.Inductor inductor (L=L, i(start=iL_ini))
42 annotation (Placement (transformation (extent={{-24,50},{-4,70}})));

43 replaceable model SwitchModel = CCM1l constrainedby

44 Interfaces.SwitchNetworkInterface

45 annotation (choicesAllMatching=true);

46 SwitchModel buckSw (dmin=dmin, dmax=dmax)

47 annotation (Placement (transformation (extent={{-50,30}, {-30,50}})));

48 SwitchModel boostSw (dmin=dmin, dmax=dmax)

49 annotation (Placement (transformation (extent={{30,30}, {50,50}})));

50 Modelica.Blocks.Interfaces.RealInput dbuck "Buck control voltage" annotation (
51 Placement (transformation (

52 extent={{-20,-20},{20,20}},

53 rotation=90,

54 origin={-40,-120})));

55 Modelica.Blocks.Interfaces.RealInput dboost "Boost control voltage"
56 annotation (Placement (transformation (

57 extent={{-20,-20}, {20,201} },

58 rotation=90,

59 origin={40,-120})));

60 Modelica.Electrical.Analog.Basic.Resistor resistor (R=RL)

61 annotation (Placement (transformation (extent={{4,50},{24,70}})));

62 Modelica.Electrical.Analog.Basic.Resistor inESR(R=Rcin) annotation (Placement (
63 transformation (

64 extent={{-10,-10}, {10,101} },
65 rotation=270,
66 origin={-80,-20})));

67 Modelica.Electrical.Analog.Basic.Resistor outESR(R=Rcout) annotation (
68 Placement (transformation (

69 extent={{-10,10}, {10,-10}},

70 rotation=270,

71 origin={80,-20})));

72 equation

73 connect (buckSw.nl, inductor.p) annotation (Line (points={{-50,35},{-60,35},{-60,
74 60}, {-24,60}}, color={0,0,255}));

75 connect (buckSw.p2, inductor.p)

76 annotation (Line (points={{-30,45},{-30,60},{-24,60}}, color={0,0,255}));

77 connect (boostSw.nl, buckSw.n2) annotation (Line (points={{30,35},{30,-50},{-30,
78 -50}, {-30,35}},color={0,0,255}));
79 connect (boostSw.n2, boostSw.pl) annotation (Line (points={{50,35},{60,35},{60,

80 60},{30,60},{30,45}}, color={0,0,255}));

81 connect (pl, buckSw.pl) annotation (Line (points={{-100,50},{-100,50},{-70,50},
82 {-70,45}, {-50,45}},color={0,0,255}));

83 connect (outCap.p, boostSw.p2) annotation (Line (points={{80,30},{80,50},{70,50},
84 {70,45},{50,45}}, color={0,0,255}));

85 connect (inCap.p, buckSw.pl) annotation (Line (points={{-80,30},{-80,50},{-70,
86 50}, {-70,45},{-50,45}}, color={0,0,255}));

87 connect (resistor.n, boostSw.pl)

88 annotation (Line(points={{24,60},{30,60},{30,45}}, color={0,0,255}));

89 connect (inductor.n, resistor.p)

90 annotation (Line (points={{-4,60},{4,60}}, color={0,0,255}));

91 connect (p2, boostSw.p2) annotation (Line (points={{100,50},{100,50},{70,50}, {
92 70,45},{50,45}}, color={0,0,255}));

93 connect (inCap.n, inESR.p)

94 annotation (Line (points={{-80,10},{-80,-10}},color={0,0,255}));

95 connect (outCap.n, outESR.p)

96 annotation (Line (points={{80,10},{80,10},{80,-10}}, color={0,0,255}));

97 connect (outESR.n, n2)

98 annotation (Line (points={{80,-30},{80,-50},{100,-50}}, color={0,0,255}));

99 connect (inESR.n, nl) annotation (Line (points={{-80,-30},{-80,-50},{-100,-50}},
100 color={0,0,255}));
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connect (inESR.n, buckSw.n2) annotation (Line (points={{-80,-30}, {-80,-50},{-30,

=50}, {-30,35}}, color={0,0,255}));

connect (outESR.n, buckSw.n2) annotation (Line (points={{80,-30},{80,-50}, {-30,

-50},{-30,35}}, color={0,0,255}));
connect (dbuck, buckSw.d)
annotation (Line (points={{-40,-120},{-40,28}}, color={0,0,127}));
connect (dboost, boostSw.d)
annotation (Line (points={{40,-120},{40,-46},{40,28}}, color={0,0,127}));
annotation (Icon (graphics={
Text (
extent={{-60,30}, {60,-30}},
lineColor={0,0,255},
fillColor={255,255,255},
fillPattern=FillPattern.Solid,
textString="1-ph"),

Line (points={{-70,50}, {-10,50}}, color={0,0,255}),

Line (points={{-70,70}, {-10,70}}, color={0,0,255}),

Line (points={{10,-70}, {70,-70}}, color={0,0,255}),

Line (points={{10,-50}, {70,-50}}, color={0,0,255})}), Documentation (info=
"<html><p>Bidirectional buck boost converter</p></html>"));

121 end BidirectionalBuckBoost;

Electrical/Assemblies/CPMBidirectionalBuckBoost .mo

1 within PVSystems.Electrical.Assemblies;
2 model CPMBidirectionalBuckBoost

"Bidirectional Buck Boost for battery USB interface"
extends Interfaces.TwoPort;
extends PVSystems.Icons.ConverterIcon;
parameter Modelica.SIunits.Capacitance Cin "Input capacitance"
annotation (Dialog(group="Power stage"));
parameter Modelica.SIunits.Voltage vCin_ini=0
"Guess for initial voltage of Cin"
annotation (Dialog(group="Initialization"));
parameter Modelica.SIunits.Capacitance Cout "Output capacitance"
annotation (Dialog(group="Power stage"));
parameter Modelica.SIunits.Voltage vCout_ini=0
"Guess for initial voltage of Cout"
annotation (Dialog(group="Initialization"));
parameter Modelica.SIunits.Inductance L "Inductance"
annotation (Dialog(group="Power stage"));
parameter Modelica.SIunits.Current iL_ini=0 "Guess for initial current of
annotation (Dialog(group="Initialization"));
parameter Modelica.SIunits.Resistance RL "Series resistance of inductor"
annotation (Dialog(group="Power stage"));
parameter Modelica.SIunits.Resistance Rf "Equivalent sensing resistance"
annotation (Dialog(group="CPM modulator"));
parameter Modelica.SIunits.Frequency fs "Switching frequency"
annotation (Dialog(group="CPM modulator"));
parameter Modelica.SIunits.Voltage Va_buck
"Articial ramp amplitude for buck CPM"
annotation (Dialog(group="CPM modulator"));
parameter Modelica.SIunits.Voltage Va_boost
"Articial ramp amplitude for boost CPM"
annotation (Dialog(group="CPM modulator"));
Control.CPM_CCM buck_cpm (
L=L,
Rf=1,
fs=fs,
Va=Va_buck,
d_disabled=1) annotation (Placement (transformation (
extent={{-10,-10}, {10,10}},

"
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63

80

84

100
101
102
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104
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rotation=0,
origin={40,40})));
Control.CPM_CCM boost_cpm (
L=L,
Rf=1,
fs=fs,
Va=Va_boost,
d_disabled=0) annotation (Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=0,
origin={10,4})));
Modelica.Blocks.Sources.RealExpression vsense (y=Rfxconv.inductor.i)
annotation (Placement (transformation (extent={{-80,60},{-44,80}1})));
Modelica.Blocks.Sources.RealExpression vml_buck (y=vl - v2)
annotation (Placement (transformation (extent={{-80,-30},{-60,-10}})));
Modelica.Blocks.Sources.RealExpression vm2_buck (y=-v2)
annotation (Placement (transformation (extent={{-80,20},{-60,40}1})));
Modelica.Blocks.Sources.RealExpression vml_boost (y=vl)
annotation (Placement (transformation (extent={{-80,-10},{-60,10}})));
Modelica.Blocks.Interfaces.RealInput vc "Buck control voltage" annotation (
Placement (transformation (
extent={{-20,-20}, {20,20}},
rotation=90,
origin={-40,-120})));
Modelica.Blocks.Interfaces.BooleanInput mode "Boost control voltage"
annotation (Placement (transformation (
extent={{-20,-20}, {20,20}},
rotation=90,
origin={40,-120})));
BidirectionalBuckBoost conv (
Cin=Cin,
Cout=Cout,
L=1L,
RL=RL,
vCin_ini=vCin_ini,
vCout_ini=vCout_ini,
il_ini=il_ini,
Rcin=le-3,
Rcout=1le-3,
dmax=1,
dmin=1le-3) annotation (Placement (transformation (extent={{66,80},{86,100}})));
Modelica.Blocks.Logical.Not notl annotation (Placement (transformation (
extent={{10,-10},{-10,10}},
rotation=270,
origin={40,-30})));
Modelica.Blocks.MathBoolean.OnDelay onDelay (delayTime=3/fs) annotation (
Placement (transformation (
extent={{-4,-4},{4,4}},
rotation=90,
origin={10,-38})));
Modelica.Blocks.MathBoolean.OnDelay onDelayl (delayTime=3/fs) annotation (
Placement (transformation (
extent={{-4,-4},{4,4}},
rotation=90,
origin={40,-6})));

equation

connect (conv.pl, pl)

annotation (Line (points={{66,95},{-100,95},{-100,50}}, color={0,0,255}));
connect (conv.p2, p2)

annotation (Line (points={{86,95},{100,95},{100,50}}, color={0,0,255}));

connect (conv.n2, n2) annotation (Line (points={{86,85},{92,85},{92,-50},{100,-50}},

color={0,0,255}));
connect (conv.nl, nl) annotation (Line (points={{66,85},{-92,85},{-92,-50},{-100,
-50}}, color={0,0,255}));
connect (vm2_buck.y, buck_cpm.vm2)
annotation (Line (points={{-59,30},{-59,30},{28,30}}, color={0,0,127}));



105 connect (vsense.y, boost_cpm.vs) annotation (Line (points={{-42.2,70},{-30,70},

106 {-30,8},{-2,8}}, color={0,0,127}));

107 connect (vml_buck.y, boost_cpm.vm2) annotation (Line (points={{-59,-20}, {-20,
108 -20},{-20,-6},{-2,-6}}, color={0,0,127}));

109 connect (vml_boost.y, boost_cpm.vml)

110 annotation (Line (points={{-59,0},{-59,0},{-2,0}}, color={0,0,127}));

111 connect (vml_buck.y, buck_cpm.vml) annotation (Line (points={{-59,-20},{-20,-20},
112 {-20,36},{28,36}}, color={0,0,127}));

113 connect (vsense.y, buck_cpm.vs) annotation (Line (points={{-42.2,70},{-30,70}, {
114 -30,44},{28,44}}, color={0,0,127}));

115 connect (vc, buck_cpm.vc)

116 annotation (Line (points={{-40,-120},{-40,50},{28,50}}, color={0,0,127}));
117 connect (vc, boost_cpm.vc)

118 annotation (Line (points={{-40,-120},{-40,14},{-2,14}}, color={0,0,127}));

119 connect (mode, notl.u) annotation (Line (points={{40,-120},{40,-120},{40,-72},{
120 40,-42}}, color={255,0,255}));
121 connect (boost_cpm.d, conv.dboost)

122 annotation (Line (points={{21,4},{80,4},{80,78}}, color={0,0,127}));
123 connect (buck_cpm.d, conv.dbuck)

124 annotation (Line (points={{51,40},{72,40},{72,78}}, color={0,0,127}));
125 connect (mode, onDelay.u) annotation (Line (points={{40,-120},{40,-72},{10,-72},
126 {10,-43.6}}, color={255,0,255}));

127 connect (onDelay.y, boost_cpm.enable)

128 annotation (Line (points={{10,-33.2},{10,-8}}, color={255,0,255}));
129 connect (notl.y, onDelayl.u)

130 annotation (Line (points={{40,-19},{40,-11.6}}, color={255,0,255}));
131 connect (onDelayl.y, buck_cpm.enable)

132 annotation (Line (points={{40,-1.2},{40,28}}, color={255,0,255}));

133 annotation (

134 Diagram(graphics={Text (

135 extent={{-22,21},{22,-2}},

136 lineColor={0,0,255},

137 textString="vml_buck = vm2_boost",

138 origin={-112,12},

139 rotation=90)}),

140 Icon (graphics={

141 Text (

142 extent={{-60,30}, {60,-30}},

143 lineColor={0,0,255},

144 fillColor={255,255,255},

145 fillPattern=FillPattern.Solid,

146 textString="1-ph"),

147 Line (points={{-70,50}, {-10,50}}, color={0,0,255}),

148 Line (points={{-70,70}, {-10,70}}, color={0,0,255}),

149 Line (points={{10,-70}, {70,-70}}, color={0,0,255}),

150 Line (points={{10,-50}, {70,-50}}, color={0,0,255})}),

151 Documentation (info="<html><p>Bidirectional buck boost converter</p></html>"));

152 end CPMBidirectionalBuckBoost;

Electrical/Assemblies/HBridge.mo

1 within PVSystems.Electrical.Assemblies;

2 model HBridge "Basic ideal H-bridge topology (averaged)"
3 extends Interfaces.TwoPort;

4 extends PVSystems.Icons.ConverterIcon;

5 Modelica.Blocks.Interfaces.Reallnput d annotation (Placement (transformation (
6 origin={0,-120},

7 extent={{-20,-20},{20,20}},

8 rotation=90)));

9 replaceable model SwitchModel = CCM1l constrainedby

10 Interfaces.SwitchNetworkInterface

11 annotation (choicesAllMatching=true);
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12 SwitchModel sl annotation (Placement (transformation (extent={{20,60}, {40,80}},

13 rotation=0)));

14 SwitchModel s2 annotation (Placement (transformation (extent={{-40,-80},{-20,-60}},
15 rotation=0)));

16 equation

17 connect (sl.pl, pl) annotation (Line(points={{20,75},{-68,75},{-68,50},{-100,

18 50}}, color={0,0,255}));

19 connect (sl.nl, p2)

20 annotation (Line (points={{20,65},{20,50},{100,50}}, color={0,0,255}));

21 connect (s2.nl, nl) annotation (Line (points={{-40,-75},{-70,-75},{-70,-50}, {-100,
22 -50}}, color={0,0,255}));

23 connect (s2.pl, n2) annotation (Line (points={{-40,-65},{-48,-65},{-48,-50}, {

24 100,-50}}, color={0,0,255}));

25 connect (sl1.n2, nl) annotation (Line (points={{40,65},{40,-20},{-100,-20},{-100,
26 -50}}, color={0,0,255}));

27 connect (d, s2.d) annotation (Line(points={{0,-120},{0,-92},{-30,-92},{-30,-82}},
28 color=1{0,0,127}));

29 connect (d, sl.d) annotation (Line(points={{0,-120},{0,30},{30,30},{30,58}},

30 color={0,0,127}));

31 connect (s2.p2, pl)

32 annotation (Line (points={{-20,-65}, {-20,50},{-100,50}}, color={0,0,255}));

33 connect (sl.p2, p2) annotation (Line(points={{40,75},{70,75},{70,50},{100,50}},
34 color={0,0,255}));

35 connect (s2.n2, n2) annotation (Line (points={{-20,-75},{42,-75},{42,-50},{100,

36 -50}}, color={0,0,255}));

37 annotation (

38 Diagram(graphics),

39 Icon (graphics={Text (

40 extent={{-60,30}, {60,-30}},

41 lineColor={0,0,255},

42 fillColor={255,255,255},

43 fillPattern=FillPattern.Solid,

44 textString="1-ph"),Line (points={{-70,50}, {-10,50}}, color={0,0,255}),
45 Line (points={{-70,70}, {-10,70}}, color={0,0,255}),Line (points={{10,-70},
46 {70,-70}}, color={0,0,255}),Line(

47 points={{10,-50}, {24,-40}, {40,-50}, {56,-60}, {70,-50}1},

48 color={0,0,255},

49 smooth=Smooth.Bezier) }),

50 Documentation (info="<html><p>This model further

51 composes IdealAverageCCMSwitch to form a typical H-bridge

52 configuration from which a l-phase inverter can be constructed.

53 This model is based in averaged switch models.</p></html>"));

54 end HBridge;

Electrical/Assemblies/HBridgeSwitched.mo

1 within PVSystems.Electrical.Assemblies;

2 model HBridgeSwitched "Basic ideal H-bridge topology (switched)"

3 extends Interfaces.TwoPort;

4 extends PVSystems.Icons.ConverterIcon;

5 Modelica.Blocks.Interfaces.BooleanInput cl annotation (Placement (
6 transformation (

7 origin={-40,-100},

8 extent={{-10,-10}, {10,10}},

9 rotation=90)));

10 Modelica.Blocks.Interfaces.BooleanInput c2 annotation (Placement (
11 transformation (

12 origin={40,-100},

13 extent={{-10,-10}, {10,10}},

14 rotation=90)));

15 IdealCBSwitch idealCBSwitch annotation (Placement (transformation (
16 extent={{-10,-10}, {10,10}},
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rotation=270,
origin={0,30})));
IdealCBSwitch idealCBSwitchl annotation (Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={0,-30})));
IdealCBSwitch idealCBSwitch2 annotation (Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={60,30})));
IdealCBSwitch idealCBSwitch3 annotation (Placement (transformation (
extent={{-10,-10}, {10, 10}},
rotation=270,
origin={60,-30})));
equation
connect (cl, idealCBSwitch.c) annotation (Line (points={{-40,-100}, {-40,-100}, {
-40,24},{-40,30},{-7,30}}, color={255,0,255}));
connect (cl, idealCBSwitch3.c) annotation (Line (points={{-40,-100},{-40,-60}, {
20,-60},{20,-30}, {53,-30}}, color={255,0,255}));
connect (c2, idealCBSwitch2.c) annotation (Line (points={{40,-100},{40,-50}, {40,
30}, {53,30}}, color={255,0,255}));
connect (c2, idealCBSwitchl.c) annotation (Line(points={{40,-100},{40,-70},{-20,
-70}, {-20,-30},{-7,-30}}, color={255,0,255}));
connect (pl, idealCBSwitch2.p) annotation (Line (points={{-100,50},{-40,50}, {60,
50}, {60,40}}, color={0,0,255}));
connect (idealCBSwitch.p, idealCBSwitch2.p)
annotation (Line (points={{0,40},{0,50},{60,50},{60,40}}, color={0,0,255}));
connect (idealCBSwitchl.p, idealCBSwitch.n)
annotation (Line (points={{0,-20},{0,0},{0,20}}, color={0,0,255}));
connect (idealCBSwitch2.n, idealCBSwitch3.p)
annotation (Line (points={{60,20},{60,0},{60,-20}}, color={0,0,255}));
connect (nl, idealCBSwitchl.n) annotation (Line (points={{-100,-50},{0,-50},{0,
-40},{-1.77636e-015,-40}}, color={0,0,255}));
connect (idealCBSwitch3.n, idealCBSwitchl.n) annotation (Line (points={{60,-40},
{60,-50},{0,-50}, {0,-40},{-1.77636e-015,-40}}, color={0,0,255}));
connect (n2, idealCBSwitch3.p) annotation (Line (points={{100,-50},{80,-50}, {80,
-10}, {60,-10}, {60,-20}}, color={0,0,255}));
connect (p2, idealCBSwitch.n) annotation (Line (points={{100,50},{80,50},{80,10},
{0,10},{0,20},{-1.77636e-015,20}}, color={0,0,255}));
annotation (Icon (graphics={Text (
extent={{-60,30},{60,-30}},
lineColor={0,0,255},
fillColor={255,255,255},
fillPattern=FillPattern.Solid,
textString="1-ph"),Line (points={{-70,50},{-10,50}}, color={0,0,255}),
Line (points={{-70,70}, {-10,70}}, color={0,0,255}),Line (points={{10,-70},
{70,-70}}, color={0,0,255}),Line(
points={{10,-50}, {24,-40}, {40,-50}, {56,-60}, {70,-50}},
color={0,0,255},
smooth=Smooth.Bezier) }), Documentation(info="<html><p>This model further
composes IdealTwoLevelBranch to form a typical H-bridge
configuration from which a l-phase inverter can be constructed.
This model is based on discrete switch models.</p></html>"));

70 end HBridgeSwitched;

Electrical/Assemblies/package.mo

within PVSystems.Electrical;
package Assemblies "Electrical assemblies useful in PV and power electronics"
extends PVSystems.Icons.AssembliesPackage;
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6
7

8 end Assemblies;

Electrical/Assemblies/package.order

Bw N e

HBridge

HBridgeSwitched
BidirectionalBuckBoost
CPMBidirectionalBuckBoost

Electrical/CCM1.mo

1 within PVSystems.Electrical;
2 model CCM1l "Average CCM model with no losse

extends Interfaces.SwitchNetworkInterface;

equation

0 =pl.i + nl.i;
0 = p2.1 + n2.1;

vl = (1 - dsat)/dsatxv2;
-i2 = (1 - dsat)/dsatxil;
annotation (Documentation (info="<html>
<p>
<em>Application</em>: two-switch PWM
</p>
<p>

<em>Limitations</em>: ideal switches,
</p>

<p>
Model taken

from <a href=\"modelica://PVSystems.UsersGuide.References.EM01\">EM01</a>
and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL16\">EMAl6</a>

</html>"));

23 end CCM1;

s"

converters.

CCM only,

no transformer.

.</p>

Electrical/CCM2.mo

1 within PVSystems.Electrical;
2 model CCM2 "Average CCM model with conduction losses"

122

extends Interfaces.SwitchNetworkInterface;

parameter Modelica.SIunits.Resistance Ron=0 "Transistor on resistance";

parameter Modelica.SIunits.Resistance RD=0 "Diode on

parameter Modelica.SIunits.Voltage VD=0 "Diode forward voltage drop";
equation

0 =pl.i + nl.i;
0 = p2.i + n2.i;
vl = ilx(Ron/dsat + (1 - dsat)*RD/dsat”2)
-i2 = i11x (1 - dsat) /dsat;
annotation (Documentation (info="<html>
<p>
<em>Application</em>: two-switch PWM

+ (1 - dsat)/dsat*(v2 + VD);

converters,

resistance";

includes



15 conduction losses due to Ron, VD, Rd.

16 </p>

17

18 <p>

19 <em>Limitations</em>: CCM only, no transformer.

20 </p>

21

22 <p>

23 Model taken

24 from <a href=\"modelica://PVSystems.UsersGuide.References.EMOI1\">EM01</a>
25 and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL6\">EMALl6</a>.</p>
26 </html>"));

27 end CCM2;

Electrical/CCM3.mo

1 within PVSystems.Electrical;
2 model CCM3 "Average CCM model with no losses and tranformer"
3 extends Interfaces.SwitchNetworkInterface;

4 parameter Real n(final unit="1") =1

5 "Transformer turns ratio l:n (primary:secondary)";

6 equation

7 0 =pl.i + nl.i;

8 0 =p2.i + n2.1;

9 vl = (1 - dsat)xv2/dsat/n;

10 -i2 = (1 - dsat)=il/dsat/n;

11 annotation (Documentation (info="<html>

12 <p>

13 <em>Application</em>: two-switch PWM converters, with (possibly)
14 transformer.

15 </p>

16

17 <p>

18 <em>Limitations</em>: ideal switches, CCM only.

19 </p>

20

21 <p>

22 Model taken

23 from <a href=\"modelica://PVSystems.UsersGuide.References.EMOI\">EM01</a>
24 and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL6\">EMALl6</a>.</p>
25 </html>"));

26 end CCM3;

Electrical/CCM4 .mo

1 within PVSystems.Electrical;
2 model CCM4 "Average CCM model with conduction losses and tranformer"
3 extends Interfaces.SwitchNetworkInterface;

4 parameter Modelica.SIunits.Resistance Ron=0 "Transistor on resistance";
5 parameter Modelica.SIunits.Resistance RD=0 "Diode on resistance";

6 parameter Modelica.SIunits.Voltage VD=0 "Diode forward voltage drop";

7  parameter Real n(final unit="1") =1

8 "Transformer turns ratio 1l:n (primary:secondary)";

9 equation

10 0 =pl.i + nl.i;
11 0 =p2.1i + n2.1;
12 vl = ilx(Ron/dsat + (1 - dsat)x*RD/n”2/dsat”2) + (1 - dsat)/dsat/nx (v2+VD);
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13 -i2 = il (1 - dsat)/dsat/n;
14 annotation (Documentation (info="<html>
15 <p>
16 <em>Application</em>: two-switch PWM converters, includes
17 conduction losses due to Ron, VD, RD and (possibly) transformer.
18 </p>
19
20 <p>
21 <em>Limitations</em>: CCM only.
22 </p>
23
24 <p>
25 Model taken
26 from <a href=\"modelica://PVSystems.UsersGuide.References.EMO1\">EM01</a>
27 and <a href=\"modelica://PVSystems.UsersGuide.References.EMA16\">EMAl6</a>.</p>
28 </html>"));
29 end CCM4;
Electrical/CCM5.mo
1 within PVSystems.Electrical;
2 model CCM5
3 "Average CCM model with conduction losses and diode reverse recovery"
4 extends Interfaces.SwitchNetworkInterface;
5 parameter Modelica.SIunits.Resistance Ron=0 "Transistor on resistance";
6 parameter Modelica.SIunits.Voltage VD=0 "Diode forward voltage drop";
7 ~ parameter Modelica.SIunits.Charge Qr "Diode reverse recovery charge";
8 parameter Modelica.SIunits.Time tr "Diode reverse recovery time";
9 parameter Modelica.SIunits.Frequency fs "Switching frequency";
10 equation
11 0 =pl.i + nl.i;
12 0 =p2.i + n2.i;
13 vl = (il - fs*Qr)«*Ron/(dsat + fsxtr) + (1 - dsat)/dsatx*(v2 + VD);
14 —-i2 = il* (1 - dsat - fsxtr)/(dsat + fs*xtr) - fs*xQr/(dsat + fsxtr);
15 annotation (Documentation (info="<html>
16 <p>
17 <em>Application</em>: two-switch PWM converters, includes
18 conduction losses due to Ron, VD and diode reverse recovery
19 losses.
20 </p>
21
22 <p>
23 <em>Limitations</em>: CCM only, d’s&gt;tr/Ts, &lt;ilsgt; &gt;
24 Qr/Ts.
25 </p>
26
27 <p>
28 Model taken
29 from <a href=\"modelica://PVSystems.UsersGuide.References.EM01\">EM01</a>
30 and <a href=\"modelica://PVSystems.UsersGuide.References.EMALl6\">EMAl6</a>.</p>
31 </html>"));
32 end CCM5;

Electrical/CCM_DCM1 .mo

1

within PVSystems.Electrical;

2 model CCM_DCM1 "Average CCM-DCM model with no losses"
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extends Interfaces.SwitchNetworkInterface;

parameter Modelica.SIunits.Inductance Le "Equivalent DCM inductance";

parameter Modelica.SIunits.Frequency fs "Switching frequency";
protected

Real mu "Effective switch conversion ratio";

Real Re "Equivalent DCM port 1 resistance";
equation

0 =pl.i + nl.i;

0 = p2.i + n2.i;

12 Re = 2xLexfs/dsat”"2;
13 mu = max(dsat, 1/(1 + Re*max(0,1il)/v2));
14 vl = (1 - mu)/mu*v2;
15 —-i2 = (1 - mu)/mu=xil;
16 annotation (Documentation (info="<html>
17 <p>
18 <em>Application</em>: two-switch PWM converters, CCM or DCM.
19 </p>
20
21 <p>
22 <em>Limitations</em>: ideal switches, no transformer.
23 </p>
24
25 <p>
26 Model taken
27 from <a href=\"modelica://PVSystems.UsersGuide.References.EMOI\">EM01</a>
28 and <a href=\"modelica://PVSystems.UsersGuide.References.EMA16\">EMAl6</a>.</p>
29 </html>"));
30 end CCM_DCMI1;
Electrical/CCM_DCM2.mo
1 within PVSystems.Electrical;
2 model CCM_DCM2 "Average CCM-DCM model with no losses and transformer"
3 extends Interfaces.SwitchNetworkInterface;
4 parameter Modelica.SIunits.Inductance Le "Equivalent DCM inductance";
5 parameter Modelica.SIunits.Frequency fs "Switching frequency";
6 parameter Real n(final unit="1") =1
7 "Transformer turns ratio l:n (primary:secondary)";
8 protected
9 Real mu "Effective switch conversion ratio";
10 Real Re "Equivalent DCM port 1 resistance";
11 equation
12 0 =pl.i+ nl.i;
13 0 = p2.i + n2.i;
14 Re = 2xLexn*fs/dsat”2;
15 mu = max(dsat, 1/(1 + Rexmax(0,il)/v2));
16 vl = (1 - mu)*v2/mu/n;
17 -i2 = (1 - mu)*il/mu/n;
18 annotation (Documentation (info="<html>
19 <p>
20 <em>Application</em>: two-switch PWM converters, CCM or DCM with
21 (possibly) transformer.
22 </p>
23
24 <p>
25 <em>Limitations</em>: ideal switches.
26 </p>
27
28 <p>
29 Model taken
30 from <a href=\"modelica://PVSystems.UsersGuide.References.EMO1\">EM01</a>
31 and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL16\">EMAl6</a>.</p>
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32

</html>"));

33 end CCM_DCM2;

Electrical/IdealCBSwitch.mo

1 within PVSystems.Electrical;
2 model IdealCBSwitch "Basic two-cuadrant current bidirectional switch"

3

[CRNNC IR I RGEES

10
11

13
14
15
16
17
18
19
20
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22
23
24
215
26
27
28
29
30
31
32
33
34
35
36
37
38

extends Modelica.Electrical.Analog.Interfaces.TwoPin;

// Components
Modelica.Electrical.Analog.Ideal.IdealClosingSwitch idealClosingSwitch
annotation (Placement (transformation (extent={{-10,10},{10,-10}},rotation=0)));
Modelica.Electrical.Analog.Ideal.IdealDiode idealDiode annotation (Placement (
transformation (
origin={0,40},
extent={{-10,-10}, {10,10}},
rotation=180)));
Modelica.Blocks.Interfaces.BooleanInput c annotation (Placement (
transformation (
origin={0,-70},
extent={{-10,-10}, {10,10}},
rotation=90)));
equation
connect (p, idealClosingSwitch.p)
annotation (Line (points={{-100,0},{-10,0}}, color={0,0,255}));
connect (idealClosingSwitch.n, n)
annotation (Line (points={{10,0},{100,0}}, color={0,0,255}));
connect (idealDiode.p, n) annotation (Line (points={{10,40},{60,40},{60,0},{100,
0}}, color={0,0,255}));
connect (idealDiode.n, p) annotation (Line (points={{-10,40},{-60,40},{-60,0}, {
-100,0}}, color={0,0,255}));
connect (¢, idealClosingSwitch.control)
annotation (Line (points={{0,-70},{0,-7}}, color={255,0,255}));
annotation (Icon(graphics={Line (points={{-98,0},{-20,0}}, color={0,0,255}),
Line (points={{-20,-20},{20,0},{100,0}}, color={0,0,255}),Line(points=
{{-40,0}, {-40,40},{-20,40}}, color={0,0,255}),Line(points={{-20,40}, {
10,60},{10,20},{-20,40}}, color={0,0,255}),Line(points={{10,40}, {40,
40},{40,0}}, color={0,0,255}),Line(points={{-20,60},{-20,20}}, color=
{0,0,255}),Line (points={{0,-78},{0,-10}}, color={255,85,255})}),
Documentation (info="<html>
<p>This model represents and idealized current bi-directional
switch. This is the typical IGBT in anti-parallel with a diode from
which many converters are built.</p>
</html>"));

39 end IdealCBSwitch;

Electrical/Interfaces/BatteryInterface.mo

1 within PVSystems.Electrical.Interfaces;
2 partial model BatteryInterface "Partial model for battery"

126

extends Modelica.Electrical.Analog.Interfaces.OnePort;
annotation (Documentation (info=

"<html><p>Partial model for battery</p></html>"), Icon(
coordinateSystem(
preserveAspectRatio=false,
extent={{-100,-100}, {100,100} },
grid={2,2}), graphics={Line (points={{-90,0}, {-50,0}}, color={0,0,0}),
Line (points={{50,0}, {90,0}}, color={0,0,0}),Line(points={{-50,40}, {-50,



11
12
13
14
15
16
17

-40}}, color={0,0,0}),Line(points={{-20,20}, {-20,-20}}, color={0,0,0}),
Line (points={{-20,0}, {20,0}}, color={0,0,0}),Line(points={{20,40}, {20,
-40}}, color={0,0,0}),Line(points={{50,20},{50,-20}}, color={0,0,0}),
Text (

extent={{-80,-40}, {80,-80}},

lineColor={28,108,200},

o

textString="%name") }));

18 end BatteryInterface;

Electrical/Interfaces/package.mo

S N

within PVSystems.Electrical;

package Interfaces "Interfaces"

extends Modelica.Icons.InterfacesPackage;
end Interfaces;

Electrical/Interfaces/package.order

1 BatteryInterface
2 SwitchNetworkInterface

3 TwoPort

Electrical/Interfaces/SwitchNetworkInterface.mo

1 within PVSystems.Electrical.Interfaces;
2 partial model SwitchNetworkInterface

3

[CRNN- NG I SRS

"Interface for the averaged switch network models"

extends TwoPort;
parameter Real dmin(final unit="1") = le-3 "Minimum duty cycle";
parameter Real dmax (final unit="1") = 1 "Maximum duty cycle";
Modelica.Blocks.Interfaces.Reallnput d "Duty cycle" annotation (Placement (
transformation (
origin={0,-120},
extent={{-20,-20},{20,20}},
rotation=90)));
protected
Real dsat (final unit="1") = smooth (0, if d > dmax then dmax else if d < dmin
then dmin else d) "Saturated duty cycle";
annotation (Icon (graphics={Polygon (
points={{60,20}, {40,-20}, {80,-20}, {60,20}},
lineColor={0,0,0},
fillColor={255,255,255}),Line (points={{60,50}, {60,-50}}),Line (points=
{{60,50},{90,50}}),Line (points={{80,20}, {40,20}}, color={0,0,255}),
Text (extent={{-100,100}, {100,70}}, textString="%name"),Line (points={{
60,-50},{90,-50}1}),Line (points={{-60,-50}, {-60,50}}),Line (points={{-60,
30}, {-80,30}}),Line (points={{-48,30}, {-48,-30}}),Line(points={{-80,0},
{-80,-50}}),Line (points={{-90,-50}, {-80,-50}}),Line (points={{-80,30},
{-80,50}}),Line (points={{-90,50}, {-80,50}}),Polygon (
points={{-60,0},{-70,5}, {-70,-5},{-60,01}},
lineColor={28,108,200},
fillColor={0,0,255},
fillPattern=FillPattern.Solid),Line (points={{-60,-30}, {-80,-30}1}),

Line (points={{-60,0},{-80,0}}),Polygon (
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30 points={{0,-40}, {-10,-60}, {10,-60}, {0, -40}},

31 lineColor={0,0,0},

32 fillColor={255,255,255}),Line (points={{0,-60},{0,-100}}),Line (points=
33 {{0,0},{0,-40}}),Line(points={{-46,0},{0,0}})}));

34 end SwitchNetworkInterface;

Electrical/Interfaces/TwoPort.mo

1 within PVSystems.Electrical.Interfaces;

2 partial model TwoPort "Common interface for power converters with two ports"

3 Modelica.SIunits.Voltage vl "Voltage drop over the left port";

4 Modelica.SIunits.Voltage v2 "Voltage drop over the right port";

5 Modelica.SIunits.Current il

6 "Current flowing from pos. to neg. pin of the left port";

7  Modelica.SIunits.Current 12

8 "Current flowing from pos. to neg. pin of the right port";

9 Modelica.Electrical.Analog.Interfaces.PositivePin pl

0 "Positive pin of the left port (potential pl.v > nl.v for positive voltage drop v1)"

11 annotation (Placement (transformation (extent={{-110,40},{-90,60}})));

12 Modelica.Electrical.Analog.Interfaces.NegativePin nl

13 "Negative pin of the left port"

14 annotation (Placement (transformation (extent={{-90,-60},{-110,-40}})));

15 Modelica.Electrical.Analog.Interfaces.PositivePin p2

16 "Positive pin of the right port (potential p2.v > n2.v for positive voltage drop v2)"
17 annotation (Placement (transformation (extent={{110,40},{90,60}})));

18 Modelica.Electrical.Analog.Interfaces.NegativePin n2

19 "Negative pin of the right port"

20 annotation (Placement (transformation (extent={{90,-60},{110,-40}})));

21 equation

22 vl = pl.v - nl.v;
23 Vv2 = p2.v - n2.v;
24 il = pl.1i;

25 i2 = p2.1;

26 end TwoPort;

Electrical/package.mo

1 within PVSystems;

2 package Electrical "Library for electrical models"
3 extends Modelica.Icons.Package;

4

© ©® 9 o W’

10
11
12
13
14
15
16
17
18
19
20
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21
22
23
24
29
26
27
28
29
30
31
32
33
34
39
36
37
38
39
40
41
42
43
44
45
46
47

annotation (Icon (coordinateSystem(preserveAspectRatio=true, extent={{-100.0,-100.0},

{100.0,100.0}}), graphics={
Rectangle (origin={20.3125,82.8571}, extent={{-45.3125,-57.8571},{4.6875,-27.8571}}),
Line (origin={8.0,48.0}, points={{32.0,-58.0},{72.0,-58.0}1}),
Line (origin={9.0,54.0}, points={{31.0,-49.0},{71.0,-49.0}}),
Line (origin={-2.0,55.0}, points={{-83.0,-50.0},{-33.0,-50.0}}),
Line (origin={-3.0,45.0}, points={{-72.0,-55.0},{-42.0,-55.0}1}),
Line (origin={1.0,50.0}, points={{-61.0,-45.0},{-61.0,-10.0},{-26.0,-10.0}1}),
Line(origin={7.0,50.0}, points={{18.0,-10.0},{53.0,-10.0},{53.0,-45.0}1}),
Line (origin={6.2593,48.0}, points={{53.7407,-58.0},{53.7407,-93.0},{-66.2593,
-93.0}, {-66.2593,-58.0}})1}));

48 end Electrical;

Electrical/package.order
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10
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12
13
14
15

IdealCBSwitch

SW1
SW2
SW3
CCM1
CCM2
CCM3
CccM4
CCM5

CCM_DCM1
CCM_DCM2
PVArray
SimpleBattery
Assemblies
Interfaces

Electrical/PVArray.mo

1 within PVSystems.Electrical;
2 model PVArray "Flexible PV array model"
extends Modelica.Electrical.Analog.Interfaces.OnePort;

3

4
5)
6
7
8

/7

Interface

Modelica.Blocks.Interfaces.ReallInput G "Solar irradiation" annotation (

Placement (transformation (
origin={-30,-55},
extent={{-15,-15}, {15,15}},
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9 rotation=90)));
10 Modelica.Blocks.Interfaces.ReallInput T "Panel temperature" annotation (
11 Placement (transformation (

12 origin={30,-55},
13 extent={{-15,-15}, {15,15}},
14 rotation=90)));

15 // Constants

16 constant Modelica.SIunits.Charge g=1.60217646e-19 "Electron charge";
17 constant Real Gn=1000 "STC irradiation";

18 constant Modelica.SIunits.Temperature Tn=298.15 "STC temperature";
19 // Basic datasheet parameters

20 parameter Modelica.SIunits.Current Imp=7.61 "Maximum power current";
21 parameter Modelica.SIunits.Voltage Vmp=26.3 "Maximum power voltage";
22 parameter Modelica.SIunits.Current Iscn=8.21 "Short circuit current";
23 parameter Modelica.SIunits.Voltage Vocn=32.9 "Open circuit voltage";
24 parameter Real Kv=-0.123 "Voc temperature coefficient";

25 parameter Real Ki=3.18e-3 "Isc temperature coefficient";

26 // Basic model parameters

27 parameter Real Ns=54 "Number of cells in series";

28 parameter Real Np=1 "Number of cells in parallel";

29 parameter Modelica.SIunits.Resistance Rs=0.221

30 "Equivalent series resistance of array";
31 parameter Modelica.SIunits.Resistance Rp=415.405
32 "Equivalent parallel resistance of array";

33 parameter Real a=1.3 "Diode ideality constant";

34 // Derived model parameters

35 parameter Modelica.SIunits.Current Ipvn=Iscn "Photovoltaic current at STC";
36 // Variables

37 Modelica.SIunits.Voltage Vt "Thermal voltage of the array";

38 Modelica.SIunits.Current Ipv "Photovoltaic current of the cell";
39 Modelica.SIunits.Current I0 "Saturation current of the cell";

40 Modelica.SIunits.Current Id "Diode current";

41 Modelica.SIunits.Current Ir "Rp current";

42 equation

43 // Auxiliary variables

44 Vt = NsxModelica.Constants.kxT/qg;

45 Ipv = (Ipvn + Ki* (T — Tn))=*G/Gn;

16 I0 = (Iscn + Ki* (T - Tn))/(exp((Vocn + Kvx (T - Tn))/a/Vt) - 1);
47 Id = I0x(exp((v — Rsxi)/a/vt) - 1);

48 Ir = (v — Rsxi)/Rp;

49 if v < 0 then

50 i = v/ ((Rs + Rp)/Np);

51 elseif v > Vocn then

52 i = 0;

53 else

54 i = -Npx* (Ipv - Id - Ir);

55 end if;

56 annotation (

57 Documentation (info="<html><p>Flexible PV array model. The model can be
58 parametrized with the use of PV module datasheets. As a default, the

59 data from the Kyocera KC200GT is provided. The model is presented in

60 \"Comprehensive Approach to Modeling and Simulation of Photovoltaic

61 Arrays\" by M.G. Villalva et al.</p></html>"),

62 Icon (coordinateSystem(

63 preserveAspectRatio=false,

64 extent={{-100,-100}, {100,100}},

65 grid={2,2}), graphics={Line(points={{-90,0},{-60,0}}, color={0,0,0}),
66 Rectangle (

67 extent={{-60,-40}, {60,40}},

68 lineColor={0,0,0},

69 fillColor={255,255,255},

70 fillPattern=FillPattern.Solid),Line (points={{-60,-40}, {-20,0}}, color=
71 {0,0,0}),Line (points={{-20,0}, {-60,40}}, color={0,0,0}),Line (points=
72 {{60,0},{90,0}}, color={0,0,0})}),

73 Diagram(coordinateSystem/(

74 preserveAspectRatio=false,
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75
76

extent={{-100,-100}, {100,100}},
grid={2,2})));

77 end PVArray;

Electrical/SimpleBattery.mo

1 within PVSystems.Electrical;
2 model SimpleBattery "Simple battery model"

3

© ® 9 o ;o

10
11
12
13
14
15
16
17
18

extends Interfaces.BatteryInterface;

import Modelica.SIunits.Resistance;

import Modelica.SIunits.Voltage;

import Modelica.SIunits.Current;

type BatteryCapacity = Real (final quantity="Energy", final unit="A.h");
// Parameters (Li-ion values as defaults)

parameter Resistance Rint=0.09 "Internal resistance";

parameter Voltage E0=3.7348 "Constant battery voltage";

parameter Voltage K=0.00876 "Polarization voltage";

parameter BatteryCapacity Q=1 "Rated battery capacity";
parameter Voltage A=0.468 "Exponential region amplitude";
parameter Real B=3.5294 "Exponential zone time constant inverse";
parameter BatteryCapacity DoDini=0 "Initial Depth of Discharge";
// Variables

Voltage E;

BatteryCapacity it (start=DoDini, fixed=true) "Actual depth of discharge";

19 equation

20
21
22

v = E + ixRint;
der (it) = -1/3600;
E = max (0, EO — KxQ/(Q — it) + Axexp (-Bxit));

23 end SimpleBattery;

Electrical/SW1l.mo

1 within PVSystems.Electrical;
2 model SW1l "Switched model implemented with switch + diode"

extends Interfaces.SwitchNetworkInterface;

Modelica.Electrical.Analog.Ideal.IdealClosingSwitch swl (Ron=Ron) annotation (

Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={-40,0})));

Modelica.Electrical.Analog.Ideal.IdealDiode sw2 (Ron=RD, Vknee=VD) annotation

Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=90,

origin={40,0})));
Control.SwitchingPWM signalPWM (
dMax=dMax,
dMin=dMin,
fs=fs,

startTime=startTime) annotation (Placement (transformation (

extent={{10,10}, {-10,-10}},
rotation=270,
origin={0,-70})));

parameter Real dMax=1 "Maximum duty cycle";

parameter Real dMin=0 "Minimum duty cycle";

parameter Modelica.SIunits.Frequency fs "Switching frequency";

parameter Modelica.SIunits.Time startTime=0 "Start time";
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26 parameter

Modelica.SIunits.Resistance RD=1.E-5

27 "Forward state-on differential resistance (closed resistance)";

28 parameter
29 parameter
30 equation

Modelica.SIunits.Voltage VD=0 "Forward threshold voltage";
Modelica.SIunits.Resistance Ron=1.E-5 "Closed switch resistance";

31 connect (pl, swl.p)

32 annotation (Line (points={{-100,50}, {-40,50},{-40,10}}, color={0,0,255}));

33 connect (nl, swl.n) annotation (Line (points={{-100,-50},{-40,-50},{-40,-10}},
34 color={0,0,255}));

35 connect (sw2.n, p2) annotation (Line (points={{40,10},{40,10},{40,50},{100,50}},
36 color={0,0,255}));

37 connect (n2, sw2.p)

38 annotation (Line(points={{100,-50},{40,-50},{40,-10}}, color={0,0,255}));

39 connect (signalPWM.vc, d)

40 annotation (Line(points={{0,-82},{0,-120},{0,-120}}, color={0,0,127}));

41 connect (signalPWM.cl, swl.control) annotation (Line (points={{2.22045e-015,-59},
42 {0,-59},{0,-1.33227e-015}, {-33,-1.33227e-015}}, color={255,0,255}));

43 annotation (Icon(coordinateSystem(preserveAspectRatio=false)), Diagram(

44 coordinateSystem (preserveAspectRatio=false)));

45 end SWI1;

Electrical/SW2.mo

1 within PVSystems.Electrical;
2 model SW2 "Switched model implemented with switch x 2"
3 extends Interfaces.SwitchNetworkInterface;

4 Modelica.Electrical.Analog.Ideal.IdealClosingSwitch swl (Ron=Ron) annotation (
5 Placement (transformation (

6 extent={{-10,-10}, {10,101} },

7 rotation=270,

8 origin={-40,0})));

9 Control.SwitchingPWM spwm(

10 dMax=dMax,

11 dMin=dMin,

12 fs=fs,

13 startTime=startTime) annotation (Placement (transformation (
14 extent={{10,10}, {-10,-10}},

15 rotation=270,

16 origin={0,-70})));

17  parameter
18 parameter
19 parameter
20 parameter
21 parameter

Real dMax=1 "Maximum duty cycle";

Real dMin=0 "Minimum duty cycle";
Modelica.SIunits.Frequency fs "Switching frequency";
Modelica.SIunits.Time startTime=0 "Start time";
Modelica.SIunits.Resistance RD=1.E-5

22 "Forward state-on differential resistance (closed resistance)";

23 parameter
24 parameter

Modelica.SIunits.Voltage VD=0 "Forward threshold voltage";
Modelica.SIunits.Resistance Ron=1.E-5 "Closed switch resistance";

25 Modelica.Electrical.Analog.Ideal.IdealClosingSwitch sw2 (Ron=Ron) annotation (

26 Placement (transformation (

27 extent={{10,10}, {-10,-10}},

28 rotation=270,

29 origin={40,0})));

30 Control.DeadTime dt (deadTime=deadTime) annotation (Placement (transformation (
31 extent={{-10,-10}, {10,101} },

32 rotation=90,

33 origin={0,-30})));

34 parameter
35 equation

Modelica.SIunits.Time deadTime=0 "Dead time";

36 connect (pl, swl.p)

37 annotation (Line(points={{-100,50},{-40,50},{-40,10}}, color={0,0,255}));
38 connect (nl, swl.n) annotation (Line (points={{-100,-50},{-40,-50},{-40,-10}},
39 color={0,0,255}));
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40 connect (spwm.vc, d)

41 annotation (Line (points={{0,-82},{0,-120}}, color={0,0,127}));

42 connect (dt.c, spwm.cl)

43 annotation (Line (points={{0,-42},{0,-59}}, color={255,0,255}));

44 connect (dt.cl, swl.control) annotation (Line (points={{-4,-19},{-4,-19},{-4,0},
45 {-33,0}}, color={255,0,255}));

46 connect (sw2.n, p2) annotation (Line (points={{40,10}, {40,10},{40,50},{100,50}},
47 color={0,0,255}));

48 connect (n2, sw2.p)

49 annotation (Line (points={{100,-50},{40,-50},{40,-10}}, color={0,0,255}));

50 connect (dt.c2, sw2.control) annotation (Line(points={{4,-19},{4,-19},{4,0},{
51 33,0}}, color={255,0,255}));

52 annotation (Icon (coordinateSystem(preserveAspectRatio=false)), Diagram(

53 coordinateSystem (preserveAspectRatio=false)));

54 end SW2;

Electrical/SW3.mo

1 within PVSystems.Electrical;
2 model SW3 "Switched model implemented with switch + anti-parallel diode x 2"
3 extends Interfaces.SwitchNetworkInterface;

4 Modelica.Electrical.Analog.Ideal.IdealClosingSwitch swl (Ron=Ron) annotation (
5 Placement (transformation (

6 extent={{-10,-10}, {10,10}},

7 rotation=270,

8 origin={-40,0})));

9 Control.SwitchingPWM spwm (

10 dMax=dMax,

11 dMin=dMin,

12 fs=fs,

13 startTime=startTime) annotation (Placement (transformation (
14 extent={{10,10}, {-10,-10}},

15 rotation=270,

16 origin={0,-70})));

17 parameter Real dMax=1 "Maximum duty cycle";

18 parameter Real dMin=0 "Minimum duty cycle";

19 parameter Modelica.SIunits.Frequency fs "Switching frequency";
20 parameter Modelica.SIunits.Time startTime=0 "Start time";

21 parameter Modelica.SIunits.Resistance RD=1.E-5

22 "Forward state-on differential resistance (closed resistance)";
23 parameter Modelica.SIunits.Voltage VD=0 "Forward threshold voltage";

24 parameter Modelica.SIunits.Resistance Ron=1.E-5 "Closed switch resistance";
25 Modelica.Electrical.Analog.Ideal.IdealClosingSwitch sw2 (Ron=Ron) annotation (
26 Placement (transformation (

27 extent={{10,10}, {-10,-10}},

28 rotation=270,

29 origin={40,0})));

30 Control.DeadTime dt (deadTime=deadTime) annotation (Placement (transformation (
31 extent={{-10,-10}, {10,10}},

32 rotation=90,

33 origin={0,-30})));

34 Modelica.Electrical.Analog.Ideal.IdealDiode dl annotation (Placement (
35 transformation (

36 extent={{-10,-10}, {10,10}},
37 rotation=90,
38 origin={-80,01})));

39 Modelica.Electrical.Analog.Ideal.IdealDiode d2 annotation (Placement (
40 transformation (

41 extent={{-10,-10}, {10,10}},
42 rotation=90,
43 origin={80,0})));

44 parameter Modelica.SIunits.Time deadTime=0 "Dead time";
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45 equation

46
47
48
49
50
51
52
83
54
55)
56
57
58
510
60
61
62
63
64
65
66
67
68
69
70
71

connect (pl, swl.p)
annotation (Line (points={{-100,50}, {-40,50},{-40,10}}, color={0,0,255}));
connect (nl, swl.n) annotation (Line (points={{-100,-50},{-40,-50},{-40,-10}},
color={0,0,255}));
connect (spwm.vc, d)
annotation (Line (points={{0,-82},{0,-120}}, color={0,0,127}));
connect (dt.c, spwm.cl)
annotation (Line (points={{0,-42},{0,-59}}, color={255,0,255}));
connect (dt.cl, swl.control) annotation (Line(points={{-4,-19},{-4,-19},{-4,0},
{-33,0}}, color={255,0,255}));
connect (sw2.n, p2) annotation (Line (points={{40,10},{40,10},{40,50},{100,50}},
color={0,0,255}));
connect (n2, sw2.p)
annotation (Line(points={{100,-50},{40,-50},{40,-10}}, color={0,0,255}));

connect (dt.c2, sw2.control) annotation (Line(points={{4,-19},{4,-19},{4,0},{
33,0}}, color={255,0,255}));

connect (dl.n, swl.p) annotation (Line(points={{-80,10},{-80,50}, {-40,50}, {-40,
10}}, color={0,0,255}));

connect (dl.p, swl.n) annotation (Line(points={{-80,-10},{-80,-50}, {-40,-50},{
-40,-10}}, color={0,0,255}));
connect (d2.n, p2) annotation (Line(points={{80,10},{80,10},{80,50},{100,50}},
color={0,0,255}));
connect (d2.p, n2) annotation (Line (points={{80,-10},{80,-10},{80,-50}, {100,
-50}}, color={0,0,255}));
annotation (Icon (coordinateSystem(preserveAspectRatio=false)), Diagram(
coordinateSystem (preserveAspectRatio=false)));

72 end SW3;

Examples/Application/BuckOpen.mo

1 within PVSystems.Examples.Application;
2 model BuckOpen "Ideal open-loop buck converter"

134

extends Modelica.Icons.Example;
Modelica.Electrical.Analog.Sources.ConstantVoltage DC (V=24)
annotation (
Placement (transformation (
origin={-30,-40},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Resistor Rav (R=3) annotation (Placement (
transformation (
origin={70,-50},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Inductor Lav (L=8e-6) annotation (Placement (
transformation (extent={{20,-40}, {40,-20}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Capacitor Cav(C=10e-6) annotation (
Placement (transformation (
origin={50,-50},
extent={{-10,-10}, {10,10}},
rotation=270)));
replaceable Electrical.CCM_DCM1l sn(Le=Lav.L, fs=PWM.fs)
constrainedby
PVSystems.Electrical.Interfaces.SwitchNetworkInterface annotation (
Placement (transformation (extent={{-10,-36}, {10,-16}},
rotation=0)),
choicesAllMatching=true) ;
Modelica.Electrical.Analog.Ideal.IdealClosingSwitch sw annotation (Placement (

transformation (extent={{-20,70}, {0,50}}, rotation=0)));
Modelica.Electrical.Analog.Ideal.IdealDiode dsw annotation (Placement (
transformation (



32
33
34
38
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

origin={10,40},
extent={{-10,-10}, {10,10}},
rotation=90)));
Control.SwitchingPWM PWM(fs=1e5) annotation (Placement (transformation (extent={{-10,-10},
{10,10}}, rotation=90,
origin={-10,30})));
Modelica.Electrical.Analog.Basic.Resistor Rsw(R=3) annotation (Placement (
transformation (
origin={70,40},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Inductor Lsw(L=8e-6) annotation (Placement (
transformation (extent={{20,50}, {40,70}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Capacitor Csw(C=10e-6) annotation (
Placement (transformation (
origin={50,40},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Ground gin annotation (Placement (
transformation (extent={{-40,-76}, {-20,-56}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Ground gsw annotation (Placement (
transformation (extent={{20,10}, {40,30}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Ground gav annotation (Placement (
transformation (extent={{20,-80}, {40,-60}}, rotation=0)));
Modelica.Blocks.Sources.RealExpression duty (y=if time < 5e-4 then 0.1 else 0.6)
annotation (Placement (transformation (extent={{-90,-90}, {-70,-70}})));
equation
connect (Cav.n, gav.p)
annotation (Line (points={{50,-60},{30,-60}}, color={0,0,255}));
connect (Rav.n, gav.p)
annotation (Line (points={{70,-60}, {30,-60}}, color={0,0,255}));
connect (Lav.n, Rav.p)
annotation (Line (points={{40,-30},{70,-30},{70,-40}}, color={0,0,255}));
connect (Cav.p, Lav.n)
annotation (Line (points={{50,-40}, {50,-30},{40,-30}}, color={0,0,255}));
connect (DC.p, sn.pl)
annotation (Line (points={{-30,-30},{-30,-21},{-10,-21}}, color={0,0,255}));
connect (sn.p2, Lav.p)
annotation (Line (points={{10,-21}, {20,-21},{20,-30}}, color={0,0,255}));
connect (sn.n2, gav.p)
annotation (Line (points={{10,-31}, {10,-60},{30,-60}}, color={0,0,255}));
connect (sw.p, DC.p)
annotation (Line (points={{-20,60},{-30,60},{-30,-30}}, color={0,0,255}));
connect (sw.n, dsw.n)
annotation (Line (points={{0,60},{10,60},{10,50}}, color={0,0,255}));
connect (Lsw.n, Rsw.p)
annotation (Line (points={{40,60},{70,60},{70,50}}, color={0,0,255}));
connect (Csw.p, Lsw.n)
annotation (Line (points={{50,50}, {50,60},{40,60}}, color={0,0,255}));
connect (Lsw.p, dsw.n)
annotation (Line (points={{20,60},{10,60},{10,50}}, color={0,0,255}));
connect (Csw.n, Rsw.n)
annotation (Line (points={{50,30},{70,30}}, color={0,0,255}));
connect (dsw.p, gsw.p)
annotation (Line (points={{10,30},{30,30}}, color={0,0,255}));
connect (gsw.p, Csw.n)
annotation (Line (points={{30,30},{50,30}}, color={0,0,255}));
connect (gin.p, DC.n)
annotation (Line (points={{-30,-56},{-30,-53},{-30,-50}}, color={0,0,255}));
connect (PWM.cl, sw.control)
annotation (Line (points={{-10,41},{-10,41},{-10,53}}, color={255,0,255}));
connect (PWM.vc, sn.d) annotation (Line(points={{-10,18},{-10,10}, {-50,10},{-50,
-80},{0,-80},{0,-38}}, color={0,0,127}));
connect (sn.nl, Lav.p) annotation (Line(points={{-10,-31},{-20,-31},{-20,-4}, {20,
-4},{20,-30}}, color={0,0,255}));
connect (duty.y, sn.d)
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98 annotation (Line(points={{-69,-80},{0,-80},{0,-38}}, color={0,0,127}));
99 annotation (

100 Diagram(graphics={Text (

101 extent={{32,-8},{70,-201}},

102 lineColor={0,0,255},

103 textString="Modifiable model"),

104 Text (

105 extent={{32,78},{70,66}},

106 lineColor={0,0,255},

107 textString="Switched model")}),

108 experiment (StopTime=0.001, _ Dymola_NumberOfIntervals=1000),
109 Documentation (info="<html>

110 <p>

111 This example compares two implementations of a buck

112 DC-DC converter. The switched version is built using

113 mostly blocks

114 from <a href=\"Modelica://Modelica.Electrical.Analog\">Modelica’s
115 electrical library</a> but also includes

116 the <a href=\"Modelica://PVSystems.Control.SwitchingPWM\">SwitchingPWM</a>
117 model. The averaged version is built around a

118 replaceable instance of the average switch model for CCM
119 (continuous conduction mode) and DCM (discontinuous

120 conduction mode) considering no losses.

121 </p>

122

123 <p>

124 This example showcases how components from PVSystems can
125 be mixed with components from the Modelica Standard

126 Library to build systems that might be of

127 interest. Additionally, it aims validating the average
128 switch model performance by comparison with the more

129 accurate/detailed switched model.

130 </p>

131

132 <p>

133 This is still an open-loop system. A duty cycle value is
134 fed to the SwitchingPWM block to drive the ideal closing
135 switch or to the averaged switch network model. The duty
136 cycle value begins at 0.1 and changes to 0.6 in the

137 middle of the simulation. The effect of this change can
138 be observed by plotting the output voltages:

139 </p>

140

141

142 <div class=\"figure\">

143 <p><img src=\"modelica://PVSystems/Resources/Images/BuckOpenResultsA.png\"
144 alt=\"BuckOpenResultsA.png\" />

145 </p>

146 </div>

147

148 <p>

149 The output voltage for both implementations is not

150 exactly the same but it can be seen that the averaged
151 model provides a very decent approximation. This is the
152 case because both the switching and the averaged

153 implementations are neglecting losses and because they
154 are both correctly modelling CCM and DCM modes. The

155 converter is operating in DCM in the first interval and
156 in CCM in the second:

157 </p>

158

159

160 <div class=\"figure\">

161 <p><img src=\"modelica://PVSystems/Resources/Images/BuckOpenResultsB.png\"
162 alt=\"BuckOpenResultsB.png\" />

163 </p>
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164
165
166
167
168
169
170
171

</div>

<p>
An interesting exercise to complete this example would
be to build a controller to close the loop and study the
system’s behaviour.</p>
</html>"),
__Dymola_experimentSetupOutput) ;

172 end BuckOpen;

Examples/Application/InverterlphClosed.mo

1 within PVSystems.Examples.Application;
2 model InverterlphClosed

3

(R IR . NN

"Stand-alone l-phase closed-loop inverter with constant DC source"
extends Modelica.Icons.Example;
Modelica.Electrical.Analog.Sources.ConstantVoltage DC(V=580) annotation (
Placement (transformation (
origin={-20,50},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
transformation (extent={{-30,14}, {-10,34}}, rotation=0)));
PVSystems.Electrical.Assemblies.HBridge HB annotation (Placement (
transformation (extent={{20,40},{40,60}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Resistor R(R=1le-2) annotation (Placement (
transformation (
origin={70,30},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Inductor L(L=1le-3) annotation (Placement (
transformation (
origin={70,70},
extent={{-10,-10}, {10,10}},

rotation=270)));
Modelica.Blocks.Sources.Step igSetpoint (height=141.4, startTime=0.3)
annotation (Placement (transformation (extent={{-70,0}, {-50,20}}, rotation=0)));

Modelica.Blocks.Sources.Step idSetpoint (
height=141.4 - 200,
offset=200,
startTime=0.3) annotation (Placement (transformation (extent={{-70,-40}, {
-50,-20}}, rotation=0)));
Modelica.Blocks.Sources.SawTooth sawTooth (amplitude=2+Modelica.Constants.pi,
period=0.02) annotation (Placement (transformation (extent={{-40,-60}, {-20,
-40}},rotation=0)));
Control.Assemblies.InverterlphCurrentController control annotation (Placement (
transformation (
origin={10,-10},
extent={{-10,-10}, {10,10}},
rotation=0)));
Modelica.Blocks.Sources.RealExpression iacSense (y=L.1i)

annotation (Placement (transformation (extent={{-40,-20},{-20,0}})));
Modelica.Blocks.Sources.RealExpression vdcSense (y=DC.V)

annotation (Placement (transformation (extent={{-70,-80},{-50,-60}1})));

equation

connect (DC.n, ground.p)

annotation (Line (points={{-20,40},{-20,37},{-20,34}}, color={0,0,255}));
connect (R.p, L.n)

annotation (Line (points={{70,40},{70,60}}, color={0,0,255}));

connect (HB.pl, DC.p) annotation (Line(points={{20,55},{0,55},{0,60},{-20,60}},
color={0,0,255}));
connect (HB.nl, DC.n) annotation (Line(points={{20,45},{0,45},{0,40},{-20,40}},
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51
52
58
54
88
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

color={0,0,255}));
connect (HB.p2, L.p) annotation (Line (points={{40,55},{46,55},{46,80},{70,80}},
color={0,0,255}));
connect (HB.n2, R.n) annotation (Line(points={{40,45},{46,45},{46,20},{70,20}},
color={0,0,255}));
connect (sawTooth.y, control.theta) annotation (Line(points={{-19,-50},{-19,-50},
{6,-50},{6,-22}}, color={0,0,127}));
connect (control.d, HB.d)
annotation (Line (points={{21,-10},{30,-10},{30,38}}, color={0,0,127}));
connect (igSetpoint.y, control.ids) annotation (Line (points={{-49,10},{-10,10},
{-10,-4},{-2,-4}}, color={0,0,127}));
connect (idSetpoint.y, control.igs) annotation (Line (points={{-49,-30},{-10.5,
-30},{-10.5,-16},{-2,-16}}, color={0,0,127}));
connect (iacSense.y, control.i)
annotation (Line(points={{-19,-10},{-2,-10}}, color={0,0,127}));
connect (vdcSense.y, control.vdc) annotation (Line(points={{-49,-70},{-49,-70},
{14,-70}, {14,-22}}, color={0,0,127}));
annotation (experiment (StopTime=0.6, _ Dymola_NumberOfIntervals=3000),
Documentation (info="<html>
<p>
This example explores a closed-loop inverter. No grid is
present, which simplifies things. But, since the
controller is implemented in the synchronous (dq)
reference frame, a synchronization source needs to
exist. This is implemented with the saw tooth generator,
which emulates the output of the PLL.
</p>

<p>
As can be seen in the following figure, one can now
comfortably specify the setpoint for the output current
of the inverter:

</p>

<div class=\"figure\">

<p><img src=\"modelica://PVSystems/Resources/Images/InverterlphClosedResults.png\"

alt=\"InverterlphClosedResults.png\" />
</p>
</div>

<p>
Having the posibility to separately control the current
in each dg axis enables one to control the power factor
(i.e. the phase lag between the voltage and the current)
as well as the amplitude of the current.

</p>

<p>
In this example, the equivalent synchronization signal
is plotted to see this phase shift as the setpoints
change. Notice how, when the g component of the current
is 0, the d component is equal to the peak current.</p>
</html>"),
__Dymola_experimentSetupOutput) ;

106 end InverterlphClosed;

Examples/Application/InverterlphClosedSynch.mo

1 within PVSystems.Examples.Application;
2 model InverterlphClosedSynch

3
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11
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14
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16
17
18
19
20
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22
23
24
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26
27
28
29
30
31
32
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34
35
36
37
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39

41
42

44
45
46
47
48
49
50
51
52
53
54
S5
56
57
58
59
60
61
62
63
64
65
66
67
68
69

extends Modelica.Icons.Example;
Modelica.Electrical.Analog.Sources.ConstantVoltage DC(V=580) annotation (
Placement (transformation (
origin={-18,70},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Sources.SineVoltage AC (freqHz=50, V=480)
annotation (Placement (transformation (
origin={80,70},
extent={{-10,-10}, {10,10}},
rotation=270)));
Control.PLL pll annotation (Placement (transformation (
extent={{10,-10}, {-10,10}},
rotation=180,
origin={-40,-50})));
PVSystems.Electrical.Assemblies.HBridge HB(d(start=0.5))
annotation (Placement (transformation (extent={{2,60},{22,80}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Inductor L(L=1le-3) annotation (Placement (
transformation (extent={{34,80}, {54,100}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Resistor R(R=le-2)
annotation (Placement (
transformation (extent={{60,80}, {80,100}}, rotation=0)));
Control.Assemblies.InverterlphCurrentController control (d(start=0.5))
annotation (Placement (transformation (
origin={-10,10},
extent={{-10,-10}, {10,10}},
rotation=0)));
Modelica.Blocks.Sources.Constant idSetpoint (k=400)
annotation (Placement (transformation (extent={{-90,30},{-70,50}1})));
Modelica.Blocks.Sources.Constant igSetpoint (k=0)
annotation (Placement (transformation (extent={{-90,-30},{-70,-10}1})));
Modelica.Electrical.Analog.Basic.Ground ground
annotation (Placement (transformation (extent={{-28,40},{-8,60}})));
Modelica.Blocks.Sources.RealExpression vacSense (y=AC.v)
annotation (Placement (transformation (extent={{-90,-60},{-70,-40}})));
Modelica.Blocks.Sources.RealExpression iacSense (y=AC.1)
annotation (Placement (transformation (extent={{-90,0},{-70,20}})));
Modelica.Blocks.Sources.RealExpression vdcSense (y=DC.v)
annotation (Placement (transformation (extent={{-90,-90},{-70,-70}1})));
equation
connect (L.n, R.p)
annotation (Line (points={{54,90},{60,90}}, color={0,0,255}));
connect (HB.p2, L.p) annotation (Line(points={{22,75},{28,75},{28,90},{34,90}},
color={0,0,255}));
connect (R.n, AC.p)
annotation (Line (points={{80,90},{80,80}}, color={0,0,255}));
connect (DC.p, HB.pl) annotation (Line (points={{-18,80},{-2,80},{-2,75},{2,75}},
color={0,0,255}));
connect (DC.n, HB.nl) annotation (Line(points={{-18,60},{-2,60},{-2,65},{2,65}},
color={0,0,255}));
connect (igSetpoint.y, control.igs) annotation (Line (points={{-69,-20}, {-40,-20},
{-40,4},{-22,4}}, color={0,0,127}));
connect (idSetpoint.y, control.ids) annotation (Line (points={{-69,40}, {-40,40},
{-40,16},{-22,16}}, color={0,0,127}));
connect (DC.n, ground.p)
annotation (Line (points={{-18,60},{-18,60}}, color={0,0,255}));
connect (AC.n, HB.n2) annotation (Line (points={{80,60},{80,50},{28,50},{28,65},
{22,65}}, color={0,0,255}));
connect (control.d, HB.d)
annotation (Line (points={{1,10},{12,10},{12,58}}, color={0,0,127}));
connect (iacSense.y, control.i)
annotation (Line (points={{-69,10}, {-22,10}}, color={0,0,127}));
connect (pll.theta, control.theta) annotation (Line (points={{-29,-50},{-29,-50},
{-14,-50},{-14,-2}}, color={0,0,127}));
connect (vacSense.y, pll.v)
annotation (Line (points={{-69,-50},{-52,-50},{-52,-50}}, color={0,0,127}));
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70 connect (vdcSense.y, control.vdc)

71 annotation (Line(points={{-69,-80},{-6,-80},{-6,-2}}, color={0,0,127}));

72 annotation (experiment (StopTime=0.3, _ Dymola_NumberOfIntervals=3000),

73 __Dymola_experimentSetupOutput,

74 Documentation (info="<html>

75 <p>

76 This example includes a voltage source on the AC

77 side. This will add the synchronization challenge for

78 the controller: in order to provide adequate control of

79 the output current, the duty cycle needs to be carefully

80 in synch with the AC grid voltage.

81 </p>

82

83 <p>

84 Plotting the current through the load, the dg setpoints,

85 the grid voltage and the actual computed d value of the

86 current yields the following graph:

87 </p>

88

89

90 <div class=\"figure\">

91 <p><img src=\"modelica://PVSystems/Resources/Images/
InverterlphClosedSynchResults.png\"

92 alt=\"InverterlphClosedSynchResults.png\" />

93 </p>

94 </div>

95

96 <p>

97 After an initial period where the signals are reaching

98 their steady-state values, the current successfully

99 reaches the setpoint value. Since the g setpoint is

100 equal to zero, the output current stays in phase with

101 the grid voltage and the d setpoint value equals the

102 peak current value.</p>

103 </html>"));

104 end InverterlphClosedSynch;

Examples/Application/InverterlphOpen.mo

1 within PVSystems.Examples.Application;

2 model InverterlphOpen

3 "Stand-alone l-phase open-loop inverter with constant DC source"

4 extends Modelica.Icons.Example;

5 Electrical.Assemblies.HBridgeSwitched

6 HBsw annotation (Placement (

7 transformation (extent={{20,40}, {40,60}}, rotation=0)));

8 Modelica.Electrical.Analog.Sources.ConstantVoltage DCsw(V=580) annotation (
9 Placement (transformation (

0 origin={-10,50},

11 extent={{-10,-10}, {10,10}},

12 rotation=270)));

13 Modelica.Electrical.Analog.Basic.Ground gsw annotation (Placement (
14 transformation (extent={{-20,14},{0,34}}, rotation=0)));

15 Modelica.Electrical.Analog.Basic.Resistor Rsw(R=1le-2)

16 annotation (Placement (

17 transformation (

18 origin={90,30},

19 extent={{-10,-10}, {10,10}},

20 rotation=270)));

21 Modelica.Electrical.Analog.Basic.Inductor Lsw(L=1le-3) annotation (Placement (
22 transformation (
23 origin={90,70},
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extent={{-10,-10}, {10,10}},

rotation=270)));
Modelica.Blocks.Sources.Sine duty (
offset=0.5,
freqHz=50,

amplitude=0.05)
annotation (Placement (transformation (extent={{-90,-90},{-70,-70}},
rotation=0)));
PVSystems.Electrical.Assemblies.HBridge HBav annotation (Placement (
transformation (extent={{20,-40}, {40,-20}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Resistor Rav (R=le-2)
annotation (Placement (
transformation (
origin={90,-50},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Inductor Lav(L=1e-3) annotation (Placement (
transformation (
origin={90,-10},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Sources.ConstantVoltage DCav (V=580) annotation (
Placement (transformation (
origin={-10,-30},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Ground gav annotation (Placement (
transformation (extent={{-20,-66}, {0,-46}}, rotation=0)));
Control.SwitchingPWM switchingPWM(f£s=3125)
annotation (Placement (transformation (extent={{-40,-10},{-20,10}})));
Control.DeadTime deadTime annotation (Placement (transformation (
extent={{-10,-10},{10,10}},
rotation=90,
origin={30,20})));
equation
connect (DCsw.n, gsw.p)
annotation (Line (points={{-10,40}, {-10,34}}, color={0,0,255}));

connect (HBsw.nl, DCsw.n) annotation (Line (points={{20,45},{10,45},{10,40},{-10,

40}}, color={0,0,255}));

connect (HBsw.pl, DCsw.p) annotation (Line (points={{20,55},{10,55},{10,60},{-10,

60}}, color={0,0,255}));

connect (HBsw.p2, Lsw.p) annotation (Line (points={{40,55},{60,55},{60,80},{90,
80}}, color={0,0,255}));

connect (HBsw.n2, Rsw.n) annotation (Line (points={{40,45},{60,45},{60,20},{90,
20}}, color={0,0,255}));

connect (Rsw.p, Lsw.n) annotation (Line (points={{90,40},{90,46},{90,50},{90,60}},

color={0,0,255}));
connect (Rav.p, Lav.n) annotation (Line (points={{90,-40},{90,-36},{90,-30}, {90,
-20}}, color={0,0,255}));
connect (HBav.p2, Lav.p) annotation (Line(points={{40,-25},{60,-25},{60,0}, {90,
0}}, color={0,0,255}));
connect (Rav.n, HBav.n2) annotation (Line(points={{90,-60}, {60,-60},{60,-35}, {
40,-35}}, color={0,0,255}));
connect (HBav.d, duty.y)
annotation (Line (points={{30,-42},{30,-80},{-69,-80}}, color={0,0,127}));
connect (DCav.n, gav.p)
annotation (Line (points={{-10,-40}, {-10,-43},{-10,-46}}, color={0,0,255}));
connect (DCav.p, HBav.pl) annotation (Line (points={{-10,-20},{10,-20},{10,-25},
{20,-25}}, color={0,0,255}));
connect (DCav.n, HBav.nl) annotation (Line (points={{-10,-40},{10,-40},{10,-35},
{20,-35}}, color={0,0,255}));
connect (deadTime.cl, HBsw.cl)
annotation (Line (points={{26,31},{26,35.5},{26,40}}, color={255,0,255}));
connect (deadTime.c2, HBsw.c2)
annotation (Line (points={{34,31},{34,40}}, color={255,0,255}));
connect (switchingPWM.cl, deadTime.c)
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90 annotation (Line(points={{-19,0},{30,0},{30,8}}, color={255,0,255}));
91 connect (switchingPWM.vc, duty.y) annotation (Line (points={{-42,0},{-50,0},{-50,

92 -80},{-69,-80}}, color={0,0,127}));

93 annotation (

94 Diagram(graphics={Text (

95 extent={{10,74}, {48,62}},

96 lineColor={0,0,255},

97 textString="Switched model"), Text (

98 extent={{12,-6}, {50,-18}},

99 lineColor={0,0,255},

100 textString="Modifiable model") }),

101 experiment (StopTime=0.5, _ Dymola_ NumberOfIntervals=5000),
102 Documentation (info="<html>

103 <p>

104 This example presents two implementations of an open
105 loop l-phase inverter. The function of the inverter is
106 to convert DC voltage and current into AC voltage and
107 current. To keep things simple, a constant DC source is
108 included on the DC side and an RL load is included on
109 the AC side. Typically, inverters are placed inside a
110 more complicated setup, which might require MPPT

111 (Maximum Power Point Tracking) on the DC side when

112 connected to a PV array and AC synchronization when

113 connected to a grid on the AC side instead of just a
114 simple passive load.

115 </p>

116

117 <p>

118 Nevertheless, the example still showcases an interesting
119 application. Upon running the simulation with the

120 provided values, plotting the resistor voltages yields
121 the following figure:

122 </p>

123

124

125 <div class=\"figure\">

126 <p><img src=\"modelica://PVSystems/Resources/Images/InverterlphOpenResults.png\"
127 alt=\"InverterlphOpenResults.png\" />

128 </p>

129 </div>

130

131 <p>

132 The AC is achieved with the inverter topology (called an
133 H-bridge) as well as with the duty cycle sinusoidal

134 modulation. Have a look at the duty cycle driving the
135 SwitchingPWM block and compare it with the voltage drop
136 in the resistor.

137 </p>

138

139 <p>

140 Compare it with the voltage drop in the inductor. The
141 voltage coming out of the inverter is actually a square
142 wave and the inductor is providing some crude (but

143 enough for some applications) filtering. Play around
144 with the value of the inductor to see how it provides a
145 better or worse filtering performance (decreasing or
146 increasing the voltage and current ripple in the

147 resistor, which in this example is assumed to be the
148 load being fed). Since this is an open loop

149 configuration, it will also change the peak value of the
150 voltage drop in the resistor, as well as its phase.

151 </p>

152

153 <p>

154 Importantly, see how the the average model provides a
155 very good approximation for low frequencies. This kind
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156
157
158
159
160
161
162
163
164
165

of model won’t be useful to study ripples and to
evaluate the performance of different PWM modulations
(sinusoidal modulation is being used in this example) or
of different filter configurations, since those are
concerned with the high frequencies in the system. On
the other hand, the average models will be very useful
to study controllers and to perform longer simulations
since the simulation step doesn’t need to be so small as
to accurately represent the switching dynamics.</p>
</html>"));

166 end InverterlphOpen;

Examples/Application/InverterlphOpenSynch.mo

1 within PVSystems.Examples.Application;
2 model InverterlphOpenSynch

3
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24
29
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

"Grid-tied l-phase open-loop inverter with constant DC source"
extends Modelica.Icons.Example;
Electrical.Assemblies.HBridgeSwitched
HBsw
annotation (Placement (transformation (extent={{0,40},{20,60}}, rotation=0)));
Modelica.Electrical.Analog.Sources.ConstantVoltage DCsw (V=580) annotation (
Placement (transformation (
origin={-30,50},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Sources.SineVoltage ACsw(freqgHz=50, V=480)
annotation (Placement (transformation (
origin={50,30},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Inductor Lsw(L=1e-3) annotation (Placement (
transformation (
origin={50,70},
extent={{-10,-10}, {10,10}},
rotation=270)));
Control.PLL pLL annotation (Placement (transformation (
origin={-80,-56},
extent={{10,-10}, {-10,10}},
rotation=180)));
Modelica.Blocks.Math.Cos sin annotation (Placement (transformation (
origin={-46,-56},
extent={{10,-10}, {-10,10}},
rotation=180)));
Modelica.Blocks.Math.Add add(k2=1, k1=580/580/2) annotation (Placement (
transformation (
origin={-10,-50},
extent={{10,-10}, {-10,10}},
rotation=180)));
Modelica.Blocks.Sources.Constant const (k=0.5) annotation (Placement (
transformation (
origin={-80,-24},
extent={{10,-10},{-10,10}},
rotation=180)));
Modelica.Electrical.Analog.Basic.Resistor Rsw(R=1le-2)
annotation (Placement (
transformation (
origin={50,50},
extent={{-10,-10}, {10,10}},
rotation=270)));
PVSystems.Electrical.Assemblies.HBridge HBav annotation (Placement (
transformation (extent={{70,-20}, {90,0}}, rotation=0)));
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49 Modelica.Electrical.Analog.Basic.Inductor Lav(L=1le-3) annotation (Placement (
50 transformation (

51 origin={120,10},

52 extent={{-10,-10}, {10,10}},

53 rotation=270)));

54 Modelica.Electrical.Analog.Basic.Resistor Rav (R=le-2)

55 annotation (Placement (

56 transformation (

57 origin={120,-10},

58 extent={{-10,-10}, {10,10}},

59 rotation=270)));

60 Modelica.Electrical.Analog.Basic.Ground gsw annotation (Placement (

61 transformation (extent={{-40,20}, {-20,40}},

62 rotation=0)));

63 Modelica.Blocks.Sources.RealExpression VacSense (y=ACsw.V)

64 annotation (Placement (transformation (extent={{-120,-66}, {-100,-46}1})));
65 Modelica.Electrical.Analog.Sources.SineVoltage ACav (freqHz=50, V=480)
66 annotation (Placement (transformation (

67 origin={120,-30},

68 extent={{-10,-10}, {10,10}},

69 rotation=270)));

70 Modelica.Electrical.Analog.Sources.ConstantVoltage DCav (V=580) annotation (
71 Placement (transformation (

72 origin={40,-10},

73 extent={{-10,-10}, {10,10}},

74 rotation=270)));

75 Modelica.Electrical.Analog.Basic.Ground gav annotation (Placement (
76 transformation (extent={{30,-40}, {50,-20}}, rotation=0)));

77 Control.SwitchingPWM switchingPWM(fs=3125) annotation (Placement (
78 transformation (

79 extent={{-10,-10}, {10,10}},

80 rotation=90,

81 origin={10,-10})));

82 Control.DeadTime deadTime annotation (Placement (transformation (
83 extent={{-10,-10}, {10,101} },

84 rotation=90,

85 origin={10,20})));

86 equation

87 connect (pLL.theta, sin.u)

88 annotation (Line (points={{-69,-56}, {-58,-56}}, color={0,0,127}));

89 connect (const.y, add.u2) annotation (Line (points={{-69,-24},{-30,-24}, {-30,
90 -44%},{-22,-44}y,

91 color={0,0,127}));
92 connect (sin.y, add.ul)
93 annotation (Line(points={{-35,-56},{-22,-56}}, color={0,0,127}));

94 connect (VacSense.y, pLL.v) annotation (Line (points={{-99,-56},{-99,-56},{-92,
95 -56}}, color={0,0,127}));
96 connect (ACav.p, Rav.n)

97 annotation (Line (points={{120,-20},{120,-20}}, color={0,0,255}));
98 connect (Rav.p, Lav.n)
99 annotation (Line (points={{120,0},{120,0}}, color={0,0,255}));

100 connect (HBav.p2, Lav.p) annotation (Line (points={{90,-5}, {100,-5},{100,20}, {
101 120,20}}, color={0,0,255}));

102 connect (HBav.n2, ACav.n) annotation (Line (points={{90,-15},{100,-15},{100,-40},
103 {120,-40}}, color={0,0,255}));

104 connect (ACsw.p, Rsw.n)

105 annotation (Line (points={{50,40},{50,40}}, color={0,0,255}));
106 connect (Rsw.p, Lsw.n)
107 annotation (Line (points={{50,60},{50,60}}, color={0,0,255}));

108 connect (HBsw.n2, ACsw.n) annotation (Line (points={{20,45},{30,45},{30,20}, {50,
109 20}}, color={0,0,255}));

110 connect (HBsw.p2, Lsw.p) annotation (Line (points={{20,55},{30,55},{30,80}, {50,
111 80}}, color={0,0,255}));

112 connect (DCav.n, gav.p)

113 annotation (Line (points={{40,-20},{40,-20}}, color={0,0,255}));

114 connect (DCsw.n, gsw.p)
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annotation (Line (points={{-30,40},{-30,40}}, color={0,0,255}));
connect (DCsw.p, HBsw.pl) annotation (Line (points={{-30,60},{-14,60},{-14,55},
{0,55}}, color={0,0,255}));
connect (DCsw.n, HBsw.nl) annotation (Line (points={{-30,40},{-14,40},{-14,45},
{0,45}}, color={0,0,255}));
connect (DCav.n, HBav.nl) annotation (Line (points={{40,-20},{56,-20},{56,-15},
{70,-15}}, color={0,0,255}));
connect (DCav.p, HBav.pl)
annotation (Line (points={{40,0},{56,0},{56,-5},{70,-5}}, color={0,0,255}));
connect (add.y, HBav.d)
annotation (Line(points={{1,-50},{80,-50},{80,-22}}, color={0,0,127}));
connect (deadTime.cl, HBsw.cl)
annotation (Line(points={{6,31},{6,40}}, color={255,0,255}));
connect (deadTime.c2, HBsw.c2)
annotation (Line(points={{14,31},{14,35.5},{14,40}}, color={255,0,255}));
connect (switchingPWM.cl, deadTime.c)
annotation (Line (points={{10,1},{10,4.5},{10,8}}, color={255,0,255}));
connect (switchingPWM.vc, HBav.d) annotation (Line(points={{10,-22},{10,-50}, {
80,-50},{80,-22}}, color={0,0,127}));
annotation (
experiment (StopTime=0.5, _ Dymola_NumberOfIntervals=5000),
Documentation (info="<html>
<p>
This example goes a step further
than <a href=\"Modelica://PVSystems.Examples.Application.InverterlphOpen\">
InverterlphOpen</a>
and includes grid synchronization. Typically this is the condition
for inverters in real-life situations. Both switched and averaged
implementations are presented for comparison purposes and it can be
seen that they both provide very similar results (excluding the fact
that high frequencies are left out in the averaged model).
</p>

<div class=\"figure\">

<p><img src=\"modelica://PVSystems/Resources/Images/InverterlphOpenSynchResults.png

\ll
alt=\"InverterlphOpenSynch_Plot.png\" />
</p>
</div>

<p>
Since this is still open-loop and there’s no in-quadrature
separation, the value of the current can’t comfortably be specified
to be of a certain value. Since the RL load has almost equal real
and imaginary parts, the current that is drawn from the inverter has
a power factor different than one.

</p>

<p>
A key value to pay attention to in this example is the gain that is
placed in the <i>Add</i> block.

</p>

<div class=\"figure\">

<p><img src=\"modelica://PVSystems/Resources/Images/InverterlphOpenSynchDialog.png

\ll
alt=\"InverterlphOpenSynchDialog.png\" />
</p>
</div>

<p>
It’s initially set at 0.5. The value is expressed as 580/580/2 to
highlight the fact that this gain should be normalized to the DC
voltage value. Above that, over-modulation will occur and the output
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178 current of the inverter will become quite ugly. Play around with

179 this value (using values between 0 and 0.5) to see how the output

180 current of the inverter changes.

181 </p>

182 </html>"),

183 Diagram(coordinateSystem(extent={{-140,-100},{140,100}}, initialScale=0.1),

184 graphics={ Text (

185 extent={{56,14},{94,2}},

186 lineColor={0,0,255},

187 textString="Modifiable model"),

188 Text (

189 extent={{-12,74}, {26,62}},

190 lineColor={0,0,255},

191 textString="Switched model")}),

192 Icon (coordinateSystem(initialScale=0.1)),

193 __Dymola_Commands (file="Resources/Scripts/Dymola/
InverterlphOpenSynch_RunPlotAndSave.mos"

194 "RunPlotAndSave"));

195 end InverterlphOpenSynch;

Examples/Application/package.mo

within PVSystems.Examples;
package Application "More complete application examples"
extends Modelica.Icons.ExamplesPackage;

O W W U oUW N R

-

end Application;

Examples/Application/package.order

BuckOpen
InverterlphOpen
InverterlphOpenSynch
InverterlphClosed
InverterlphClosedSynch
PVInverterlph
PVInverterlphSynch
USBBatteryConverter

© 9 s W N e

Examples/Application/PVInverterlph.mo

1 within PVSystems.Examples.Application;
2 model PVInverterlph "Stand-alone l-phase closed-loop inverter with PV source"
3 extends Modelica.Icons.Example;

4 Electrical.PVArray PV (v (start=450)) annotation (Placement (transformation (
5 origin={-40,60},

6 extent={{-10,-10}, {10,101} },

7 rotation=270)));
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Modelica.Blocks.Sources.Constant Gn(k=1000) annotation (Placement (

transformation (extent={{-80,70}, {-60,90}}, rotation=0)));
Modelica.Blocks.Sources.Constant Tn(k=298.15) annotation (Placement (
transformation (extent={{-80,30}, {-60,50}}, rotation=0)));

PVSystems.Electrical.Assemblies.HBridge Inverter annotation (Placement (
transformation (extent={{40,50}, {60,70}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Inductor L(L=1le-3) annotation (Placement (
transformation (
origin={90,74},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Resistor R(R=1le-2)
annotation (Placement (
transformation (
origin={90,48},
extent={{-10,-10}, {10, 10}},

rotation=270)));
Modelica.Electrical.Analog.Basic.Capacitor Cdc( C=5e-1, v(start=
10))

annotation (Placement (transformation (
origin={20,60},
extent={{-10,-10}, {10,10}},

rotation=270)));
Modelica.Electrical.Analog.Basic.Resistor Rdc (R=1le-3, v (start=30))
annotation (Placement (transformation (extent={{-20,70},{0,90}}, rotation=0)));

Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
transformation (extent={{-20,20}, {0,40}}, rotation=0)));
Modelica.Blocks.Sources.Cosine vacEmulation (fregHz=50) annotation (Placement (
transformation (extent={{-40,-70}, {-20,-50}}, rotation=0)));
Control.Assemblies.InverterlphCompleteController controller (
fline=50,
ik=0.1,
iT=0.01,
vk=10,
vT=0.5,
igMax=10,
vdcMax=71,
idMax=10)
annotation (Placement (transformation (
origin={30,-30},
extent={{-10,-10}, {10,10}},
rotation=0)));
Modelica.Blocks.Sources.RealExpression iacSense(y=L.1)

annotation (Placement (transformation (extent={{-40,-44},{-20,-24}})));
Modelica.Blocks.Sources.RealExpression idcSense (y=-PV.1i)
annotation (Placement (transformation (extent={{-40,-20},{-20,0}})));

Modelica.Blocks.Sources.RealExpression vdcSense (y=PV.v)

annotation (Placement (transformation (extent={{-40,0}, {-20,20}})));
Modelica.Blocks.Sources.RealExpression DCPower (y=-PV.ixPV.vV)

annotation (Placement (transformation (extent={{40,-72},{60,-52}1})));
Modelica.Blocks.Sources.RealExpression ACPower (y=R.1ixR.v)

annotation (Placement (transformation (extent={{40,-92},{60,-72}})));
Modelica.Blocks.Math.Mean meanACPower (£=50)

annotation (Placement (transformation (extent={{70,-92},{90,-72}})));

equation
connect (Gn.y, PV.G) annotation (Line (points={{-59,80},{-54,80},{-54,63},{-45.5,

63}}, color={0,0,127}));

connect (Tn.y, PV.T) annotation (Line (points={{-59,40},{-54,40},{-54,57},{-45.5,

57}}, color={0,0,127}));

connect (Cdc.p, Inverter.pl) annotation (Line (points={{20,70},{34,70},{34,65},
{40,65}}, color={0,0,255}));

connect (L.n, R.p)

annotation (Line (points={{90,64},{90,58}}, color={0,0,255}));

connect (Cdc.n, Inverter.nl) annotation (Line (points={{20,50},{34,50},{34,55},
{40,55}}, color={0,0,255}));

connect (PV.p, Rdc.p) annotation (Line(points={{-40,70},{-40,70},{-40,80},{-20,
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74 80}}, color={0,0,255}));

75 connect (Cdc.n, ground.p) annotation (Line (points={{20,50}, {20,48},{20,40},{-10,
76 40}}, color={0,0,255}));

77 connect (PV.n, ground.p)

78 annotation (Line (points={{-40,50},{-40,40},{-10,40}}, color={0,0,255}));

79 connect (Rdc.n, Cdc.p) annotation (Line (points={{0,80},{10,80},{20,80},{20,70}},
80 color={0,0,255}));

81 connect (Inverter.p2, L.p) annotation (Line (points={{60,65},{70,65},{70,90}, {

82 90,90},{90,84}}, color={0,0,255}));

83 connect (Inverter.n2, R.n) annotation (Line (points={{60,55},{70,55},{70,30}, {
84 90,30},{90,38}}, color={0,0,255}));

85 connect (idcSense.y, controller.idc) annotation (Line (points={{-19,-10},{0,-10},
86 {0,-26},{18,-26}}, color={0,0,127}));

87 connect (vdcSense.y, controller.vdc) annotation (Line (points={{-19,10},{10,10},
88 {10,-22},{18,-22}}, color={0,0,127}));

89 connect (vacEmulation.y, controller.vac) annotation (Line (points={{-19,-60}, {0,
90 -60},{0,-38},{18,-38}}, color={0,0,127}));

91 connect (iacSense.y, controller.iac)

92 annotation (Line (points={{-19,-34},{-0.5,-34},{18,-34}}, color={0,0,127}));
93 connect (ACPower.y, meanACPower.u)

94 annotation (Line (points={{61,-82},{64.5,-82},{68,-82}}, color={0,0,127}));

95 connect (controller.d, Inverter.d)

96 annotation (Line (points={{41,-30},{50,-30},{50,48}}, color={0,0,127}));

97 annotation (Diagram(coordinateSystem(initialScale=0.1)), experiment (StopTime=
98 3, Interval=0.001),

99 Documentation (info="<html>

100 <p>

101 This example adds a PV array to the DC side. To start as
102 simple as possible, the AC side is just a passive RL

103 load. A general controller for this kind of setup is

104 devised and packaged

105 as <a href=\"Modelica://

PVSystems.Control.Assemblies.InverterlphCompleteController\">
InverterlphCompleteController</a>. This

106 block accepts no input because it’s assumed that the

107 controller will try to extract the maximum active power

108 from the PV array. Internally, the g current setpoint is

109 set to zero.

110 </p>

111

112 <p>

113 Plotting the DC bus voltage and the output current

114 confirms shows that this is in fact how the controller

115 is behaving:

116 </p>

117

118

119 <div class=\"figure\">

120 <p><img src=\"modelica://PVSystems/Resources/Images/PVInverterlphResultsA.png
\"

121 alt=\"PVInverterlphResultsA.png\" />

122 </p>

123 </div>

124

125 <p>

126 The maximum power point is achieved by indirectly

127 balancing the difference between the power delivered by

128 the PV array and the power dumped on to the grid. As the

129 maximum power point is being reached, the difference

130 tends to zero:

131 </p>

132

133

134 <div class=\"figure\">

135 <p><img src=\"modelica://PVSystems/Resources/Images/PVInverterlphResultsB.png
\"
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136
137
138

alt=\"PVInverterlphResultsB.png\" /></p>
</div>
</html>"));

139 end PVInverterlph;

Examples/Application/PVInverterlphSynch.mo

1 within PVSystems.Examples.Application;
2 model PVInverterlphSynch

3

© © 9 ;o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
23
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
S5

"Grid-tied l-phase closed-loop inverter with PV source"
extends Modelica.Icons.Example;
Electrical.PVArray PV (v (start=450)) annotation (Placement (transformation (
origin={-40,70},
extent={{-10,-10}, {10, 10}},
rotation=270)));
Modelica.Blocks.Sources.Constant Gn(k=1000) annotation (Placement (
transformation (extent={{-80,70}, {-60,90}}, rotation=0)));
Modelica.Blocks.Sources.Constant Tn(k=298.15) annotation (Placement (
transformation (extent={{-80,30}, {-60,50}}, rotation=0)));
PVSystems.Electrical.Assemblies.HBridge Inverter annotation (
Placement (transformation (extent={{40,60}, {60,80}}, rotation=0)));
Modelica.Electrical.Analog.Sources.SineVoltage AC (freqHz=50, V=15)
annotation (Placement (transformation(
origin={86,10},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Inductor L(L=1le-3) annotation (Placement (
transformation (
origin={86,70},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Resistor R(R=1le-2) annotation (Placement (
transformation (
origin={86,40},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Basic.Capacitor Cdc(v(start=32.8), C=0.5)
annotation (Placement (transformation (
origin={24,70},
extent={{-10,-10}, {10,10}},
rotation=270)));
Control.Assemblies.InverterlphCompleteController Controller (
ik=0.1,
iT=0.01,
fline=50,
vk=10,
vT=0.5,
idMax=20,
igMax=20,
vdcMax=50)
annotation (Placement (transformation (
origin={30,-10},
extent={{-10,-10}, {10,10}},
rotation=0)));
Modelica.Electrical.Analog.Basic.Resistor Rdc (R=le-3, v (start=30))
annotation (Placement (transformation (extent={{-20,70},{0,90}}, rotation=0)));
Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
transformation (extent={{-20,40}, {0,60}}, rotation=0)));
Modelica.Blocks.Sources.RealExpression vdcSense (y=PV.v)

annotation (Placement (transformation (extent={{-40,10},{-20,30}})));
Modelica.Blocks.Sources.RealExpression idcSense (y=-PV.1i)
annotation (Placement (transformation (extent={{-40,-16},{-20,4}})));
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56 Modelica.Blocks.Sources.RealExpression iacSense (y=AC.1)

57 annotation (Placement (transformation (extent={{-40,-40},{-20,-20}})));
58 Modelica.Blocks.Sources.RealExpression vacSense (y=AC.vV)

59 annotation (Placement (transformation (extent={{-40,-64},{-20,-44}})));
60 Modelica.Blocks.Sources.RealExpression DCPower (y=-PV.i*xPV.v)

61 annotation (Placement (transformation (extent={{40,-72},{60,-52}1})));
62 Modelica.Blocks.Sources.RealExpression ACPower (y=AC.v*AC.1i)

63 annotation (Placement (transformation (extent={{40,-92},{60,-72}})));
64 Modelica.Blocks.Math.Mean meanACPower (£=50)

65 annotation (Placement (transformation (extent={{70,-92},{90,-72}})));

66 equation

67 connect (Gn.y, PV.G) annotation (Line (points={{-59,80},{-52,80},{-52,73},{-45.5,
68 73}}, color={0,0,127}));

69 connect (Tn.y, PV.T) annotation (Line(points={{-59,40},{-52,40},{-52,67},{-45.5,
70 67}}, color={0,0,127}));

71 connect (Cdc.p, Inverter.pl) annotation (Line (points={{24,80},{34,80},{34,75},
72 {40,75}}, color={0,0,255}));

73 connect (R.n, AC.p)

74 annotation (Line (points={{86,30},{86,20}}, color={0,0,255}));
75 connect (L.n, R.p)
76 annotation (Line (points={{86,60},{86,56},{86,50}}, color={0,0,255}));

77 connect (Cdc.n, Inverter.nl) annotation (Line (points={{24,60},{34,60},{34,65},
78 {40,65}}, color={0,0,255}));

79 connect (Inverter.p2, L.p) annotation (Line (points={{60,75},{70,75},{70,80}, {
80 86,80}}, color={0,0,255}));

81 connect (Inverter.n2, AC.n)

82 annotation (Line (points={{60,65},{70,65},{70,0},{86,0}}, color={0,0,255}));
83 connect (Rdc.n, Cdc.p)

84 annotation (Line (points={{0,80},{24,80}}, color={0,0,255}));

85 connect (PV.p, Rdc.p)

86 annotation (Line(points={{-40,80},{-30,80},{-20,80}}, color={0,0,255}));

87 connect (PV.n, Cdc.n)

88 annotation (Line (points={{-40,60},{24,60}}, color={0,0,255}));

89 connect (PV.n, ground.p)

90 annotation (Line (points={{-40,60},{-10,60}}, color={0,0,255}));

91 connect (Controller.d, Inverter.d)

92 annotation (Line (points={{41,-10},{50,-10},{50,58}}, color={0,0,127}));

93 connect (vdcSense.y, Controller.vdc) annotation (Line (points={{-19,20},{0,20},
94 {0,-2},{18,-2}},color={0,0,127}));

95 connect (idcSense.y, Controller.idc)

96 annotation (Line(points={{-19,-6},{-10,-6},{18,-6}}, color={0,0,127}));

97 connect (iacSense.y, Controller.iac) annotation (Line (points={{-19,-30},{-10,-30},
98 {-10,-14},{18,-14}}, color={0,0,127}));

99 connect (vacSense.y, Controller.vac) annotation (Line (points={{-19,-54},{0,-54},
100 {0,-18},{18,-18}}, color={0,0,127}));

101 connect (ACPower.y, meanACPower.u)

102 annotation (Line(points={{61,-82},{64.5,-82},{68,-82}}, color={0,0,127}));
103 annotation (Icon(graphics), experiment (StopTime=28, Interval=0.001),

104 __Dymola_experimentSetupOutput,

105 Documentation (info="<html>

106 <p>

107 This example represents a simple yet complete grid-tied

108 PV inverter system. A long simulation is performed so as

109 to visualize the time evolution of the MPPT control,

110 which is necessarily much slower than the output current

111 control. This long simulation time is manageable because

112 an averaged switch model is being used, which means that

113 the simulation can have longer time steps.

114 </p>

115

116 <p>

117 This evolution can be observed by plotting the DC bus

118 voltage as well as the input and output power to the

119 inverter:

120 </p>

121
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122

123 <div class=\"figure\">

124 <p><img src=\"modelica://PVSystems/Resources/Images/PVInverterlphSynchResultsA.png
\ll

125 alt=\"PVInverterlphSynchResultsA.png\" />

126 </p>

127 </div>

128

129 <p>

130 As expected, the power factor of the output power is 1

131 (all active power), having the output current in synch

132 with the grid voltage:

133 </p>

134

135

136 <div class=\"figure\">

137 <p><img src=\"modelica://PVSystems/Resources/Images/PVInverterlphSynchResultsB.png
\H

138 alt=\"PVInverterlphSynchResultsB.png\" /></p>

139 </div>

140 </html>"));

141 end PVInverterlphSynch;

Examples/Application/USBBatteryConverter.mo

1 within PVSystems.Examples.Application;
2 model USBBatteryConverter "Bidirectional converter for USB battery interface"
3 extends Modelica.Icons.Example;

4 Electrical.Assemblies.CPMBidirectionalBuckBoost conv (

5 Cin=10e-6,

6 Cout=88e-6,

7 L=10e-6,

8 Rf=1,

9 fs=200e3,

10 RL=8e-3,

11 Va_buck=0.5,

12 Va_boost=1,

13 vCin_ini=12.6,

14 vCout_ini=5,

15 il_ini=2) annotation (Placement (transformation (extent={{4,60},{24,80}})));
16 Modelica.Blocks.Sources.RealExpression boostVs (y=20)

17 annotation (Placement (transformation (extent={{-70,-10}, {-50,10}})));
18 Modelica.Blocks.Sources.RealExpression buckVs (y=5)

19 annotation (Placement (transformation (extent={{-70,-50}, {-50,-30}})));
20 Modelica.Electrical.Analog.Basic.Ground ground

21 annotation (Placement (transformation (extent={{40,40},{60,60}})));

22 Modelica.Electrical.Analog.Basic.Resistor Rbatt (R=50e-3)

23 annotation (Placement (transformation (extent={{-40,70},{-20,90}})));
24 Modelica.Blocks.Continuous.LimPID buckPI (

25 k=10,

26 controllerType=Modelica.Blocks.Types.SimpleController.PI,

27 Ti=1,

28 yMin=0,

29 yMax=8) annotation (Placement (transformation (extent={{-30,-30},{-10,-50}})));
30 Modelica.Blocks.Sources.RealExpression voutSense (y=conv.v2)

31 annotation (Placement (transformation (extent={{-70,-30},{-50,-10}})));
32 Modelica.Blocks.Continuous.LimPID boostPI (

33 k=10,

34 controllerType=Modelica.Blocks.Types.SimpleController.PI,

35 Ti=1,

36 yMin=0,

37 yMax=8) annotation (Placement (transformation (extent={{-30,-10},{-10,10}})));
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38 Modelica.Blocks.Logical.Switch modeSelector annotation (Placement (
39 transformation (

40 extent={{-10,-10}, {10,10}},
41 rotation=90,
42 origin={10,30})));

43 Modelica.Electrical.Analog.Basic.VariableResistor Rload annotation (Placement (
44 transformation (

45 extent={{-10,-10}, {10,10}},
46 rotation=270,
47 origin={50,70})));

48 Modelica.Electrical.Analog.Sources.SignalVoltage Vbatt annotation (Placement (
49 transformation (

50 extent={{-10,10}, {10,-10}},

51 rotation=270,

52 origin={-50,70})));

53 Modelica.Blocks.Sources.Ramp VbattSignal (

54 duration=0.1,

55 startTime=10,

56 offset=12.6,

57 height=9.6 - 12.6)

58 annotation (Placement (transformation (extent={{-90,60},{-70,80}1})));
59 Modelica.Blocks.Sources.Ramp RloadSignal (

60 duration=0.1,

61 startTime=10,

62 offset=2.5,

63 height=6.67 - 2.5)

64 annotation (Placement (transformation (extent={{90,60},{70,80}})));
65 Modelica.Blocks.Sources.BooleanExpression modeCommand (y=time > 10)

66 annotation (Placement (transformation (extent={{-70,-80},{-50,-60}1})));

67 equation

68 connect (Rbatt.n, conv.pl) annotation (Line (points={{-20,80},{-6,80},{-6,75}, {
69 4,75}}, color={0,0,255}));

70 connect (buckVs.y, buckPI.u_s)

71 annotation (Line (points={{-49,-40},{-32,-40}}, color={0,0,127}));

72 connect (voutSense.y, buckPI.u_m)

73 annotation (Line (points={{-49,-20},{-20,-20},{-20,-28}}, color={0,0,127}));
74 connect (boostVs.y, boostPI.u_s)

75 annotation (Line (points={{-49,0},{-32,0}}, color={0,0,127}));

76 connect (conv.n2, ground.p) annotation (Line (points={{24,65},{34,65},{34,60}, {
77 50,60}}, color={0,0,255}));
78 connect (voutSense.y, boostPI.u_m) annotation (Line (points={{-49,-20},{-34,-20},

79 {-20,-20},{-20,-12}},color={0,0,127}));

80 connect (modeSelector.y, conv.vc)

81 annotation (Line (points={{10,41},{10,41},{10,58}}, color={0,0,127}));

82 connect (boostPI.y, modeSelector.ul)

83 annotation (Line (points={{-9,0},{2,0},{2,18}}, color={0,0,127}));

84 connect (buckPI.y, modeSelector.u3)

85 annotation (Line (points={{-9,-40},{18,-40},{18,18}}, color={0,0,127}));
86 connect (Vbatt.p, Rbatt.p)

87 annotation (Line (points={{-50,80},{-46,80},{-40,80}}, color={0,0,255}));
88 connect (Vbatt.n, conv.nl) annotation (Line (points={{-50,60},{-50,60},{-6,60},
89 {-6,65},{4,65}}, color={0,0,255}));

90 connect (ground.p, Rload.n)

91 annotation (Line (points={{50,60},{50,60}}, color={0,0,255}));

92 connect (Rload.p, conv.p2) annotation (Line (points={{50,80},{34,80},{34,75}, {
93 24,75}}, color={0,0,255}));
94 connect (VbattSignal.y, Vbatt.v)

95 annotation (Line (points={{-69,70},{-57,70}}, color={0,0,127}));

96 connect (RloadSignal.y, Rload.R)

97 annotation (Line (points={{69,70},{61,70}}, color={0,0,127}));

98 connect (modeCommand.y, modeSelector.u2) annotation (Line (points={{-49,-70}, {10,
99 -70}, {10,18}}, color={255,0,255}));

100 connect (modeCommand.y, conv.mode) annotation (Line (points={{-49,-70},{30,-70},
101 {30,50},{18,50},{18,58}}, color={255,0,255}));

102 annotation (experiment (StopTime=20, Interval=0.001),

103 __Dymola_experimentSetupOutput,
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104 Documentation (info="<html>

105 <p>

106 A battery, simulated with a controlled voltage source in

107 series with a small resistance, 1is interfaced with a USB

108 device, simulated with a resistive load. The converter

109 is a component included in

110 the <a href=\"Modelica://PVSystems.Electrical.Assemblies\">Electrical.Assemblies
</a>

111 package.

112 </p>

113

114 <p>

115 This example is borrowed

116 from <a href=\"modelica://PVSystems.UsersGuide.References.EMA16\">EMAl6</a>. The

117 application is not that related with photovoltaics, but

118 provides a good showcase of the power electronics models

119 in this library. The converter is specified to have

120 three operating modes:

121 </p>

122

123 <ul class=\"org-ul\">

124 <li>Battery voltage 12.6V, USB voltage 5+/-0.1V at 23,

125 converter supplies bus.

126 </1li>

127 <li>Battery voltage 9.6V, USB voltage 20+/-0.1V at 33,

128 converter supplies bus.

129 </1li>

130 <li>Battery voltage 11.1V, USB voltage 20V, bus supplies

131 60W to charge battery.

132 </1li>

133 </ul>

134

135 <p>

136 An efficient solution to these step-down and

137 bidirectional step-up requirements is a non-inverting

138 buck-boost converter with bi-directional switches

139 operated in a buck/boost modal fashion (i.e. the boost

140 switches are disabled while in buck mode and vice

141 versa) . A possible solution to these requirements using

142 this topology is expressed through the parametrization

143 of <a href=\"modelica://
PVSystems.Electrical.Assemblies.CPMBidirectionalBuckBoost\">
CPMBidirectionalBuckBoost</a>:

144 </p>

145

146

147 <div class=\"figure\">

148 <p><img src=\"modelica://PVSystems/Resources/Images/
USBBatteryConverterParameters.png\"

149 alt=\"USBBatteryConverterParameters.png\" />

150 </p>

151 </div>

152

153 <p>

154 This converter model includes both the electrical and

155 control components of a Current-Peak Mode controlled

156 modal non-inverting buck-boost. The default stop time is

157 set at 20 seconds. Running the simulation and plotting

158 the output voltage and current produces the following

159 result:

160 </p>

161

162

163 <div class=\"figure\">

164 <p><img src=\"modelica://PVSystems/Resources/Images/

USBBatteryConverterResults.png\"
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165 alt=\"USBBatteryConverterResults.png\" /></p>
166 </div>
167 </html>"));

168 end USBBatteryConverter;

Examples/package.mo

within PVSystems;
package Examples "Application and validation examples"
extends Modelica.Icons.ExamplesPackage;

[N R S

end Examples;

Examples/package.order

1 Application
2 Verification

Examples/Verification/CCM_DCMXVerification.mo

1 within PVSystems.Examples.Verification;
2 model CCM_DCMXVerification "Averaged CCM_DCM models verification”
3 extends Modelica.Icons.Example;

4 Modelica.Blocks.Sources.Ramp duty (

5 duration=0.8,

6 startTime=0.1,

7 height=0.8,

8 offset=0.1) annotation (Placement (transformation (

9 extent={{-10,-10}, {10,101} },

10 rotation=0,

11 origin={-70,-30})));

12 Electrical.CCM_DCM1 ccm_dcml (fs=100e3, Le=0.6e-6)

13 annotation (Placement (transformation (extent={{30,60},{50,80}})));

14 Modelica.Electrical.Analog.Sources.ConstantVoltage V1 (V=10) annotation (
15 Placement (transformation (

16 extent={{-10,-10}, {10,10}},
17 rotation=270,
18 origin={-20,70})));

19 Modelica.Electrical.Analog.Basic.Resistor R1(R=1) annotation (Placement (
20 transformation (

21 extent={{-10,10},{10,-10}},

22 rotation=270,

23 origin={80,70})));

24 Modelica.Electrical.Analog.Basic.Ground gl

25 annotation (Placement (transformation (extent={{10,40},{30,60}})));
26 Modelica.Electrical.Analog.Basic.Ground g2

27 annotation (Placement (transformation (extent={{50,40},{70,60}})));
28 Modelica.Electrical.Analog.Basic.Resistor Ril (R=1e-3)

29 annotation (Placement (transformation (extent={{-10,70},{10,90}})));
30 Electrical.CCM_DCM2 ccm_dcm2 (

31 fs=100e3,

32 n=2,

33 Le=0.6e-6)
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34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
89
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

annotation (Placement (transformation (extent={{30,0},{50,20}})));
Modelica.Electrical.Analog.Sources.ConstantVoltage V2 (V=10) annotation (
Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={-20,10})));
Modelica.Electrical.Analog.Basic.Resistor R2 (R=1) annotation (Placement (
transformation (
extent={{-10,10}, {10,-10}},
rotation=270,
origin={80,10})));
Modelica.Electrical.Analog.Basic.Ground g3
annotation (Placement (transformation (extent={{10,-20},{30,0}})));
Modelica.Electrical.Analog.Basic.Ground g4
annotation (Placement (transformation (extent={{50,-20},{70,0}})));
Modelica.Electrical.Analog.Basic.Resistor Ri2 (R=1le-3)
annotation (Placement (transformation (extent={{-10,10},{10,30}})));
equation
connect (V1.p,Ril. p)
annotation (Line (points={{-20,80},{-15,80},{-10,80}}, color={0,0,255}));
connect (Ril.n, ccm_dcml.pl) annotation (Line (points={{10,80},{20,80},{20,75},
30,75}}, color={0,0,255}));
connect (gl.p, ccm_dcml.nl) annotation (Line (points={{20,60},{20,60},{20,65}, {30,
65}}, color={0,0,255}));
connect (R1.p, ccm_dcml.p2) annotation (Line (points={{80,80},{60,80},{60,75}, {50,
75}}, color={0,0,255}));
connect (g2.p, ccm_dcml.n2) annotation (Line (points={{60,60},{60,60},{60,65}, {50,
65}}, color={0,0,255}));
connect (R1.n, g2.p)
annotation (Line (points={{80,60},{60,60}}, color={0,0,255}));
connect (V1.n,gl. p)
annotation (Line (points={{-20,60},{0,60},{20,60}}, color={0,0,255}));
connect (V2.p,Ri2. p)
annotation (Line (points={{-20,20}, {-20,20},{-10,20}}, color={0,0,255}));
connect (V2.n,g3. p)
annotation (Line (points={{-20,0},{-10,0},{20,0}}, color={0,0,255}));
connect (Ri2.n, ccm_dcm2.pl) annotation (Line (points={{10,20},{20,20},{20,15}, {
30,15}}, color={0,0,255}));
connect (g3.p, ccm_dcm2.nl)
annotation (Line (points={{20,0},{20,5},{30,5}}, color={0,0,255}));
connect (g4.p, ccm_dcm2.n2)
annotation (Line (points={{60,0},{60,5},{50,5}}, color={0,0,255}));
connect (R2.n, g4.p)
annotation (Line (points={{80,0},{70,0},{60,0}}, color={0,0,255}));
connect (R2.p, ccm_dcm2.p2) annotation (Line(points={{80,20},{60,20},{60,15},{50,
15}}, color={0,0,255}));
connect (duty.y, ccm_dcm2.d)
annotation (Line (points={{-59,-30}, {40,-30},{40,-2}}, color={0,0,127}));
connect (duty.y, ccm_dcml.d) annotation (Line (points={{-59,-30},{-40,-30},{-40,
40}, {40,40}, {40,58}}, color={0,0,127}));
annotation (
experiment (StartTime=0, StopTime=1l, Tolerance=le-3), Diagram(graphics={
Rectangle (extent={{-90,90}, {90,-50}}, lineColor={255,255,255})1}));

87 end CCM_DCMXVerification;

Examples/Verification/CCMXVerification.mo

1 within PVSystems.Examples.Verification;
2 model CCMXVerification "CCMX models verification"

3
4
5)

extends Modelica.Icons.Example;
Electrical.CCM1l ccml
annotation (Placement (transformation (extent={{30,110},{50,130}1})));
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156

Modelica.Blocks.Sources.Ramp duty (
duration=0.8,
startTime=0.1,

height=0.8,
offset=0.1) annotation (Placement (transformation (
extent={{-10,-10}, {10,10}},

rotation=0,
origin={-80,-120})));
Modelica.Electrical.Analog.Sources.ConstantVoltage V1 (V=10) annotation (
Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={-20,120})));
Modelica.Electrical.Analog.Basic.Resistor R1(R=1) annotation (Placement (
transformation (
extent={{-10,10},{10,-10}},
rotation=270,
origin={80,120})));
Modelica.Electrical.Analog.Basic.Ground gl
annotation (Placement (transformation (extent={{10,90},{30,110}})));
Modelica.Electrical.Analog.Basic.Ground g2
annotation (Placement (transformation (extent={{50,90},{70,110}})));
Modelica.Electrical.Analog.Basic.Resistor Ril (R=1le-3)

annotation (Placement (transformation (extent={{-10,120},{10,140}})));
Electrical.CCM2 ccm2 (

Ron=1,

RD=0.01,

VD=0.8)

annotation (Placement (transformation (extent={{30,60}, {50,80}})));
Modelica.Electrical.Analog.Sources.ConstantVoltage V2 (V=10) annotation (
Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={-20,70})));
Modelica.Electrical.Analog.Basic.Resistor R2(R=1) annotation (Placement (
transformation (
extent={{-10,10},{10,-10}},
rotation=270,
origin={80,70})));
Modelica.Electrical.Analog.Basic.Ground g3
annotation (Placement (transformation (extent={{10,40},{30,60}})));
Modelica.Electrical.Analog.Basic.Ground g4
annotation (Placement (transformation (extent={{50,40},{70,60}})));
Modelica.Electrical.Analog.Basic.Resistor Ri2 (R=1le-3)
annotation (Placement (transformation (extent={{-10,70},{10,90}})));
Electrical.CCM3 ccm3 (n=2)
annotation (Placement (transformation (extent={{30,10}, {50,30}})));
Modelica.Electrical.Analog.Sources.ConstantVoltage V3 (V=10) annotation (
Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={-20,20})));
Modelica.Electrical.Analog.Basic.Resistor R3(R=1) annotation (Placement (
transformation (
extent={{-10,10},{10,-10}},
rotation=270,
origin={80,20})));
Modelica.Electrical.Analog.Basic.Ground g5
annotation (Placement (transformation (extent={{10,-10},{30,10}})));
Modelica.Electrical.Analog.Basic.Ground g6
annotation (Placement (transformation (extent={{50,-10},{70,10}})));
Modelica.Electrical.Analog.Basic.Resistor Ri3 (R=1le-3)
annotation (Placement (transformation (extent={{-10,20}, {10,40}})));
Electrical.CCM4 ccm4 (
Ron=1,
RD=0.01,



101

106

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
129
126
127
128
129
130
131
132
133
134
135
136
137

n=2,
VD=0.8)
annotation (Placement (transformation (extent={{30,-40},{50,-20}})));
Modelica.Electrical.Analog.Sources.ConstantVoltage V4 (V=10) annotation (
Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={-20,-30})));
Modelica.Electrical.Analog.Basic.Resistor R4 (R=1) annotation (Placement (
transformation (
extent={{-10,10},{10,-10}},
rotation=270,
origin={80,-30})));
Modelica.Electrical.Analog.Basic.Ground g7
annotation (Placement (transformation (extent={{10,-60},{30,-40}})));
Modelica.Electrical.Analog.Basic.Ground g8

annotation (Placement (transformation (extent={{50,-60},{70,-40}})));
Modelica.Electrical.Analog.Basic.Resistor Ri4 (R=1le-3)

annotation (Placement (transformation (extent={{-10,-30},{10,-10}})));
Electrical.CCM5 ccmb (

Ron=1,

VvD=0.8,

fs=100e3,

Qr=0.75e-6,

tr=75e-9)

annotation (Placement (transformation (extent={{30,-92},{50,-72}})));

Modelica.Electrical.Analog.Sources.ConstantVoltage V5 (V=10) annotation (
Placement (transformation (
extent={{-10,-10}, {10,10}},
rotation=270,
origin={-20,-82})));
Modelica.Electrical.Analog.Basic.Resistor R5(R=1) annotation (Placement (
transformation (
extent={{-10,10},{10,-10}},
rotation=270,
origin={80,-82})));
Modelica.Electrical.Analog.Basic.Ground g9
annotation (Placement (transformation (extent={{10,-112},{30,-92}1})));
Modelica.Electrical.Analog.Basic.Ground gl0

annotation (Placement (transformation (extent={{50,-112},{70,-92}1})));
Modelica.Electrical.Analog.Basic.Resistor Ri5 (R=1le-3)
annotation (Placement (transformation (extent={{-10,-82},{10,-62}})));
equation
connect (R1.p, ccml.p2) annotation (Line (points={{80,130},{60,130},{60,125}, {
50,125}},

color={0,0,255}));
connect (ccml.n2,R1. n)
annotation (Line (points={{50,115},{60,115},{60,110}, {80,110}},
color={0,0,255}));
connect (gl.p, ccml.nl) annotation (Line(points={{20,110},{20,110},{20,115}, {
30,115},
color={0,0,255}));
connect (V1.n, gl.p)
annotation (Line (points={{-20,110},{20,110}},
color={0,0,255}),
experiment (
StartTime=0,
StopTime=1,
Tolerance=1le-3));
connect (Vl.p, Ril.p)
annotation (Line (points={{-20,130},{-10,130}}, color={0,0,255}));
connect (Ril.n, ccml.pl) annotation (Line (points={{10,130},{20,130},{20,125}, {
30,125}}, color={0,0,255}));
connect (duty.y, ccmb5.d) annotation (Line(points={{-69,-120},{-14,-120}, {40,
-120}, {40,-94}}, color={0,0,127}));
connect (ccm4.d, ccmb5.d) annotation (Line(points={{40,-42},{40,-60},{-52,-60},
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138 {-52,-120}, {40,-120}, {40,-94}}, color={0,0,127}));
139 connect (ccm3.d, ccm5.d) annotation (Line (points={{40,8},{40,-10},{-52,-10}, {
140 -52,-120}, {40,-120}, {40,-94}}, color={0,0,127}));
141 connect (ccm2.d, ccmb5.d) annotation (Line (points={{40,58},{40,40},{-52,40},{
142 -52,-120}, {40,-120},{40,-94}}, color={0,0,127}));
143 connect (ccml.d, ccmb5.d) annotation (Line (points={{40,108},{40,92},{-52,92}, {
144 -52,-120}, {40,-120},{40,-94}}, color={0,0,127}));

145 connect (V2.p, Ri2.p)

146 annotation (Line (points={{-20,80},{-10,80},{-10,80}}, color={0,0,255}));

147 connect (Ri2.n, ccm2.pl) annotation (Line (points={{10,80},{20,80},{20,75}, {30,
148 75}}, color={0,0,255}));

149 connect (g3.p, ccm2.nl) annotation (Line (points={{20,60},{20,60},{20,65}, {30,
150 65}}, color={0,0,255}));

151 connect (R2.p, ccm2.p2) annotation (Line (points={{80,80},{60,80},{60,75},{50,
152 75}}, color={0,0,255}));

153 connect (g4.p, ccm2.n2) annotation (Line (points={{60,60},{60,60},{60,65},{50,
154 65}}, color={0,0,255}));

155 connect (V3.p, Ri3.p)

156 annotation (Line (points={{-20,30},{-15,30},{-10,30}}, color={0,0,255}));

157 connect (Ri3.n, ccm3.pl) annotation (Line (points={{10,30},{20,30},{20,25},{30,
158 25}}, color={0,0,255}));

159 connect (g5.p, ccm3.nl) annotation (Line (points={{20,10},{20,10},{20,15}, {30,
160 15}}, color={0,0,255}));

161 connect (R3.p, ccm3.p2) annotation (Line (points={{80,30},{72,30},{60,30}, {60,
162 25}, {50,25}}, color={0,0,255}));

163 connect (g6.p, ccm3.n2) annotation (Line (points={{60,10},{60,6},{60,15},{50,15}},
164 color={0,0,255}));

165 connect (V4.p, Rid.p)

166 annotation (Line(points={{-20,-20},{-15,-20},{-10,-20}}, color={0,0,255}));
167 connect (Ri4.n, ccmé4.pl) annotation (Line (points={{10,-20}, {20,-20},{20,-25}, {
168 30,-25}}, color={0,0,255}));

169 connect (g7.p, ccm4.nl) annotation (Line (points={{20,-40}, {20,-40},{20,-35}, {
170 30,-35}}, color={0,0,255}));

171 connect (V5.p, Ri5.p)

172 annotation (Line (points={{-20,-72},{-15,-72},{-10,-72}}, color={0,0,255}));
173 connect (Ri5.n, ccm5.pl) annotation (Line (points={{10,-72},{20,-72},{20,-77},{
174 30,-77}}, color={0,0,255}));

175 connect (g9.p, ccm5.nl) annotation (Line (points={{20,-92},{20,-92},{20,-87}, {
176 30,-87}}, color={0,0,255}));

177 connect (R5.p, ccm5.p2) annotation (Line (points={{80,-72},{60,-72},{60,-77},{
178 50,-77}}, color={0,0,255}));

179 connect (gl0.p, ccm5.n2) annotation (Line (points={{60,-92},{60,-92},{60,-87}, {
180 50,-87}}, color={0,0,255}));

181 connect (R4.p, ccm4.p2) annotation (Line (points={{80,-20},{60,-20},{60,-25}, {
182 50,-25}}, color={0,0,255}));

183 connect (g8.p, ccm4.n2) annotation (Line (points={{60,-40}, {60,-40},{60,-35}, {
184 50,-35}}, color={0,0,255}));

185 connect (ccml.n2, g2.p)

186 annotation (Line (points={{50,115},{60,115},{60,110}}, color={0,0,255}));

187 connect (R2.n, g4.p)

188 annotation (Line (points={{80,60},{70,60},{60,60}}, color={0,0,255}));

189 connect (R3.n, g6.p)

190 annotation (Line (points={{80,10},{78,10},{60,10}}, color={0,0,255}));

191 connect (R4.n, g8.p)

192 annotation (Line (points={{80,-40},{60,-40}}, color={0,0,255}));

193 connect (R5.n, gl0.p)

194 annotation (Line (points={{80,-92},{60,-92}}, color={0,0,255}));

195 connect (V2.n, g3.p)

196 annotation (Line(points={{-20,60},{0,60},{20,60}}, color={0,0,255}));

197 connect (V3.n, g5.p)

198 annotation (Line(points={{-20,10},{0,10},{20,10}}, color={0,0,255}));
199 connect (V4.n, g7.p)

200 annotation (Line(points={{-20,-40},{0,-40},{20,-40}}, color={0,0,255}));
201 connect (V5.n, g9.p)

202 annotation (Line (points={{-20,-92},{0,-92},{20,-92}}, color={0,0,255}));

203 annotation (

158



204 experiment (

205 StartTime=0, StopTime=1,Tolerance=le-3),

206 Diagram (

207 coordinateSystem(extent={{-100,-140}, {100,140}}, initialScale=0.1),

208 graphics={Rectangle (extent={{-100, 140}, {100,-140}}, lineColor={255,255,
209 255}) 1),

210 Icon (

211 coordinateSystem(extent={{-100,-100}, {100,100}}, initialScale=0.1)));

212 end CCMXVerification;

Examples/Verification/CPM_CCMVerification.mo

1 within PVSystems.Examples.Verification;

2 model CPM_CCMVerification "Averaged CPM_CCM verification"

3 extends Modelica.Icons.Example;

4 Control.SwitchingCPM switchingCPM (

5 dMin=0.05,

6 dMax=0.95,

7 fs=200e3,

8 vcMax=10,

9 Va=0.01) annotation (Placement (transformation (extent={{-40,36},{-20,56}1})));

10 Modelica.Blocks.Continuous.Integrator integrator (initType=
Modelica.Blocks.Types.Init.InitialState,

11 k=1e4,

12 y_start=3.99)

13 annotation (Placement (transformation (extent={{50,40},{70,60}})));
14 Modelica.Blocks.Sources.Constant vdT (k=2)

15 annotation (Placement (transformation (extent={{-40,70},{-20,90}1})));
16 Modelica.Blocks.Logical.Switch switchl

17 annotation (Placement (transformation (extent={{20,40},{40,60}})));
18 Modelica.Blocks.Sources.Constant vdpT (k=-1)

19 annotation (Placement (transformation (extent={{-40,4},{-20,24}})));
20 Modelica.Blocks.Sources.Constant vc (k=4)

21 annotation (Placement (transformation (extent={{-90,40},{-70,60}})));
22 Control.CPM_CCM CPM_CCM (

23 L=le-4,

24 fs=200e3,

25 Rf=1,

26 d_disabled=0.05,

27 Va=0.01) annotation (Placement (transformation (extent={{40,-40},{60,-20}})));
28 Modelica.Blocks.Math.Abs absl

29 annotation (Placement (transformation (extent={{0,-70}, {20,-50}})));

30 Modelica.Blocks.Sources.BooleanStep enable (startTime=le-5) annotation (
31 Placement (transformation (

32 extent={{-10,-10}, {10,10}},

33 rotation=90,

34 origin={50,-60})));

35 Modelica.Blocks.Math.Mean mean (£=200e3)

36 annotation (Placement (transformation (extent={{-40,-36},{-20,-16}1})));

37 equation
38 connect (vdT.y, switchl.ul)

39 annotation (Line (points={{-19,80},{0,80},{0,58},{18,58}},

40 color={0,0,127}));
41 connect (switchl.y, integrator.u)

42 annotation (Line (points={{41,50},{41,50},{48,50}},

43 color={0,0,127}));

44 connect (vdpT.y, switchl.u3) annotation (Line(points={{-19,14},{10,14},{10,42},
45 {18,42}}, color={0,0,127}));

46 connect (switchingCPM.c, switchl.u2)

47 annotation (Line (points={{-19,50}, {18,50}},

48 color={255,0,255}));

49 connect (integrator.y, switchingCPM.vs) annotation (Line (points={{71,50},{80,50},
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50
51
52
53
54
515)
56
57
58
59
60
61
62
63
64
65
66
67
68
69

{80,-80}, {-50,-80},{-50,42}, {-42,42}}, color={0,0,127}));
connect (vc.y, switchingCPM.vc)
annotation (Line (points={{-69,50},{-42,50}},

color={0,0,127}));

connect (CPM_CCM.vc, switchingCPM.vc) annotation (Line (points={{38,-20},{20,-20},
{20,-8},{-60,-8}, {-60,50}, {-42,50}}, color={0,0,127}));
connect (absl.u, vdpT.y) annotation (Line (points={{-2,-60},{-10,-60}, {-10,14},{
-19,14}}, color={0,0,127}));
connect (absl.y, CPM_CCM.vm2) annotation (Line (points={{21,-60},{28,-60},{28,-40},
{38,-40}}, color={0,0,127}));
connect (CPM_CCM.vml, vdT.y) annotation (Line(points={{38,-34},{0,-34},{0,80},{
-19,80}}, color={0,0,127}));
connect (mean.y, CPM_CCM.vs)
annotation (Line (points={{-19,-26},{10,-26},{38,-26}}, color={0,0,127}));
connect (mean.u, switchingCPM.vs) annotation (Line (points={{-42,-26},{-50,-26},
{-50,42},{-42,42}}, color={0,0,127}));
connect (enable.y, CPM_CCM.enable)
annotation (Line (points={{50,-49},{50,-42}}, color={255,0,255}));
annotation (experiment (StopTime=2e-4), Diagram(graphics={Rectangle (extent={{

-100,100}, {90,-90}}, lineColor={255,255,255})1}));

70 end CPM_CCMVerification;

Examples/Verification/CPMVerification.mo

1 within PVSystems.Examples.Verification;
2 model CPMVerification "Averaged CPM verification"
extends Modelica.Icons.Example;

26
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extends Modelica.Icons.UnderConstruction;
Control.SwitchingCPM switchingCPM (

dMin=0.05,

dMax=0.95,

£s=200e3,

vcMax=10,

Va=0.1) annotation (Placement (transformation (extent={{-40,36},{-20,56}})));
Modelica.Blocks.Continuous.LimIntegrator

integrator (initType=Modelica.Blocks.Types.Init.InitialState,

k=1e4,

outMin=0,

outMax=Modelica.Constants.inf)

annotation (Placement (transformation (extent={{50,40},{70,60}})));
Modelica.Blocks.Sources.Constant vdT (k=6)

annotation (Placement (transformation (extent={{-40,70},{-20,90}})));
Modelica.Blocks.Logical.Switch switchl

annotation (Placement (transformation (extent={{20,40}, {40,60}})));
Modelica.Blocks.Sources.Constant vdpT (k=-3)

annotation (Placement (transformation (extent={{-40,4},{-20,24}})));
Modelica.Blocks.Sources.Constant vc (k=0.5)

annotation (Placement (transformation (extent={{-90,40},{-70,60}1})));
Control.CPM CPM(

fs=200e3,

Rf=1,

L=1le-4,

Va=0.1l) annotation (Placement (transformation (extent={{40,-40},{60,-20}})));
Modelica.Blocks.Math.Abs absl

annotation (Placement (transformation (extent={{0,-70},{20,-50}1})));
Modelica.Blocks.Math.Mean mean (£=200e3)

annotation (Placement (transformation (extent={{-40,-36},{-20,-16}})));

equation

connect (vdT.y, switchl.ul)

annotation (Line(points={{-19,80},{0,80},{0,58},{18,58}},

color={0,0,127}));



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
58
56
57
58
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60
61
62
63
64
65

connect (switchl.y, integrator.u)
annotation (Line (points={{41,50}, {41,50},{48,50}},
color={0,0,127}));
connect (vdpT.y, switchl.u3) annotation (Line(points={{-19,14},{10,14},{10,42},
{18,42}}, color={0,0,127}));
connect (switchingCPM.c, switchl.u2)
annotation (Line (points={{-19,50},{18,50}},
color={255,0,255}));
connect (integrator.y, switchingCPM.vs) annotation (Line (points={{71,50},{80,50},
{80,-80}, {-50,-80}, {-50,42}, {-42,42}}, color={0,0,127}));
connect (vc.y, switchingCPM.vc)
annotation (Line (points={{-69,50}, {-42,50}},
color={0,0,127}));
connect (CPM.vc, switchingCPM.vc) annotation (Line (points={{38,-20},{20,-20}, {
20,-8},{-60,-8},{-60,50},{-42,50}}, color={0,0,127}));
connect (absl.u, vdpT.y) annotation (Line(points={{-2,-60},{-10,-60},{-10,14}, {
-19,14}}, color={0,0,127}));
connect (absl.y, CPM.vm2) annotation (Line (points={{21,-60}, {28,-60},{28,-40},
{38,-40}}, color={0,0,127}));
connect (CPM.vml, vdT.y) annotation (Line(points={{38,-34},{0,-34},{0,80},{-19,
80}}, color={0,0,127}));
connect (mean.y, CPM.vs)
annotation (Line (points={{-19,-26},{10,-26},{38,-26}}, color={0,0,127}));
connect (mean.u, switchingCPM.vs) annotation (Line (points={{-42,-26},{-50,-26},
{-50,42},{-42,42}}, color={0,0,127}));
annotation (experiment (StopTime=2e-4), Diagram(graphics={Rectangle (extent={{
-100,100}, {90,-90}}, lineColor={255,255,255})1}));
end CPMVerification;

Examples/Verification/DeadTimeVerification.mo

©® 9 o s W N e

10
11
12
13
14

within PVSystems.Examples.Verification;
model DeadTimeVerification "DeadTime verification"
extends Modelica.Icons.Example;
Control.DeadTime deadTime (deadTime=0.03)
annotation (Placement (transformation (extent={{0,-10},{20,10}})));
Modelica.Blocks.Sources.BooleanPulse booleanPulse (period=0.2)
annotation (Placement (transformation (extent={{-40,-10},{-20,10}})));
equation
connect (booleanPulse.y, deadTime.c)
annotation (Line (points={{-19,0},{-2,0}}, color={255,0,255}));
annotation (
experiment (StartTime=0, StopTime=1l, Tolerance=le-3), Diagram(graphics={
Rectangle (extent={{-50,20}, {30,-20}}, lineColor={255,255,255})1}));
end DeadTimeVerification;

Examples/Verification/IdealCBSwitchVerification.mo

1
2
3

4
5]
6
7
8
9

within PVSystems.Examples.Verification;
model IdealCBSwitchVerification
"Ideal current bidirectional switch verification"
extends Modelica.Icons.Example;
Electrical.IdealCBSwitch idealCBSwitch annotation (Placement (transformation (
origin={-30,10},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Sources.SineVoltage sineVoltage (freqgHz=5, V=1)
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annotation (Placement (transformation (

origin={30,10},
extent={{-10,-10}, {10,10}},
rotation=270)));

Modelica.Blocks.Sources.BooleanStep booleanStep (startValue=true, startTime=
0.5) annotation (Placement (transformation (extent={{-70,0},{-50,20}},

rotation=0)));

Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
transformation (extent={{-10,-30}, {10,-10}}, rotation=0)));

Modelica.Electrical.Analog.Basic.Resistor resistor (R=2) annotation (Placement (

transformation (
origin={0,30},
extent={{-10,-10}, {10,10}},
rotation=180)));

equation

connect (booleanStep.y, idealCBSwitch.c)
annotation (Line (points={{-49,10},{-49,10},{-37,10}}, color={255,0,255}));
connect (idealCBSwitch.p, resistor.n)
annotation (Line (points={{-30,20},{-30,30},{-10,30}}, color={0,0,255}));
connect (resistor.p, sineVoltage.p)
annotation (Line (points={{10,30},{30,30},{30,20}}, color={0,0,255}));
connect (idealCBSwitch.n, ground.p)
annotation (Line (points={{-30,0},{-30,-10},{0,-10}}, color={0,0,255}));
connect (ground.p, sineVoltage.n) annotation (Line (points={{0,-10},{16,-10}, {
30,-10},{30,0}}, color={0,0,255}));
annotation (
experiment (
StartTime=0,
StopTime=1,
Tolerance=le-3),
Documentation (info="<html>
<p>
This example presents a circuit composed of a resistor
in series with a sinusoidal AC voltage source and the
ideal current bidirectional switch. The switch is
operated by a step block that changes from 0 to 1 in the
middle of the simulation. This changes the state of the
switch from open to closed.
</p>

<p>
To use the example, simulate the model as provided and
plot the source voltage as well as the switch voltage,
the plot should look like this:

</p>

<div class=\"figure\">
<p><img src=\"modelica://PVSystems/Resources/Images/
IdealCBSwitchVerificationResults.png\"
alt=\"IdealCBSwitchVerificationResults.png\" />
</p>
</div>

<p>
Notice how at the begining of the simulation, when the
switch is not closed, it blocks all the positive
voltage, preventing current from flowing. On the other
hand, the negative voltage is not blocked, so the
current can flow (through the anti-parallel diode). When
the switch is closed using the firing signal, it never
blocks voltage, allowing bidirectional flow of current.

</p>

<p>
Plot the voltage drop in the resistor to confirm these



75
76
77
78
79

results or play with the parameter values to see what
effects they have.</p>
</html>"),
Diagram(graphics={Rectangle (extent={{-80,40}, {48,-30}}, lineColor={255,255,
255}) 1))

80 end IdealCBSwitchVerification;

Examples/Verification/MPPTControllerVerification.mo

1 within PVSystems.Examples.Verification;
2 model MPPTControllerVerification "MPPT controller verification"

3

© 9 o ;o

10
11
12
13
14
15
16
17
18
19
20
21
2]
23
24
2%
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

extends Modelica.Icons.Example;
Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
transformation (extent={{-30,-40}, {-10,-20}}, rotation=0)));
Electrical.PVArray pVArray annotation (Placement (transformation (
origin={-40,-10},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Sources.SignalVoltage sink annotation (Placement (
transformation (
origin={0,-10},
extent={{-10,-10}, {10,10}},
rotation=270)));
Control.MPPTController mpptController (
sampleTime=1,
pkThreshold=0.01,
vrefStep=1,
vrefStart=5) annotation (Placement (transformation (
origin={-30,74},
extent={{-10,-10}, {10,10}},
rotation=0)));
Modelica.Blocks.Sources.Ramp G (
offset=1000,
height=-500,
startTime=30,

duration=10) annotation (Placement (transformation (extent={{-90,0},{-70,20}},
rotation=0)));
Modelica.Blocks.Sources.Ramp T (
height=-25,

offset=273.15 + 25,
startTime=50,
duration=50) annotation (Placement (transformation (extent={{-80,-80}, {-60,-60}},
rotation=0)));
Modelica.Blocks.Math.Add vdcSetpoint annotation (Placement (transformation (
origin={30,54},
extent={{-10,-10}, {10,10}},
rotation=0)));
Modelica.Blocks.Sources.Ramp perturbation (
height=10,
offset=0,
duration=20,
startTime=130) annotation (Placement (transformation (
origin={-30,34},
extent={{-10,-10}, {10,10}},
rotation=0)));
Modelica.Blocks.Sources.RealExpression vsense (y=sink.v)
annotation (Placement (transformation (extent={{-80,70},{-60,90}})));
Modelica.Blocks.Sources.RealExpression isense(y=sink.i)

annotation (Placement (transformation (extent={{-80,44},{-60,64}})));
Modelica.Blocks.Sources.RealExpression vdcSetpointl (y=26)
annotation (Placement (transformation (extent={{60,-60},{40,-40}})));

Modelica.Electrical.Analog.Basic.Ground groundl annotation (Placement (
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transformation (extent={{-30,-80}, {-10,-60}}, rotation=0)));
Electrical.PVArray pVArrayl annotation (Placement (transformation (
origin={-40,-50},
extent={{-10,-10}, {10,10}},
rotation=270)));
Modelica.Electrical.Analog.Sources.SignalVoltage sinkl annotation (Placement (
transformation (
origin={0,-50},
extent={{-10,-10}, {10,10}},
rotation=270)));
equation
connect (G.y, pVArray.G) annotation (Line(points={{-69,10},{-60,10},{-60,-7},{
-45.5,-7}}, color={0,0,127}));
connect (vdcSetpoint.y, sink.v) annotation (Line (points={{41,54},{60,54},{60,-10},
{7,-10}}, color={0,0,127}));
connect (perturbation.y, vdcSetpoint.u2) annotation (Line(points={{-19,34},{0,34},
{0,48},{18,48}}, color={0,0,127}));
connect (pVArray.p, sink.p)
annotation (Line (points={{-40,0},{0,0}}, color={0,0,255}));
connect (vsense.y, mpptController.ul)
annotation (Line (points={{-59,80},{-59,80},{-42,80}}, color={0,0,127}));
connect (mpptController.y, vdcSetpoint.ul) annotation (Line (points={{-19,74},{0,
74},{0,60},{18,60}}, color={0,0,127}));
connect (isense.y, mpptController.u2) annotation (Line (points={{-59,54},{-50,54},
{-50,68},{-42,68}}, color={0,0,127}));
connect (pVArrayl.p, sinkl.p) annotation (Line (points={{-40,-40}, {-28,-40},{-14,
-40},{0,-40}}, color={0,0,255}));
connect (sinkl.v, vdcSetpointl.y)
annotation (Line(points={{7,-50},{39,-50}}, color={0,0,127}));
connect (T.y, pVArrayl.T) annotation (Line(points={{-59,-70},{-52,-70},{-52,-53},
{-45.5,-53}}, color={0,0,127}));
connect (T.y, pVArray.T) annotation (Line (points={{-59,-70},{-52,-70}, {-52,-13},
{-45.5,-13}}, color={0,0,127}));
connect (G.y, pVArrayl.G) annotation (Line (points={{-69,10},{-60,10}, {-60,-47},
{-45.5,-47}}, color={0,0,127}));
connect (pVArray.n, ground.p)
annotation (Line (points={{-40,-20},{-30,-20},{-20,-20}}, color={0,0,255}));
connect (sink.n, ground.p)
annotation (Line (points={{0,-20},{-10,-20},{-20,-20}}, color={0,0,255}));
connect (pVArrayl.n, groundl.p)
annotation (Line (points={{-40,-60}, {-20,-60}}, color={0,0,255}));
connect (groundl.p, sinkl.n)
annotation (Line (points={{-20,-60},{-1.77636e-015,-60}}, color={0,0,255}));
annotation (experiment (StopTime=180), Documentation (info="<html>
<p>
This examples places an MPPT controller closing the loop
for a voltage source connected to a PV array. The MPPT
controller senses the power coming out of the PV array
and provides a setpoint for the voltage source. This
changes the operation point of the PV array with the
goal of maximizing its output power for any given solar
irradiation and junction temperature conditions.
</p>
<p>
The model is designed to challenge the control by
ramping solar irradiation, temperature at different
times and by injecting a perturbation into the control
loop:
</p>
<div class=\"figure\">
<p><img src=\"modelica://PVSystems/Resources/Images/
MPPTControllerVerificationResultsA.png\"
alt=\"MPPTControllerVerificationResultsA.png\"



119 />

120 </p>

121 </div>

122

123 <p>

124 The MPPT controller successfully deals with these

125 changing conditions as shown in the following plots,

126 which compares the static PV array control with the MPPT

127 control:

128 </p>

129

130

131 <div class=\"figure\">

132 <p><img src=\"modelica://PVSystems/Resources/Images/
MPPTControllerVerificationResultsB.png\"

133 alt=\"MPPTControllerVerificationResultsB.png\"

134 /></p>

135 </div>

136 </html>"),

137 Diagram(graphics={Rectangle (extent={{-100,92},{70,-90}}, lineColor={255,255,

138 255}) 1))

139 end MPPTControllerVerification;

Examples/Verification/package.mo

1 within PVSystems.Examples;

2 package Verification "Simple examples for verification of library’s components"
3 extends Modelica.Icons.ExamplesPackage;

4

© ©® 9 o »

10
11
12 end Verification;

Examples/Verification/package.order

IdealCBSwitchVerification
SWlVerification
SW2Verification
SW3Verification
CCMXVerification
CCM_DCMXVerification
PVArrayVerification
SimpleBatteryVerification
SwitchingPWMVerification
SwitchingCPMVerification
DeadTimeVerification
CPM_CCMVerification
CPMVerification
ParkTransformsVerification
PLLVerification
MPPTControllerVerification
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Examples/Verification/ParkTransformsVerification.mo

1 within PVSystems.Examples.Verification;
2 model ParkTransformsVerification "Park transforms verification"
3 extends Modelica.Icons.Example;

4 Control.Park park

5 annotation (Placement (transformation (extent={{0,20},{20,40}}, rotation=0)));
6 Control.InversePark inversePark annotation (Placement (transformation (extent={
7 {40,20},{60,40}}, rotation=0)));

8 Modelica.Blocks.Sources.SawTooth sawTooth (amplitude=2+«Modelica.Constants.pi,

9 period=0.02) annotation (Placement (transformation (extent={{-80,-40}, {-60,
10 -20}}, rotation=0)));

11 Modelica.Blocks.Math.Sin sin annotation (Placement (transformation (extent={{-40,
12 0}, {-20,20}}, rotation=0)));

13 Modelica.Blocks.Math.Cos cos annotation (Placement (transformation (extent={{-40,
14 40}, {-20,60}}, rotation=0)));

15 equation

16 connect (park.d, inversePark.d)

17 annotation (Line (points={{21,34},{38,34}}, color={0,0,127}));
18 connect (park.q, inversePark.q)
19 annotation (Line (points={{21,26},{38,26}}, color={0,0,127}));

20 connect (cos.u, sawTooth.y) annotation (Line (points={{-42,50},{-50,50},{-50,-30},
21 {-59,-30}}, color={0,0,127}));

22 connect (sin.u, sawTooth.y) annotation (Line (points={{-42,10},{-50,10},{-50,-30},
23 {-59,-30}}, color={0,0,127}));

24 connect (cos.y, park.alpha) annotation (Line (points={{-19,50},{-10,50},{-10,34},
25 {-2,34}}, color={0,0,127}));

26 connect (sin.y, park.beta) annotation (Line(points={{-19,10},{-10,10}, {-10,26},
27 {-2,26}}, color={0,0,127}));

28 connect (park.theta, sawTooth.y)

29 annotation (Line (points={{10,18},{10,-30},{-59,-30}}, color={0,0,127}));
30 connect (inversePark.theta, sawTooth.y)

31 annotation (Line (points={{50,18},{50,-30},{-59,-30}}, color={0,0,127}));
32 annotation (

33 Diagram(graphics={Rectangle (extent={{-90,70},{70,-50}}, lineColor={255, 255,
34 255}) 1),

35 experiment (StopTime=0.1),

36 Documentation (info="<html>

37 <p>

38 This example provides some easy input for the Park

39 transform blocks to check that calculations are being

40 done as expected. Run the simulation and you should get

41 something like the following figure:

42 </p>

43

44

45 <div class=\"figure\">

46 <p><img src=\"modelica://PVSystems/Resources/Images/ParkVerificationResults.png\"
47 alt=\"ParkVerificationResults.png\" />

48 </p>

49 </div>

50

51 <p>

52 As expected, <em>d</em> is equal to the peak amplitude

53 of the input signal and <em>g</em> sets at zero. Feeding

54 the signals back to the inverse transformation block

55 recreates the original signals (which overlap them on

56 the plot) .</p>

57 </html>"));

sg8 end ParkTransformsVerification;
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Examples/Verification/PLLVerification.mo

1 within PVSystems.Examples.Verification;

2 model PLLVerification "PLL verification"

3 extends Modelica.Icons.Example;

Modelica.Blocks.Sources.Sine source (freqgHz=50) annotation (Placement (

transformation (extent={{-50,-10}, {-30,10}}, rotation=0)));
Control.PLL pLL annotation (Placement (transformation (extent={{-10,-10},{10,10}},
rotation=0)));

Modelica.Blocks.Math.Cos sync annotation (Placement (transformation (extent={{

30,-10}, {50,10}}, rotation=0)));

[CRN- NG I SRS

10 equation
11 connect (source.y, pLL.vV)

12 annotation (Line (points={{-29,0},{-12,0}}, color={0,0,127}));
13 connect (pLL.theta, sync.u)

14 annotation (Line (points={{11,0},{28,0}}, color={0,0,127}));
15 annotation (

16 Diagram(graphics={Rectangle (extent={{-60,20}, {60,-20}}, lineColor={255,255,
17 255}1) 1),

18 experiment (

19 StartTime=0,

20 StopTime=0.1,

21 Tolerance=le-4),

22 Documentation (info="<html>

23 <p>

24 This simple example provides a sinusoidal input to the
25 PLL block and applies the output provided by the PLL,

26 the calculated phase of the input sine, to drive a sine
27 block so that the synchronization capabilities of the

28 PLL can be visualized.

29 </p>

30

31 <p>

32 Run the model and plot the output of the sinusoidal

33 source and the output of the sine block to see how,

34 after some short transient, the PLL successfully follows
35 the reference:

36 </p>

37

38

39 <div class=\"figure\">

40 <p><img src=\"modelica://PVSystems/Resources/Images/PLLVerificationResults.png\"
41 alt=\"PLLVerificationResults.png\" /></p>

42 </div>

43 </html>"));

44 end PLLVerification;

Examples/Verification/PVArrayVerification.mo

1 within PVSystems.Examples.Verification;
2 model PVArrayVerification "PVArray verification"
3 extends Modelica.Icons.Example;

4 Modelica.Electrical.Analog.Sources.RampVoltage rampVoltage (
5 duration=1,

6 V=45,

7 offset=-10) annotation (Placement (transformation (

8 origin={40,10},

9 extent={{-10,-10}, {10,10}},

10 rotation=270)));
11  Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
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12 transformation (extent={{30,-40}, {50,-20}}, rotation=0)));

13 Electrical.PVArray pVArray annotation (Placement (transformation (

14 origin={0,10},

15 extent={{-10,-10}, {10,10}},

16 rotation=270)));

17 Modelica.Blocks.Sources.Constant Gn(k=1000) annotation (Placement (
18 transformation (extent={{-50,10}, {-30,30}}, rotation=0)));

19 Modelica.Blocks.Sources.Constant Tn(k=298.15) annotation (Placement (
20 transformation (extent={{-50,-24}, {-30,-4}}, rotation=0)));

21 equation

22 connect (Gn.y, pVArray.G) annotation (Line (points={{-29,20},{-16,20},{-16,13},
23 {-5.5,13}}, color={0,0,127}));

24 connect (Tn.y, pVArray.T) annotation (Line (points={{-29,-14},{-16,-14},{-16,7},
25 {-5.5,7}}, color={0,0,127}));

26 connect (pVArray.p, rampVoltage.p)

27 annotation (Line(points={{1.83691e-015,20},{40,20}}, color={0,0,255}));

28 connect (pVArray.n, rampVoltage.n)

29 annotation (Line(points={{-1.83691e-015,0},{40,0}}, color={0,0,255}));

30 connect (ground.p, rampVoltage.n)

31 annotation (Line(points={{40,-20},{40,0}}, color={0,0,255}));

32 annotation (

33 Diagram(graphics={Rectangle (extent={{-60,40}, {60,-40}}, lineColor={255,255,

34 2551) 1),

35 Documentation (info="<html>

36 <p>

37 A ramp DC voltage source is applied in parallel to an

38 instance of the PVArray model. The voltage ramp is

39 configured to sweep from -10 volts to 35 volts in 1

40 second. This provides the enough voltage range to cover

41 all of the PV array’s working range when initialized

42 with default values.

43 </p>

44

45 <p>

46 To use the example, simulate the model and start by

47 displaying both voltage and current of the ramp voltage

48 source. A figure like the following should be displayed:

49 </p>

50

51

52 <div class=\"figure\">

53 <p><img src=\"modelica://PVSystems/Resources/Images/PVArrayVerificationResults.png
\ll

54 alt=\"PVArrayVerificationResults.png\" />

55 </p>

56 </div>

57

58 <p>

59 Notice how the variation in the current delivered by the

60 PV array (sinked by the voltage source) reflects the

61 familiar PV module curve.

62 </p>

63

64 <p>

65 Modify the values for the irradiance and temperature

66 blocks and see how these changes are reflected in a

67 change in the PV curve, accurately reflecting the

68 effects of these variables in the PV module

69 performance. </p>

70 </html>"),

71 experiment (

72 StartTime=0,

73 StopTime=1,

74 Tolerance=le-4));

75 end PVArrayVerification;
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Examples/Verification/SimpleBatteryVerification.mo

1 within PVSystems.Examples.Verification;
2 model SimpleBatteryVerification "SimpleBattery verification"
3 extends Modelica.Icons.Example;

4 Modelica.Electrical.Analog.Sources.SignalCurrent CC annotation (Placement (
5 transformation (

6 extent={{-10,-10}, {10,10}},

7 rotation=90,

8 origin={60,10})));

9 Modelica.Electrical.Analog.Basic.Ground ground

10 annotation (Placement (transformation (extent={{50,-40},{70,-20}})));

11 Electrical.SimpleBattery B(Q=1, DoDini=0.5) annotation (Placement (
12 transformation (

13 extent={{-10,-10}, {10,10}},

14 rotation=270,

15 origin={90,10})));

16 Modelica.Blocks.Nonlinear.SlewRatelLimiter slewRatelLimiter (Rising=4)
17 annotation (Placement (transformation(extent={{20,0}, {40,20}})));

18 Modelica.Blocks.Logical.Hysteresis hysteresis (uHigh=4.19, uLow=0.1)
19 annotation (Placement (transformation (extent={{-54,0},{-34,20}})));
20 Modelica.Blocks.Logical.Switch switchl

21 annotation (Placement (transformation (extent={{-14,0},{6,20}})));

22 Modelica.Blocks.Sources.RealExpression idis (y=-2)

23 annotation (Placement (transformation (extent={{-54,30},{-34,50}1})));
24 Modelica.Blocks.Sources.RealExpression ich (y=2)

25 annotation (Placement (transformation (extent={{-54,-30},{-34,-10}})));
26 Modelica.Blocks.Sources.RealExpression vsense (y=B.v)

27 annotation (Placement (transformation (extent={{-90,0},{-70,20}})));

28 equation

29 connect (ground.p, CC.p)

30 annotation (Line (points={{60,-20},{60,-20},{60,0}}, color={0,0,255}));

31 connect (CC.p, B.n) annotation (Line(points={{60,0},{90,0}}, color={0,0,255}));
32 connect (CC.n, B.p)

33 annotation (Line (points={{60,20},{90,20}}, color={0,0,255}));

34 connect (slewRateLimiter.y, CC.1i)

35 annotation (Line (points={{41,10},{53,10}}, color={0,0,127}));

36 connect (switchl.y, slewRateLimiter.u)

37 annotation (Line (points={{7,10},{18,10}}, color={0,0,127}));

38 connect (hysteresis.y, switchl.u2)

39 annotation (Line (points={{-33,10},{-24,10},{-16,10}}, color={255,0,255}));

40 connect (idis.y, switchl.ul) annotation (Line (points={{-33,40},{-24,40},{-24,18},
41 {-16,18}}, color={0,0,127}));

42 connect (ich.y, switchl.u3) annotation (Line (points={{-33,-20},{-24,-20},{-24,2},
43 {-16,2}}, color={0,0,127}));

44 connect (vsense.y, hysteresis.u)

45 annotation (Line (points={{-69,10}, {-56,10}}, color={0,0,127}));

46 annotation (Icon (coordinateSystem(preserveAspectRatio=false)), Diagram(
47 coordinateSystem (preserveAspectRatio=false), graphics={Rectangle (extent
48 ={{-100,50},{100,-40}}, lineColor={255,255,255})1}),

49 experiment (StopTime=5400, __ Dymola_NumberOfIntervals=10000),

50 _ Dymola_experimentSetupOutput,

51 Documentation (info="<html>

52 <p>

53 This example provides a charge/discharge control logic

54 to a current source in parallel with the battery

55 model. The control is configured to put the battery

56 through charge/discharge cycles for as long as the

57 simulation runs:

58 </p>

59

60

61 <div class=\"figure\">

62 <p><img src=\"modelica://PVSystems/Resources/Images/

SimpleBatteryVerificationResults.png\"
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63 alt=\"SimpleBatteryVerificationResults.png\" />

64 </p>

65 </div>

66

67 <p>

68 Notice how the charge and discharge cycles take about 30
69 minutes, which is what was to be expected by

70 charging/discharging a 1A.h battery with a 2A

71 current.</p>

72 </html>"));

73 end SimpleBatteryVerification;

Examples/Verification/SWlVerification.mo

1 within PVSystems.Examples.Verification;

2 model SWlVerification "SW1l verification"

3 extends Modelica.Icons.Example;

4 Electrical.SWl swl (fs=1)

5 annotation (Placement (transformation (extent={{-40,0},{-20,20}})));

6 Modelica.Electrical.Analog.Sources.SineVoltage sineVoltage (fregHz=5, V=1)
7 annotation (Placement (transformation (

8 origin={30,10},

9 extent={{-10,-10}, {10,101} },

10 rotation=270)));

11 Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
12 transformation (extent={{-10,-30}, {10,-10}},rotation=0)));

13 Modelica.Electrical.Analog.Basic.Resistor resistor (R=2) annotation (Placement (
14 transformation (

15 origin={0,30},

16 extent={{-10,-10}, {10,101} },

17 rotation=180)));

18 Modelica.Blocks.Sources.RealExpression duty (y=0.5)

19 annotation (Placement (transformation (extent={{-70,-30}, {-50,-10}})));

20 equation
21  connect (resistor.p,sineVoltage. p)

22 annotation (Line (points={{10,30},{30,30},{30,20}}, color={0,0,255}));

23 connect (ground.p, sineVoltage. n)

24 annotation (Line (points={{0,-10},{30,-10},{30,0}}, color={0,0,255}));

25 connect (swl.p2, resistor.n) annotation (Line (points={{-20,15},{-20,15},{-20,
26 30}, {-10,30}}, color={0,0,255}));

27 connect (swl.n2, ground.p)

28 annotation (Line (points={{-20,5},{-20,-10},{0,-10}}, color={0,0,255}));

29 connect (swl.nl, ground.p)

30 annotation (Line (points={{-40,5},{-40,-10},{0,-10}}, color={0,0,255}));

31 connect (swl.pl, resistor.n)

32 annotation (Line (points={{-40,15},{-40,30},{-10,30}}, color={0,0,255}));
33 connect (duty.y, swl.d)

34 annotation (Line (points={{-49,-20},{-30,-20},{-30,-2}}, color={0,0,127}));
35 annotation (experiment (

36 StartTime=0,

37 StopTime=1,

38 Tolerance=le-3), Diagram(graphics={Rectangle (extent={{-80,40},{48,-30}},
39 lineColor={255,255,255})1}));

40 end SWlVerification;

Examples/Verification/SW2Verification.mo
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1 within PVSystems.Examples.Verification;

2 model SW2Verification "SW2 verification"

3 extends Modelica.Icons.Example;

4 Electrical.SW2 sw2 (deadTime=0.1, fs=2)

5 annotation (Placement (transformation (extent={{-40,0},{-20,20}})));

6 Modelica.Electrical.Analog.Sources.SineVoltage sineVoltage (freqgHz=5, V=1)
7 annotation (Placement (transformation (

8 origin={30,10},

9 extent={{-10,-10}, {10, 10}},

10 rotation=270)));
11 Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
12 transformation (extent={{-10,-30}, {10,-10}},rotation=0)));

13 Modelica.Electrical.Analog.Basic.Resistor resistor (R=2) annotation (Placement (
14 transformation (

15 origin={0,30},

16 extent={{-10,-10}, {10, 10}},

17 rotation=180)));

18 Modelica.Blocks.Sources.RealExpression duty (y=0.5)

19 annotation (Placement (transformation (extent={{-70,-30},{-50,-10}})));

20 equation
21 connect (resistor.p, sineVoltage. p)

22 annotation (Line (points={{10,30},{30,30},{30,20}}, color={0,0,255}));

23 connect (ground.p, sineVoltage. n)

24 annotation (Line (points={{0,-10}, {30,-10},{30,0}}, color={0,0,255}));

25 connect (sw2.p2, resistor.n) annotation (Line (points={{-20,15},{-20,15}, {-20,
26 30}, {-10,30}}, color={0,0,255}));

27 connect (sw2.n2, ground.p)

28 annotation (Line (points={{-20,5},{-20,-10},{0,-10}}, color={0,0,255}));

29 connect (sw2.nl, ground.p)

30 annotation (Line (points={{-40,5},{-40,-10},{0,-10}}, color={0,0,255}));

31 connect (sw2.pl, resistor.n)

32 annotation (Line (points={{-40,15}, {-40,30},{-10,30}}, color={0,0,255}));
33 connect (duty.y, sw2.d)

34 annotation (Line (points={{-49,-20},{-30,-20},{-30,-2}}, color={0,0,127}));
35 annotation (experiment (

36 StartTime=0,

37 StopTime=1,

38 Tolerance=le-3), Diagram(graphics={Rectangle (extent={{-80,40},{48,-30}},
39 lineColor={255,255,255})1}));

40 end SW2Verification;

Examples/Verification/SW3Verification.mo

1 within PVSystems.Examples.Verification;

2 model SW3Verification "SW3 verification"

3 extends Modelica.Icons.Example;

4 Electrical.SW3 sw3(fs=2, deadTime=0.1)

5 annotation (Placement (transformation (extent={{-40,0},{-20,20}})));

6 Modelica.Electrical.Analog.Sources.SineVoltage sineVoltage (freqHz=5, V=1)
7 annotation (Placement (transformation (

8 origin={30,10},

9 extent={{-10,-10}, {10,10}},

10 rotation=270)));
11 Modelica.Electrical.Analog.Basic.Ground ground annotation (Placement (
12 transformation (extent={{-10,-30}, {10,-10}}, rotation=0)));

13 Modelica.Electrical.Analog.Basic.Resistor resistor (R=2) annotation (Placement (
14 transformation (

15 origin={0,30},

16 extent={{-10,-10}, {10,10}},

17 rotation=180)));

18 Modelica.Blocks.Sources.RealExpression duty (y=0.5)

19 annotation (Placement (transformation (extent={{-70,-30},{-50,-10}})));
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20 equation
21 connect (resistor.p, sineVoltage. p)

22 annotation (Line (points={{10,30},{30,30},{30,20}}, color={0,0,255}));

23 connect (ground.p, sineVoltage. n)

24 annotation (Line (points={{0,-10},{30,-10},{30,0}}, color={0,0,255}));

25 connect (sw3.nl, ground.p)

26 annotation (Line (points={{-40,5},{-40,-10},{0,-10}}, color={0,0,255}));

27 connect (sw3.pl, resistor.n)

28 annotation (Line (points={{-40,15},{-40,30},{-10,30}}, color={0,0,255}));
29 connect (duty.y, sw3.d)

30 annotation (Line (points={{-49,-20},{-30,-20},{-30,-2}}, color={0,0,127}));
31 connect (sw3.p2, resistor.n)

32 annotation (Line (points={{-20,15},{-20,30},{-10,30}}, color={0,0,255}));
33 connect (sw3.n2, ground.p)

34 annotation (Line(points={{-20,5},{-20,-10},{0,-10}}, color={0,0,255}));

35 annotation (experiment (

36 StartTime=0,

37 StopTime=1,

38 Tolerance=le-3), Diagram(graphics={Rectangle (extent={{-80,40}, {48,-30}},
39 lineColor={255,255,255})1}));

40 end SW3Verification;

Examples/Verification/SwitchingCPMVerification.mo

1 within PVSystems.Examples.Verification;
2 model SwitchingCPMVerification "SwitchingCPM verification"
3 extends Modelica.Icons.Example;

4 Control.SwitchingCPM switchingCPM (

5 vcMax=5,

6 dMin=0.05,

7 dMax=0.95,

8 £s=200e3,

9 Va=0.01) annotation (Placement (transformation (extent={{-20,-14},{0,6}})));

10 Modelica.Blocks.Continuous.Integrator integrator (initType=
Modelica.Blocks.Types.Init.InitialState,

11 y_start=3.99,

12 k=1led)

13 annotation (Placement (transformation (extent={{50,-10},{70,10}})));

14 Modelica.Blocks.Sources.Constant vdT (k=2)

15 annotation (Placement (transformation (extent={{-20,30},{0,50}})));

16 Modelica.Blocks.Logical.Switch switchl

17 annotation (Placement (transformation (extent={{20,-10},{40,10}})));

18 Modelica.Blocks.Sources.Constant vdpT (k=-1)

19 annotation (Placement (transformation (extent={{-20,-50},{0,-30}})));

20 Modelica.Blocks.Sources.Constant vc (k=4)

21 annotation (Placement (transformation (extent={{-60,-10}, {-40,10}})));

22 equation
23 connect (vdT.y, switchl.ul)

24 annotation (Line (points={{1,40},{10,40},{10,8},{18,8}}, color={0,0,127}));
25 connect (switchl.y, integrator.u)
26 annotation (Line (points={{41,0},{41,0},{48,0}}, color={0,0,127}));

27 connect (vdpT.y, switchl.u3) annotation (Line(points={{1,-40},{10,-40},{10,-8},
28 {18,-8}}, color={0,0,127}));
29 connect (switchingCPM.c, switchl.u2)

30 annotation (Line(points={{1,0},{18,0}}, color={255,0,255}));

31 connect (integrator.y, switchingCPM.vs) annotation (Line (points={{71,0},{80,0},
32 {80,-60}, {-30,-60},{-30,-8}, {-22,-8}}, color={0,0,127}));

33 connect (vc.y, switchingCPM.vc)

34 annotation (Line (points={{-39,0},{-22,0}}, color={0,0,127}));

35 annotation (experiment (StopTime=0.0002),

36 Documentation (info="<html>

37 <p>
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38 The switching CPM block requires the <em>vs</em> input,

39 corresponding to the voltage output of the current

40 sensor. In order to simplify things, a switch with some

41 constant sources and an integrator are used to emulate

42 the behaviour of an inductor. This setup creates the

43 conditions to exercise the CPM block, as can be seen in

44 the following figure:

45 </p>

46

47

48 <div class=\"figure\">

49 <p><img src=\"modelica://PVSystems/Resources/Images/
SwitchingCPMVerificationresults.Png\"

50 alt=\"SwitchingCPMVerificationresults.Png\"

51 /></p>

52 </div>

53 </html>>"),

54 Diagram(graphics={Rectangle (extent={{-68,58}, {88,-68}}, lineColor={255,255,

55 255}) 1))

56 end SwitchingCPMVerification;

Examples/Verification/SwitchingPWMVerification.mo

1 within PVSystems.Examples.Verification;
2 model SwitchingPWMVerification "SwitchingPWM verification”
3 extends Modelica.Icons.Example;

4 Control.SwitchingPWM signalPWM (f£s=100)

5 annotation (Placement (transformation (extent={{20,0}, {40,20}}, rotation=0)));
6 Modelica.Blocks.Sources.Step step(

7 height=0.3,

8 offset=0.2,

9 startTime=0.3) annotation (Placement (transformation (extent={{-80,20}, {-60,
10 40}}, rotation=0)));

11 Modelica.Blocks.Sources.Step stepl (height=0.3, startTime=0.6) annotation (

12 Placement (transformation (extent={{-80,-20}, {-60,0}}, rotation=0)));

13 Modelica.Blocks.Math.Add add

14 annotation (Placement (transformation (extent={{-20,0},{0,20}}, rotation=0)));

15 equation

16 connect (step.y, add.ul) annotation (Line (points={{-59,30}, {-40,30},{-40,16}, {
17 -22,16}}, color={0,0,127}));

18 connect (stepl.y, add.u2) annotation (Line (points={{-59,-10},{-40,-10}, {-40,4},
19 {-22,4}}, color={0,0,127}));

20 connect (add.y, signalPWM.vc)

21 annotation (Line (points={{1,10},{18,10}}, color={0,0,127}));
22 annotation (

23 Diagram(graphics={Rectangle (extent={{-90,50}, {50,-30}}, lineColor={255,255,
24 2551 1),

25 experiment (

26 StartTime=0,

27 StopTime=1,

28 Tolerance=le-4),

29 Documentation (info="<html>

30 <p>

31 This model provides a changing duty cycle with the use
32 of two step blocks. When running the simulation with the
33 provided values, plotting the fire output generates the
34 following graph:

35 </p>

36

37

38 <div class=\"figure\">
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39 <p><img src=\"modelica://PVSystems/Resources/Images/
SwitchingPWMVerificationResults.png\"

40 alt=\"SwitchingPWMVerificationResults.png\" />

41 </p>

42 </div>

43

44 <p>

45 Through inspection of the plot, it can be seen how the

46 signal constitutes a PWM signal with a duty cycle

47 changing in steps through the values 0.2, 0.5 and

48 0.8. Zoom into the signal to confirm this fact as well

49 as the value of the period, set at 10 milliseconds.</p>

50 </html>"));

51 end SwitchingPWMVerification;

Icons/AssembliesPackage.mo

1 within PVSystems.Icons;
2 partial class AssembliesPackage "Icon for packages of assemblies"
3 extends Modelica.Icons.Package;

4 annotation (

5 Icon (

6 graphics={

7 Polygon (

8 fillColor={255,255,255},

9 fillPattern=FillPattern.Solid,

10 points={{-80,60}, {-30,60}, {-30,60},{-30,10},{-30,10}, {10,10},{10,10},
11 {20,30},{40,30},{50,0}, {40,-30},{20,-30},{10,-10},{10,-10}, {-30,-10},
12 {-30,-10},{-30,-60}, {-30,-60}, {-80,-60}, {-80,-60}, {-80,0}, {-80,60},
13 {-80,60}},

14 lineColor={95, 95,95},

15 smooth=Smooth.Bezier),

16 Polygon (

17 points={{-20,60}, {-20,60}, {80,60}, {80,60}, {80,-60}, {80,-60}, {-20,-60},
18 {-20,-60},{-20,-20}, {-20,-20}, {10,-20}, {10,-40}, {50,-40}, {60,01}, {
19 50,40}, {10,40}, {10,20}, {-20,20}, {-20,20}, {-20,60}},

20 lineColor={95,95,95},

21 smooth=Smooth.Bezier,

22 fillColor={95,95,95},

23 fillPattern=FillPattern.Solid)}),

24 Documentation (info="

25 <html>

26 <p>

27 This icon shall be used for a package that contains assemblies of

28 components aimed at being used as subsystems of a system

29 model.</p>

30 </html>"));

31 end AssembliesPackage;

Icons/ConverterIcon.mo

1 within PVSystems.Icons;

2 partial class ConverterIcon "Icon for power converter models"
3 annotation (Icon (graphics={Rectangle (

extent={{-100,100}, {100,-100}},

lineColor={0,0,255},

fillColor={255,255,255},

[N IS
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7 fillPattern=FillPattern.Solid),Line (points={{-100,-100},{100,100}},
8 color={0,0,255})}));
9 end ConverterIcon;

Icons/package.mo

1 within PVSystems;

2 package Icons "Library of icons”

3 extends Modelica.Icons.IconsPackage;
4

5

6 annotation (Documentation (info="

7 <html>

8 <p>

9 This package contains definitions for the graphical layout of

10 components which may be used in different libraries. The icons can
11 be utilized by inheriting them in the desired class using

12 \"extends\" or by directly copying the \"icon\" layer.</p>

13 </html>"));

14 end Icons;

Icons/package.order

1 AssembliesPackage
2 ConverterIcon

package.mo

1 package PVSystems "A Modelica library for photovoltaic system and power converter design"
2 extends Modelica.Icons.Package;
3

(R R

0 annotation (

11 uses (Modelica (version="3.2.2")),
12 preferredview="info",

13 version="0.6.3",

14 versionDate="2017-09-08",

15 Documentation (info="<html>

-

16 <p>

17 <b>Overview</b>

18 </p>

19

20 <p>

21 <b>PVSystems</b> is

22 a <a href=\"https://www.modelica.org/\">Modelica</a> library
23 providing models useful for the design and evaluation of

24 photovoltaic systems and power converters as well as their
25 associated control algorithms.
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26 </p>

27

28

29 <div class=\"figure\">

30 <p><img src=\"modelica://PVSystems/Resources/Images/screenshot_small.png\"

31 alt=\"screenshot.png\" />

32 </p>

33 </div>

34

35 <p>

36 The library is the result of a research project carried out in the

37 form of a master’s degree thesis. There are two intended audiences

38 for the library:

39 </p>

40

41 <ul class=\"org-ul\">

42 <li><b><b>Users</b></b>: the library is intended to be rich enough

43 in component and subsystem models that it proves useful for

44 those interested in designing and evaluating photovoltaic

45 systems, power converters and their associated control

46 algorithms. Check out the usage section to learn more.

47 </1li>

48 <li><b><b>Developers</b></b>: the library is also intended to

49 explore and showcase best practices for the development of

50 Modelica libraries. Many of these best practices are inspired or

51 taken from

52 other <a href=\"https://github.com/raulrpearson?language=modelica&tab=stars\">
Modelica

53 libraries on GitHub</a> and from the

54 excellent <a href=\"http://book.xogeny.com/\">Modelica by

55 Example</a>.

56 </1li>

57 </ul>

58

59 <p>

60 The library is currently in the early stages of development, so

61 the structure and contents will probably be updated regularly. The

62 intention is to provide models in the following categories:

63 </p>

64

65 <ul class=\"org-ul\">

66 <li><b><b><a href=\"modelica://PVSystems.Control\">Control</a></b></b>:

67 based on the interfaces provided

68 in <a href=\"modelica://Modelica.Blocks\">Modelica.Blocks</a>,

69 common blocks used in the control of power converters, including

70 Park and Clarke transforms, Space Vector Modulation and grid

71 synchronization blocks.

72 </1li>

73 <li><b><b><a href=\"modelica://PVSystems.Electrical\">Electrical</a></b></b>:

74 based on the interfaces provided

75 in <a href=\"modelica://Modelica.Electrical.Analog\">Modelica.Electrical.Analog
</a>,

76 common electrical models including PV arrays, energy storage

77 devices, power converters, transformers, loads and other grid

78 elements. The library features both switched and averaged models

79 of power converters.

80 </1li>

81 <li><b><b><a href=\"modelica://PVSystems.Examples\">Examples</a></b></b>:

82 a comprehensive set of examples will be provided to showcase the

83 capabilities and explain the use of the library.

84 </1li>

85 </ul>

86

87 <p>

88 <b>Download and usage</b>

89 </p>
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90
91 <p>

92 You can grab a copy of the library by clonning the repository or

93 downloading

94 a <a href=\"https://github.com/raulrpearson/PVSystems/archive/master.zip\">zip

95 of the latest commit</a>. Take into account that the library is

96 currently in the early stages of development, so some models might

97 not be stable and the structure and contents of the library will

98 probably be updated regularly. If you want to stay up to date with

99 development, you

100 can <a href=\"https://github.com/raulrpearson/PVSystems/subscription\">watch

101 the project</a> if you have a GitHub account or you can subscribe

102 to

103 the <a href=\"https://github.com/raulrpearson/PVSystems/commits/master.atom\">
commits

104 feed</a>.

105 </p>

106

107 <p>

108 The library can be used inside tools

109 like <a href=\"http://www.3ds.com/products-services/catia/products/dymola/\">
Dymola</a>

110 or <a href=\"https://openmodelica.org/\">OpenModelica</a> to

111 create models of PV systems. These same tools can be used in

112 conjuntion with other tools supporting

113 the <a href=\"https://fmi-standard.org\">FMI standard</a> for

114 model exchange and co-simulation. For example, a PV system model

115 developed in OpenModelica using this library could then be used to

116 validate a control algorithm developed in MATLAB/Simulink or

117 LabVIEW.

118 </p>

119

120 <p>

121 <b>Contributing</b>

122 </p>

123

124 <p>

125 If you have any <b><b>questions, comments, suggestions, ideas or

126 feature requests</b></b>, please do share those as well as

127 any <b><b>mistakes or bugs</b></b> you might discover. You can

128 open an issue in

129 the <a href=\"https://github.com/raulrpearson/PVSystems/issues\">Issues</a>

130 section of the repository or, if you prefer, contact me

131 by <a href=\"mailto:raul.rodriguez.pearson@gmail.com\">email</a>. Contributions

132 in the form

133 of <a href=\"https://github.com/raulrpearson/PVSystems/pulls\">Pull

134 Requests</a> are always welcome.

135 </p>

136

137 <p>

138 <b>License</b>

139 </p>

140

141 <p>

142 PVSystems is licensed under the MIT

143 License. See <a href=\"modelica://PVSystems.UsersGuide.License\">License</a>

144 for the full license text.

145 </p>

146 </html>"),

147 Icon (graphics={Ellipse (

148 extent={{-70,52}, {-10,-6}},

149 pattern=LinePattern.None,

150 lineColor={0,0,0},

151 fillColor={229,184,0},

152 fillPattern=FillPattern.Solid), Polygon (

153 points={{-78,-60}, {-42,14},{42,14}, {86,-60},{-78,-60}1},
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154 fillColor={27,77,130},

155 fillPattern=FillPattern.Solid,

156 pattern=LinePattern.None) }),

157 __Dymola_Commands (file="Resources/Scripts/Dymola/callCheckLibrary.mos"
158 "Run regression tests"));

159 end PVSystems;

package.order

UsersGuide
Examples
Electrical
Control
Icons

g w N

UsersGuide/Contact .mo

1 within PVSystems.UsersGuide;
2 class Contact "Contact"
3 extends Modelica.Icons.Contact;

4 annotation (Documentation (info="<html>

5] <p>

6 Copyright (c)

7 2016-2017 <a href=\"mailto:raul.rodriguez.pearson@gmail.com\">UGRali

8 Rodrguez Pearson</a>

9 </p>

10

11 <p>

12 If you have any <strong><strong>questions, comments,

13 suggestions, ideas or feature

14 requests</strong></strong>, please do share those as

15 well as any <strong><strong>mistakes or

16 bugs</strong></strong> you might discover. You can

17 open an issue in

18 the <a href=\"https://github.com/raulrpearson/PVSystems/issues\">Issues</a>
19 section of the repository or, if you prefer, contact

20 the author

21 by <a href=\"mailto:raul.rodriguez.pearson@gmail.com\">email</a>. Contributions
22 in the form

23 of <a href=\"https://github.com/raulrpearson/PVSystems/pulls\">Pull
24 Requests</a> are always welcome.

25 </p>

26

27 <p>

28 The library is the result of a research project carried

29 out in the form of a master’s degree thesis under the

30 supervision

31 of <a href=\"http://www.euclides.dia.uned.es/aurquia/index.html\">Dr. Alfonsoi
32 Urqua</a> from

33 the <a href=\"http://www.euclides.dia.uned.es/\">Research

34 group on Modelling &amp; Simulation in Control

35 Engineering</a>, part of

36 the <a href=\"http://www.dia.uned.es/\">Department of

37 Computer Science &amp; Automatic Control</a>

38 at <a href=\"http://www.uned.es/webuned/home.htm\">Universidad

39 Nacional de 6Educacin a Distancia</a>. The master’s

40 degree is organized in collaboration
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41 with <a href=\"http://www.ucm.es\">Universidad
42 Complutense de Madrid</a>.</p>

43 </html>"));

44 end Contact;

UsersGuide/License.mo

1 within PVSystems.UsersGuide;
2 class License "License"
3 annotation (Documentation (info="<html>

4 <p>

5 MIT License

6 </p>

7

8 <p>

9 Copyright (c) 2016-2017 GRal iRodrguez Pearson

10 </p>

11

12 <p>

13 Permission is hereby granted, free of charge, to any person

14 obtaining a copy of this software and associated documentation

15 files (the \"Software\"), to deal in the Software without

16 restriction, including without limitation the rights to use, copy,

17 modify, merge, publish, distribute, sublicense, and/or sell copies

18 of the Software, and to permit persons to whom the Software is

19 furnished to do so, subject to the following conditions:

20 </p>

21

22 <p>

23 The above copyright notice and this permission notice shall be

24 included in all copies or substantial portions of the Software.

25 </p>

26

27 <p>

28 THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,

29 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

30 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

31 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

32 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

33 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

34 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

35 DEALINGS IN THE SOFTWARE.

36 </p>

37 </html>"), Icon(graphics={ Line(points = {{-60, 60}, {60, 60}}, color = {95, 95, 95}),
Line (points = {{0, 60}, {0, -60}}, color = {95, 95, 95}), Line(points = {{-60,
-60}, {60, -60}}, color = {95, 95, 95}), Ellipse(lineColor = {95, 95, 95},
fillColor = {175, 175, 175},

38 fillPattern = FillPattern.Solid, extent = {{-10, 70}, {10, 50}}, endAngle 360),

Line (points = {{-90, -10}, {-60, 60}, {-30, -10}}, color = {95, 95, 95}),
Line (points = {{30, -10}, {60, 60}, {90, -10}}, color = {95, 95, 95}),

39 Polygon (

40 points={{-90,-10}, {-30,-10}, {-60,-30}, {-90,-10}},

41 lineColor={0,0,0},

42 fillColor={175,175,175},

43 fillPattern=FillPattern.Solid),

44 Polygon (

45 points={{30,-10}, {90,-10}, {60,-30}, {30,-10}},

46 lineColor={0,0,0},

47 fillColor={175,175,175},

48 fillPattern=FillPattern.Solid)}, coordinateSystem(initialScale = 0.1)));

49 end License;
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UsersGuide/package.mo

within PVSystems;
package UsersGuide "User’s Guide"
extends Modelica.Icons.Information;

annotation (DocumentationClass=true);
end UsersGuide;

© VW ® U U W N P

-

UsersGuide/package.order

References
ReleaseNotes
Contact
License

W N e

UsersGuide/References/EM01.mo

1 within PVSystems.UsersGuide.References;

2 class EMO1 "<html>R. W. Erickson and D. ¢éMaksimovi, Fundamentals of Power
3 Electronics. Springer Science &amp; Business Media, 2001.</html>"
4 extends Modelica.Icons.References;
5 annotation (preferredvView="info", DocumentationClass=false);
6 end EMO1;

UsersGuide/References/EMA16.mo

1 within PVSystems.UsersGuide.References;

2 class EMAl16 "<html>R. W. Erickson, D. ¢Maksimovi and K. Afridi,

3 <a href=\"https://www.coursera.org/specializations/power—-electronics\">
4 <i>Power Electronics Specialization</i></a> at Coursera.

5 University of Colorado Boulder, 2016.</html>"

6 extends Modelica.Icons.References;

7 annotation (preferredView="info", DocumentationClass=false);

8 end EMAlG6;

UsersGuide/References/package.mo

1 within PVSystems.UsersGuide;

2 package References "References"

3 extends Modelica.Icons.References;
4

5
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6
7

8

9 annotation (preferredview="info");
10 end References;

UsersGuide/References/package.order

EMO1

EMAl6
TDDO7
VGF09

s W N R

UsersGuide/References/TDD07 .mo

1 within PVSystems.UsersGuide.References;

2 class TDDO7 "<html>O. Tremblay, L. A. Dessaint, and A. I. Dekkiche, “A Generic
3 Battery Model for the Dynamic Simulation of Hybrid Electric”

4 Vehicles, in 2007 IEEE Vehicle Power and Propulsion Conference,

5 2007, pp. —-284289.</html>"

6 extends Modelica.Icons.References;

7 annotation (preferredvView="info", DocumentationClass=false);

g8 end TDDO7;

UsersGuide/References/VGF09.mo

1 within PVSystems.UsersGuide.References;

2 class VGF09 "<html>M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive
3 Approach to Modeling and Simulation of Photovoltaic ”Arrays,

4 IEEE Transactions on Power Electronics, vol. 24, no. 5,

5 pp. —-11981208, May 2009.</html>"

6 extends Modelica.Icons.References;

7 annotation (preferredvView="info", DocumentationClass=false);

8 end VGF09;

UsersGuide/ReleaseNotes/package.mo

1 within PVSystems.UsersGuide;

2 package ReleaseNotes "Release notes"

3 extends Modelica.Icons.ReleaseNotes;

4

5

6

7 annotation (Documentation (info="<html>

8 <p>

9 This section includes an item per release, indicating version
10 number and release date. Release notes are included under each
11 corresponding item.
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

</p>

<p>
<a href=\"http://semver.org/\">Semantic Versioning</a> is
to establish version numbers. Given a version number
MAJOR.MINOR.PATCH, an increment in the:

</p>

<ul class=\"org-ul\">
<li>MAJOR version indicates incompatible API changes.
</1li>
<1i>MINOR version indicates new functionality in a

backwards—-compatible manner.

</1i>

followed

<1li>PATCH version indicates backwards-compatible bug fixes.

</1i>
</ul>

<p>

Notice, though, that major version zero (0.y.z) is for initial
development - anything may change at any time and the public API

should not be considered stable.</p>

</html>"));

34 end ReleaseNotes;

UsersGuide/ReleaseNotes/package.order

UsersGuide/ReleaseNotes/Version 0 _6_0.mo
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within PVSystems.UsersGuide.ReleaseNotes;

class Version_0_6_0 "Version 0.6.0 (April 3, 2017)"
extends Modelica.Icons.ReleaseNotes;
annotation (Documentation (info="<html>

<p>
<b>Changes</b>:

</p>

<ul class=\"org-ul\">

<li>The main change in this release is a very heavy refactoring of
files. Functionality wise, the library hasn’t changed that much,

but every model has been split into it’s own file.
</1li>

<li>Updated the info text for the root class PVSystems with the

contents of the README.md file.
</1li>
</ul>
<p>
<b>Additions</b>:
</p>
<ul class=\"org-ul\">

<li>Added battery model together with a validation example model.

</1li>

<li>Added User’s Guide package with References, Release Notes,

Contact and License information.



2%
26
27

28 end Version_0_6_0;

</1i>
</ul>
</html>"));

UsersGuide/ReleaseNotes/Version 0 _6_1.mo

1 within PVSystems.UsersGuide.ReleaseNotes;

2 class Version_0_6_1

3
4
5]
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
43
44

45

47

"Version 0.6.1 (April 19, 2017)"

extends Modelica.Icons.ReleaseNotes;
annotation (Documentation (info="<html>

<p>

<strong>Modifications</strong>:

</p>

<ul class=\"org-ul\">

<li>The averaged switch models have been expanded.

partial

As a start, a

model <a href=\"modelica://PVSystems.Electrical.Interfaces.SwitchNetworkInterface\">
SwitchNetworkInterface</a>
has been added to provide the common interface.

</1li>

<li>Many models and blocks
been given an icon.

</1li>

(especially blocks) with no icons have

Things look much better.

<1li>The controller assemblies have been moved to
an <a href=\"modelica://PVSystems.Control.Assemblies\">Assemblies</a>

package and have been reviewed,
(in the previous commit,

been resolved
worked) .
</1i>
</ul>
<p>

<strong>Additions</strong>:

</p>

<ul class=\"org-ul\">
<1li>An <a href=\"modelica://PVSystems.Icons\">Icons</a> package
has been added to hold icons that can be reused.

</1li>

cleaned up and some bugs have
none of them really

<li>Interfaces and Assemblies packages have been added
to <a href=\"modelica://PVSystems.Electrical\">Electrical</a>
and <a href=\"modelica://PVSystems.Control\">Control</a> to hold
partial models and models, respectively, that can be reused.

</1li>

<1i>All of the averaged switch variants
in <a href=\"modelica://PVSystems.UsersGuide.References.EMO1\">EMO1</a>
and <a href=\"modelica://PVSystems.UsersGuide.References.EMAI6\">EMAl6</a>
have been added
(<a href=\"modelica://PVSystems.Electrical.CCM1\">CCM1l</a>, <a href=\"modelica://

PVSystems.
.Electrical
.Electrical
.Electrical
.Electrical

PVSystems
PVSystems
PVSystems
PVSystems

Electrical

.CCM2\">CCM2</a>, <a href=\"modelica://
.CCM3\">CCM3</a>, <a href=\"modelica://
.CCM4\">CCM4</a>, <a href=\"modelica://
.CCM5\">CCM5</a>, <a href=\"modelica://
.CCM_DCM1\">CCM-DCM1</a>

and <a href=\"modelica://PVSystems.Electrical.CCM_DCM2\">CCM-DCM2</a>) .

</1i>

<li>Additionally some averaged and switched control blocks also
in <a href=\"modelica://PVSystems.UsersGuide.References.EMOI\">EM01</a>
and <a href=\"modelica://PVSystems.UsersGuide.References.EMAL16\">EMAL6</a>
have also been added

(<a href=\"modelica://PVSystems.Control.SwitchingCPM\">SwitchingCPM</a>,

modelica://PVSystems.Control.CPM_CCM\">CPM-CCM</a>, <a href=\"modelica://
PVSystems.Control.CPM\">CPM</a>) .

<a href=\"
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48 </1li>

49 <1li>A <a href=\"modelica://PVSystems.Control.DeadTime\">DeadTime</a>

50 block has been added to be used in conjunction with any of the

51 blocks producing switching signals

52 (currently <a href=\"modelica://PVSystems.Control.SignalPWM\">SignalPWM</a>
53 and <a href=\"modelica://PVSystems.Control.SwitchingCPM\">SwitchingCPM</a>),
54 to create a complement switching signal with an optional dead

55 time value.

56 </1li>

57 </ul>

58  <p>

59 <strong>Deletions</strong>:

60 </p>

61 <ul class=\"org-ul\">

62 <1i>The model Ideal2Levelleg has been removed since it added

63 complexity and didn’t seem to be that useful.

64 </li>

65 </ul>
66 </html>"));
67 end Version_0_6_1;

UsersGuide/ReleaseNotes/Version 0_6_2.mo

1 within PVSystems.UsersGuide.ReleaseNotes;

2 class Version_0_6_2 "Version 0.6.2 (July 6, 2017)"

3 extends Modelica.Icons.ReleaseNotes;

4 annotation (Documentation (info="<html>

5 <p>

6 <strong>Modifications</strong>:

7 </p>

8 <ul class=\"org-ul\">

9 <1li>The main new feature of this release is the slight
10 restructuring of switch network models that now have
11 switching, as well as averaged, variants. This

12 provides generic converter blocks that can be changed
13 from switched to averaged with the click of a mouse.
14 </1li>

15 <1i>The SignalPWM block is renamed to SwitchingPWM and
16 its icon is changed.

17 </1li>

18 <li>Documentation for examples is updated and

19 completed. The names of components used in some of the
20 examples are changed.

21 </1li>

22 <li>The Validation package is renamed to

23 Verification. This name change has also been applied
24 to models inside this package and associated files

25 like results plots.

26 </1li>

27 <1li>MPPTController is taken out of Control.Assemblies

28 and placed directly in the Control package.

29 </1li>

30 <li>Instances of switch networks are made replaceable to
31 allow the use of different flavours of converters and
32 circuits (switched and averaged) .

33 </1li>

34 <li>HBridgeAveraged is renamed to HBridge since it can
35 now be instantiated with switched or averaged models.
36 </1li>

37 <1i>The averaged models (CCM1l, CCM2&#x2026;) include the
38 port current equations that were previously part of

39 the TwoPortConverter interface, since they now inherit
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40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
S5
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

from TwoPort, which doesn’t include those equations.
</1li>
</ul>
<p>
<strong>Additions</strong>:
</p>
<ul class=\"org-ul\">
<1li>Three variants of switched switch network models,
SW1l (switch and diode), SW2 (2 switches) and SW3 (2
switches + antiparallel diode) .
</1li>
<1li>The script callCheckLibrary.mos has been added to
provide a convenient way to run regression tests. To
provide even more convenience, a
_<sub>Dymola</sub><sub>Commands</sub> annotation has
been added to the root package file so that this
script can be run from the Commands menu when using
Dymola. The reference regression tests should be
updated in each release if necessary.
</1li>
<li>Added a script to export listings for publishing.
</1i>
<li>TwoPort interface and ConverterIcon added in place
of TwoPortConverter.
</1li>
</ul>
<p>
<strong>Deletions</strong>:
</p>
<ul class=\"org-ul\">
<li>TwoPortConverter interface is removed and
substituted by a TwoPort interface (copied from MSL
without current equations) and a ConverterIcon.
</1li>
</ul>

</html>"));

76 end Version_0_6_2;

UsersGuide/ReleaseNotes/Version 0 _6_3.mo

within PVSystems.UsersGuide.ReleaseNotes;

class Version_0_6_3 "Version 0.6.3 (September 8, 2017)"
extends Modelica.Icons.ReleaseNotes;
annotation (Documentation (info="<html>

<p>
<strong>Fixes and modifications</strong>:
</p>
<ul class=\"org-ul\">
<li>USBBatteryConverter, which instantiates
CPMBidirectionalBuckBoost couldn’t run the simulation
through a mode change (from buck to boost or
viceversa) . CPMBidirectionalBuckBoost now incorporates
one on delay block for each mode enable to prevent
them from being active at the same time. This allows
for transitions to be simulated, without loss of
accuracy.
</1li>
<li>CCM4 was missing the term for forward voltage drop
loss. This release adds that.
</1li>
<1i>CCM_DCM1 and CCM_DCM2 had an incorrect calculation
of mu which could provide negative values. This was
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23
24
25
26
27
28
29
30
31
32
33
34
38
36
37
38
39
40
41
42
43
44
45
46

fixed. Additionally, CCM_DCM2 was missing an ’'n’ term
in the calculation of Re.
</1li>
<1i>CPM had some missing terms in the equation for d.
</1li>
</ul>
<p>
<strong>Additions</strong>:
</p>
<ul class=\"org-ul\">
<li>Verification models were added in the corresponding
examples package for SWl, Sw2, SwW3, CCM1l, CCM2, CCM3,
CcCcM4, CCM5, CCM_DCM1, CCM_DCM2, CPM_CCM, CPM and
DeadTime.
</1i>
</ul>
<p>
<strong>Deletions</strong>:
</p>
<ul class=\"org-ul\">
<1i>No deletions.
</1i>
</ul>
</html>"));

47 end Version_0_6_3;
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