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Abstract 
 

In recent years, the rise of electric mobility has significantly boosted the 

development of electric vehicles (EVs) and their main components. Among 

them, the battery stands out as one of the most critical elements, as it 

directly affects key parameters such as range, charging speed and system 

lifetime. 

 

To advance in the design and optimisation of these vehicles, it is essential to 

have simulation tools to analyse the energy behaviour of the system under 

different driving conditions. These tools reduce the need for physical 

prototypes and allow configurations to be evaluated quickly and at low cost. 

 

Existing libraries and tools in simulation environments such as Modelica 

offer general electrical components or detailed motor models, but in many 

cases lack a unified, flexible framework specifically oriented to the 

simulation of complete EV powertrains. 

 

This thesis presents the EPowertrain library, a modular and reusable Modelica-

based library designed to simulate the energy behaviour of electric powertrains 

under standardised and real-world driving cycles. The library includes 

configurable models for the main electrical components (battery, DC motor, 

converter, control blocks), and is focused on lithium-ion powered electric 

passenger cars. Its architecture is optimised for fast yet realistic simulations, 

aiming to support research, education, and early-stage development. 

 

The library's performance has been validated through simulations using both the 

UDDS driving cycle and experimental data from real-world trips of a BMW i3. 

Results confirm its suitability for analysing energy consumption, comparing 

configurations, and evaluating the impact of control strategies in a physically 

consistent and computationally efficient environment. 

Keywords: Modelica, Electric Vehicles, Energy Simulation, Battery 

Consumption, EPowertrain Library 



 

 



 

 

 

 

Resumen 

En los últimos años, el auge de la movilidad eléctrica ha impulsado 

notablemente el desarrollo de los vehículos eléctricos (VE) y de sus 

principales componentes. Entre ellos, destaca la batería como uno de los 

elementos más críticos, ya que afecta directamente a parámetros clave como 

la autonomía, la velocidad de carga y la vida útil del sistema. 

Para avanzar en el diseño y optimización de estos vehículos, es fundamental 

disponer de herramientas de simulación que permitan analizar el 

comportamiento energético del sistema en diferentes condiciones de 

conducción. Estas herramientas reducen la necesidad de prototipos físicos y 

permiten evaluar configuraciones rápidamente y a bajo coste. 

Las librerías y herramientas existentes en entornos de simulación como 

Modelica ofrecen componentes eléctricos generales o modelos detallados de 

motores, pero en muchos casos carecen de un marco unificado y flexible 

orientado específicamente a la simulación de cadenas cinemáticas completas 

de VE. 

Esta tesis presenta la librería EPowertrain, una librería modular y reutilizable 

basada en Modelica diseñada para simular el comportamiento energético de 

las cadenas cinemáticas eléctricas bajo ciclos de conducción estandarizados y 

reales. La biblioteca incluye modelos configurables para los principales 

componentes eléctricos (batería, motor de corriente continua, convertidor, 

bloques de control), y se centra en turismos eléctricos alimentados con iones 

de litio. Su arquitectura está optimizada para realizar simulaciones rápidas 

pero realistas, con el objetivo de apoyar la investigación, la educación y el 

desarrollo en fases tempranas. 

El rendimiento de la biblioteca se ha validado mediante simulaciones que 

utilizan tanto el ciclo de conducción UDDS como datos experimentales de 

viajes reales de un BMW i3. Los resultados confirman su idoneidad para 

analizar el consumo de energía, comparar configuraciones y evaluar el 

impacto de las estrategias de control en un entorno físicamente consistente y 

computacionalmente eficiente. 

Palabras clave: Modelica, Vehículos Eléctricos, Simulación Energética, 

Consumo de Baterías, Biblioteca EPowertrain. 
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1 Introduction, Goals and Structure 
 

1.1 Introduction 
 

The increasing awareness about climate change, the need to reduce greenhouse gas 

emissions and the search for greater energy efficiency have driven the development of 

alternatives to fossil-fuelled vehicles. In this context, electric vehicles (EVs) have 

established themselves as a viable solution for moving towards a more sustainable 

mobility model. 

 

However, the energy performance of these vehicles still presents significant challenges, 

especially in terms of range, recharging times and battery degradation. These limitations 

are related to the design and operation of the electric powertrain, which is the system 

responsible for transforming the electrical energy stored in the battery into useful 

movement on the wheels. 

 

A typical electric powertrain in a battery-powered vehicle is composed of the following 

main subsystems: 

 

• A battery (in this case lithium-ion), which acts as the energy source. 

 

• A power converter (DC-DC or inverter), which adapts the voltage and current 

required for the motor. 

 

• An electric motor (DC or AC), which converts electrical energy into mechanical 

energy. 

 

• And the corresponding control systems, which manage traction, regenerative 

braking and overall system efficiency. 

 

Compared to internal combustion engine (ICE) vehicles, EVs have an architecture that 

is mechanically simpler but much more dependent on power electronics and optimised 

energy management. The overall system efficiency therefore depends on multiple 

interrelated factors, such as control strategy, powertrain topology and driving 

conditions. 

 

To evaluate and optimise these systems, simulation tools play a key role. They allow 

exploring alternative configurations, validating control algorithms and estimating 

energy consumption under standardised (such as WLTP or UDDS) or real driving 

cycles, all without the costs associated with building physical prototypes. 

 

However, the existing libraries in Modelica, although powerful, often offer isolated or 

too general component models, without a structured and modular framework 

specifically oriented to the energy analysis of complete electric vehicle powertrains. 
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This project responds to this need by developing EPowertrain, a modular and reusable 

library implemented in Modelica, designed to simulate the energy behaviour of an 

electric vehicle of the passenger car type, powered by a lithium-ion battery. The library 

has been designed to facilitate the design, validation, and comparison of propulsion 

architectures from a flexible, reproducible and physically coherent approach. 

 

1.2 Goals 
 

The main objective of this work is the development of a modular and reusable library in 

Modelica, oriented to the simulation of the energy consumption of battery electric 

vehicles. The library, called EPowertrain, has been designed to faithfully represent the 

interactions between the main components of the electric powertrain, maintaining a 

level of complexity suitable for efficient and flexible simulations. 

 

Through this library, the purpose is to facilitate the analysis of alternative propulsion 

architectures, as well as the evaluation of control strategies under realistic driving 

conditions. The specific objectives of the work can described as follows: 

 

• Develop modular models of the main electrical components of the system: 

battery, motor, power converter and control interfaces. 

 

• To ensure the reusability and extensibility of the models by means of an 

object-oriented structure and acausal connectors, following the clever design 

practices in Modelica. 

 

• Simulate the energy behaviour of the system under different driving profiles, 

including standardised cycles such as UDDS [1]  and real data obtained from 

urban journeys [2]. 

 

• Validate simulation results against experimental data, analysing the accuracy 

of the library in the estimation of key variables such as energy consumption, 

torque or battery state of charge (SOC). 

 

To maintain the focus on the analysis of energy consumption, certain aspects have been 

left out of the scope of the project that, although relevant in other contexts, are not 

essential for the defined objectives: 

 

• Detailed thermal Modeling: The thermal domain and thermal management 

systems are not included in order to avoid unnecessary complexity in 

simulations focused on power consumption. 

 

• Battery degradation: Long-term evolution of internal capacity or resistance is 

not considered, as this is a cumulative phenomenon outside the framework of 

individual cycles. 

 

• Advanced longitudinal vehicle dynamics: A simplified equivalent load model 

has been adopted, without including suspensions, mass transfers or detailed tyre 

models. 
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These decisions have allowed work to focus on the electrical representation of the 

system, optimising the fidelity and computational performance of the simulations. The 

EPowertrain library thus aims to be a useful educational and technical tool for the 

exploration, validation and comparison of electric vehicle configurations from an 

energy perspective. 

 

1.3 Document Structure 
 

This document is structured in seven chapters, organised in a progressive way for the 

development of the work from its motivation to the experimental validation of the 

implemented models: 

 

• Chapter 1 introduces the motivation for the work, the objectives set, and the 

scoping decisions taken. It also describes the general characteristics of the 

library developed. 

 

• Chapter 2 presents a review of the state of the art in electric vehicle Modeling, 

with special emphasis on the use of Modelica and its most relevant libraries. 

Different battery and powertrain Modeling approaches are also discussed, as 

well as fidelity levels and validation strategies present in the literature. Finally, 

compares Modelica with other simulation tools commonly used in the electric 

vehicle industry, evaluating their physical Modeling capabilities, computational 

performance and integration with open standards. 

 

• Chapter 3 focuses on the conceptual and mathematical description of the 

system to be modelled. A functional decomposition of the electric powertrain 

into subsystems (battery, converter, motor, chassis) is presented, detailing the 

differential and algebraic equations governing their behaviour. Modeling 

assumptions, definitions of symbols and units are presented, and the selection of 

simplified models is justified to ensure computational efficiency. 

 

• Chapter 4 describes the internal structure of the developed library, explaining 

the function of each subpackage (Interfaces, Electrical, Mechanical, Control, 

Sensors, etc.). The design decisions, the connections between components and 

the modularity strategies adopted are detailed. Diagrams, icons and graphical 

annotations taken directly from the Modelica environment are included to 

facilitate the understanding and implementation of the mathematical models 

presented in chapter 3. 

 

• Chapter 5 deals with the validation of the complete system by means of driving 

cycles, both standardised (UDDS) and real (BMW i3), analysing the agreement 

of the model with the measured data and justifying the observed deviations. 

 

• Chapter 6 presents the conclusions of the work, as well as a proposal of future 

lines for the extension and improvement of the library. 

 

• Appendix A contains the complete list of the Modelica code that makes up the 

developed library. It is structured according to the functional order of the 
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subpackages and is accompanied by brief descriptions to facilitate its navigation. 

This annex allows the full reproducibility of the models and their reuse in future 

projects. 

 

• Appendix B contains the self-generated documentation from the Dymola 

environment for the EPowertrain library. It includes a hierarchical 

representation of the packages and models, as well as the descriptions, 

annotations and iconographic diagrams defined in each class. This 

documentation provides a global view of the functional structure of the library, 

facilitating its understanding, maintenance and reuse. 
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2  State of the Art 
 

2.1 Introduction 
 

In the context of the transition towards electromobility, the analysis and optimisation of 

the energy performance of electric vehicles (EVs) is essential to improve their range, 

charging efficiency and commercial viability. However, direct experimentation with 

physical prototypes has significant limitations in terms of cost, time and flexibility. 

Therefore, Modeling and simulation of physical systems have become fundamental 

tools in EV design and validation, allowing the virtual exploration of multiple 

configurations and operational scenarios without the need to build numerous prototypes 

[3]. In fact, the practice of virtual validation (e.g. using digital twins) is becoming 

increasingly widespread in the automotive industry, as it significantly reduces the costs 

associated with prototyping and speeds up the development cycle. 

 

An electric vehicle involves the interaction of sub-systems of different physical nature - 

mechanical, electrical, electronic, thermal, etc. - whose integrated behaviour determines 

the overall performance of the vehicle. The complexity of these multi-domain systems 

makes it necessary to have simulation environments that allow Modeling components 

from different physical disciplines in a coupled way, reproducing phenomena such as 

electro-mechanical conversion in the engine, battery power delivery under different 

conditions, or vehicle dynamics in response to load profiles. Having sufficiently 

accurate computational models of each subsystem, integrated on a common platform, 

enables advanced approaches to validate and optimise electric powertrains prior to the 

construction of real prototypes. For example, simulators are extensively used to develop 

optimal energy management strategies in hybrid and electric vehicles (e.g. predictive 

control), taking advantage of the increasing computational capacity to optimise the 

coordinated use of the vehicle's different power sources. The need for physical 

Modeling tools in the field of EVs is justified by:  

 

• The possibility to study vehicle energy and dynamic behaviour under a 

multitude of conditions without incurring the costs and time of physical 

prototyping,  

 

• Capacity to evaluate novel component configurations and control strategies in a 

safe and reproducible environment. 

 

• Multi-disciplinary nature of EVs, which requires a multi-domain simulation 

approach to capture the interdependencies between electrical, mechanical and 

control components.  

 

The following sections detail the fundamentals of acausal, multi-domain physical 

Modeling (section 2.2), the characteristics of the Modelica language as a leading 

environment for this purpose (2.3), the main alternative simulation tools used in 

industry (2.4) and, finally, a comparison from the literature between Modelica and these 

alternatives in the context of EV Modeling (2.5). 
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2.2 Multi-domain Physical Modeling in Acausal 

Environments 
 

Multidomain physics Modeling consists of representing complex systems spanning 

multiple domains of physics (electrical, mechanical, thermal, hydraulic, etc.) under a 

unified framework of equations. A modern approach to achieve this is equation-based 

acausal environments, in contrast to traditional block diagram (causal) tools. In an 

acausal environment, model components are defined by mathematical relationships 

(algebraic and differential equations) that describe their behaviour, without 

predetermining the direction of information flow (input/output) between them. This 

means that the connections between components represent bidirectional physical 

interactions (e.g., an electrical connector imposes equal voltage and conserves current, 

or a mechanical joint balances forces and accelerations between connected bodies) 

rather than a unidirectional signal. The result is a declarative model, where the user 

describes which physical relationships govern the system, leaving it to the solver to 

determine how causal dependencies propagate during the simulation [4].  

 

Example: Consider an ideal electrical resistor. In acausal language, its behaviour can be 

specified by Ohm's law declaratively: 

 

 𝑉 = 𝑅 ∙ 𝐼 (2.1) 

 

where 𝑉 is the voltage drop across the resistor, 𝑅 it is the resistance and 𝐼 the current 

through it. This single equation works whether the resistor is connected to a voltage 

source (determining a current) or a current source (determining a voltage), as the system 

solver will calculate the appropriate causality in each context. In causal environments 

(e.g. Simulink), on the other hand, it would be necessary to define different blocks or 

configure the resistor block in different modes depending on whether it is excited with a 

current or a voltage, as it is required to fix a priori which variable is input and which is 

output. Acausal Modeling avoids this drawback by not fixing the direction of the 

relationships, providing great flexibility and reusability of components in different 

scenarios [5]. 

 

Multidomain acausal Modeling environments (such as Modelica, see section 2.3) are 

mathematically based on systems of differential-algebraic equations (DAEs). A 

complete model is formed by assembling elementary components (each with its internal 

equations) through connectors that impose continuity constraints (e.g., equal electric 

potential at a common node, equal velocity in a mechanical coupling) and conservation 

laws (e.g., zero sum of currents at a node, zero sum of forces at a static junction). 

 

The symbolic environment solver gathers all the equations of the system and applies 

analysis methods (e.g. index reduction, selection of state variables, etc.) to prepare a 

numerically solvable system. Finally, a numerical integrator (e.g., explicit or implicit 

integration methods) solves the equations in time. This automatic chain (translation of 

models to DAEs and numerical solution) frees the modeller from having to manually 

derive the causal forms of each equation, allowing to focus on the physics of the 

problem. 
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Acausal Modeling offers several advantages: 

 

• Modularity: it is possible to freely drag and connect component instances in 

almost any physically valid configuration, without the need to manually adapt 

interfaces, as acausal connectors ensure physical compatibility (e.g. freely 

connecting electrical elements by common nodes, mechanical elements by 

flanges, etc.) [6]. 

 

• Reusability and modularity: the same sub-model (e.g. an electric motor) can 

be used at different system levels or in different projects without modification, 

as it does not carry signal direction assumptions; furthermore, thanks to 

inheritance and parameterisation support, basic models can be extended to create 

specialised variants without rewriting from scratch [5, 7]. 

 

• Multi-domain capability: by relying on generic equations, acausal languages 

can represent electrical, mechanical, thermal, etc. components and their 

interactions on a single platform, avoiding fragmentation into multiple tools. 

This facilitates comprehensive studies of complex systems such as EVs, where 

the battery (electrical/chemical), motor (electrical/mechanical) and electronic 

control (digital/algorithmic) must be evaluated together [8]. 

 

• Flexibility of configuration changes: replacing one component with another 

(e.g. a detailed motor model with a simplified map-based one) does not require 

redoing connections and interfaces, as long as they share the same connector 

type, which speeds up the exploration of alternative designs in multiple tools. 

This facilitates comprehensive studies of complex systems such as EVs, where 

the battery (electrical/chemical), motor (electrical/mechanical) and electronic 

control (digital/algorithmic) must be evaluated together [9]. 

 

Despite its advantages, the acausal approach comes with some challenges. One of 

them is the longer learning curve: engineers must familiarise themselves with the 

equation-based paradigm and concepts of DAEs, which differs from the sequential 

signal flow they might be used to with causal tools. For example, it has been observed 

that Modelica tools such as Dymola require a higher initial learning effort compared to 

environments such as Simulink [10], in exchange for greater customisation and 

expressive. This flexibility can be overwhelming for novice users, although access to 

libraries of predefined components and didactic examples mitigates the problem [5, 6]. 

 

Another aspect is model debugging: since the source code is declarative equations, 

when an error occurs (e.g., redundant or missing equations that make the system 

overdetermined or indeterminate), diagnosis may be less intuitive than in causal 

schemes. However, modern environments often provide symbolic debugging tools and 

messages that guide the user in the correction (e.g., indicating a variable without an 

associated equation, suggestions to provide initial conditions, etc.). In terms of 

simulation performance, while acausal engines allow efficient simulations in many 

cases, certain very detailed models (e.g., high frequency switched circuits, or systems 

with very frequent discontinuous events) may require very small integration steps or 

special techniques, similar to other platforms [5]. Thus, averaging models or order 

reductions are sometimes used to tractably simulate fast phenomena in long-term 

studies [11, 12]. 
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In summary, multi-domain acausal environments provide a powerful and general 

framework for physical Modeling, with great benefits in versatility and model accuracy, 

while requiring the user to be properly trained in the fundamentals of equation 

Modeling and to use the available libraries correctly. 

 

Table 2.1: Comparison Between Acausal and Causal Modeling Approaches. 
 

Acausal Modeling Causal Modeling 

Paradigm Based on algebraic and 

differential equations (DAEs), 

with no predefined direction of 

data flow. 

Based on block diagrams with 

explicitly defined inputs and 

outputs (cause-effect relations). 

Flow direction Determined automatically by the 

solver at simulation time. 

Manually defined by the user for 

each block. 

Component 

connectivity 

Bidirectional; represents shared 

physical variables (e.g., voltage, 

force, torque). 

Unidirectional; signals are 

propagated from output to input. 

Physical 

representation 

Closer to actual physical 

formulation (laws of physics 

expressed as equations). 

Requires transforming physical 

laws into signal-based 

structures. 

Model reusability High; components can be reused 

in multiple contexts without 

rewriting equations. 

Limited; models often need to 

be adapted to each signal flow 

configuration. 

Modularity and 

composability 

High; components can be 

interchanged if physical 

connectors are compatible. 

Lower; changes in model 

structure often require 

reworking block connections. 

Typical 

environments 

Modelica, Simscape, Simcenter 

Amesim. 

Simulink, LabVIEW, classic 

control systems. 

Learning curve 
Longer, requires understanding 

of physical Modeling and DAEs. 

Faster, intuitive for users with 

signal-flow or control 

background. 

Typical 

applications 

Physical Modeling of electrical, 

mechanical, thermal, and hybrid 

systems. 

Control design, signal 

processing, process simulation. 

 

 

2.3 Relevant Modelica Libraries 
 

Developed since the late 1990s by the Modelica Association [13], Modelica has 

established itself as one of the most widely used multi-domain causal languages in 

academia and industry. Modelica is an equation-based, object-oriented language for 

Modeling complex physical systems [14]. 

 

Its philosophy is based on describing the behaviour of components by means of 

mathematical relationships (ordinary algebraic-differential equations) rather than 

sequential procedures, allowing a declarative representation of system dynamics. The 
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language also supports discrete events, allowing the simulation of hybrid (continuous-

discrete) systems to include control logics, condition-triggering, etc. The language 

specification is open and maintained by the Modelica Association, which also provides 

a comprehensive Modelica Standard Library (MSL) [15] with fundamental models in 

numerous domains: electrical (analogue and digital), translational and rotational 

mechanical, thermal, hydraulic, among others.  Thanks to this standard library and 

many other available libraries, modellers can build virtual prototypes of a wide variety 

of physical systems by combining predefined components and adding their own 

equations when necessary. 

 

In Modelica, each model is essentially a class that encapsulates equations and variables 

that can be reused as a subcomponent in higher-level models. The language fully 

supports the principles of modularity and inheritance: one model can extend (inherit) 

from another by adding or modifying equations/parameters, facilitating the creation of 

specialised variants without duplicating code. Modelica also allows acausal connectors 

to be defined for different domains (e.g. electrical pin connectors with voltage and 

current variables, mechanical flange connectors with position and force, etc.), allowing 

components to be graphically connected in a physically meaningful way. During 

compilation, the Modelica engine gathers all the equations of the connected components 

and generates the overall system to be solved. This ability to bring together multiple 

formalisms under a unified syntax makes Modelica a particularly suitable tool for 

complex systems such as electric vehicles, where heterogeneous phenomena coexist. 

 

Modelica libraries play a fundamental role in the process of Modeling and simulating 

complex physical systems. These libraries group sets of parameterizable models of 

basic components -such as resistors, electric motors, batteries, converters or mechanical 

elements- that can be reused and combined to build complete systems [1,2]. Their main 

functions include: 

 

• Facilitating reusability and modularity: Libraries allow complex models to be 

built from validated blocks, reducing development time and increasing the ro-

bustness of simulations. 

• Promoting physical consistency: By using standardised connectors (based on 

stress and flow variables), it is guaranteed that the interaction between subsys-

tems respects physical principles such as energy conservation. 

• Speed up validation and comparison: By relying on previously tested compo-

nents, it facilitates the validation of new models and speeds up the comparison 

between different configurations. 

• Encourage extensibility: Many libraries are designed in an open way, allowing 

users to extend or specialise models to suit specific needs. 

Modelica has been widely used in academic research on electric vehicles, ranging from 

single component studies to complete system optimisation. For example, Qin et al. [12] 

modelled a lithium-ion battery pack with a second-order equivalent circuit scheme in 

Modelica, successfully simulating its dynamic behaviour inside an electric vehicle and 

validating it against experimental data. 

 

Bui et al. [16] used Modelica to develop and evaluate in real time an energy 

management strategy for a hybrid vessel, demonstrating the language's ability to 

integrate battery models, motors and control algorithms in a modular way. Another 
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example is provided by Milishchuk and Bogodorova [17], who implemented a 

Thevenin-type battery model in Modelica incorporating ageing (degradation) effects, 

and reported the effectiveness of this approach to study the evolution of battery 

performance with use. 

 

These cases, together with numerous contributions in specialised conferences (e.g. 

International Modelica Conference, IEEE Vehicular Technology, etc.), show the 

maturity of Modelica as a reference platform for electric vehicle research. 

 

Finally, it is worth mentioning that the Modelica ecosystem is supported by multiple 

simulation environments. Among the commercial environments, Dymola (Dassault 

Systemes) has historically been the most widely used, offering a robust Modeling and 

simulation environment with Modelica and powerful analysis tools (optimisation, 

linearisation, etc.). There are also open-source tools such as OpenModelica, which 

implements the Modelica standard and allows models to be simulated free of charge, 

encouraging its use in academia.  

 

This wide adoption by different vendors confirms Modelica's status as a standard 

language for system-level physical Modeling. Within the Modelica ecosystem, several 

libraries are relevant for the simulation of electric powertrains: 

 

• Modelica Standard Library (MSL): The Modelica Standard Library provides 

a basic collection of models in multiple domains (electrical, mechanical, ther-

mal, etc.), including ideal electric motors, simple batteries, transmission ele-

ments and control components.  Although the MSL provides the basis for start-

ing the Modeling of an EV, it does not by itself cover all specific aspects of a 

complete electric powertrain. Even so, the library’s open and extensively vali-

dated character makes it the starting point for many specialised developments.  

In fact, the MSL has served as a foundation for vehicle-focused extensions, incorporat-

ing models of electrical machines (induction, synchronous, etc.), friction losses or ther-

mal effects in power components. In Figure 2.1 illustrates the constitution of a DC mo-

tor by using blocks from the standard Modelica standard library. 
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Figure 2.1: Permanent Magnet, DC Machine MSL Model. 

 

• VehicleInterfaces Library: This is an architecture library that defines a 

standardised framework for vehicle interfaces. It provides generic templates and 

connectors to assemble subsystems (powertrain, chassis, driver, etc.) in a 

consistent way. Although the VehicleInterfaces library itself does not provide 

detailed models, its importance lies in facilitating the integration of components 

from different libraries under a unified vehicle schema [7]. Many works have 

adopted these common interfaces to build electric vehicle models by easily 

interchanging components (e.g. different motor or battery types). 

 

• Electric propulsion specific libraries: In response to the need for more detailed 

and efficient models to simulate EVs, several authors have developed 

specialised Modelica libraries for electric powertrains. Ceraolo presented one of 

the first free libraries for electric and hybrid vehicles [5], incorporating 

adjustable physical models of motors (synchronous and asynchronous 

machines), generators, converters and batteries. A key feature of this library is 

the use of averaged models in the power electronics components, forgoing the 

reproduction of high frequency switching to achieve more efficient simulations 

in long duration scenarios (e.g. the standard NEDC cycle of ~1200 s). In this 

way, a compromise between detail and computational cost was achieved that 

was adequate to evaluate EV dynamics over full driving cycles. The library also 

includes battery models and aerodynamic resistances and has served as a basis 

for building pure electric and hybrid EV examples in Dymola and 

OpenModelica. 

 

• ElectricDrives (Modelon): There are commercial libraries, such as Modelon's 

ElectricDrives, focused on Modeling electric drives (DC motors, induction mo-

tors, PMSM, converters, basic controllers, etc.). These libraries provide detailed 

component-level models and multiple electric drive configurations. However, 

their scope tends to focus on the electrical behaviour of the motor and its invert-

er, and they do not explicitly address the energy integration of the whole vehicle 
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under different driving profiles. In other words, they offer an excellent level of 

fidelity in the simulation of a single inverter-drive train, but aspects such as en-

ergy management at vehicle level (battery operation strategies, regeneration un-

der braking, etc.) or the influence of driving are outside their direct scope. 

In addition to the above, other relevant libraries can be mentioned: for example, the 

AlternativeVehicles (DLR) library [18], of a commercial type, oriented towards hybrid, 

electric and fuel cell vehicles. In 2011, the Electric Energy Storage (EES) library was 

proposed [19], with battery models from cells to complete packs, a precursor to later 

developments incorporated in the MSL. In general, the availability of specific libraries 

has grown to cover distinct levels of detail according to simulation needs: from fast 

models for range estimation to complex thermo-electrochemical models for degradation 

analysis or design of advanced control strategies. 

 

The proper use of these libraries, combined with the development of specific 

components, when necessary, constitutes an essential pillar for simulation projects 

oriented to the analysis of energy consumption in electric vehicles, such as the one 

proposed in this thesis. 

 

2.3.1 Electric Powertrain Modeling 
 

Powertrain Modeling is a central aspect in the simulation of electric vehicles, since it 

directly conditions the estimation of energy efficiency, autonomy and interaction 

between subsystems. In the Modelica environment, this process is addressed through 

modular architectures that allow the hierarchical and reusable representation of each 

functional component: from the battery to the wheels. This structure facilitates the 

scalability of the model and its adaptation to diverse levels of fidelity according to the 

analysis objectives, from fast quasi-real-time simulations to detailed studies of dynamic 

behaviour. 

 

Authors such as Ceraolo [5] have developed pioneering libraries in the representation of 

electric and hybrid vehicles, introducing physical models with adjustable 

parameterization to represent generators, motors, converters and batteries. These 

libraries are built with an acausal approach, which allows defining the physical 

equations without the need to explicitly fix the directions of power or signal flow, thus 

favouring flexibility in the coupling between components. 

 

In more recent work, Liu et al [20] implemented a simulation framework oriented to the 

analysis of energy control strategies, combining electrical, mechanical and thermal 

components within a Modelica environment. Using tools such as Dymola, their library 

allows configuring different powertrain topologies (single drive, dual drive, parallel or 

series hybrid), with the possibility of adjusting the complexity levels depending on the 

required detail. This modularity is particularly useful for applications such as virtual 

testing of drive cycles, optimization of acceleration profiles, or validation against 

experimental data. A major advantage of Modelica Modeling is the possibility of 

defining various levels of abstraction: 

 

• Simplified 0D or 1D type models, suitable for rapid simulations and high-level 

prototyping. 
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• Intermediate physical models, which include nonlinear equations representative 

of dynamic behaviour (for example, models of losses in electric motors or 

transient response of converters). 

 

• Detailed multiscale models, capable of representing thermal, electromagnetic or 

electrochemical phenomena more accurately, although at the cost of a higher 

computational load. 

 

These methodologies are also supported by libraries or proprietary developments from 

manufacturers and academic institutions. The reuse and parameterization of blocks 

facilitates not only the Modeling, but also the calibration and validation of complete 

propulsion systems under variable conditions, allowing the easy integration of sensors, 

controllers and user models. 

 

One of the most relevant contributions of the study is the treatment of co-simulation as 

the structuring axis of the complete vehicle model. Through standards such as FMI 

(Functional Mock-up Interface) and tools such as Dymola, Simulink, or GT-SUITE the 

authors show that it is possible to integrate subsystems developed on different platforms 

without compromising the fidelity of the overall system. 

 

Different integration configurations (model exchange, standalone co-simulation, 

coupling per server) are exemplified, each with advantages and limitations in terms of 

simulation speed, model transparency and inter-tool compatibility. 

 

Also, special emphasis is placed on the need to use fast 1D models to speed up 

simulation times in optimization contexts, without sacrificing the ability to capture 

relevant transient effects. 

 

2.3.2 Battery Modeling 
 

The battery represents the energy core of an electric vehicle, the Modeling of which 

directly influences range estimation, energy management strategies and thermal control. 

There are multiple methodologies to simulate its behaviour, differentiated by the level 

of fidelity required and the physical phenomenon of interest (electrical, thermal or 

electrochemical). In the field of electric vehicle simulation in Modelica, three 

predominant approaches can be found, each with advantages and limitations depending 

on the use case. 

 

Simplified Electrical Models 

Electrical models based on equivalent circuits, such as Rint, RC or Thevenin schemes, 

are widely used in the simulation of batteries for electric vehicles due to their low 

computational cost, ease of implementation and compatibility with multidomain 

simulation environments. These models represent the dynamic behaviour of the battery 

through combinations of resistors, capacitors and controlled voltage sources, which 

allows capturing effects such as the voltage drop associated with the internal resistance 

or the transient response to load changes. 

 

However, the fidelity of these representations can vary depending on the order of the 

model and the phenomena considered. In this context, Qin et al [12] propose a relevant 
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evolution using a third-order RC model that explicitly incorporates the voltage 

hysteresis observed in 𝐿𝑖𝐹𝑒𝑃𝑂₄ cells. This structure allows capturing the internal 

overpotential and simulating with high accuracy both the dynamic response and the 

behavior in real cycles such as UDDS or NEDC, with errors lower than 2%. 

Implemented in Modelica using the MWorks tool, the model is easily integrated into 

complete electric vehicle simulations, demonstrating its usefulness in both validation 

and SOC estimation. 

 

Complementarily, Chen and Rincón-Mora [21] develop a comprehensive electrical 

model oriented to the accurate prediction of runtime and I-V performance of batteries in 

portable electronics. Their proposal combines elements of Thevenin, impedance and 

usable capacity models, introducing a dual RC network that simulates two differentiated 

time constants (short and long), together with a SOC-dependent voltage source to reflect 

the open-circuit voltage (OCV) nonlinearity. Although its implementation is performed 

in the Cadence environment, the underlying principles-modularity, parameterization, 

and transient response are extrapolable to Modelica architectures.  

 

Both approaches reflect a common trend: the refinement of RC models to integrate 

previously ignored phenomena, such as hysteresis or state-of-charge and temperature-

dependent variations, without incurring the computational complexity of full 

electrochemical models. Thanks to their modular and parameterizable structure, these 

models can be implemented in libraries or proprietary developments, being particularly 

suitable for autonomy studies, on-board control and validation of BMS algorithms in 

hardware-in-the-loop (HIL) simulations. 

 

Thermal and Heat Propagation Modeling 

 

The thermal behaviour of lithium-ion batteries has become a critical aspect of 

Modeling, especially in the face of increasing energy density, fast charging demands, 

and the need to ensure system operational safety. During normal electric vehicle 

operation, the battery generates heat because of ohmic losses, non-reversible 

electrochemical reactions and hysteresis effects. If this heat is not properly managed, it 

can cause significant temperature gradients within the battery pack, accelerating 

degradation phenomena and even triggering thermally hazardous events such as thermal 

runaway (TR). The increasing energy density and the need for ultra-fast loading have 

intensified the interest in predictive strategies capable of anticipating these events and 

assessing the effectiveness of containment measures. 

 

Thermal models aim to represent both the internal generation of heat and its propagation 

and dissipation to the surroundings, considering the geometrical design of the package, 

the thermal connectivity between cells, and the cooling systems (air, liquid or phase 

change materials). At the computational level, these dynamics can be addressed by 1D, 

2D or pseudo-3D formulations, depending on the balance between accuracy and 

computational cost. 

 

An interesting contribution in this field is the BatterySafety library, developed in 

Modelica by Groß and Golubkov [22]. It includes a simplified but efficient model for 

simulating TR propagation in battery packs. Based on experimental data obtained by 

accelerated rate calorimetry (ARC), the model employs a so-called simple tracing 

approach, which allows predicting the temperature evolution during the exothermic 
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reaction without requiring curve fitting. This approach facilitates the simulation of 

critical events at the cell, module and pack scale, allowing both heat generation and heat 

transfer between thermally connected cells to be modelled. The model incorporates 

variable thermal resistances that decrease in value when a cell enters TR, simulating 

thermal propagation driven by the release of hot gases. 

 

From the simulation perspective in Modelica, thermal Modeling can be addressed 

through the Modelica.Thermal.HeatTransfer [23], ThermoPower [24] libraries, or by 

developing specific submodules that couple the thermal balance to temperature-

dependent electrical parameters. One of the most widespread applications consists in 

Modeling the internally generated heat by means of: 

 

 𝑄𝑔𝑒𝑛 = 𝐼2 ∙ 𝑅𝑠 + 𝐼 ∙ (𝑉𝑜𝑢𝑡 − 𝑉𝑇ℎ𝑒) = 𝐼2 ∙ 𝑍𝑇ℎ𝑒 (2.2) 

 

Where the first term represents Joule losses and the second term represents polarisation 

losses on a 1RC Thevenin model [21]. This heat can then be coupled to 1D or 3D 

thermal models that simulate dissipation through the package, cooling modules and 

environment. TR propagation models allow simulating failure scenarios, evaluating 

passive safety strategies (insulators, compartmentalisation) and designing active 

countermeasures (cooling, thermal fuses). Moreover, their integration in pack-level 

simulations enables sensitivity analysis and validation against experimental data without 

resorting to expensive CFD models. 

 

Simplified Electrochemical Models 

 

Electrochemical models provide a detailed description of the internal phenomena of the 

cell, including electrolyte dynamics, charge and discharge reactions, and ion migration 

through the separator. However, full models - such as those based on the Nernst-Planck 

equation [25], Fick diffusion [26] or the Doyle-Fuller-Newman (DFN) model [27] - 

involve a high computational burden due to the solution of coupled partial differential 

equation systems, which limits their applicability in simulations of complete electric 

vehicle systems, especially under optimisation or co-simulation conditions. 

 

In this context, simplified electrochemical models have emerged that allow capturing 

the main physic-chemical effects of interest - such as internal polarisation, potential 

unbalance between electrodes, and thermal dependence of capacitance - without the 

need for fine spatial discretisation or three-dimensional grids. These models strike a 

balance between realism and efficiency, making them ideal candidates for integration 

into energy management strategy (EMS) simulations, thermal control or validation 

under aggressive driving cycles. 

 

A representative example of this approach is the work of Romero and Angerer [8], who 

present a formulation based on an equivalent electrochemical-hydraulic model (EHM) 

implemented in Modelica to simulate fast-charge dynamics under thermal and 

electrochemical constraints at the cell and pack level. This model considers two main 

states per electrode (bulk and surface concentration), allowing to simulate phenomena 

such as lithium plating, voltage drop associated with reaction kinetics and heat 

generation. The formulation includes dependencies on temperature and charge transfer 

parameters and is implemented in a non-linear predictive control (NMPC) environment 

using JModelica.org. 
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One of the key contributions of the study is the use of the EHM model within an 

optimal control scheme to minimise charging time while keeping internal variables 

(such as anode potential and cell temperature) within safe limits. Through simulations 

under fast charge cycles (up to 2C), it is demonstrated that the model is able to 

accurately reproduce the thermal and electrochemical behaviour of 21700 cells with 

immersion cooling, allowing the design of charge profiles that reduce the charge time of 

a full pack to 36 minutes without compromising operational safety. 

 

2.4 Alternative Tools 
 

The rise of the electric vehicle (EV) has pushed the need for accurate models of 

batteries and electric powertrains (motors, inverters, transmissions, etc.) for 

performance, efficiency and ageing analysis. Several multi-domain simulation tools 

allow these models to be built, each with different approaches and capabilities. In this 

chapter we analyse Modelica (as a language and ecosystem of tools, e.g. Dymola, 

OpenModelica, etc.) in comparison with its main alternatives widely used in 

automotive: MATLAB/Simulink (with the physical extension Simscape), ANSYS Twin 

Builder, GT-SUITE, Simcenter Amesim, among others. 

 

Several key aspects will be evaluated and compared: the physical Modeling capabilities 

(multi-domain, use of acausal vs. causal equations, support of different physical 

domains), numerical accuracy and robustness of the simulation, compatibility and 

integration with other environments (including FMI/FMU standards and co-simulation), 

usability and learning curve, availability of specialised libraries (in particular for 

batteries and electric powertrain components), support of open standards and model 

reuse, as well as computational performance and scalability for large models.  

 

While Modelica offers a particularly powerful approach to physical EV Modeling, there 

are several simulation tools and environments widely used in industry and research. In 

the following, some of the most relevant alternatives are briefly described - highlighting 

their approaches and capabilities - and compared to Modelica from an EV Modeling 

perspective. 

 

2.4.1 Simulation Tools Considered 
 

• Modelica - An acausal, object-oriented language for multi-domain physical 

Modeling. It is an open standard maintained by the Modelica Association, with 

commercial (e.g. Dassault Systemes Dymola, Wolfram SystemModeler, 

MapleSim) and open source (OpenModelica, JModelica.org, etc.) 

implementations. Modelica makes it possible to describe complex systems using 

differential-algebraic equations (DAE) instead of causal block diagrams, which 

facilitates the integration of different physical domains (electrical, mechanical, 

thermal, etc.) in a single model. It has the free Modelica Standard Library and 

numerous additional libraries (free to use or commercial) for different sectors 

(from electrical systems to complete vehicles). 
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Figure 2.2: Modelica's VehicleInterfaces Library [6]. 

 

• MATLAB/Simulink + Simscape - MathWorks Simulink is a causal block 

diagram (one-way signal) based environment widely used in control 

engineering. For physical Modeling, Simulink is complemented by Simscape, a 

set of libraries and an infrastructure for acausal Modeling of physical networks 

(e.g., electrical circuits, hydraulic or mechanical networks). Simscape provides 

predefined components for multiple domains (Simscape Electrical for electrical 

and power electronics systems, Simscape Driveline for mechanical 

transmissions, Simscape Fluids for fluids and thermal, Simscape Multibody for 

3D, etc.), which are integrated into Simulink diagrams. This makes it possible to 

combine physical plant models with control systems in the same environment. 

Simscape uses its own internal equations (the user can create custom 

components in Simscape language), solving connections in an analogous way to 

Modelica (energy balance, Kirchhoff, etc.), but under the hood it remains tied to 

the MATLAB environment. 

 

• ANSYS Twin Builder - ANSYS digital twin and system simulation platform. 

Twin Builder (formerly Simplorer) supports hybrid multi-domain Modeling, 

combining acausal and causal models. In particular, it allows the use of different 

standard languages: from Modelica and VHDL-AMS (acausal languages of 

conservative components) to SPICE circuit languages, causal functional blocks 

and even C/C++ or Python code. Includes own libraries for power electronics, 

fluid-thermal systems and an integrated Modelica library with EV specific 

components, e.g. battery cell templates (equivalent circuits dependent on SOC, 

temperature, etc.), thermal management (Heating & Cooling) and electrical 

powertrain (motors, converters) libraries. It is especially oriented to the creation 

of digital twins, integrating 0D/1D models with 3D simulation (via co-

simulation or reduced models) and facilitating the connection with IoT or 

control platforms. 

 

 

• GT-SUITE - Multi-physics 1D simulation suite from Gamma Technologies, 

widely used in the automotive industry. It was born focused on internal 
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combustion engine Modeling (GT-Power for thermodynamic cycle) but evolved 

to cover all vehicle systems (air/fuel flows, aftertreatment, battery thermal 

systems, electrical machines, transmissions, air conditioning systems, etc.). GT-

SUITE offers pre-built component libraries with a high level of fidelity (e.g. 

detailed models of turbochargers, intercoolers, or electric motor maps). It uses a 

flow-port connected component Modeling approach (like an acausal 

mass/energy balance scheme), although the tool takes care of resolving causality 

directions internally. It is highly optimised for automotive applications and 

supports open/closed loop simulation, parametric optimisation and real-time 

execution (many manufacturers use it for HIL on engine and vehicle test 

benches). GT-SUITE can also be integrated with Simulink (e.g. via S-Functions) 

and supports standards such as FMI for model exchange. 

 

• Simcenter Amesim - Siemens' multi-domain 0D/1D simulation environment 

(originally LMS Amesim). Allows Modeling of complex mechatronic systems 

through a graphical drag-and-drop interface of components from a wide variety 

of physical libraries (electrical, mechanical, hydraulic, pneumatic, thermal, etc.). 

Components are connected by ports representing stress/flow variables (e.g. 

voltage-current, pressure-flow); connecting one component to another 

automatically establishes the necessary causality relationships (inputs/outputs).  

 

Amesim is characterised by its extensive catalogue of validated and ready-to-use 

components (valves, cylinders, pumps, exchangers, electric motors, converters, 

etc.), which speeds up the construction of industrial models. Additionally, it 

supports the Modelica language within its components, allowing the 

incorporation of custom models in Modelica or the reuse of non-native Modelica 

libraries from Amesim. It is a tool recognised for its ease of use and focused on 

systems engineers; it also offers integrated optimisation, calibration and results 

analysis functionalities. 

 

Other specialised platforms also exist in this field, such as AVL CRUISE (oriented to 

energy efficiency simulation of complete vehicles, including electric vehicles and fuel 

cells) or tools focused on power electronics such as PLECS or Synopsys Saber, among 

others. However, in this analysis we will focus on the generalist platforms mentioned 

above, which are the most widely used for comprehensive physical Modeling of EVs.  

 

2.4.2 Physical Modeling Capabilities and Multi-Domain Approach 
 

A differentiating factor between the tools is their Modeling paradigm: acausal vs. 

causal, and the intrinsic support of multiple physical domains in a single model. 

 

• Modelica: is based on acausal Modeling by equations. The user defines the 

physical laws (e.g. Kirchhoff equations, conservation of energy, etc.) within 

components, and the connections represent bidirectional flow/potential 

exchanges (current-voltage, torque-velocity, temperature-heat flow, etc.). This 

allows for a natural integration of multiple domains: for example, a battery 

model in Modelica can simultaneously include the cell's electrical circuit, its 

heat balance and even degradation kinetics equations, all consistently connected. 

Modelica is domain agnostic, so electrical, mechanical and fluid coexist without 

the need for artificial partitions. In addition, the language supports hierarchies 
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and object-oriented reuse, making it easy to build complex systems from sub-

models. In summary, Modelica was designed for general-purpose, multi-domain 

physical Modeling, with acausal equations offering flexibility to reconfigure 

models without re-specifying inputs/outputs. 

 

• MATLAB/Simulink + Simscape: Simulink itself uses a causal Modeling 

approach: each block has defined inputs and outputs, which is suitable for 

representing signal flows in control systems, but less suitable for Modeling 

physical laws (which are often inherently acausal). The introduction of Simscape 

added the capability of physical Modeling using acausal networks within the 

Simulink environment. Simscape provides conserving ports analogous to 

Modelica connectors: by connecting Simscape components (e.g., a resistor to a 

battery), the charge and energy conservation equations are automatically 

established at that node, without the user specifying the direction of flow. 

Simscape adopts the same principle of implicit equations as Modelica, but 

encapsulated by domain in different libraries (Electrical, Mechanical, Thermal, 

etc.) within MATLAB.  

 

It is important to note that Simulink + Simscape is still less open than Modelica: 

the acausal equations exist behind the Simscape components, but there is no 

unified multi-domain language that the user can freely extend beyond using the 

Simscape Language syntax in MATLAB to create new physics blocks. Still, in 

terms of Modeling capabilities, Simscape allows combining domains (e.g., an 

electric motor with electrical circuit and mechanical shaft, coupled to a thermal 

model), like Modelica, achieving integrated multi-physics models. 

 

• Simcenter Amesim: is also a multi-domain platform of acausal nature in the 

connection of components. Historically, Amesim was based on the formalism of 

bond graphs and equations assigned to components solved by implicit numerical 

methods. The user assembles the model with icons of components (pumps, 

motors, batteries, etc.) connected by ports; each port imposes a stress/flow 

interaction between connected components. Causality is solved automatically: 

that is, the software decides internally which variable will be calculated as a 

function of which, to solve the system. In practice, this gives Amesim similar 

capabilities to Modelica/Simscape in terms of coupling different domains 

without manual effort. One difference is that Amesim originally did not expose a 

Modeling language to the user (everything was done via pre-defined 

components), although it now allows importing or writing components in 

Modelica and other languages. Amesim comes with extensive multi-domain 

libraries, so an engineer can put together, for example, a complete battery-

motor-inverter system by selecting library components, without having to handle 

equations. 

 

• GT-SUITE: has multi-domain capabilities but with a slightly different approach 

due to its legacy in engines. GT uses a simulation engine with different 

specialised solvers for different sub-domains (fluid, mechanical, electrical) 

within the same model. For example, it integrates electrical circuit solutions (for 

cable networks, batteries and inverters), 1D flow solutions for gases and 

refrigerants, and discrete elements for mechanical kinematics. The construction 

of the model is by means of 1D diagrams where volumes, ducts, resistors, etc. 
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are connected. Like Modelica/Amesim, the physical laws (e.g. 1D Navier-Stokes 

equations in a duct, or RC circuit equations in a battery) are predefined in 

components, which are connected by establishing flow balances. There is no 

need to define the direction of the variables: GT determines how to solve the 

networks. It is therefore acausally multi-domain in practice (although internally 

it can partition the solution). A strength of GT is its fusion of 1D with 3D: it 

allows importing CAD geometries or CFD/FEM results to generate equivalent 

1D models, being able for example to derive a 1D cooling network from a 3D 

CAD model of a battery pack. This extends the scope of physical Modeling, 

combining 1D speed with 3D detail where necessary. 

 

• ANSYS Twin Builder: its philosophy is hybrid. On the one hand, it acts as a 

Modelica environment: it directly supports the inclusion of Modelica models 

within its schematic (in fact it comes with the Modelica Standard Library and its 

own Modelica libraries). On the other hand, it retains capabilities of its 

predecessor Simplorer, allowing SPICE-type circuit diagrams (especially useful 

for power electronics) and control block diagrams. In Twin Builder one can, for 

example, connect an electric motor model written in Modelica with a PID 

controller in block diagram and an IGBT firing circuit in VHDL-AMS, all in a 

unified simulation. This combination of acausal and causal in the same 

environment is unique to Twin Builder. As for multi-domain, it is fully capable: 

electrical, mechanical, hydraulic, thermal - with the advantage that ANSYS 

provides coupling with its 3D tools (you can include reduce-order sub-models of 

3D electromagnetics, structures, CFD, etc., generated in Maxwell, Fluent, etc.). 

In sum, Twin Builder stands out for its flexibility in Modeling approaches (from 

Modelica equations to 3D reduced-order models), which gives it strong multi-

domain support. 

 

For EV applications, it is common to involve model interaction of multiple subsystems: 

the battery (electrochemical/electrical + thermal), the power electronics (electrical + 

digital control + thermal losses), the electric motor (electrical + mechanical + thermal), 

the transmission (mechanical) and eventually the complete vehicle (vehicle mechanical 

dynamics with controls) [28], [8], [20]. Tools with solid multi-domain support and 

acausality allow building integrated models where all these parts coexist in a consistent 

way.  

 

Modelica provides perhaps the most unified experience in this respect: everything is 

expressed in a single declarative language, with great freedom to create custom 

components if they do not exist. Simulink/Simscape achieves something similar but 

fragmented into different libraries and with some friction if custom components are 

required (they must be programmed in Simscape language). Amesim and GT-SUITE 

bring the convenience of very complete libraries, designed specifically for automotive 

use cases, minimising the need to program equations - at the cost of being more closed 

environments (although Amesim and Twin Builder partially compensate by accepting 

Modelica, inheriting some of its openness). 
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2.4.3 Simulation Precision and Performance 
 

The accuracy of the simulations and numerical robustness (ability to solve complex 

systems of equations in a stable way) are critical considerations when evaluating these 

tools. All the environments analysed can, in principle, produce very accurate results if 

the physical models are well set up and calibrated. Differences arise in the numerical 

methods available, the ease of handling stiff systems and the default tolerances they 

employ, which impact on the fidelity and stability of the solutions. 

 

• Modelica (Dymola/OpenModelica): Modelica tools typically use advanced 

solvers of DAEs (e.g. DASSL, IDA) with variable step and event detectors, 

complemented by symbolic processing that simplifies equations prior to 

simulation. Dymola performs index reduction and algebraic optimisation 

techniques that improve stability and speed, reducing cumulative numerical 

errors. This results in very robust simulations even when dynamics of different 

time scales coexist (for example, the slow evolution of the temperature of a 

battery together with fast switching of an inverter). In terms of accuracy, 

Modelica does not impose simplifications: one can enter very detailed equations 

(even small ODEs for transient effects within a cell) and the solver will solve 

them together. Comparative studies have shown that Modelica can match or 

exceed the accuracy of other tools [29].  

 

• Simulink/Simscape: Traditional Simulink uses ODE solvers (Runge-Kutta, 

BDF, etc.) for causal systems. When Simscape is introduced, implicit equation 

systems appear that require algebraic solvers in the loop. MathWorks provides 

specialised solvers for Simscape (e.g. ode15s or other implicit integrators), plus 

the option of discrete local solvers for certain physical networks. In terms of 

accuracy, Simscape can achieve very precise solutions, but sometimes needs 

careful settings: for example, setting very tight tolerances or small maximum 

integration steps to capture fast transient effects (such as current pulses in an 

inverter). A common challenge with Simscape is solver tuning for rigid systems: 

if a battery has time constants of hours in thermal but microseconds in an 

electronic circuit, the variable solver can face difficulties in efficiently resolving 

both extremes. MathWorks has introduced improvements (such as automatic 

stiff mode), but users report that large Simscape models may require manual 

adjustments for convergence. 

 

This suggests that, with default parameters, Simscape may have introduced more 

error or would require a smaller step to match the others. Nevertheless, it is 

capable of high accuracy if properly configured. On robustness, Simscape 

includes an initialisation solver to find consistent initial conditions, similar to 

Modelica. However, users may encounter initialisation error messages or 

singularities in Simscape if the model is over- or under-determined, problems 

analogous to those that arise in Modelica (e.g. under-conditioned systems of 

equations). With good practices (using Simscape's memory blocks or initial 

conditions appropriately, etc.), Simscape is robust. It should be noted that 

Simulink (without Simscape), if one models physics manually with blocks, can 

be more prone to user errors in the equations, affecting accuracy; thus, Simscape 

is key to robustness in physics models within Simulink. 

 



2. State of the Art 

22 

 

 

• Amesim: It is renowned for its numerical reliability in industrial contexts. Its 

components are pre-validated and often include internal algorithms to improve 

stability (e.g. numerical damping on certain valves to avoid unphysical 

oscillations). Amesim allows to choose several types of solvers (explicit, 

implicit, fixed or variable step) depending on the model and objective (fast 

simulation vs. accuracy). In general, Amesim behaves robustly even with large 

models, and is tolerant to initial configurations (it has a good steady state solver 

to start simulations). In accuracy, as we saw, it can replicate experimental data 

well after calibration. One interesting aspect: being an application-focused tool, 

it sometimes employs specific numerical tricks - for example, in a combustion 

engine, it limits steep derivatives - to keep the simulation stable at the cost of 

more than sufficient accuracy for engineering but without overloading the 

solver. This contrasts with Modelica, which by default is more purist in solving 

equations as they are formulated. In short, Amesim offers high practical 

accuracy and excellent robustness, with a bit of numerical conservatism to avoid 

problems. 

 

• GT-SUITE: Like Amesim, GT prioritizes robustness in industrial scenarios. It 

can simulate engines in cycles of thousands of combustions without diverging, 

or complex cooling systems. It achieves this with a combination of specialized 

solvers: for example, it can use fast explicit integrators for gas flows (where 

small errors are averaged), and implicit integrators for very stiff loops (e.g., RC 

electric circuit of a battery). GT allows the user to specify convergence criteria, 

relaxation, etc. In accuracy, it is highly reliable in its strong domains (e.g. 

prediction of pressure drops, temperatures, battery SOC) because its models are 

calibrated with real data frequently. For very fast phenomena (e.g., switching 

pulses at 20 kHz), GT may prefer that the user use an average model (e.g., an 

average inverter rather than simulating each pulse) to maintain robustness and 

not sacrifice time, although in Twin Builder or Simscape one could simulate 

each pulse with small step. That is, GT tends to balance precision with stability 

and speed depending on the target. Overall, properly configured, GT-SUITE can 

be as accurate as the others in most metrics. 

 

• Twin Builder: Incorporating Modelica, VHDL-AMS and SPICE, it also 

inherited their solver capabilities. Simplorer (core of Twin Builder) was known 

for its prowess in simulating power electronics combined with controls. It offers 

continuous-discrete integration solvers that handle events (switch on/off) well 

without losing accuracy. In addition, Twin Builder facilitates co-simulation with 

ANSYS 3D; for example, you could run a 3D finite element thermal model 

alongside a 1D battery model. In such cases, the overall accuracy will depend on 

the synchronization between solvers, but ANSYS provides error-controlled co-

simulation methods. In general, Twin Builder can be relied upon for accurate 

results, backed by ANSYS algorithms (famous in FEM/CFD areas) now applied 

to 0D/1D. Robustness is also high, although with the caveat that the flexibility of 

languages (Modelica, etc.) means that the user has more responsibility for 

ensuring that the model is well formulated. 

 

In conclusion, all platforms can achieve high accuracy if the models are properly 

constructed. There is no absolute most accurate, since the physics represented is the 
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same, the difference is in the ease of achieving that accuracy.  

 

2.4.4 Compatibility, Integration and Standards 
 

The capacity of each tool to integrate into wider development flows is crucial. In the 

automotive domain, a plant model (battery + engine) is rarely isolated: it often interacts 

with control models (ECUs), with other subsystems (e.g. complete vehicle model) and 

even with upstream (CAD, detailed circuits) or downstream (HIL, real time) design 

tools. For each tool, the compatibility with other environments, the support of open 

standards (especially FMI/FMU for model exchange), and the possibilities for co-

simulation and reuse will be evaluated below. 

 

• Modelica: Since Modelica itself is an open standard, its philosophy promotes 

model portability. Using the FMI (Functional Mock-up Interface) standard, 

virtually all Modelica tools (Dymola, OpenModelica, etc.) can export the model 

as FMU (Functional Mock-up Unit) for either model exchange or co-simulation. 

This means that a model created in Modelica can be packaged and then imported 

into other compatible platforms. For example, it is common to export a 

Modelica plant model (battery-engine) and import it into Simulink as an FMU 

block for testing with MATLAB-developed controllers. Modelica, through FMI, 

manages to integrate with Simulink, LabVIEW, Python, Java, etc., in a standard 

way. In addition, Modelica offers other ways: tools such as Dymola have APIs 

to interact with MATLAB, Excel, Python (to run simulations, sweeps, etc.). In 

co-simulation environments, Modelica can be both master and slave in FMI 

schemes. This makes it easy, for example, to split a problem: simulate the 

battery in Dymola and the motor/inverter in another tool, synchronising them by 

FMI. 

 

In addition to FMI, Modelica is highly reusable because it is not vendor-bound: 

the .mo or. mdl models you create can be opened with any Modelica tool (as 

long as you have the same libraries). This ensures longevity of the models and 

avoids lock-in. Additionally, Modelica supports interaction with hardware: 

executables can be generated to run on real-time platforms (dSPACE, xPC 

Target) and there is even support for Modelica real-time. In terms of control, 

although Modelica is not a very interactive driver design environment, it does 

allow drivers to be incorporated (in the form of causal block diagrams within 

Modelica, or by importing external C/algorithms). For example, a user can 

implement a PI control in Modelica or import a calibrated control table. 

However, most prefer to develop the control in MATLAB and use Modelica for 

the plant - something that, as mentioned, is entirely feasible via FMI. 

 

• Simulink/Simscape: Integration is one of its strongest points, especially in the 

context of control and signal design. Simulink is the industry standard for 

developing and verifying control algorithms (battery management, motor 

control, energy strategies, etc.). The advantage here is that the physical model 

(Simscape) can run in the same simulation environment as the controllers 

without the need for additional interfaces. For example, an engineer can co-

simulate the battery pack in Simscape along with the BMS model in Stateflow, 

the PWM-controlled inverter in Simulink and a vehicle model in Simulink, all 

within a single diagram. This native integration reduces complexity and 
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potential coupling errors. In addition, Simulink supports integrations with CAD 

tools (via data import, e.g. suspension geometries in Simscape Multibody), with 

requirements software, and very importantly: with Hardware-in-the-Loop (HIL) 

environments. With Simulink and Simscape, it is straightforward to generate 

optimised C code (using Simulink Coder and Simscape Real-Time) to run the 

model on a HIL platform in real time. 

 

Many companies use this way to virtually test electric vehicle ECUs: the 

Simscape plant model runs in a real-time simulator while the physical ECU 

interacts with it. Regarding FMI, MathWorks was initially reluctant to adopt it, 

but today it offers support: there is FMU Import and FMU Export (as free add-

ons from 2019+) that allow Simulink to be used as FMU master or slave. In 

practice, Simulink can import Modelica FMUs (co-simulation) or export a 

Simulink subsystem as FMU (usually for co-simulation, as exporting Simscape 

models for model-exchange has limitations). This has improved compatibility, 

although it is not as transparent as in Modelica. Another valuable integration is 

with major system design tools: Simulink can connect with data management 

software, optimisation (MATLAB environment) and even co-simulate with 

Simcenter Amesim, GT or others via vendor-provided interfaces (e.g. GT-

SUITE offers S-functions for Simulink and Amesim has Simulink Interface 

blocks). 

 

Thus, Simulink often acts as a hub where different exported models converge. In 

short, in compatibility Simulink shines with its MATLAB ecosystem (data 

processing, control design, graphical interface) and supports enough standards 

(FMI, C code, etc.) to not be isolated. 

 

• Twin Builder: It is presented as an open solution in terms of standards: we have 

already mentioned its support for Modelica and VHDL-AMS, standard 

Modeling languages. It also natively supports FMI for both importing and 

exporting models. This means that Twin Builder can be used to orchestrate co-

simulations with third-party models. For example, one could import an FMU of 

a vehicle model in CarMaker and combine it with a battery model in Twin 

Builder. Or export a complete Twin Builder model (say a digital battery twin) as 

an FMU for a customer to run on their system. Additionally, Twin Builder 

integrates tightly with the ANSYS portfolio: it is possible to co-simulate with 

ANSYS Fluent, Mechanical, Maxwell, etc. using proprietary links. A relevant 

use case for EVs is to couple Twin Builder (1D system) with a 3D CFD model 

of battery cooling in Fluent - Twin Builder manages the electrical and basic 

thermal part, while Fluent calculates detailed temperature distribution, 

exchanging results at each step. 

 

This type of multi-scale integration is an added value. Also, using ANSYS 

SCADE, Twin Builder can incorporate certifiable control logics (e.g. motor 

control strategies in self-coded SCADE code) and verify the complete system. 

As for HIL, ANSYS offers outputs to dSPACE or NI platforms, so a Twin 

Builder model can be prepared to run on real-time. Its adoption of open 

standards means that we are not forced to use only ANSYS tools; for example, 

Twin Builder can generate a model in C code for inclusion in another 

environment or take advantage of Python/Matlab scripts for automations. This 
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open and integration philosophy is one of the reasons why Twin Builder is 

called Twin Builder: it is designed to integrate with the real world and with 

various data sources. 

 

• GT-SUITE: Although it is a proprietary environment, it has evolved to coexist 

with other tools. It is commonly used in conjunction with Simulink: GT allows 

models to be exported as Simulink S-Functions or even directly as FMUs 

(currently supports up to FMI 3.0).  For example, a complete plant model made 

in GT (engine + battery + vehicle) can be exported as a co-simulation FMU and 

run inside a Simulink schematic containing the controllers. Many OEMs use this 

approach: they design the detailed plant in GT, but test the controls in Simulink 

where they have their algorithms. On the other hand, GT-SUITE integrates with 

CAD/CAE software: it can import geometries, CFD results (e.g. radiator flow 

maps) and also export data for cross validation. 

 

GT-SUITE has its own co-simulation server called GT-COE, which makes it 

easy to connect multiple instances of GT with other runtime tools, synchronising 

them. Regarding open standards, outside of FMI, GT does not expose a general 

language (its models are stored in proprietary. gts format). However, it offers 

APIs in Python and MATLAB to handle simulations programmatically, which is 

useful for parametric or optimisation studies. In addition, GT incorporates model 

reuse tools such as templates and sub-models that can be shared within a 

company. In sum, GT makes sure not to isolate the user as some validations are 

done on third-party platforms, and therefore provides connectors (co-simulation, 

FMI) to accommodate it. 

 

• Amesim Simcenter: Traditionally, Amesim has coexisted closely with 

MATLAB/Simulink. It provides a module called Simulink Interface that allows 

an Amesim model to be easily converted into a Simulink block, and vice versa 

(co-simulate). Before FMI, this was the most common way: for example, an 

engineer could assemble the EV plant model in Amesim and then co-simulate it 

with the controller in Simulink via this dedicated link. Today, Amesim fully 

supports FMI (it was an early adopter in the 1D world). You can export Amesim 

subsystems as FMUs for external use or import FMUs into an Amesim diagram. 

In fact, by supporting Modelica internally, importing models is easier (Modelica 

models can be imported directly). In addition, Amesim has integration with 

other elements of the Siemens Simcenter portfolio: for example, with Simcenter 

STAR-CCM+ (CFD) for 1D-3D fluid dynamic co-simulation, or with Simcenter 

Prescan (autonomous driving simulation environment) to include plant models 

in traffic environments. 

 

For the control part, Siemens offers solutions like Simcenter AMESim Control, 

but the reality is that most users use MATLAB/Simulink for control and 

Amesim for plant, integrating them via FMI or co-simulation. An interesting 

point is the customisation via open languages: Amesim allows embedding 

Python, C or Modelica scripts in components, which means that an expert can 

add his own algorithm (e.g. an advanced SOC calculation in Python) inside a 

model and share that component. This flexibility, combined with FMI, makes 

the reuse of Amesim models quite good within the industrial ecosystem 

(although not so much academically, as it is an expensive commercial tool). 
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Regarding HIL, Siemens also provides solutions to run Amesim models on real-

time platforms, or via C code export, so that it is not just a desktop simulation. 

 

In a nutshell, all the tools analysed allow integration with other tools, but Modelica 

and Simulink stand out by nature: Modelica, for embracing open standards such as 

FMI and being multi-tool, and Simulink for being the de facto standard for integration 

with control and having a multitude of bridges with other applications. Amesim, GT and 

Twin Builder have followed the trend by opening to FMI and Modelica, which levels 

the field quite a bit in terms of compatibility. An engineer can mix these tools in one 

process (e.g. use Modelica for detailed Modeling of certain subsystems and GT for 

others, coupling them via FMI). Model reuse is easier and cleaner in Modelica, thanks 

to object orientation (e.g. inheriting from a base electric motor model to create variants). 

In Simulink/Simscape it is possible to reuse subsystems and masks, but without a 

mechanism as powerful as Modelica's inheritance. Amesim allows reuse of submodules 

but within its environment, similar GT with parametric templates. Twin Builder, by 

using Modelica, inherits Modelica code reuse. Thus, Modelica leads in open 

standardisation and reuse, with Twin Builder leveraging those same standards, while 

Simulink/Simscape leads in integration with the control and system design stage. 

 

2.4.5 Computational Performance and Scalability 
 

Finally, let us compare computational performance, i.e. simulation speed and the ability 

to scale to large models (many components or long simulations), including real-time 

simulation possibilities. In the aforementioned comparative study, concrete performance 

data were obtained: using the same battery aging model, running 10 years of simulated 

operation, Dymola (Modelica) was the fastest by far, followed by Simulink, next 

Amesim and the slowest was Simscape [29]. 

 

In numbers: Dymola completed the 10-year simulation in 288 seconds, while Simulink 

took ~3-5 times as long, and Simscape even longer.  This is evidence that the Modelica 

implementation (Dymola) took advantage of its optimisation to efficiently solve even a 

long time horizon. Simscape, being heavier on implicit equations, had difficulties to 

match that speed. 

 

• Modelica/Dymola: Its performance strengths come from symbolic processing 

and highly optimised code generation in C. Prior to simulation, Dymola 

simplifies the system of equations, reduces indices and eliminates unnecessary 

algebraic states. This results in models that are more compact and faster to solve. 

In addition, Dymola supports parallelisation of certain parts (e.g., when 

compiling, it can parallelise loops on multiple cores if it detects independence). 

In terms of scalability, it is known that Modelica can handle models with tens of 

thousands of equations. For example, simulating a battery pack with 100 

individual cells is feasible in Modelica; although it will take longer than 

representing the pack with 1 equivalent cell, the tool will be able to solve it. In 

fact, one of the benefits of Modelica is that it allows you to vectorise 

components. 

 

For example, 100 identical cells can be modelled in series using an array of 

components, which the compiler can exploit to generate efficient loops in the 

resulting C code. There are reported cases of Modelica running power grid 
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models with tens of thousands of nodes in acceptable time, thanks to its 

robustness on large systems. For real-time simulation, Dymola has an optimised 

code generation mode (using fixed-step solvers, eliminating dynamic allocation, 

etc.) and has been used in HIL simulations with success. Obviously, achieving 

HIL with a detailed full battery-engine model may require simplifications (e.g., 

using a simpler solver, or reducing the size of the model), but it is possible. 

Modelica's scalability is also shown in parametric or Monte Carlo sweeps [9]: its 

Python API allows launching multiple simulations in parallel with different 

parameters [30], taking advantage of multi-core hardware or clusters - very 

useful when exploring manufacturing variability in batteries, for instance. 

 

• Simulink/Simscape: Simulink as a platform is very efficient for causal control 

models (which tend to be computationally light). When Simscape is introduced, 

the computational burden goes up because of the implicit systems to be solved. 

Simscape has improved over the years in solver, but there is still some penalty. 

For example, doubling the number of Simscape components does not always 

scale linearly in time, sometimes worse because of the increasing difficulty of 

solving the system matrix. In moderate models (tens of components), Simscape 

works well; in large models (hundreds of explicit cells, for example), it can 

become slow or even unstable. MathWorks recommends in such cases using sub 

Modeling techniques (e.g., grouping cells into submodules and reducing thermal 

nodes) to keep the simulation manageable. One area where Simulink is excellent 

is in co-simulation and real-time: it integrates with simulation hardware easily, 

and one can migrate parts of the model to FPGA or similar if required. However, 

when complexity is high, one sometimes opts for decoupling: e.g., simulating 

the battery on a separate microcontroller from the motor, etc.., in HIL. Simulink 

supports this with its Simulink Real-Time tool. In general, Simulink scales well 

at the complete system level (that is why it is used for virtual vehicle 

integration), but the physical part is its limit: you do not usually simulate every 

detail in Simulink because it can become slow. 

 

For intensive calculations (e.g. magnetic motor saturation, or conjugating 

hundreds of cell ODEs), Modelica or manual C++ sometimes perform better. 

One indicator: in the benchmark, Simulink was 3 times slower than Modelica in 

simple scenarios, and 5 times slower in long scenarios [29]. Still, it should be 

noted: Simulink can benefit from tricks like compiling to native code 

(accelerator mode), using fixed solvers with steps calculated for the case, and 

with that you can get closer. In HIL, many companies use simplified Simscape 

models (e.g., reduce a 100-cell pack to 10 representative cells) to meet the 

computation cycle in 1ms. Simscape has a configurable Local Solver in some 

subsystems to parallelise (e.g., simulate the battery pack with a separate solver 

in parallel to the rest of the model), which can take advantage of multi-core. 

These are advanced solutions, but they demonstrate that Simulink/Simscape can 

be adapted to scale reasonably, albeit with more manual intervention than 

Modelica. 

 

• Amesim: In performance, it ranked between Simulink and Simscape in the 

above-mentioned study. Its simulation engine is efficient for many classes of 

problems but can be challenged by large systems. Amesim is optimised in 

components of its libraries - many use simplified numerical methods that allow 
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for larger time steps without losing stability. For example, in hydraulics, 

Amesim can use specific implicit methods that allow 1e-3s time steps where 

Modelica might need 1e-4s. In electrical, if not simulating switching of each 

transistor, Amesim can solve an inverter as an average element and move 

forward with large steps. Therefore, Amesim scales well in full system models 

and can often run faster than Simscape equivalents (as seen). Where it might 

have limitations is in real time: although Amesim models have been used in 

HIL, co-simulation with Simulink is sometimes used for that task or C code 

export. 

 

Siemens offers a FMU tool for HIL that takes Amesim models and prepares 

them for real time [31]. Regarding parallelisation, there is not much public 

information; it is known that some Amesim solvers can use multi-threading 

internally, but in general, scalability is achieved more by numerical robustness 

than by parallelism. In any case, Amesim has proven to be able to simulate large 

models (complete vehicles with multiple subsystems) with acceptable 

performance, especially when the model is fit for purpose (e.g., not overloaded 

with unnecessary detail in each part). 

 

• GT-SUITE: GT is designed for efficiency in the simulation of complex systems 

since its origin is to simulate engines in real time. It uses several tricks: it 

linearizes certain parts, uses fast explicit integrators when it can, and allows 

macro-stepping (large jumps) in slow submodels while computing fast ones with 

small steps. The user has control to define priorities (e.g., simulate combustion 

dynamics with 0.1° crankshaft step but the rest with 1° step). In an EV, you can 

simulate the electronics with a finer pitch and the thermal with a thicker one, all 

in the same run. GT also supports distributed computing: you can distribute 

subsystems on different threads or even machines (which is used for co-

simulation with third parties but could also be used to parallelize within GT 

certain decoupled loops). As for HIL, Gamma Tech has GT-RealTime, which is 

a guide for exporting optimized models to dSPACE platforms, etc. Many 

manufacturers run GT models of engines on HIL to test engine ECUs. For EV, 

this extends to testing the inverter ECU with a GT model of the engine and 

vehicle. 

 

Typically, some parameters must be adjusted (e.g. setting explicit integrators, 

pre-interpolated tables, etc.), but GT can achieve run times on the order of 

microseconds per step for medium-sized models. On scalability, GT can handle 

integrated models of the whole vehicle: there are examples where they simulate 

engine, battery, transmission, cabin together. Its hierarchical solver handles the 

load well. GT is not necessarily always the fastest, for purely algebraic-

differential equations as in Modelica, Dymola can optimize more globally. But 

for certain automotive applications, GT is tuned to be efficient. For example, to 

iterate engine designs on a WLTP cycle repeatedly, GT is often the tool of 

choice for its speed in those specific calculations (and its integration of 

parametric optimization). In EV, we might see something similar: to optimize a 

battery design and its cooling through 100 drive cycle simulations, GT can 

handle it with its batch execution engine and robustness. 
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• Twin Builder: On performance, there is no public comparative data, but we can 

extrapolate. Twin Builder by supporting Modelica inherits in part its efficiency, 

but its flexibility (multi-solver, co-sims) can add overhead. ANSYS has surely 

worked on optimizing it for digital twins running in the cloud in near real time 

[32], [33]. Its ability to generate (reduced) ROM models to use instead of 

complex 3D models is a scalability strategy: better to spend time pre-computing 

a ROM than then running a slow model repeatedly. Twin Builder also has 

sensitivity analysis and DOE tools that take advantage of multiprocessing. In the 

end, it is reasonable to assume that Twin Builder can simulate an EV powertrain 

in near-real time, given that it is marketed for operational twins. And with its 

control software integration, they expect it to run fast enough to interface with 

controllers. However, compared to pure Modelica, Twin Builder is likely to 

introduce some overhead, depending on how optimized its libraries and solver 

integrator are. 

 

2.5 Modelica and its Alternatives 
 

After this comparative analysis, we can conclude that each tool has particular strengths, 

but Modelica (as a language supported by environments such as Dymola) offers several 

unique strengths that give it notable competitive advantages in the development of 

battery and electric powertrain models for vehicles: 

 

• Unified multi-domain model: Modelica allows the entire EV system to be 

described with a single declarative language, natively integrating electrical, 

mechanical, thermal and control. It does not require partitioning the problem or 

using multiple tools - a single Modelica model can include everything from 

simplified cell electrochemistry to vehicle dynamics to power electronics. This 

integrated approach reduces interface errors and ensures physical consistency in 

the interactions between subsystems. Other tools also achieve multi-domain 

integration but often require external couplings (Simulink with different 

toolboxes, co-simulation, etc.) or are focused on certain domains rather than 

others. Modelica by design is generic and extensible, which is ideal in a field 

such as electromobility where several engineering fields are involved. 

 

• Acausality and model reuse: Modelica's acausal approach makes it quite easy 

to reuse models in different configurations. For example, the same battery 

module submodel can be reused in different pack sizes by simply connecting 

more modules in series/parallel, without modifying internal equations. If 

tomorrow the topology of the system changes (e.g., a second electric motor is 

added to make an AWD), in Modelica it is a matter of connecting that new 

motor to the rest; the solver will redistribute the equations without the modeler 

having to rework inputs and outputs. This flexibility is not so easy in causal 

environments (where adding a component often means redesigning the signal 

scheme). Modelica also supports the creation of modular libraries: companies 

can develop their own component libraries (for example, a proprietary battery 

cell model) and reuse it in all their projects, and even update it in one place so 

that all models using it benefit from the improvement. This modularity is an 

important asset in long-term or variant projects (think of vehicle platforms 

sharing engine/battery with different calibrations; Modelica makes it possible to 

have a single base model and specialize it with inheritance for each case). 
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• Accuracy and fidelity with efficiency: Modelica has proven to be able to 

achieve high levels of fidelity without sacrificing performance. The ability to 

include complex equations (e.g. non-linear temperature dependencies, additional 

differential equations for degradation phenomena) within the model, and still 

simulate quickly thanks to symbolic optimization, is a great advantage. In the 

EV domain, where you want to evaluate long scenarios (battery charge cycles, 

10+ year lifetime, etc.), Modelica's efficiency translates into less computational 

time to obtain results, which speeds up the design iteration. Quantitative studies 

confirmed that Dymola (Modelica) can be several times faster than the 

alternatives in simulating long cycle times without loss of accuracy. 

 

In addition, the robustness of its DAEs solvers allows models with very different 

dynamics (such as those present in an EV: electronics in microseconds vs. 

degradation in hours) to be solved together in a stable way, avoiding the need to 

separate models. 

 

• Open standards support: As Modelica is a free standard, its use avoids lock-in 

to a single tool or vendor. This is strategic for automotive companies looking for 

longevity of their model investments and compatibility over the years. They can 

develop a model today in Modelica with Dymola and later decide to run it in 

another Modelica tool or integrate it into a different digital twin platform, with 

minimal effort. FMI's native support also makes Modelica work well with 

almost any workflow: it is easy to hand over an encapsulated Modelica plant 

model to a control team, or to import a given external vendor's model into 

Modelica as an FMU. In the EV environment, where many vendors coexist 

(each might provide a model of their component), this interoperability is crucial. 

In addition, Modelica's open ecosystem promotes academic collaboration and 

innovation: many universities research batteries and electric propulsion using 

Modelica and share their findings in the form of models or publications, thus 

feeding the state of the art available to the industry. 

 

• Customisability and state-of-the-art: Related to the above, Modelica allows 

new knowledge or effects to be easily incorporated into the model as they 

become better understood. For example, if a company develops a new algorithm 

for calculating battery health based on, say, entropy counting, it can implement 

it in Modelica within the existing model, without waiting for a software vendor 

to include that functionality. This makes Modelica very suitable for upfront 

research and development, which is often the source of competitive advantage in 

electromobility (batteries with better management, motors with finer controls, 

etc.). Other tools, being more closed, limit the user to what the supplier offers 

(although they can be extended, it is not usually with the same freedom). In this 

sense, Modelica future-proofs Modeling efforts: any new physics or component 

can be integrated by describing its equations. 

 

• Integration with FMI: While Simulink leads in control design, Modelica 

complements that strength rather than opposing it. An optimal flow that many 

follow is plant model in Modelica (accurate and multi-physics), exported as 

FMU, and integrated into Simulink to design and test controllers. Thanks to the 

efficiency of the Dymola FMU, it can be simulated in near real-time within 
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Simulink [34]. This combines the ‘best of both worlds’: the quality of the 

Modelica physical model with the familiarity and power of MATLAB/Simulink 

for control. In our times where multi-tool collaboration is commonplace, 

Modelica fits very well. On the other hand, if desired, Modelica also allows 

controls to be incorporated into the same model (e.g. using Modelica control 

libraries or importing external logic), offering the possibility of having a self-

contained plant + control model ready to, for example, be run as a digital twin in 

a connected vehicle. 

 

• Real-time execution and HIL: Although not unique, Modelica (especially 

Dymola) has demonstrated that it can compile complex models to efficient C 

code suitable for running in real-time on hardware simulators. This is essential 

for HIL testing of inverters, BMS, etc. With the right optimisations, a Modelica 

powertrain model on a dSPACE platform [35], taking advantage of its superior 

performance. This coupled with FMI means that even in heterogeneous HIL 

benches, a Modelica model can be integrated as a component. 

 

However, it is fair to recognise that Modelica also has challenges: the need for qualified 

staff to master the language and the management of the libraries, as well as the 

investment in tools (Dymola is commercial, although there are free alternatives with 

fewer features). However, once the learning curve is overcome, the benefits in 

flexibility, speed and fidelity tend to justify their use, especially in projects where many 

simulations will be performed (design optimisation, use cycles, etc.) or where the model 

will be continuously refined. 

 

2.6 Conclusions 
 

The Modelica alternative tools have significant merits: Simulink/Simscape is almost 

irreplaceable in loop with control and for rapid industrial adoption, Amesim offers 

immediate productivity with validated models, GT-SUITE is unbeatable in integrated 

thermal simulation, Twin Builder facilitates digital twins connected with ANSYS 

corporate tools. In fact, many organisations use combinations of these tools, assigning 

each to the role where it is most relevant. 

 

However, Modelica is positioned as a powerful solution for electric vehicle simulation, 

offering a hard-to-achieve combination of fidelity, flexibility and speed. For 

organisations willing to invest in initial training and adopt open standards, Modelica can 

pay big dividends: more comprehensive and adaptable models, reduced computational 

time, and freedom to innovate. For these reasons, Modelica has been gaining a place in 

modern automotive, complementing and sometimes replacing traditional tools, 

especially as simulation challenges become more interdisciplinary (such as marrying 

battery chemistry with vehicle dynamics and control software). For battery and electric 

powertrain applications, Modelica competitively offers the ability to cover the entire 

system with high accuracy and reusability, positioning itself as a key part of the electric 

vehicle engineering toolset.  

 

A comparative summary of the strengths and weaknesses of the aforementioned tools is 

shown in Table 2.2. 
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Table 2.2: Summary Comparison of Modelica and Main Alternative Tools. 

Tool Modeling 

Approach 

Integration and 

Standards 

Performance 

Modelica 

(Dymola, 

OpenModelica) 

Multi-domain 

acausal equations; 

Modelica open 

language. 

Open standard; FMI 

support (model and co-

sim), portable models 

between different tools. 

Very high: DAE 

solvers with 

symbolic 

optimisation (up to 

~5× faster than 

Simulink in a 

battery test) [29]. 

Simulink/ 

Simscape 

Causal block 

diagram + acausal 

physical networks 

(Simscape); 

separate multi-

domain libraries. 

Native integration with 

drivers 

(MATLAB/Simulink); 

FMI export (co-sim) 

available. 

Good with simple 

models; can be 

slower with complex 

physical models 

[29]. 

ANSYS Twin 

Builder 

Hybrid Modeling: 

supports Modelica 

(acausal), VHDL-

AMS, SPICE and 

causal blocks in 

schemas. 

FMI support; co-

simulation with Ansys 

3D tools (Fluent, 

Mechanical via ROM); 

integration with SCADE 

(control software). 

High: digital twin 

oriented, including 

3D model reduction; 

robust multi-domain 

solvers (incl. fast 

electrical events). 

GT-SUITE Specialised multi-

physics 1D 

simulation; 

acausal approach 

with dedicated 

domain solver. 

Import/export models via 

FMI (co-sim); 

integration with 

Simulink (S-function) 

for control loops. 

Very high in its 

domain: optimised 

for large systems 

(used in real-time 

and HIL); proven 

scalability in models 

of hundreds of 

components. 

Simcenter 

Amesim 

0D/1D acausal 

Modeling; 

connection of 

components by 

ports (causality 

automatically 

assigned). 

Supports FMI; allows C, 

Python or Modelica 

models to be included 

within components; co-

simulation with 

Simulink or other 

common industry 

environments. 

High: Reliable 

simulation; in 

comparative studies 

its performance was 

intermediate (faster 

than Simscape but 

beaten by Dymola in 

speed) [29]. 
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3 Modeling of the Electric Powertrain 
 

In this chapter, the physical architecture of the system implemented using the 

EPowertrain library is described, detailing the main models developed to represent the 

energy behaviour of an electric vehicle. The approach adopted seeks a balance between 

physical realism and computational efficiency, allowing energy consumption to be 

accurately simulated without incurring unnecessary complexity for the analysis of 

driving cycles. 

 

3.1 Introduction 
 

In this chapter the mathematical Modeling of the physical systems corresponding to the 

main components of the EPowertrain library is presented. The mathematical Modeling 

of each of these components is discussed. 

 

The main objective of this chapter is not to describe their implementation in the 

Modelica environment, which is discussed in Chapter 4, but to provide a conceptual and 

mathematical basis that justifies the choice and structure of the models used. The aim is 

to provide the physical and mathematical foundations for their subsequent 

implementation, which will be described in Chapter 4. 

 

3.2 System Overview 
 

The modelled system represents the powertrain of an electric passenger vehicle powered 

by a lithium-ion battery. Its objective is to transform the energy stored in the battery 

into useful wheel motion, through a chain composed of electrical, electromechanical 

and mechanical components. The overall architecture includes the following main 

subsystems: 

 

• Battery: source of electrical energy. 

 

• Power converter: regulates the voltage delivered to the motor. 

 

• Direct current (DC) motor: converts electrical energy into mechanical torque. 

 

• Frame model: represents the vehicle’s body frame inertia and resistance to 

movement. 

 

The interaction between these elements is based on the conservation of energy and the 

continuity of physical variables such as voltage, current, torque and angular velocity. 

 

In an electric powertrain, the energy flow analysis is essential to evaluate the overall 

efficiency, to identify the main sources of losses and to study phenomena such as 

energy recovery through regenerative braking. An adequate representation of these 

flows allows for more realistic simulations and optimisation of the design and energy 

management of the electric vehicle (EV). 
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The Modeling of the energy flows in the powertrain developed considers the main 

stages of energy conversion and transfer, from electrochemical storage in the battery to 

its transformation into useful mechanical energy in the wheels, passing through the 

electronic conversion and control devices. Along this chain, various losses are 

introduced that affect the overall system performance and must be carefully considered 

in the model. 

 

The simulated model represents a passenger car-type electric vehicle in a single-drive 

configuration. The energy chain starts at the battery, which supplies electrical energy 

through a power converter to a direct current (DC) motor. This motor generates torque, 

which is applied to the chassis, represented by a simplified kinematic model. 

 

The main energy flows represented in the EPowertrain library are as follows: 

 

• Battery discharge flow corresponds to the transfer of positive current from the 

battery to the power converter, and then to the electric motor to generate motion. 

This flow implies a decrease in the state of charge (SoC) of the battery. 

 

• Regenerative braking charge flow: during deceleration phases, the motor can 

act as a generator, reversing the direction of current flow and allowing some of 

the kinetic energy to be recovered as a battery charge. 

 

• Resistive losses: modelled as voltage drops associated with the internal 

resistance of the battery and power electronics such as converters and inverters. 

These losses manifest themselves as heat generation not explicitly modelled in 

this version of the library. 

 

• Switching losses: in the present model, the fast-switching effects of 

semiconductor devices have been idealised through continuous behaviour, 

eliminating discrete state change events and favouring the numerical efficiency 

of the simulations. 

 

• Mechanical losses: represented by viscous friction and dynamic inertia of the 

drive system, they affect the conversion of electrical energy into usable 

mechanical energy. 

 
The energy balance of the system can be expressed in simplified form by the following 

relationship: 

 

 𝑃𝑏𝑎𝑡 = 𝑃𝑚𝑜𝑡𝑜𝑟 + 𝑃𝑙𝑜𝑜𝑠𝑒𝑠 (3.1) 

 

where 𝑃𝑏𝑎𝑡 represents the net power supplied to or absorbed by the battery, 𝑃𝑚𝑜𝑡𝑜𝑟 is 

the useful power converted into mechanical work, and 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 groups the different 

sources of inefficiency present in the system. It should be noted that, to maintain the 

focus on energy efficient simulation, the following simplifications have been adopted: 

 

• Neither the detailed thermal behaviour of components nor their effect on 

electrical or mechanical losses has been modelled. 
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• Switching losses of power electronics have been represented continuously, 

without introducing discrete events associated with PWM operation of inverters 

or converters. 

 

• The thermal dissipation of the electric motor and the influence of temperature on 

its behaviour have not been explicitly considered. 

 

These Modeling decisions make it possible to accurately simulate energy consumption 

under complete driving cycles, optimising simulation times without sacrificing the 

validity of the results from an energy point of view.  

 

 

Figure 3.1: Typical EV Power Flows. 

 

3.3 DC Motor 
 

The Motor model corresponds to the dynamic behaviour of a permanent magnet direct 

current (PMDC) motor. The main phenomena represented in the model are: 

 

• Armature voltage drops due to resistance and inductance. 

 

• Generation of counter-electromotive force proportional to the angular velocity of 

the rotor. 

 

• Torque production proportional to the current in the winding. 

 

• Effects of viscous friction and inertia dynamics of the motor shaft. 

 

The motor is represented by the following coupled equations, which represent the 

electromechanical interactions corresponding to a DC motor: 

 

 
𝑉𝑚 = 𝑅𝑚 ∙ 𝐼𝑚 + 𝐿𝑚 ∙

𝑑𝐼𝑚

𝑑𝑡
+ 𝐾𝑒 ∙ 𝜔 (3.2) 

 

 
𝐽 ∙

𝑑𝜔

𝑑𝑡
= 𝐾𝑡 ∙ 𝐼𝑚 − 𝑇𝑙𝑜𝑎𝑑 − 𝐵 ∙ 𝜔 (3.3) 

Where corresponding parameters are shown on table 3.1. 
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Table 3.1: DC Motor Parameters. 

Parameter Symbol Unit 

Motor’s applied voltage 𝑉𝑚  𝑉  

Motor’s current 𝐼𝑚  𝐴  

Winding resistance 𝑅𝑚  Ω  

Winding inductance 𝐿𝑚  𝐻  

Counter-electromotive constant 𝐾𝑒  𝑉 ∙ 𝑠/𝑟𝑎𝑑  

Shaft’s angular speed 𝜔  𝑟𝑎𝑑/𝑠  

Rotor’s inertia 𝐽  𝐾𝑔/𝑚2  

Torque constant 𝐾𝑡  𝑁 ∙ 𝑚/𝐴  

Shaft’s load resistance 𝑇𝑙𝑜𝑎𝑑  𝑁 ∙ 𝑚  

Viscous friction coefficient 𝐵  𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑  

 

3.4 Voltage Regulator 
 

In power converter Modeling, it is common to represent output voltage control using 

pulse width modulation (PWM) strategies. However, this approach involves introducing 

many discrete switches in the system, generating discontinuities in the state variables 

and in the current and voltage flows. 

 

These discontinuities significantly increase the computational load and simulation time 

for several reasons: 

 

• They force the numerical solver to detect and handle high frequency events. 

 

• The need to reduce integration steps to correctly capture the jumps. 

 

• Can make convergence and numerical stability difficult in complex multi-

domain models. 

 

Since the purpose of this work is focused on energy analysis and not on the detailed 

representation of electronic switching, we have chosen to idealise the behaviour of the 

converter. The approach adopted is to model the converter as an ideal voltage adaptor, 

where the output: 

 

 𝑉𝑂𝑢𝑡 = 𝐷 ∙ 𝑉𝐼𝑛 (3.4) 

 

This idealization presents some benefits: 

 

• Discrete event generation is eliminated, favouring continuous dynamics. 

 

• Simulation efficiency is significantly improved, allowing complete standardised 

driving cycles (WLTP, UDDS) to be performed with reasonable times. 

 

• It facilitates the reconfiguration and extension of the model for future simulation 

scenarios.  
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In addition, an energy balance equation has been introduced to ensure that the 

conservation of energy in this model is fulfilled. 

 

 𝑑𝐸𝐵𝑎𝑙𝑎𝑛𝑐𝑒

𝑑𝑡
= 𝑃𝐼𝑛 + 𝑃𝑂𝑢𝑡 = 𝑉𝐼𝑛 ∙ 𝐼𝐼𝑛 + 𝑉𝑂𝑢𝑡 ∙ 𝐼𝑂𝑢𝑡 (3.5) 

 

 

Table 3.2: Voltage Regulator Parameters. 

Parameter Symbol Unit 

Output voltage 𝑉𝑂𝑢𝑡  𝑉  

Input voltage 𝑉𝐼𝑛  𝑉  

Output current 𝐼𝑂𝑢𝑡  𝐴  

Input current 𝐼𝐼𝑛  𝐴  

Energy balance 𝐸𝐵𝑎𝑙𝑎𝑛𝑐𝑒  𝐽  

Modulation factor 𝐷  -  

Input power 𝑃𝐼𝑛  𝑊  

Output power 𝑃𝑂𝑢𝑡  𝑊  

 

 

3.5 Battery Model 
 

The battery model represents an idealised cell with a second-order equivalent circuit 

structure. This configuration seeks to capture both the static response and certain 

transient dynamics of the electrical storage system, while maintaining a low 

computational load. 

 

The equivalent circuit includes: 

 

• A state-of-charge (𝑆𝑂𝐶) controlled voltage source, whose value ranges from a 

minimum discharge voltage (𝑉𝑑) to a maximum charge voltage (𝑉𝑓). 

 

• A series resistor (𝑅𝑠) that models the internal resistive losses. 

 

• A parallel network consisting of a resistor (𝑅𝑝) and a capacitor (𝐶), which cap-

tures the polarisation effects and dynamic response of the cell. 

 

• An internal calculation of the 𝑆𝑂𝐶 from the net current supplied or absorbed, 

considering a total capacity (𝐶𝑎𝑝) and a configurable initial state (𝑆𝑂𝐶𝑖𝑛𝑖𝑡). 

Model equations 

The main equations of the model are: 

 

 
𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 −

100

𝑄
∫ 𝐼(𝜏) ∙ 𝑑𝜏

𝑡

0

 

 

(3.6) 

 𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝑉𝑑 + (𝑉𝑓 − 𝑉𝑑) ⋅ 𝑆𝑂𝐶 

 

(3.7) 
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 𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑂𝐶 − 𝐼 ⋅ 𝑅𝑠 − 𝑉𝑅𝐶 (3.8) 

 

Where 𝑉𝑅𝐶 is the voltage drop in the parallel RC network: 

 

 
𝐶 ⋅

𝑑𝑉𝑅𝐶

𝑑𝑡
=

𝑉𝑂𝐶 − 𝑉𝑅𝐶

𝑅𝑝
− 𝐼 

(3.9) 

 

Table 3.3: Battery Model Parameters. 

Parameter Symbol Unit 

Open circuit voltage 𝑉𝑜𝑐  𝑉  

Series resistance 𝑅𝑠  Ω  

Parallel resistance 𝑅𝑝  Ω  

Capacitor capacitance 𝐶  𝐹  

Battery’s charge capacity 𝑄  𝐴 ∙ ℎ  

State of charge 𝑆𝑂𝐶  %  

Initial state of charge 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  %  

RC-branch voltage drop 𝑉𝑅𝐶  V 

Battery cell voltage 𝑉𝐵𝑎𝑡𝑡  𝑉  

Full-state voltage 𝑉𝑓  𝑉  

Depleted-stated voltage 𝑉𝑑  𝑉  

Delivered current I 𝐴  

 

 

3.6 Body Frame Model 
 

The frame model implements a simplified representation of a vehicle chassis, focusing 

exclusively on its longitudinal dynamics. This simplification is suitable for the purposes 

of this work, as it allows capturing the main effects of mass, inertia and terrain slope on 

energy consumption, without introducing the complexity associated with more 

comprehensive vehicle dynamics models. The model considers the following effects: 

 

• Longitudinal inertia: This represents the resistance of the vehicle to changes in 

its linear velocity, modelled through the equivalent mass 𝑚. 

 

• Resistive forces: Rolling forces, aerodynamic drag (if extension is desired) and 

gravitational effects associated with terrain inclination are included. 

 

• Terrain slope: A slope angle 𝛼 is introduced which modifies the component of 

the gravitational force acting on the vehicle. 

 

The used equation of movement is: 

 

 𝐹𝑚 = 𝐹𝐼 + 𝐹𝑑 + 𝐹𝑟 + 𝐹𝑔 (3.10) 

 

Where 𝐹𝑚, 𝐹𝐼, 𝐹𝑑, 𝐹𝑟 and 𝐹𝑔 represent the forces provided by the engine, the inertia of 

the vehicle mass, the aerodynamic loads, the friction losses of the tyres and the effects 

of weight as a function of terrain gradient respectively. The force coming from the 
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engine can be calculated from the torque applied to the wheels. 

 

 
𝐹𝑚 =

𝑇𝑚

𝑅𝑤ℎ𝑒𝑒𝑙
 (3.11) 

 

Where 𝑇𝑚 is the torque applied by the motor shaft and 𝑅𝑤ℎ𝑒𝑒𝑙 is the radius of the wheel. 

The inertia forces to which the chassis of the vehicle is subjected correspond directly to 

its speed variation. 

 
𝐹𝐼 = 𝑚 ∙

𝑑𝑣

𝑑𝑡
 (3.12) 

 

Where 𝑣 is the vehicle speed and 𝑚 is the vehicle’s body mass. The aerodynamic drag 

force loads are expressed as: 

 
𝐹𝑑 =

1

2
⋅

𝐶𝑑 ∙ 𝜌 ∙ 𝑣2

𝐴𝑓
 (3.13) 

 

With 𝐶𝑑 as the characteristic vehicle drag coefficient, 𝜌 the fluid (air) density and 𝐴𝑓 as 

the vehicle front area. The tyres friction force is estimated as a function of a coefficient 

and the projection of the vehicle's weight on the ground. 

 

 𝐹𝑟 = 𝐶𝑟 ∙ 𝑚 ∙ 𝑔 ∙ 𝑐𝑜𝑠(𝛼) (3.14) 

 

With 𝐶𝑟 as the rolling coefficient of the vehicle’s tyres. Finally, the contribution of the 

weight obeys the equation of the inclined plane. 

 

 𝐹𝑔 = 𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝛼) (3.15) 

In table 3.4, the parameters of the body frame are presented as follows. 

 

Table 3.4: Body Frame Model Parameters. 

Parameter Symbol Unit 

Motor’s applied force 𝐹𝑚  𝑁  

Motor’s applied torque 𝑇𝑚  𝑁 ∙ 𝑚  

Wheels’ radius 𝑅𝑤ℎ𝑒𝑒𝑙  𝑚  

Inertia force 𝐹𝐼  𝑁  

Vehicle’s mass 𝑚  𝐾𝑔  

Vehicle’s velocity 𝑣  𝑚/𝑠  

Drag force 𝐹𝑑  𝑁  

Drag coefficient 𝐶𝑑  - 

Fluid density 𝜌  𝐾𝑔/𝑚3  

Front area 𝐴𝑓  𝑚2  

Rolling friction force 𝐹𝑟  𝑁  

Rolling coefficient 𝐶𝑟  - 

Weight force 𝐹𝑔 𝑁  

Gravity constant 𝑔  𝑚/𝑠2  

Terrain’s slope 𝛼  𝑟𝑎𝑑  
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3.7 Conclusions 
 

This chapter has approached the mathematical formulation of the most important 

physical systems in the electric powertrain of a passenger car. By means of a functional 

decomposition in its main components, the fundamental models that allow to represent 

the energy flow from the electrochemical storage to the mechanical movement in the 

wheels have been defined. 

 

For each component, the Modeling hypotheses, the differential or algebraic equations 

that describe its behaviour, and the key variables with their respective units have been 

established. This description allows capturing the essential interactions of the system in 

a physically coherent way, facilitating its subsequent implementation in an acausal 

simulation environment such as Modelica. 

 

Chapter 5 will show that these models, despite their simplicity, offer an adequate 

balance between physical fidelity and computational efficiency, suitable for system-

level simulations and energy consumption analysis. 

 

The simplification of certain effects, such as thermal losses or battery aging, has been a 

conscious decision to focus on electrical behaviour and energy validation under driving 

profiles. This conceptual and mathematical framework forms the basis on which the 

modular implementation of the EPowertrain library, described in chapter 4 below, is 

structured. 
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4 The EPowertrain Modelica Library 
 

4.1 Introduction 
 

The EPowertrain library has been developed as a central part of this work with the aim 

of providing a modular, extensible and physically coherent simulation tool for the 

energy study of battery electric vehicles. Based on the Modelica language and following 

object-oriented design principles, this library allows to easily compose realistic electric 

powertrain architectures, with an intermediate level of complexity that balances 

accuracy and computational efficiency. 

 

The main motivation behind the design of this library is to reduce the limitations found 

in existing libraries, which are either too general (MSL) or too component-oriented 

without a common framework for system-level energy simulation. In contrast, 

EPowertrain structures its models by functionality, which allows to compose complete 

electric vehicles from reusable blocks that can be coupled together in a natural way by 

means of physical connectors. 

 

This chapter describes the structure of the library, the functional content of each of its 

packages and the key models implemented.  

 

4.2 Library Structure 
 

The EPowertrain library has been designed following a modular and functional 

architecture, which allows to build, analyse and extend electrical kinematic chains in a 

flexible and reusable way. Its internal organisation responds to the principle of 

separation of responsibilities, grouping the models according to their physical domain 

or logical function within the system. This arrangement favours structural clarity, 

facilitates error diagnosis and allows individual validation of the different subsystems. 

 

Although the entire implementation is contained in a single Modelica main package, 

internally the library is divided into well-defined functional groups, which encapsulate 

components of a similar nature - such as power elements, mechanical structures, sensors 

or control blocks - and expose coherent interfaces to ensure interoperability. The 

architecture follows the principles of object-oriented Modeling: 

 

• Encapsulation: each component hides its internal equations and exposes only 

the necessary variables using standard connectors. 

 

• Inheritance and reusability: new specialised versions of components can be 

derived from base classes without modifying the original code. 

 

• Acausality: connections between components are made using physical variables 

(such as voltage-current or torque-speed), without the need to define an explicit 

direction of signal flow, making it easy to reconfigure the model. 
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In addition to the main blocks, the library incorporates auxiliary modules for signal 

routing and data acquisition, as well as a set of example models. These examples 

illustrate the use of the library in practical cases, such as the analysis of energy 

consumption under standardised or real driving profiles. This structure responds to the 

following objectives: 

 

• To allow modular expansion of the library and independent validation of its 

components. 

 

• Facilitate the configuration of different electric vehicle architectures (varying 

battery, motor, converters or control strategies). 

 

• Effortlessly integrate the control logic in a multi-domain physical context. 

 

The main subpackages that make up the library, which will be described in detail below, 

are described below: 

 

• Interfaces: Defines the physical connectors used by electrical, mechanical and 

control components. Ensures physical consistency in the connection of 

heterogeneous models. 

 

• SignalRouting: Contains auxiliary blocks for signal routing and manipulation, 

such as adders, gains or input generators. 

 

• Sources: Provides models of electrical sources and input generators, both ideal 

and controllable, used to simulate external conditions or experiments. 

 

• Electrical: Includes models of major electrical components, such as the battery, 

converter and passive elements. Represents the electrical domain of the 

powertrain. 

 

• Mechanical: Groups models of the mechanical domain, such as bodies with 

inertia, ideal wheels and chassis models. Represents the physical interaction 

with the environment. 

 

• Control: Provides functional control blocks, including speed controllers, 

modulators and table-based reference systems. 

 

• Sensors: Provides sensor models for reading physical variables such as current, 

voltage, speed, torque and energy. They are essential for performance analysis. 

 

• Examples: Contains complete example models for validation and demonstration 

of use. Their detailed analysis is covered in Chapter 5. 

 

The concrete structure of the library and the details of each functional module are 

described in more detail in Appendix A, where representative fragments of the 

implemented code are presented and the function of each package is explained. 
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Figure 4.1: EPowertrain Library Main Structure. 

 

4.3 Interfaces 
 

Figure 4.2 shows the Interfaces package, witch contains the physical connectors that 

allow interactions between models from different domains. The following types are 

defined: 

 

• Electrical connectors whose variables are voltage and current. 

 

• Mechanical connectors with torque and position variables. 

 

• Generalist input, output or input and output connectors. Intended for the 

manipulation of real or Boolean signals. 

 

 

 

Figure 4.2: Interfaces Package Composition. 

 

4.4 SignalRouting 
 

The SignalRouting package provides signal processing blocks, especially useful for 

experiments like saturation negation or delays among others. It also includes blocks for 

multiplexing signals and creating electrical buses. Facilitating the routing of signals in a 

clean and organised way. These blocks do not model physical phenomena directly but 

are essential in the modular structure of complete models. The SignalRouting package 

structure is shown below in Figure 4.3. 
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Figure 4.3: SignalRouting Package Structure. 

 

4.5 Sources 
 

The Sources package (Figure 4.4) contains models of controlled or ideal sources, 

necessary for experimentation and simulation of external conditions as well as for the 

generation of input profiles. 

 

 

Figure 4.4: Sources Package Models. 

 

4.6 Electrical 
 

The Electrical subpackage is one of the core components of the EPowertrain library, as 

it houses the components responsible for Modeling the electrical behaviour of the 

propulsion system. These models simulate the conversion, distribution and dissipation 

of electrical energy in the vehicle's powertrain, from the battery to the engine. 

 

The design of the models contained in this package follows a balanced philosophy 

between physical realism and computational efficiency. Priority is given to the 

representation of phenomena relevant to energy analysis (such as voltage drop under 

load or dynamic motor response), while avoiding the use of excessively detailed models 

that would introduce discontinuities or unnecessary numerical rigidity, especially in 

long duration simulations. 
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All electrical components implement electrical pin connectors, defined in the Interfaces 

subpackage, which guarantees automatic current conservation and electrical potential 

continuity for all connections. The main models included in this package are described 

in Figure 4.5. 

 

 

 

Figure 4.5: Electrical Package Components. 

 

4.6.1 Battery 
 

The battery model implemented in Electrical.Sources.Battery represents an idealised 

cell with a second-order equivalent circuit structure. This configuration seeks to capture 

both the static response and certain transient dynamics of the electrical storage system, 

while maintaining a low computational load. The equivalent circuit includes: 

 

• A state-of-charge (𝑆𝑂𝐶) controlled voltage source, whose value ranges from a 

minimum discharge voltage (𝑉𝑑) to a maximum charge voltage (𝑉𝑓). 

 

• A series resistor (𝑅𝑠) that models the internal resistive losses. 
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• A parallel network consisting of a resistor (𝑅𝑝) and a capacitor (𝐶), which cap-

tures the polarisation effects and dynamic response of the cell. 

 

• An internal calculation of the 𝑆𝑂𝐶 from the net current supplied or absorbed, 

considering a total capacity (𝐶𝑎𝑝) and a configurable initial state (𝐼𝑛𝑖𝑡𝑆𝑂𝐶). 

 

The model is implemented in Modelica (Figures 4.6, 4.7) from basic components and 

algorithmic equations for the 𝑆𝑂𝐶. Additionally, current limitation has been 

implemented to constrain the maximum current that the actual physical device would be 

capable of providing. 

 

 

 

Figure 4.6: Battery Model Component Diagram. 

 

 

Figure 4.7: Battery Model Parametrization Interface. 

Rs 

Rp C 
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4.6.2 ElectricConverter 
 

The ElectricConverter model implements an idealised representation of a power 

converter (such as an inverter or a DC-DC converter) by means of a simple linear 

relationship controlled by a modulating signal as shown in chapter 3.3. 

 

 𝑉𝑜𝑢𝑡 = 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒 ∙ 𝑉𝑖𝑛 (4.1) 

 

This approach avoids Modeling the individual PWM switching cycles, which reduces 

the computational burden and avoids introducing discontinuities that can degrade the 

numerical performance of the simulator. This type of model is especially useful for long 

duration driving simulations such as UDDS. To ensure the ideal behaviour of the 

converter, the following restriction has been introduced in the power calculation. 

Forcing the power balance to be fulfilled. 

 

 𝑃𝑤𝐼𝑛  + 𝑃𝑤𝑂𝑢𝑡 = 𝑉𝐼𝑛 ∙ 𝐼𝐼𝑛 +  𝑉𝑂𝑢𝑡 ∙ 𝐼𝑂𝑢𝑡 = 0 (4.2) 

 

Where the current flow is reversed depending on the mode of operation: 

 

𝐼𝑖𝑛 =  {
−𝐼𝑖𝑛𝑝𝑢𝑡𝑃𝑖𝑛 𝑖𝑓 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒 ≥ 0 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒

𝐼𝑖𝑛𝑝𝑢𝑡𝑃𝑖𝑛 𝑖𝑓 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒 < 0 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒
 

 

(4.3) 

 

This inversion of current flows has been introduced to control the charging mode 

(regenerative braking) where a negative DutyCycle implies a power flow to the battery 

(charging) and a positive DutyCycle symbolises a power flow from the battery to the 

engine (discharging). Figure 4.8 below shows the source code of the modelica 

implementation of this submodule. 

 

 

Figure 4.8: ElectricConverter Implementation in Modelica. 
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4.6.3 DCMotor 
 

The DCMotor model (Figures 4.9, 4.10) is the Modelica implementation of a permanent 

magnet direct current (PMDC) motor whose mathematical model was discussed in 

chapter 3.2. For the implementation, the motor is composed of 3 elements: Resistance 

𝑅1 and inductance 𝐿1 represent the input impedance to the motor while the BackEMF 

submodel integrates the electromechanical phenomena that allow the transformation 

from the electrical to the mechanical domain. 

 

 
𝑉𝑝 − 𝑉𝑛 = 𝑅1 ∙ 𝐼 +  𝐿1 ∙

𝑑𝐼

𝑑𝑡
+ 𝑉𝑒𝑚𝑓 = 𝑅1 ∙ 𝐼 +  𝐿1 ∙

𝑑𝐼

𝑑𝑡
+ 𝐾𝑒 ∙ 𝜔 (4.4) 

 

 
𝑇𝑚 = 𝐾𝑡 ∙ 𝐼 =  𝑇𝑙𝑜𝑎𝑑  + 𝐵 ∙ 𝑤 + 𝐽 ∙

𝑑𝜔

𝑑𝑡
  (4.5) 

 

The BackEMF submodule deals with the conversion of electric current to torque and 

vice versa. For this purpose, it integrates the counter-electromotive force equations 

discussed in chapter 3.2. 

 

 

Figure 4.9: DC Motor Modelica Implementation. 

 

 

Figure 4.10: BackEMF Submodel Source Code. 
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4.7 Mechanical 
 

The Mechanical package (Figure 4.11) provides essential models to represent both 

rotational dynamics and longitudinal displacement of the electric vehicle. The models 

were designed to maintain physical compatibility with the rest of the library 

architecture, coherently integrating the mechanical domain with the electrical and 

control components. This section extends the previously introduced rotational type 

models and incorporates the key models used to represent the linear motion of the 

vehicle, in particular the chassis (BodyFrame1DOF), the wheel (Wheel) and the effect 

of the terrain slope (Slope). 

 

 

Figure 4.11: Mechanical Subpackage Modules. 

 

4.7.1 Wheel 
 

The Wheel model acts as an ideal transformer that converts the mechanical torque T 

applied to the axle of a wheel into a linear force F, transmitted to the vehicle body 

through a translational interface. 

 

The relationships used are: 

 

• Vehicle linear velocity: 

 

 𝑣 = 2 ∙ 𝜋 ∙  𝑅 ∙ 𝜔 (4.6) 

   

Where 𝑅  and 𝜔 represents the wheel radius and angular speed respectively. 

 

• Transmitted traction force balance: 

 

 
𝑇𝑎𝑥𝑖𝑠 + 𝑓𝑠 ∙ 𝜔 + (𝐽 +  𝑀 ∙ 𝑅2) ∙

𝑑𝜔

𝑑𝑡
= 0 (4.7) 

   

With 𝑇𝑎𝑥𝑖𝑠 is the shaft provided torque, 𝑓𝑠  the dynamic viscosity friction coefficient. 

The term: 

 
(𝐽 +  𝑀 ∙ 𝑅2) ∙

𝑑𝜔

𝑑𝑡
 (4.8) 

   

Models the inertia forces resulting from both linear and angular acceleration of the 

wheel. The rotational component corresponds to a disc inertia: 
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𝐹𝑟𝑜𝑡 = 𝐽 ∙

𝑑𝜔

𝑑𝑡
 (4.9) 

   

With J as the inertial coefficient of the disc(wheel). The linear acceleration inertia can 

be transformed in an equivalent applied torque on the wheel axis (Figure 4.12) if we 

consider that the mass works in opposition to the mass acceleration.  

 

 
𝐹𝐼 = 𝑀 ∙

𝑑𝑣

𝑑𝑡
= 𝑀 ∙ 𝑅 ∙

𝑑𝜔

𝑑𝑡
  (4.10) 

   

 

 
𝑇𝐹𝐼

= 𝐹𝐼 ∙ 𝑅 = 𝑀 ∙ 𝑅2 ∙
𝑑𝜔

𝑑𝑡
  (4.11) 

   

 

Figure 4.12: Wheel Model Lineal Inertia Force. 

 

The total torque resulting from the inertial forces then results: 

 

 
𝑇𝐼 = 𝑇𝐹𝐼

 + 𝑇𝑟𝑜𝑡 = 𝐽 ∙
𝑑𝜔

𝑑𝑡
 + 𝑀 ∙ 𝑅2 ∙

𝑑𝜔

𝑑𝑡
 =  (𝐽 +  𝑀 ∙ 𝑅2) ∙

𝑑𝜔

𝑑𝑡
 (4.12) 

 

The model also integrates a steady state mode, where the steady state friction force is 

modelled when the velocity and accelerations are close to zero. Instead of assigning an 

equation on 𝜔 directly, we work on its derivative so that the continuity of the variable in 

the changing modes of operation can be respected. Avoiding chattering problems. 

 

 

 
𝑑𝜔

𝑑𝑡
= {

−103 ∙ 𝜔     |𝜔| < 𝑒𝑝𝑠
𝑇𝑎𝑥𝑖𝑠 + 𝑓𝑠 ∙ 𝜔

(𝐽 +  𝑀 ∙ 𝑅2)
    |𝜔| ≥ 𝑒𝑝𝑠

 (4.13) 

 

 

 Figure 4.13 illustrates the Wheel model implementation below. 
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Figure 4.13: Wheel Model Source Code. 

 

4.7.2 BodyFrame1DOF 
 

BodyFrame1DOF represents the vehicle body as a point mass with only one degree of 

freedom (longitudinal displacement). It is the model that simulates the motion of the 

vehicle under the action of the driving and resisting forces (Figure 4.14). 

 

The model is implemented as a body of mass 𝑚 subjected to a net force according to the 

equation: 

 

 𝐹𝑚 = 𝐹𝐼 + 𝐹𝑑 + 𝐹𝑟 + 𝐹𝑔 (4.14) 

 

The calculated forces correspond to those given in section 3.5: 

 

 
𝐹𝑚 =

𝑇𝐼𝑛

𝑅
 (4.15) 

Where 𝑇𝑖𝑛 is the torque provided by the motor and 𝑅 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙𝑠 𝑟𝑎𝑑𝑖𝑢𝑠. 
 

 
𝐹𝐼 = 𝑚 ∙

𝑑𝑣

𝑑𝑡
 (4.16) 

With v as the vehicle’s linear velocity. 

 

 
𝐹𝑑 =

1

2
⋅

𝐶𝑑 ∙ 𝜌 ∙ 𝑣2

𝐴𝑓
 (4.17) 

In which 𝐶𝑑, 𝐴𝑓 represents the vehicle’s drag coefficient and front area respectively and 

𝜌 the media fluid (air) density. 

 

 𝐹𝑟 = 𝐶𝑟 ∙ 𝑚 ∙ 𝑔 ∙ 𝑐𝑜𝑠(𝛼) (4.18) 

 

Where 𝐶𝑟 is the tyres’ rolling friction coefficient and g the gravity constant. 

 

 𝐹𝑔 = 𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝛼) (4.19) 
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This model allows to simulate the basic physics of the vehicle as well as to take into 

consideration the effects of the terrain in terms of slope changes on the stresses required 

to the vehicle's powertrain. 

 

 

Figure 4.14: BodyFrame1DOF Forces Distribution. 

 

 

Figure 4.15: BodyFrame1DOF Source Code. 

 

4.7.3 Slope 
 

The Slope model, defined in the Mechanical subpackage, allows the instantaneous 

terrain slope to be calculated from a height profile and the vehicle position. It is an 

auxiliary component that converts two input signals, height and displacement  into an 

output signal representing the slope angle of the terrain. 

 

 

𝛼 = arcsin (

𝑑𝐻
𝑑𝑡
𝑑𝑠
𝑑𝑡

) (4.20) 
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This model is especially useful in realistic simulations with routes extracted from 

topographic profiles, as it allows the effect of variable slopes to be dynamically 

incorporated without the need for manual coding. As show in Figure 4.16, this 

calculation is performed only after instant 𝑡 > 0, to avoid division by zero in the 

initialisation. 

 

 

Figure 4.16: Slope Source Code. 

 

This model does not represent a physical force directly but generates a slope angle that 

can be used by other blocks (Figure 4.17), such as the BodyFrame1DOF model, to 

apply the corresponding gravitational and tyre rolling forces.  

 

 

Figure 4.17: Slope Angle Representation. 

 

4.8 Control 
 

The Control package (Figure 4.18) contains the necessary blocks to implement control 

strategies within the electric drive system. Its purpose is to dynamically regulate the 

behaviour of actuators (such as electric motors or inverters) based on references and 

feedback signals. Although a simple structure has been kept, the models included are 

flexible enough to address common tasks in energy management and speed control. 

 

Modelica's modular and acausal architecture allows these controllers to be easily 

coupled to different physical components of the system, with generic connectors 

carrying continuous variables. 

 

 

Figure 4.18: Control Package Module. 
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PID 

 

This block implements a continuous PID controller with extended functionalities such 

as dead zone, output saturation limits and anti-windup. It allows to adjust the three 

classical PID control terms, proportional K, Integral I and derivative D. The model is 

implemented in differential form, with explicit equations for the calculation of the 

filtered output (Out) and the integration of the accumulated error (𝐼𝑛𝑡𝐸𝑟). The gross 

output (𝐴𝑢𝑥𝑂𝑢𝑡)  of the controller is calculated as a classical PID: 

 

 
𝐴𝑢𝑥𝑂𝑢𝑡 = 𝐾 ∙ 𝑒 + 𝐷 ∙

𝑑𝑒

𝑑𝑡
+ 𝐼 ∙ 𝐼𝑛𝑡𝐸𝑟 (4.21) 

 

Where 𝐾, 𝐷 and 𝐼 are the proportional, derivative and integral constants of the 

controller respectively. The input error is calculated form the difference between the 

reference value and the actual feedback signal input: 

 

 𝑒 = 𝑅𝑒𝑓 − 𝐼𝑛 (4.22) 

 

The term 𝐼𝑛𝑡𝐸𝑟 corresponds to the error integration. However, in Modelica it is more 

convenient to define the error as the derivative of its integral. 

 

 
𝐼𝑛𝑡𝐸𝑟 = ∫ 𝑒 ∙ 𝑑𝜏

𝑡

0

→
𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
= 𝑒 (4.23) 

 

The controller includes two advanced mechanisms to adapt the response of the 

controller. The first of these is the implementation of a dead zone. When this option is 

activated, the controller suppresses the output action and prevents the accumulation of 

the integral error in a near-zero environment. This approach is useful to avoid 

unnecessary oscillations or reactions to small disturbances. If the enable condition is 

met: 

 

 𝐷𝑒𝑎𝑑𝑍𝑜𝑛𝑒 =  𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 |𝐴𝑢𝑥𝑂𝑢𝑡| < 𝜖 (4.24) 

 

Then the output and error integration are suppressed. 

 

 𝑑𝑂𝑢𝑡

𝑑𝑡
=  −𝑆𝑚𝑡 ∙ 𝑂𝑢𝑡 (4.25) 

 

 𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
=  0 (4.26) 

Where 𝜖 is the width of the dead zone while 𝑆𝑚𝑡 is a smoothing factor to decay the 

output to zero without introducing discontinuities. The further implemented 

functionality is the limitation of the controller output. In addition, an anti-windup 

mechanism has been considered to avoid integral error accumulation when the 

controller output is saturated. These consider three working modes: 
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• If the auxiliary output exceeds the upper limit: 

 

 

𝐴𝑢𝑥𝑂𝑢𝑡 ≥ 𝑀𝑎𝑥 → {

𝑑𝑂𝑢𝑡

𝑑𝑡
  =  𝑆𝑚𝑡 ∙ (𝑀𝑎𝑥 − 𝑂𝑢𝑡)

𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
  = 0

 (4.27) 

 

 

• When the auxiliary output falls below the lower limit: 

 

 

𝐴𝑢𝑥𝑂𝑢𝑡 ≤ 𝑀𝑖𝑛 → {

𝑑𝑂𝑢𝑡

𝑑𝑡
  =  𝑆𝑚𝑡 ∙ (𝑀𝑖𝑛 − 𝑂𝑢𝑡)

𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
  = 0

 (4.28) 

 

• In any other case the output is adjusted to the previously calculated raw 

performance. 

 

 

𝑀𝑖𝑛 < 𝐴𝑢𝑥𝑂𝑢𝑡 < 𝑀𝑎𝑥 → {

𝑑𝑂𝑢𝑡

𝑑𝑡
  =  𝑆𝑚𝑡 ∙ (𝐴𝑢𝑥𝑂𝑢𝑡 − 𝑂𝑢𝑡)

𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
  = 𝑒

 (4.29) 

 

This approach avoids undesired behaviour when the actuator cannot follow the setpoint 

signal, retaining a more realistic and stable response in the presence of saturations in 

addition to ensuring the continuity of the output signal. In Figures 4.19 , 4.20 the 

internal source code and parametrization model interface are displayed. 
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Figure 4.19: PID Controller Modelica Implementation. 

 

 

Figure 4.20: PID Block Interface. 
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4.9 Sensors 
  

The Sensors package (Figure 4.21) contains blocks ideal for measuring key physical 

variables in an electrical powertrain, such as voltage, current, angular velocity and 

position. These sensors are used for two purposes: controller feedback (such as the PID 

block) and recording simulation results. 

 

All models are implemented as ideal sensors, without delay, offset or noise, which 

simplifies their integration into functional experiments. However, their modular 

structure allows them to be easily extended with dynamics or errors if more realistic 

simulations are desired. 

 

 

Figure 4.21: Sensors Package Components. 

 

4.9.1 Vsensor – Electrical Voltage Sensor 
 

The Vsensor model (Figure 4.22) measures the electrical potential difference between 

the two pins (𝑝,𝑛) of the system and delivers the result through a continuous output 

connector (outPort), which can be connected to control or display blocks. 

 

 𝑣 = 𝑣𝑝  −  𝑣𝑛 (4.30) 

 

 𝑜𝑢𝑡𝑃𝑜𝑟𝑡 = 𝑣 (4.31) 

 

This sensor is non-intrusive: it imposes zero current on the terminals, which makes it 

suitable for idealised measurements. 

 

 𝐼𝑝 = 𝐼𝑛 = 0 (4.32) 

   

 

Figure 4.22: Vsensor Source Code. 

 

4.9.2 CurrentSensor – Electric Current Sensor 
 

This block measures the current flowing between two electrical nodes. The connection 

is made via a positive pin (P) and a negative pin (N). The sensor imposes equal potential 

between the two terminals, so it does not introduce voltage drops. 
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 𝑣𝑝 = 𝑣𝑛 (4.33) 

 

 𝐼𝑝 + 𝐼𝑛 = 0 (4.34) 

 

The unit of measurement 𝐼𝑚𝑒𝑎𝑠 , is the current passing through and out of the 

component, i.e. the negative terminal. 

 𝐼𝑛 = 𝐼𝑚𝑒𝑎𝑠 (4.35) 

 

This ideal sensor assumes perfect coupling and no losses. Its output can be used to 

assess energy consumption, estimate battery state of charge or feed power control 

algorithms. Figure 4.23 illustrates the Modelica’s implementation of this module. 

 

 

Figure 4.23: CurrentSensor Source Code. 

 

4.9.3 AxialSpeed – Angular Position and Velocity Sensor 
 

The AxialSpeed model measures the position 𝜃𝑚 and angular velocity 𝜔𝑚 of the 

mechanical axis of a machine and also calculates the electrical equivalent values 

(𝜃𝑒 , 𝜔𝑒 ) considering the number of pole pairs 𝑁. It is connected between two rotational 

axes (𝐴𝑥𝑖𝑠𝐼𝑛 and 𝐴𝑥𝑖𝑠𝑂𝑢𝑡), without introducing friction or inertia. 

 

 𝜃𝑒 = 𝑁 ∙ 𝜃𝑚 (4.36) 

 

 
𝜔𝑚 =

𝑑𝜃𝑚

𝑑𝑡
 (4.37) 

 

 
𝜔𝑒 =

𝑑𝜃𝑒

𝑑𝑡
 (4.38) 

 

In addition, the model includes an electric cycle reset: 

 

 𝑖𝑓 𝜃𝑒 ≥ 2𝜋 → 𝑟𝑒𝑖𝑛𝑖𝑡(𝜃𝑒 , 0) (4.39) 

 

This condition prevents indefinite growth of the electrical angular position, facilitating 

its use in cyclic logic as a switching or synchronisation control (Figure 4.24). 
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Figure 4.24: AxialSpeed Source Code. 

 

4.10 Interfaces and Interoperability 
 

Interoperability between components within the EPowertrain library is achieved through 

a coherent set of interfaces, developed under the acausal Modeling paradigm of the 

Modelica language. These interfaces ensure physical compatibility and simplify the 

integration of new elements, even when they belong to different physical domains. 

The library defines a set of standard connectors, including: 

 

• Electrical interfaces: Based on PosPin and NegPin, these connectors define 

voltage and current as ‘stress’ and ‘flow’ variables, respectively. They are used 

consistently on all electrical components to ensure proper signal and power 

transmission. 

 

• Mechanical interfaces: The MechanicalAxis connector enables the 

transmission of torque and angular velocity between elements such as motors, 

shafts and loads. 

 

• Control interfaces: Control signals are handled by connectors such as IO_Port, 

InPort and OutPort, which carry scalar or logical variables (Boolean, Real). This 

facilitates the integration of control strategies without creating rigid couplings 

between components. 

 

Although the library has been designed primarily for internal use, the definition of 

interfaces is generic and compatible with other Modelica libraries. This allows external 

components to be integrated into simulations with minimal adaptations, provided that 

compatible connector types are used. 
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4.11 Conclusions 
 

This chapter has presented the structured implementation of the EPowertrain library, 

developed in the Modelica environment for the simulation of electric power trains. The 

internal architecture of the library, organized in functional subpackages grouping 

electrical, mechanical, control, sensor and interface components, has been detailed. This 

modular structure facilitates the reuse, extension and understanding of the models by 

other users and developers. 

 

Each subcomponent has been designed following acausal modeling and object-oriented 

programming principles, taking advantage of the capabilities of the Modelica language 

to represent physical interactions through declarative equations. This has made it 

possible to define configurable components that can be connected to each other in a 

physically consistent way, keeping compatibility between interfaces and preserving the 

conservation of quantities such as energy, current or mechanical stress. 

 

At the same time, we have sought to parameterize as much as possible the calibration of 

the components in order to facilitate reuse and integration in more complex systems. 
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5 EPowertrain Library Validation 
 

5.1 Introduction 
 

Once the individual models and the general architecture of the EPowertrain library have 

been developed, it is necessary to verify that their simulated behaviour adequately 

matches the expected physical behaviour. This chapter presents the validation process 

carried out on the different components and configurations of the library, in order to 

evaluate their accuracy, physical consistency and applicability in real electric vehicle 

simulation contexts. First, the individual validation of the following key components is 

described: 

 

• DC motor 

• Battery 

• DC-DC Electric Converter 

Following this, the validation of the complete system is introduced It was first tested in 

a synthetic test under the UDDS driving [1] cycle followed by the use of real driving 

data of a real vehicle, the BMW i3 [2], to compare real versus simulated results.  

The main goal of this chapter is to demonstrate that the developed library allows to 

reproduce, with fidelity and computational efficiency, the energy behaviour of an 

electric power train under realistic dynamic conditions, as well as being a valid tool for 

consumption studies, control strategies and architecture comparison. 

 

5.2 Validation of Individual Components 
 

Before proceeding to the validation of complete systems, individual validation of the 

main components developed in the EPowertrain library was carried out. This process 

was essential to ensure that each model presented a behaviour consistent with its 

theoretical description and met the established functional requirements. 

 

5.2.1 DC Motor 
 

The dynamic response of the model was checked using parameter identified based on 

Moments and Pasek techniques, following the procedures described in [36] .The 

relationship between current, torque and angular velocity under voltage step excitations 

was evaluated. 

 

To validate both methods, the authors performed dynamic tests by applying a voltage 

step excitation to an independently excited DC motor. A voltage step varying from 60 V 

to 248 V was applied to the motor armature, and the current and angular velocity 

responses were recorded. Test parameters can be checked in Table 5.1. 
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Table 5.1: Comparison of DC Motor Parameters Identified by Pasek's Method and 

Moments Method. 

Parameter Symbol Pasek’s Moments Unit 

Armature resistance  𝑅𝑎 30.9  30.9 Ω 

Armature inductance  𝐿𝑎 0.438 0.803 𝐻 

Torque and back-EMF constant  𝐾 1.323 1.323 𝑁 ∙ 𝑚/𝐴 

Rotor inertia 𝐽 0.0036 0.0031 𝑘𝑔 ∙ 𝑚2 

Viscous friction coefficient  𝑓 0.0005  0.0005 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑 

Static torque 𝑇𝑠𝑡 𝑇𝑠𝑡 0.128 0.128 𝑁 ∙ 𝑚 

 

During these tests, the following experimental values were observed: 

• Armature current went from 0.113 A in the initial state to 0.167 A in the final 

state after excitation. 

• The angular velocity of the rotor increased from 400 rpm to 1745 rpm. 

• The maximum instantaneous current was recorded at approximately 0.026 

seconds after the start of the step. With a peak of approximately 4.5 A in the 

case of Pasek's estimation and 4 A in the moments’ estimation. 

In the case of our simulation (Figure 5.1), we obtain a steady-state speed of 

approximately 1772 rpm for both methods, as well as peak currents of 4.5 and 3.985 A 

using the Pasek and moments models respectively. These results allow us to conclude 

that the model developed is capable of accurately reproducing the dynamic behaviour of 

the motor under controlled excitation conditions, thus validating its use in the context of 

energy analysis of electric kinematic chains. 

 

 

Figure 5.1: Modelica Results of Pasek and Moments Estimated Model Simulations. 
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5.2.2 Battery 
 

Before proceeding to the validation of the equivalent battery model proposed in this 

library, it is necessary to have experimental data to compare the response of the model 

with the real behaviour of the physical system. For this purpose, an urban driving 

project with a BMW i3 dataset will be used [2]. 

 

Within the set of available trips, the file named TripB14 has been specifically chosen, 

since it presents one of the largest state-of-charge (SOC) variations between start and 

end of the trip (Figure 5.2). This feature is particularly relevant for validation, as it 

allows to evaluate the ability of the model to reproduce not only the instantaneous 

voltage variations, but also the cumulative evolution of the SOC over time under 

dynamic conditions. 

 

 

Figure 5.2: TripB14 Battery Dataset. From Top to Bottom: Soc, Voltage, Current 

Consumption. 

 

The battery consists of a RC1 model whose characteristic equations have already been 

specified in chapter 3.4. 

 

 
𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 −

1

𝑄
∫ 𝐼(𝜏) ∙ 𝑑𝜏

𝑡

0

 

 

(5.1) 
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 𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝑉𝑑 + (𝑉𝑓 − 𝑉𝑑) ⋅ 𝑆𝑂𝐶 

 

(5.2) 

 𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑂𝐶 − 𝐼 ⋅ 𝑅𝑠 − 𝑉𝑅𝐶 (5.3) 

 

Where 𝑉𝑅𝐶 is the voltage drop in the parallel RC network: 

 

 
𝐶 ⋅

𝑑𝑉𝑅𝐶

𝑑𝑡
=

𝑉𝑂𝐶 − 𝑉𝑅𝐶

𝑅𝑝
− 𝐼 

(5.4) 

 

This model has been previously described by other authors as a system in state space 

[37]. 

 

 𝑑𝑉𝑅𝐶

𝑑𝑡
=

1

𝑅𝑝∙𝐶
∙ 𝑉𝑅𝐶 +

1

𝐶
∙ 𝐼    (5.5) 

 

 𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑅𝐶 + 𝑅𝑆 ∙ 𝐼 + 𝑉𝑜𝑐 (5.6) 

 

There is not available data for the estimation of open circuit voltage; however, it is 

possible to estimate it by taking points where the current is as constant and reduced as 

possible to minimize the layer and resistive effects of the battery. For this purpose, we 

have chosen initial and final points of the driving cycle where the vehicle is at rest. 

 

 𝑉𝐵𝑎𝑡𝑡 ≈  𝑉𝑜𝑐 (5.7) 

 

Under these assumptions, we can make a linear estimation of the open circuit voltage of 

the battery as a function of its state of charge such that: 

 

 
[
𝑉𝐵𝑎𝑡𝑡0

𝑉𝐵𝑎𝑡𝑡𝑓

] = [
1 − 𝑆𝑂𝐶0 𝑆𝑂𝐶
1 − 𝑆𝑂𝐶𝑓 𝑆𝑂𝐶] [

𝑉𝑑

𝑉𝑓
] (5.8) 

 

 
[
391.6
362.8

] = [
0.145 0.855
0.654 0.346

] [
𝑉𝑑

𝑉𝑓
] (5.9) 

 

This gives us an estimate for the full and depleted battery tension of:  

 

 𝑉𝑑 ≈ 343.22 V  (5.10) 

 

 𝑉𝑓 ≈ 399.80 V  (5.11) 

 

To estimate the parameters Rs, Rp and C it is possible to take advantage of the dataset's 

sample space to perform an estimation using the System Identification MATLAB 

toolbox. Once we have an estimate of 𝑉𝑜𝑐 , we can perform several estimates for 

different SoC.  
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Table 5.2: Battery Parameter Estimation. 

SoC 𝑅𝑠 𝑅𝑝 𝐶 

10 % 0.1159 Ω 1.337 ∙ 10−4 Ω 1.81 ∙ 105 𝐹 

25 % 0.0896 Ω 6.8102 ∙ 10−4 Ω 1.2497 ∙ 104 𝐹 

50 % 0.1051 Ω 1.7834 ∙ 10−4 Ω 9.5329 ∙ 103 𝐹 

75 % 0.1093 Ω 6.9485 ∙ 10−4 Ω 2.008 ∙ 104 𝐹 

100 % 0.1183 Ω 2.2333 ∙ 10−4 Ω 1.4817 ∙ 105 𝐹 

 

It is worth noting the variability of the parameter estimates (Figure 5.3) depending on 

whether the state of charge is close to extreme values of unloaded or full or whether it is 

in more average values. This may be due either to the characteristics of the battery itself 

or to the fact that calculations have been made for SoC values outside the sample space 

(it must be pointed out that in the dataset the SoC of the battery is between 85.5% and 

34.6%). 

 

Figure 5.3: Battery Parameter Estimation. From Top to Bottom: Series Resistance, 

Parallel Resistance, Parallel Capacitance. 

 

For this reason, it might be preferable to be conservative and choose the estimated 

parameters for a 50% state of charge in a first approximation. Once a parameterization 

that characterizes the battery has been estimated, it is necessary to check that the battery 

behaviour matches reality. For this purpose, as will be explained later in chapter 5.4, the 

TripA01 [2] driving cycle has been used as validation data for the complete system and 

comparing the simulated model response against real terminal voltage and state-of-

charge data. As shown in Figure 5.4, the model reproduces with high fidelity the SOC 
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evolution along the path, with a practically negligible cumulative error. This confirms 

that the integration of the net current is consistent and that the model correctly 

represents the load balance under dynamic conditions. 

 

As for the terminal voltage, the model adequately captures the general trend and rapid 

variations due to current transients, although it shows some point deviations in the 

steeper areas. These differences are attributable, in part, to the simplicity of the first-

order RC model employed, which does not account for effects such as hysteresis, 

thermal dependence of the parameters or nonlinearity of the open-circuit curve (OCV). 

 

Therefore, the proposed model is suitable for applications focused on energy 

consumption analysis, SOC estimation or evaluation of control strategies in early design 

stages. 

 

 

Figure 5.4: Battery Data and Simulation Comparison. From Top to Bottom: SoC, 

Current Consumption, Battery Voltage. 
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Table 5.3: Battery Simulation Parameters. 

Parameter Symbol Value 

Series resistance 𝑅𝑠  0.1051 Ω  

Parallel resistance 𝑅𝑝  1.7834 e − 4 Ω  

Capacitor capacitance 𝐶  9.5329 ∙ 10−3 𝐹  

Battery’s charge capacity 𝑄  60 𝐴 ∙ ℎ  

Initial state of charge 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  86.9 %  

Full-state voltage 𝑉𝑓  399.8 𝑉  

Depleted-stated voltage 𝑉𝑑  343.22 𝑉  

 

 

5.2.3 Electric Converter 
 

The ElectricConverter model implemented in the library represents an ideal DC/DC 

converter, whose behaviour is governed by the equation: 

 

 𝑉𝑂𝑢𝑡 = 𝐷 ∙ 𝑉𝐼𝑛 (5.12) 

 

Where a positive Duty Cycle (𝐷) indicates a power flow from the battery while a 

negative one indicates that it is the battery that is absorbing energy. In other words, the 

sign of D determines the power flow. 

  

 
𝑃𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤: {

𝐷 < 0 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑀𝑜𝑑𝑒      
𝐷 > 0 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑀𝑜𝑑𝑒
𝐷 = 0 𝐼𝑑𝑙𝑒                               

 (5.13) 

 

This model disregards internal losses and transients, considering only a linear transfer of 

power between ports, with ideal conservation of energy: 

 

 𝑃𝑤𝐼𝑛 + 𝑃𝑤𝑂𝑢𝑡 = 𝑉𝐼𝑛 ∙ 𝐼𝐼𝑛 + 𝑉𝑂𝑢𝑡 ∙ 𝐼𝑂𝑢𝑡 = 0 (5.12) 

 

The purpose of this validation is to verify that the model responds adequately to 

dynamic variations in the duty cycle, and that the output voltage adjusts linearly to the 

expected value as a function of the input voltage. 

 

To perform the experiment, a DC motor connected to a rotational load represented by an 

equivalent inertia has been used. The motor has been excited by means of an angular 

velocity reference signal composed of two components: 

 

• A low frequency sinusoidal signal, which generates a continuous load variation 

on the converter. 

 

• A PWM (pulse width modulation) signal, which introduces fast commutations in 

the duty cycle applied to the converter. 

 

This combined stimulus allows to verify both the linearity of the model under smooth 

variations and its robustness against fast changes in the Duty Cycle. 
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Figure 5.5 shows the experimental scheme used in the validation. In it, it can be seen 

how the input signal is an angular velocity reference that feeds a PID block, in charge of 

regulating the performance of the DC/DC converter. This PID generates the DutyCycle 

signal that is applied to the converter, allowing to control the voltage supplied to the DC 

motor. Through this topology, it is possible to impose a desired speed evolution on the 

motor, while observing the system response to combined setpoint profiles (Square and 

Sine velocity reference). 

 

 

 

Figure 5.5: DC Converter Test Layout. 

 

This test bench allows the converter to be subjected to controlled dynamic conditions, 

evaluating its behaviour against smooth and fast setpoint variations, as shown in Figures 

5.6, 5.7. The results show an almost perfect match in all scenarios, which is to be 

expected in an idealized model. The energy balance always remains at 0 indicating that 

this model is neither a consumer nor a generator of energy to the system. 

 

Table 5.4: DC Converter Validation Experiment Parameters. 

Parameter Symbol Value 

Motor armature resistance 𝑅𝑚 0.025 𝛺 

Motor armature inductance 𝐿𝑚 1 𝑚𝐻 

Counter EMF constant 𝐾𝑒 0.7144 𝑉 ∙ 𝑠/𝑟𝑎𝑑 

Torque constant 𝐾𝑡 0.72 𝑁 ∙ 𝑚/𝐴 

Rotor’s friction constant 𝑏𝑚 5 ∙ 10−4 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑  

Rotor’s inertia 𝐽 0.031 𝑘𝑔/𝑚2 

DC Source Voltage 𝑉 400 𝑉 

Load’s inertia 𝐽𝑙𝑜𝑎𝑑 10 𝑘𝑔/𝑚2 

Load’s Dynamic Viscosity 𝑓𝑠 8.5 ∙ 10−6 𝑃𝑎 ∙ 𝑠 
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Figure 5.6: DC Converter and Motor Response to Square Velocity Reference. 

 

 

 

Figure 5.7: DC Converter and Motor Response to Sine Velocity Reference. 
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5.3 UDDS Cycle 
 

To validate the behaviour of the proposed system and analyse its energy efficiency 

under realistic urban driving conditions, a model called UDDS_Cycle has been 

implemented in the EPowertrain library (Figure 5.8). This model reproduces the typical 

architecture of an electric power train and subjects it to a dynamic speed profile based 

on the standard UDDS (Urban Dynamometer Driving Schedule) cycle. 

 

The UDDS_Cycle model integrates the following components: 

 

• Speed Profile Source (UDDS): A TimeTable block that defines the target 

vehicle speed as a function of time, following the UDDS cycle. 

 

• Power converter (ElectricConverter): Implemented as an ideal voltage adapter 

to eliminate the need to represent commutations, which reduces numerical 

discontinuities and improves computational efficiency. 

 

• Motor (DCMotor): Model previously validated using parametric identification 

techniques (Moments and Pasek), with parametrised resistance, inductance and 

torque constant values. 

 

• Chassis model (BodyFrame1DOF): Represents the longitudinal dynamics of 

the vehicle and includes mass, ground friction, slope and aerodynamic drag. 

 

• Speed controller: implemented through a PID control loop, the output controls 

the output voltage of the converter, and thus indirectly regulates the torque 

applied by the motor. 

 

 

 

Figure 5.8: Test Layout of the UDDS Cycle Experiment. 
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Table 5.5: UDDS Experiment Parameters. 

Parameter Symbol Value 

Motor armature resistance 𝑅𝑚 0.025 𝛺 

Motor armature inductance 𝐿𝑚 1 𝑚𝐻 

Counter EMF constant 𝐾𝑒 0.65 𝑉 ∙ 𝑠/𝑟𝑎𝑑 

Torque constant 𝐾𝑡 0.65 𝑁 ∙ 𝑚/𝐴 

Rotor’s friction constant 𝑏𝑚 4.21 ∙ 10−6 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑  

Rotor’s inertia 𝐽 3.87 ∙ 10−7 𝑘𝑔/𝑚2 

Battery voltage (discharged) 𝑉𝑑 500 𝑉 

Battery voltage (fully charged) 𝑉𝑓 600 𝑉 

Battery capacity 𝐶𝑎𝑝 30 𝐴 ∙ ℎ 

Initial SoC 𝐼𝑛𝑖𝑡𝑆𝑂𝐶 0.8 (80%) 

Battery resistance (series branch) 𝑅𝑠 0.06 𝛺 

Battery resistance (parallel branch) 𝑅𝑝 10−3 𝛺  

Battery capacitance  𝐶 10−6 𝐹 

Battery maximum output current 𝐼𝑚𝑎𝑥  400 𝐴 

Vehicle’s mass 𝑀 1500 𝑘𝑔 

Vehicle’s front area 𝐴𝑓 2.2 𝑚² 

Wheels radius 𝑅 0.25 𝑚 

Vehicle’s drag coefficient 𝐶𝑑 0.29 

Tyres’ rolling friction coefficient 𝐶𝑟 0.009 

Air density 𝜌 1.2 𝑘𝑔/𝑚3 

 

Simulation Results  

Figure 5.9 shows the results obtained by simulating the complete electric powertrain 

system under the standard UDDS (Urban Dynamometer Driving Schedule) cycle, with a 

duration of 1369 seconds. 

 

Speed profile tracking 

The controller achieves fully accurate tracking of the reference speed (pID.Ref) using 

the actual system signal (pID.In). This validates both the efficiency of the PID 

controller and the adequacy of the motor and mechanical system parameters. 

 

Motor torque 

The motor (dCMotor2.Rotor.T) shows torque variations from -900 Nm to +1000 Nm, 

with the following highlights: 

 

• Positive values during acceleration phases. 

 

• Negative peaks during regenerative braking. 

 

These strong oscillations are to be expected in urban cycles [28], which highlights the 

dynamic demands of these scenarios. 
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Battery current 

The output current (battery.Iout) shows:  

 

• Peak consumption above 60 A. 

 

• Negative currents (up to -40 A), indicating effective energy recovery. 

 

The evolution in current is less violent than that of the motor torque due to the electrical 

inertia and the buffering capacity of the storage system. 

 

State of charge (SOC) 

The battery starts from a SOC of 80% and progressively drops to approximately 74.3%, 

reflecting a net energy consumption after compensation for regenerative recovery. This 

drop in SOC is within the expected range for an urban cycle and validates the size of the 

battery. 

 

Energy balance and motor flux 

electricConverter.EBalance reflects small variations around zero, which confirms a 

good power balance in the ideally modelled system. This is important to ensure that the 

ideal converter is not "creating" energy. The variations in this power balance are tiny 

and are due to the numerical deviation introduced by the finite precision of the solver. 

 

 

 

Figure 5.9: Results of the UDDS_Cycle Model. From Top to Bottom: Speed Tracking, 

Motor Torque, SOC, Battery Current, SoC Variation, Converter Energy 

Balance. 
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5.4 Real Driving Cycle Data 
 

To validate the fidelity of the library, it is essential to check the simulation results 

against experimental data. For this purpose, driving data from the BWM i3 (60 Ah) 

have been used [2]. 

 

Model Identification 

 

To test the simulation, we must first parameterise the model as accurately as possible. It 

is usually difficult to obtain all vehicle, battery and powertrain specific data, but we can 

approximate it. 

 

Let us characterise the BWM i3 motor as an equivalent DC motor. For this we can rely 

on the technical data of the manufacturer [38]. According to the manufacturer the 

engine has a peak power of 125 kW with a nominal battery voltage of 360 V. This gives 

an approximate peak current of: 

 

 
𝐼𝑝𝑒𝑎𝑘 =

𝑃𝑝𝑒𝑎𝑘

𝑉𝑟𝑎𝑡𝑒𝑑
=

125000𝑊

360𝑉
= 347.22 𝐴 (6.1) 

 

This is within the usual range of currents. From this maximum current we can estimate 

the torque constant: 

 

 
𝑘𝑇 =

Tpeak

𝐼𝑝𝑒𝑎𝑘
=

250𝑁𝑚

347.22𝐴
= 0.72 

𝑁 ∙ 𝑚

𝐴
 (6.2) 

 

 

The EMF constant can also be estimated. We know that the BWM i3 has a steady state 

power of 75 kW at 4800 rpm. Assuming a voltage 𝑉𝑏𝑎𝑡𝑡 of 360 V that gives a current of 

208.33 A approx. We can calculate the counter-electromotive constant 𝑘𝑒 as: 

 

 
𝑘𝑒 =

𝑉𝐸𝑀𝐹

𝜔
≈

360 𝑉

4800 𝑟𝑝𝑚
=

360 𝑉

502.65 
𝑟𝑎𝑑

𝑠

=  0.7162 
𝑉 ∙ 𝑠

𝑟𝑎𝑑
  (6.3) 

 

 

Considering that not all the battery power is invested in overcoming the counter-

electromotive force but that there are also losses in the power train, we will approximate 

𝑘𝑒 to 𝑘𝑡 which is a common assumption for DC motors [39]. 

 

 𝑘𝑒 ≈ 𝑘𝑡 (6.4) 

 

The internal resistance of the motor can also be derived from the power in steady state. 

considering that in steady state we can disregard the inductive component in a DC 

motor. 

 

 𝑑𝐼

𝑑𝑡
≈  0 →  

𝑃𝑠𝑡𝑒𝑎𝑑𝑦

𝑉𝑠𝑡𝑒𝑎𝑑𝑦
=

75000 𝑊

360 𝑉
= 208.33 𝐴 → 𝑅𝑚 ≈

360𝑉

208.33𝐴
= 1.728 Ω    (6.5) 
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The inductance value has been estimated based on typical values for this type of motors. 

 

 𝐿𝑚𝑒𝑠𝑡
= 100𝜇𝐻 (6.6) 

 

There are additional vehicle power losses to be considered. The most representative one 

is the energy expenditure in cabin cooling. In the case of [2], in the corresponding 

TripA01 cycle datasheet, the average power consumed by the air conditioning is: 

 

 𝑃𝑎𝑐𝑎𝑣𝑔
= 1610.4𝑊 (6.7) 

 

This additional power demand has been approximated by an additional charge to the 

battery: 

 
𝑅𝑙𝑜𝑎𝑑 =

𝑃𝑎𝑐𝑎𝑣𝑔

𝑉𝑏𝑎𝑡𝑡
= 80.4765Ω (6.8) 

 

According to [38, 40, 41] , the rolling coefficient for C1 (passenger car) class tyres and 

C fuel efficiency on dry asphalt is: 

 

 0.0078 ≤ 𝐶𝑟 ≤ 0.009 (6.9) 

 

On a first approach a middle value will be considered:  

 

 𝐶𝑟 = 0.0084 (6.10) 

 

The physical characteristics of the vehicle frame can be obtained directly from [38]. 

Although the specified gear ratio is 1:9.665, it has been modified to 1:6 to approximate 

the torque efforts recorded in the real data to those calculated for the speed profile. The 

complete parametrization of the experiment is shown below in Table 5.6. 
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Table 5.6: TripA01 Experiment Parametrization. 

Parameter Symbol Value 

TripA01 - Munich East  Drive cycle [2] 

Sunny Weather [2] 

Motor armature resistance 𝑅𝑚 1.72 𝛺 

Motor armature inductance 𝐿𝑚 106.26 𝜇𝐻 

Counter EMF constant 𝐾𝑒 0.7144 𝑉 · 𝑠/𝑟𝑎𝑑 

Torque constant 𝐾𝑡 0.72 𝑁 ∙ 𝑚/𝐴 

Rotor’s friction constant 𝑏𝑚 5 ∙ 10−4 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑 

Rotor’s inertia 𝐽 31 ∙ 10−3𝑘𝑔/𝑚2 

Battery voltage (discharged) 𝑉𝑑 343.22 𝑉 

Battery voltage (fully charged) 𝑉𝑓 399.8 𝑉 

Battery capacity 𝐶𝑎𝑝 60 𝐴 ∙ ℎ 

Initial SoC 𝐼𝑛𝑖𝑡𝑆𝑂𝐶 86.9 % 

Battery resistance (series branch) 𝑅𝑠 0.1051 𝛺 

Battery resistance (parallel branch) 𝑅𝑝 1.7834 ∙ 10−4 𝛺 

Battery capacitance  𝐶 9.5329 ∙ 103𝐹 

Battery maximum output current 𝐼𝑚𝑎𝑥 400 𝐴 

Electric consumptions resistance 𝑅𝑙𝑜𝑎𝑑 80.4765 𝛺 

Gear ratio 𝑁 1:6* 

Vehicle + driver mass 𝑀 1280 𝑘𝑔 

Vehicle’s front area 𝐴𝑓 2.38 𝑚² 

Wheels’ radius 𝑅 0.29 𝑚  

Vehicle’s drag coefficient 𝐶𝑑 0.29 

Tyres’ rolling friction coefficient 𝐶𝑟 0.0084 

Air density 𝜌 1.225 𝑘𝑔/𝑚3 

 

5.5 Simulation Result 
 

5.5.1 Variables Usually Compared 
 

In the validation of electric vehicle models using real driving cycles, it is common to 

compare the main simulated vs. measured vehicle performance variables. Among the 

most common are: 

 

• Battery state of charge (SoC): SoC over the cycle (or total SoC drop after a 

run) is a direct indicator of energy consumed. Validating the SoC evolution in 

the model against reality allows verifying whether the predicted energy 

consumption matches the real one. For example, Covello et al. compared the 

difference in SoC before and after each trip between simulation and experiment, 

as a measure of the energy consumed, obtaining very small discrepancies [42]. 
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• Battery current/power: Battery current or instantaneous delivered/recuperated 

power is another key variable. Comparing the current profiles of the model with 

real data allows to assess whether the electrical system (battery, inverter, motor) 

is correctly reproducing the demands of the driving cycle. This also includes 

validating energy recovery (regen) under braking. 

 

• Vehicle speed: Although typically the speed profile of the driving cycle is used 

as input, in models with a driver model controller it is verified that the 

simulation tracks the target speed accurately. The speed tracking error between 

the model and the actual cycle is analysed, especially in acceleration/braking 

transients. For example, Tollner et al. [43] define validation criteria for tracking 

the target speed and report that the largest deviations occur during hard braking 

or acceleration overshoots. A good model should minimise the speed error to 

ensure that the motor/battery load conditions are comparable to the real ones. 

 

• Engine torque: When CAN or instrument data is available, the simulated 

engine torque (or wheel drive force) is often compared to the measured torque. 

This verifies that the propulsion model delivers the torque required by the cycle. 

In [43], measured vs. simulated engine torque was plotted during an urban cycle, 

and a good match was observed except at peaks where the drive controller 

introduced small overcorrections. The coincidence in torque (both in traction 

and regenerative braking) is fundamental to affirm that the longitudinal 

dynamics and the engine model are accurate. 

 

 

In summary, the variables typically validated include speed (as a reference), 

power/torque delivered, battery current and SoC, and derived metrics such as energy 

consumed. These direct comparisons between simulation and reality allow to 

evaluate the degree of realism of the model in each key aspect of electric vehicle 

performance. 

 

5.5.2 Accuracy Levels and Tolerable Deviations 
 

The literature indicates that good quantitative agreement between model and 

experimental data is expected, although small deviations are always tolerated. In electric 

vehicle validation studies, relative errors in the order of one digit percentage for the 

main energy variables are often considered acceptable: 

 

• Deviation in energy consumption/SoC: An error of less than ~5-10% in total 

consumed energy or SoC drop is usually considered reasonable. For example, 

Sandrini et al. [44] report that after validation with real data, the maximum 

differences were in the order of 5% in mechanical quantities (e.g. velocity, 

acceleration) and always below 10% in electrical quantities. Similarly, Tollner et 

al. [43] establish as a criterion that the relative difference in accumulated energy 

(consumed from the pack) must be less than 10% to consider the model 

validated. These ranges (5-10%) are a frequent threshold for judging the energy 

fidelity of the model. 

 

• Error in velocity tracking: For the velocity profile, a tracking of the cycle is 

required. In simulation environments very narrow tolerances are imposed, e.g. 
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±1 mph (~1.6 km/h) instantaneous error, although in practice minor differences 

during transients are tolerated. What is important is that the model's average 

speed and acceleration distribution match the actual ones, so that the dynamic 

loading is equivalent [43]. 

 

• Error in instantaneous electrical variables: Simulated battery current and 

torque should follow the same profile as the actual data. It is common to 

calculate metrics such as root mean square error (RMSE) or root mean square 

error. Low values (a few percent of the range) indicate a good fit. In some cases, 

after calibration, almost imperceptible differences are obtained. 

 

• Deviation thresholds: When errors exceed ~10% in energy or show systematic 

trends, they are usually interpreted as indicating that the model needs to be 

refined. Errors within ~5% are usually called good agreement. In fact, an 

informal consensus in vehicle simulation is that a variance of ~2% represents 

very high agreement, 5% is good, and above 10% requires justification or 

improvement of the model [44]. The uncertainty of the actual measurements 

must also be considered: for example, SoC sensors in vehicles can have 

tolerances of ±0.5% [42]. which puts a limit to the accuracy with which they can 

be expected. 

 

In summary, a valid model should reproduce with high fidelity the trends of the 

measured variables, admitting only small discrepancies. Divergences of less than 5-10% 

are expected for global indicators (and ideally even smaller). Values within this range 

are considered acceptable and attributable to experimental uncertainty or reasonable 

simplifications. Larger discrepancies, on the other hand, require attention and 

explanation. 

 

Deviations between simulation and reality are typically explained by measurement 

limits, different environmental conditions, model simplifications and control 

assumptions, or inherent variability. Academic work justifies that the observed 

discrepancies are within the expected range given these causes. If significant, 

improvements to the model are proposed or the effect of the cause is quantified. This 

critical analysis of deviations strengthens confidence in the model, showing that it is 

understood why and how much it differs from reality under certain circumstances. 

 

5.5.3 Results Analysis 
 

Figure 5.10 displays the results obtained in the validation of the model against real data. 

A good degree of agreement in the key variables analysed (SoC, battery current and 

motor torque) is achieved, which supports the model accuracy of the Modeling 

approach adopted. However, some localised deviations are observed in the SoC 

evolution and in the current profile during some phases of the real driving cycle. 

 

On the one hand, part of the deviation observed in the SoC can be attributed to the fact 

that the model uses a manually adjusted gear ratio to better match the torque profile. 

This decision was made deliberately to compensate for the lack of accurate information 

about the actual vehicle's gearbox and to improve the tuning of the dynamic behaviour. 

Although it improves the torque response of the system, this simplification may slightly 

affect the accuracy of the current evolution and, consequently, of the SoC. 
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Figure 5.10: Battery Current Data vs Simulation. 

 

Furthermore, it is important to consider that the experimental data used comes from a 

real campaign with a BMW i3 (60 Ah), where factors such as the activation of auxiliary 

systems (air conditioning, on-board electronics), ambient temperature, or the slope 

profile were not explicitly modelled in this version of the model. These external effects 

can introduce non-negligible variations in consumption, as documented in previous 

studies. For example, [42] found that real-world energy consumption is significantly 

affected by the use of auxiliary systems, especially in urban travel, leading to 

differences of more than 5% in the SoC (Figure 5.11) consumed for similar speed and 

distance profiles. 

 

It should be noted that the error levels obtained (below 5 %) are in line with what is 

considered acceptable in the specialised literature. In fact, works such as [43] or [44] 

establish margins of 5-10 % as a reasonable threshold for the validation of electric 

vehicle models under real conditions. In this context, the observed discrepancies do not 

compromise the overall validity of the model and can be justified by the aforementioned 

factors: drivetrain simplifications, external conditions not modelled, and 

instrumentation limitations. 

 

 

Figure 5.11: Simulated vs Data State of Charge. 
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On the other hand, the observed behaviour of the battery current and the simulated 

torque profile (Figure 5.12) , shows a good qualitative agreement with the real data. The 

point differences in the peaks can be explained by the idealised character of the driving 

controller employed, which does not fully replicate the decisions or smooth transitions 

of a human driver. 

 

 

Figure 5.12: Simulated vs Data Torque. 

 

In summary, these observations reinforce the validity of the model developed to 

simulate the energy behaviour of an electric vehicle in real conditions, while 

recognising its current limits and areas of improvement for future iterations. Figure 5.13 

shows the main results of the experiment. 

 

 

Figure 5.13: TripA01 Simulation Results. 
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5.6 Conclusions 
 

The results obtained demonstrate that the models presented in this library, in spite of 

their simplicity, are capable of producing realistic results in dynamic and realistic 

environments.The observed deviations can be attributed to simplifications adopted in 

the modeling (e.g., absence of thermal modeling, idealized mechanical loads or ignored 

nonlinear saturations). Nevertheless, the overall results support the consistency of the 

approach followed and its usefulness as a modular, reproducible and extensible 

simulation platform. 

Overall, the results provide support for the use of the library as a preliminary analysis 

tool in the design and evaluation of electric powertrains and set the basis for future 

extensions to increase its fidelity without compromising its operational efficiency. 

 

Chapter 6 will then discuss how these results fit into the complete EPowertrain library 

project. As well as possible points of improvement. 
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6 Conclusions and Future Work 
 

6.1 Conclusions 
 

The completion of this project resulted in several important technical achievements, 

among which the following stand out: 

 

• Development of a modular library in Modelica: A reusable and open 

architecture library was implemented in Modelica, capable of simulating the 

energetic behaviour of a complete electric powertrain for a passenger vehicle. 

 

• Configurable models of each subsystem: The library integrates parametrizable 

models of the main components of the electric vehicle (lithium-ion battery, DC 

electric motor, power converter, control blocks and sensors), allowing the 

simulation to be easily adapted to different configurations and scenarios. 

 

• Validation with real data: The performance of the complete model was 

validated by comparing the simulations with data from the standard UDDS 

urban driving cycle and with experimental data from a BMW i3. The results 

showed a good correlation between simulation and actual behaviour, 

demonstrating the accuracy and reliability of the developed models. 

 

Overall, these achievements confirm that the objectives set for the thesis have been 

satisfactorily met. In addition to the technical aspects, the usefulness of the developed 

library is significant in both the educational and research fields.  

 

In the educational context, this tool allows students and professionals to interactively 

explore the operation of an electric vehicle, examining how its different components 

interact in a safe simulation environment. The modular and transparent structure of the 

models facilitates learning, as it is possible to isolate subsystems (e.g. the battery or the 

motor) to study their individual behaviour and then understand their integration into the 

entire system. Also, the use of Modelica as an object-oriented, equation-based Modeling 

language provides a clear framework for assimilating concepts of physical Modeling 

and control of real systems. 

 

From an academic perspective, the development process of this project has also entailed 

important methodological lessons. The adoption of an acausal Modeling approach, 

specific to the Modelica language, represented a relevant conceptual change with 

respect to traditional simulation tools based on causal models. This experience allowed 

us to appreciate the advantages of describing the system by means of declarative 

equations, without the need to predefine the direction of causation between variables, 

which results in greater flexibility and reusability of the models while maintaining the 

physical clarity of the internal relationships.  

 

In addition, Modelica's object-oriented syntax facilitated the hierarchical organisation of 

the library and the encapsulation of components, reinforcing good practice in the design 

of complex models. Moreover, the multi-domain character of the approach (integrating 
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electrical, mechanical and control subsystems) provided a global view of the system and 

allowed simulating phenomena of different physical nature concurrently. 

 

The latter was crucial for understanding the interdependencies in the powertrain: for 

example, how control decisions affect the current demand of the battery, or how battery 

limitations influence the torque delivery of the motor. In summary, the development of 

the library not only achieved the intended technical objectives but also provided a 

valuable training exercise in Modeling and simulation techniques for complex systems.  

 

All these results and learnings demonstrate the value of the project both for systems 

engineering education and for the advancement of electric vehicle Modeling, 

providing the community with an effective tool and benchmark experience in the field 

of electric powertrain Modeling. 

 

6.2 Future Work 
 

The current work provided the basis for a modular and reusable library for electric 

powertrain simulation in Modelica. While the current implementation captures the main 

electromechanical dynamics and offers acceptable accuracy under real driving 

conditions, several lines of future development can be identified to extend its scope and 

fidelity: 

 

• Thermal domain integration: one of the main simplifications of the current 

model is the absence of thermal Modeling. Including thermal sub-models for 

both the battery and the electrical machine would allow more accurate 

estimation of performance degradation under high load conditions, as well as the 

study of thermal protection strategies and thermal management systems (TMS). 

This is particularly relevant in contexts where phenomena such as regenerative 

braking or the use of auxiliary loads play a role, as reflected in the actual data 

used. 

 

• Advanced battery Modeling: The current battery model is based on an 

equivalent lumped electrical circuit. Future extensions could incorporate 

electrochemistry-based models (e.g. Single Particle Model or Doyle-Fuller-

Newman) or hybrid approaches to represent ageing phenomena, lithium 

deposition or temperature-dependent internal resistance. This would be 

particularly useful for long-term energy management studies. 

 

• System control improvements: An ideal driver and a simplified voltage 

converter have been implemented in this version to reduce the computational 

burden. Including more realistic control logic - such as pedal mapping, 

regenerative braking thresholds or converter switching - would allow the impact 

of control strategies on energy consumption to be simulated more closely. 

 

• Inclusion of auxiliary systems: The current model does not consider air 

conditioning systems and other auxiliary consumption, which in practice can 

represent a significant fraction of energy demand. Incorporating these elements 

would allow a more complete view of the vehicle's energy flow under varying 

conditions of environment and use. 
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• Extension to other vehicle architectures: The modular structure of the library 

facilitates its extension to hybrid (HEV), plug-in hybrid (PHEV) or fuel cell 

electric vehicles (FCEV). A future line of work could focus on the development 

of new components to simulate these architectures and compare their 

performance under equivalent driving cycles. 

 

• System-level optimisation and HIL compatibility: Once validated, the library 

can serve as a basis for evaluating energy management strategies, component 

sizing or real-time optimisation. Its integration with hardware-in-the-loop (HIL) 

platforms would also enable rapid prototyping of controllers and embedded 

software. 

 

• Robust parameter identification: Finally, the integration of data-driven tools 

for automatic parameter estimation from experimental records - especially for 

components such as the motor or battery - would help improve model accuracy 

and reduce the need for manual adjustments during validation. 

 

These future lines of work would allow consolidating the proposed library as a flexible 

and robust tool for the analysis, design and optimisation of electric vehicles, 

contributing to the progress towards a more sustainable mobility. 
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Appendix A - The EPowertrain 

Modelica Library 
 

The EPowertrain library has been developed at Modelica with the aim of offering a 

modular and flexible solution for the energy simulation of electric vehicles. Although it 

is contained in a single main package, its internal structure is organised in functional 

groups that group components with common purposes within the system architecture. 

This organisation favours reusability facilitates maintenance and improves the overall 

understanding of the model by the user or developer. The main functional groups 

included in the library are briefly described below: 

 

• Interfaces: Includes models ports and connectors which allow coupling between 

electrical, mechanical and control components. Based on conservation of effort 

and flow, they are fundamental to maintain physical coherence in the system. 

 

• SignalRouting: This package contains auxiliary components for the manipula-

tion and distribution of internal signals within the model. It includes selectors, 

switches and conditional routing blocks that allow the implementation of dis-

crete or decision logic. 

 

• Sources: Gathers input signal sources such as speed, torque, voltage or current 

generators, used as stimuli to simulate specific operating conditions or standard-

ised driving profiles. 

 

• Electrical: Models such as Resistance, Capacitor, IdealCoil, Diode, NMOS, 

PMOS, IGBT, IdealISwitch. They represent basic elements of power electronics. 

This package also encompasses conversion components, such as DC-DC as well 

as electric machines for converting energy between electrical and mechanical 

domains. 

 

• Sensors: Includes models such as CurrentSensor, VoltageSensor, or AxialSpeed. 

They are designed to measure key system variables without interfering with 

dynamic behaviour. 

 

• Mechanical: Comprises models like RotLoad, Wheel, BodyFrame1DOF, or 

TerrainSlope which simulate the interaction between the powertrain and the ve-

hicle’s mechanical load, including terrain effects. 

 

• Control: Includes components such as PID, PI, which allow the implementation 

and tuning of closed-loop control strategies for regulating power, speed, or other 

key variables. 

 

• Examples: It contains complete configurations of electric vehicles under differ-

ent operating conditions, integrating the above components to validate the li-
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brary. These models allow driving cycles to be reproduced, energy consumption 

to be studied and control strategies to be compared. 

 

The following sections present the most representative source code for each of these 

modules, with the original formatting and indentation preserved for readability and 

interpretation. 

 

 

A1. Interfaces 
 

 
  package Interfaces 
    connector PosPin 
      Modelica.Units.SI.Voltage v; 
      flow Modelica.Units.SI.Current i; 
      annotation (Icon(graphics={ 
            Rectangle( 
              extent={{-100,100},{100,-100}}, 
              lineColor={0,0,255}, 
              fillColor={0,0,255}, 
              fillPattern=FillPattern.Solid), 
            Text( 
              extent={{-98,-52},{100,-100}}, 
              textColor={255,255,255}, 
              textString=""), 
            Rectangle( 
              extent={{10,-60},{-10,60}}, 
              lineColor={28,108,200}, 
              fillColor={255,255,255}, 
              fillPattern=FillPattern.Solid, 
              pattern=LinePattern.None), 
            Rectangle( 
              extent={{-60,10},{60,-10}}, 
              lineColor={28,108,200}, 
              fillColor={255,255,255}, 
              fillPattern=FillPattern.Solid, 
              pattern=LinePattern.None)})); 
    end PosPin; 
 

    connector NegPin 
      Modelica.Units.SI.Voltage v; 
      flow Modelica.Units.SI.Current i; 
      annotation (Icon(graphics={Rectangle( 
              extent={{-100,100},{100,-100}}, 
              lineColor={0,0,255}, 
              fillColor={255,255,255}, 
              fillPattern=FillPattern.Solid), Rectangle( 
              extent={{-60,10},{60,-10}}, 
              lineColor={28,108,200}, 
              fillColor={0,0,0}, 
              fillPattern=FillPattern.Solid, 
              pattern=LinePattern.None)})); 
    end NegPin; 
 

    partial model ElectricPort 
 

      SI.Voltage v "Voltage between pines (= p.u - n.u)"; 
      flow SI.Current i "Current from pin p to pin n"; 
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    public  
      PosPin p annotation (Placement(transformation(extent={ 
                {-110,-10},{-90,10}}, rotation=0), 
            iconTransformation(extent={{-110,-10},{-90,10}}))); 
      NegPin n annotation (Placement(transformation(extent={ 
                {70,-10},{90,10}}, rotation=0), 
            iconTransformation(extent={{70,-10},{90,10}}))); 
    equation  
      v = p.v - n.v; 
      0 = p.i + n.i; 
      i = p.i; 
 

      annotation (Diagram(coordinateSystem(extent={{-100,-100}, 
                {100,100}})), Icon(coordinateSystem(extent={ 
                {-100,-100},{80,100}}))); 
    end ElectricPort; 
 

    connector MechanicalAxis  
      "Mechanical axis coupling" 
      SI.Angle Phi; 
      flow SI.Torque T; 
      annotation (Icon(graphics={Rectangle( 
              extent={{-100,100},{100,-100}}, 
              lineColor={0,0,255}, 
              fillColor={215,215,215}, 
              fillPattern=FillPattern.Solid), Text( 
              extent={{-98,-52},{100,-100}}, 
              textColor={255,255,255}, 
              textString="%name")})); 
    end MechanicalAxis; 
 

    connector IO_Port = Real annotation (Icon(graphics={ 
            Rectangle( 
                extent={{-100,100},{100,-100}}, 
                lineColor={0,0,0}, 
                fillColor={0,255,0}, 
                fillPattern=FillPattern.Solid),Text( 
                extent={{-44,138},{40,88}}, 
                textColor={0,0,0}, 
                textString="%name"),Polygon( 
                points={{0,100},{100,0},{0,-100},{0,100}}, 
                lineColor={0,0,255}, 
                fillColor={0,0,0}, 
                fillPattern=FillPattern.Solid),Polygon( 
                points={{0,100},{-100,0},{0,-100},{0,100}}, 
                lineColor={0,0,255})})); 
    connector BoolOutPort = output Boolean annotation (Icon( 
          graphics={ 
          Rectangle( 
            extent={{-100,100},{100,-100}}, 
            lineColor={0,0,0}, 
            fillColor={28,108,200}, 
            fillPattern=FillPattern.Solid), 
          Text( 
            extent={{-44,138},{40,88}}, 
            textColor={0,0,0}, 
            textString="%name"), 
          Polygon( 
            points={{0,100},{100,0},{0,-100},{0,100}}, 
            lineColor={0,0,255}, 
            fillColor={0,0,0}, 
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            fillPattern=FillPattern.Solid)})); 
    connector BoolInPort = input Boolean annotation (Icon( 
          graphics={Rectangle( 
                extent={{-100,100},{100,-100}}, 
                lineColor={0,0,0}, 
                fillColor={28,108,200}, 
                fillPattern=FillPattern.Solid),Text( 
                extent={{-44,138},{40,88}}, 
                textColor={0,0,0}, 
                textString="%name"),Polygon( 
                points={{-100,100},{0,0},{-100,-100},{-100,100}}, 
                lineColor={0,0,255}, 
                fillColor={0,0,0}, 
                fillPattern=FillPattern.Solid)})); 
    connector OutPort = output Real annotation (Icon( 
          graphics={ 
          Rectangle( 
            extent={{-100,100},{100,-100}}, 
            lineColor={0,0,0}, 
            fillColor={0,255,0}, 
            fillPattern=FillPattern.Solid), 
          Text( 
            extent={{-44,138},{40,88}}, 
            textColor={0,0,0}, 
            textString="%name"), 
          Polygon( 
            points={{0,100},{100,0},{0,-100},{0,100}}, 
            lineColor={0,0,255}, 
            fillColor={0,0,0}, 
            fillPattern=FillPattern.Solid)})); 
    connector InPort = input Real annotation (Icon(graphics 
          ={Rectangle( 
            extent={{-100,100},{100,-100}}, 
            lineColor={0,0,0}, 
            fillColor={0,255,0}, 
            fillPattern=FillPattern.Solid), Polygon( 
            points={{-100,100},{0,0},{-100,-100},{-100,100}}, 
            lineColor={0,0,255}, 
            fillColor={0,0,0}, 
            fillPattern=FillPattern.Solid)})); 
    partial model ThreePins 
 

      EPowertrain.Interfaces.PosPin d "drain" annotation ( 
          Placement(transformation(extent={{-10,110},{10,90}}, 
              rotation=0))); 
      EPowertrain.Interfaces.PosPin g "gate" annotation ( 
          Placement(transformation(extent={{-110,-10},{-90,10}}, 
              rotation=0))); 
      EPowertrain.Interfaces.PosPin s "source" annotation ( 
          Placement(transformation(extent={{-10,-110},{10,-90}}, 
              rotation=0))); 
 

      annotation (Icon(graphics={Line( 
                  points={{0,90},{0,40}}, 
                  color={0,0,0}, 
                  thickness=1),Line( 
                  points={{0,40},{-20,40}}, 
                  color={0,0,0}, 
                  thickness=1),Line( 
                  points={{-20,40},{-20,-40}}, 
                  color={0,0,0}, 
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                  thickness=1),Line( 
                  points={{-20,-40},{0,-40}}, 
                  color={0,0,0}, 
                  thickness=1),Line( 
                  points={{0,-40},{0,-90}}, 
                  color={0,0,0}, 
                  thickness=1),Line( 
                  points={{-30,40},{-30,-40}}, 
                  color={0,0,0}, 
                  thickness=1),Line( 
                  points={{-90,0},{-46,0}}, 
                  color={0,0,0}, 
                  thickness=1)})); 
    end ThreePins; 
 

    model Voltage_to_Control 
      PosPin posPin annotation (Placement(transformation( 
              extent={{-120,-80},{-60,80}}, rotation=0))); 
      OutPort outPort annotation (Placement(transformation( 
              extent={{60,-80},{120,80}}, rotation=0))); 
    equation  
      posPin.i = 0; 
      posPin.v = outPort; 
      annotation ( 
        Diagram(graphics), 
        Icon(graphics={Line( 
                  points={{-90,0},{90,0}}, 
                  color={0,0,0}, 
                  thickness=0.5),Rectangle( 
                  extent={{-100,100},{100,-100}}, 
                  lineColor={0,0,0}, 
                  lineThickness=0.5)}), 
        DymolaStoredErrors); 
    end Voltage_to_Control; 
 

    model Space3Phasor 
 

      parameter Integer n=3 "Number of phases"; 
      constant Real pi=Modelica.Constants.pi; 
 

      // Clark tranformation matrix 
      Real T[2,n]=2/n*{{cos(k)/n*2*pi for k in 0:n - 1},{ 
          sin(k)/n*2*pi for k in 0:n - 1}}; 
 

      // Clark Inverse tranformation matrix 
      Real InvT[n,2]={{cos(-k)/n*2*pi,-sin(-k)/n*2*pi} for  
          k in 0:n - 1}; 
 

      Modelica.Units.SI.Voltage V[n]  
        "instantaneous phase voltages"; 
      Modelica.Units.SI.Current I[n]  
        "instantaneous phase currents"; 
 

      PosPin Vin[n] annotation (Placement(transformation( 
              extent={{-110,-8},{-90,12}}, rotation=0))); 
      PosPin Vout[2] annotation (Placement(transformation( 
              extent={{90,50},{110,70}}, rotation=0))); 
      NegPin Zero annotation (Placement(transformation( 
              extent={{90,-50},{110,-30}}, rotation=0))); 
    equation  
      V[:] = Vin[:].v; 
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      I[:] = Vin[:].i; 
      Vout.v = T*V; 
      Vout.i = -T*I; 
      Zero.v = sum(V)/n; 
      Zero.i = sum(I)/n; 
      annotation (Diagram(graphics), Icon(graphics={ 
              Rectangle( 
                  extent={{-100,100},{100,-100}}, 
                  lineColor={0,0,0}),Line( 
                  points={{-60,-40},{-60,78},{-60,80}}, 
                  color={0,0,0}),Line( 
                  points={{-60,-40},{60,-40}}, 
                  color={0,0,0}),Polygon( 
                  points={{-60,80},{-50,80},{-60,92},{-70,80}, 
                {-60,80}}, 
                  lineColor={0,0,0}),Polygon( 
                  points={{60,-48},{70,-40},{60,-32},{60,-40}, 
                {60,-48}}, 
                  lineColor={0,0,0}),Line( 
                  points={{-60,-40},{60,-80}}, 
                  color={0,0,0}, 
                  thickness=0.5),Line( 
                  points={{-60,-40},{-20,80}}, 
                  color={0,0,0}, 
                  thickness=0.5),Polygon( 
                  points={{-24,78},{-18,76},{-20,80},{-24,78}}, 
                  lineColor={0,0,0}, 
                  lineThickness=0.5, 
                  fillColor={0,0,0}, 
                  fillPattern=FillPattern.Solid),Polygon( 
                  points={{54,-82},{60,-80},{56,-76},{54,-82}}, 
                  lineColor={0,0,0}, 
                  lineThickness=0.5, 
                  fillColor={0,0,0}, 
                  fillPattern=FillPattern.Solid)})); 
 

 

    end Space3Phasor; 
 

  end Interfaces; 

 

 

A2. SignalRouting 
 
package SignalRouting 
    model Not 
 

      Interfaces.BoolInPort In annotation (Placement( 
            transformation(extent={{-110,-10},{-90,10}}, 
              rotation=0))); 
      Interfaces.BoolOutPort Out annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
    equation  
      Out = not (In); 
      annotation (Icon(graphics={Line( 
                  points={{-90,0},{-40,0},{-40,40},{20,0},{-40, 
                -40},{-40,0}}, 
                  color={0,0,0}, 
                  thickness=0.5),Ellipse( 
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                  extent={{20,6},{32,-6}}, 
                  lineColor={0,0,0}, 
                  lineThickness=0.5, 
                  fillColor={0,0,0}, 
                  fillPattern=FillPattern.Solid),Line( 
                  points={{32,0},{90,0},{78,0}}, 
                  color={0,0,0}, 
                  thickness=0.5)}), Diagram(graphics)); 
    end Not; 
 

    model Terminator 
 

      Interfaces.InPort inPort annotation (Placement( 
            transformation(extent={{-112,-10},{-92,10}}, 
              rotation=0))); 
      annotation (Icon(graphics={Line( 
                  points={{-92,0},{20,0}}, 
                  color={0,0,0}, 
                  thickness=0.5),Line( 
                  points={{20,80},{20,-80},{-20,-80}}, 
                  color={0,0,0}, 
                  thickness=0.5),Line( 
                  points={{-20,80},{20,80}}, 
                  color={0,0,0}, 
                  thickness=0.5)}), Diagram(graphics)); 
    end Terminator; 
 

    model unitDelay 
      Interfaces.InPort inPort annotation (Placement( 
            transformation(extent={{-110,-10},{-90,10}}, 
              rotation=0))); 
      Interfaces.OutPort outPort annotation (Placement( 
            transformation(extent={{90,-12},{110,8}}, 
              rotation=0))); 
    initial equation  
      outPort = 0; 
    equation  
      when time > 0 then 
        outPort = pre(inPort); 
      end when; 
      annotation (Icon(graphics={Text( 
                  extent={{20,60},{60,20}}, 
                  textColor={0,0,0}, 
                  textString="-1"),Text( 
                  extent={{-40,40},{40,-40}}, 
                  textColor={0,0,0}, 
                  textString="Z")})); 
 

    end unitDelay; 
 

    model Saturation 
 

      Interfaces.InPort In annotation (Placement( 
            transformation(extent={{-110,-10},{-90,10}}, 
              rotation=0))); 
      Interfaces.OutPort Out annotation (Placement( 
            transformation(extent={{90,-12},{110,8}}, 
              rotation=0))); 
      parameter Real Max=1e6; 
      parameter Real Min=-1e-6; 
    equation  
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      Out = min(Max, max(Min, In)); 
      annotation (Icon(graphics={Line( 
                  points={{-80,80},{80,80}}, 
                  color={0,0,255}),Line( 
                  points={{-80,-80},{80,-80},{80,-80}}, 
                  color={0,0,255}),Line( 
                  points={{-80,-80},{-74,-80},{-60,-80},{-20, 
                80},{14,80},{40,-76},{40,-80},{60,-80},{76,-6}}, 
                  color={0,0,0}, 
                  thickness=0.5)}), Diagram(graphics)); 
 

    end Saturation; 
 

    model AND 
      Interfaces.BoolInPort IN_1 annotation (Placement( 
            transformation(extent={{-110,50},{-90,70}}), 
            iconTransformation(extent={{-110,50},{-90,70}}))); 
      Interfaces.BoolInPort IN_2 annotation (Placement( 
            transformation(extent={{-110,50},{-90,70}}), 
            iconTransformation(extent={{-110,-70},{-90,-50}}))); 
      Interfaces.BoolOutPort Out annotation (Placement( 
            transformation(extent={{88,-10},{108,10}}), 
            iconTransformation(extent={{88,-10},{108,10}}))); 
    equation  
      Out = if (IN_1 and IN_2) then true else false; 
      annotation (Icon(coordinateSystem(preserveAspectRatio 
              =false), graphics={Rectangle( 
                  extent={{-100,100},{100,-100}}, 
                  lineColor={0,0,0}, 
                  fillColor={255,255,255}, 
                  fillPattern=FillPattern.Solid),Text( 
                  extent={{-98,56},{100,-142}}, 
                  textColor={0,0,0}, 
                  textString="AND 
")}), Diagram(coordinateSystem(preserveAspectRatio=false))); 
 

    end AND; 
 

    package Mux "Multiplexers" 
      model Mux_3_in 
 

        Interfaces.InPort In3 annotation (Placement( 
              transformation(extent={{-110,-70},{-90,-50}}, 
                rotation=0))); 
        Interfaces.InPort In2 annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        Interfaces.InPort In1 annotation (Placement( 
              transformation(extent={{-110,50},{-90,70}}, 
                rotation=0))); 
        Interfaces.OutPort out[3] annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}, 
                rotation=0))); 
      equation  
        out[1] = In1; 
        out[2] = In2; 
        out[3] = In3; 
        annotation (Icon(graphics={Line( 
                      points={{-90,60},{0,60},{0,0},{90,0}}, 
                      color={0,0,255}),Line( 
                      points={{-90,0},{0,0}}, 
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                      color={0,0,255}),Line( 
                      points={{-90,-60},{0,-60},{0,0}}, 
                      color={0,0,255})})); 
 

      end Mux_3_in; 
 

      model Mux_2_in 
 

        Interfaces.InPort In2 annotation (Placement( 
              transformation(extent={{-110,-70},{-90,-50}}, 
                rotation=0))); 
        Interfaces.InPort In1 annotation (Placement( 
              transformation(extent={{-110,50},{-90,70}}, 
                rotation=0))); 
        Interfaces.OutPort out[2] annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}, 
                rotation=0))); 
      equation  
        out[1] = In1; 
        out[2] = In2; 
        annotation (Icon(graphics={Line( 
                      points={{-90,60},{0,60},{0,0},{90,0}}, 
                      color={0,0,255}),Line( 
                      points={{-90,-60},{0,-60},{0,0}}, 
                      color={0,0,255}),Text( 
                      extent={{-40,58},{-80,98}}, 
                      textColor={0,0,255}, 
                      textString="1"),Text( 
                      extent={{-40,-62},{-80,-22}}, 
                      textColor={0,0,255}, 
                      textString="2")}), Diagram(graphics)); 
 

      end Mux_2_in; 
 

      model Mux_2_in_Bool 
 

        Interfaces.BoolInPort In2 annotation (Placement( 
              transformation(extent={{-110,-70},{-90,-50}}, 
                rotation=0))); 
        Interfaces.BoolInPort In1 annotation (Placement( 
              transformation(extent={{-110,50},{-90,70}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out[2] annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}, 
                rotation=0))); 
      equation  
        out[1] = In1; 
        out[2] = In2; 
        annotation (Icon(graphics={Line( 
                      points={{-90,60},{0,60},{0,0},{90,0}}, 
                      color={0,0,255}),Line( 
                      points={{-90,-60},{0,-60},{0,0}}, 
                      color={0,0,255}),Text( 
                      extent={{-40,58},{-80,98}}, 
                      textColor={0,0,255}, 
                      textString="1"),Text( 
                      extent={{-40,-62},{-80,-22}}, 
                      textColor={0,0,255}, 
                      textString="2")}), Diagram(graphics)); 
 

      end Mux_2_in_Bool; 
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      model ThreePhase_to_Bus 
 

        Interfaces.NegPin In3 annotation (Placement( 
              transformation(extent={{-110,-70},{-90,-50}}, 
                rotation=0))); 
        Interfaces.NegPin In2 annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        Interfaces.NegPin In1 annotation (Placement( 
              transformation(extent={{-110,50},{-90,70}}, 
                rotation=0))); 
        Interfaces.PosPin out[3] annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}, 
                rotation=0))); 
      equation  
        out[1] = In1; 
        out[2] = In2; 
        out[3] = In3; 
        annotation (Icon(graphics={Line( 
                      points={{-90,60},{0,60},{0,0},{90,0}}, 
                      color={0,0,255}),Line( 
                      points={{-90,0},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{-90,-60},{0,-60},{0,0}}, 
                      color={0,0,255})}), Diagram(graphics)); 
 

      end ThreePhase_to_Bus; 
 

      model Bus_to_ThreePhase 
 

        Interfaces.PosPin out3 annotation (Placement( 
              transformation(extent={{90,-70},{110,-50}}, 
                rotation=0))); 
        Interfaces.PosPin out1 annotation (Placement( 
              transformation(extent={{90,50},{110,70}}, 
                rotation=0))); 
        Interfaces.PosPin out2 annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}, 
                rotation=0))); 
        Interfaces.NegPin In[3] annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
      equation  
        In[1] = out1; 
        In[2] = out2; 
        In[3] = out3; 
        annotation (Icon(graphics={Line( 
                      points={{-90,0},{86,0},{90,0}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,60},{90,60}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,-60}}, 
                      color={0,0,255}),Line( 
                      points={{0,-60},{90,-60}}, 
                      color={0,0,255})}), Diagram(graphics)); 
 

      end Bus_to_ThreePhase; 
 

      model Demux_2 
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        Interfaces.InPort In[2] annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        Interfaces.OutPort out1 annotation (Placement( 
              transformation(extent={{90,50},{110,70}}, 
                rotation=0))); 
        Interfaces.OutPort out2 annotation (Placement( 
              transformation(extent={{90,-70},{110,-50}}, 
                rotation=0))); 
      equation  
        In[1] = out1; 
        In[2] = out2; 
        annotation (Icon(graphics={Line( 
                      points={{-90,0},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{90,-60},{0,-60},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,60},{90,60}}, 
                      color={0,0,255}),Text( 
                      extent={{78,98},{40,60}}, 
                      textColor={0,0,255}, 
                      textString="1"),Text( 
                      extent={{80,-20},{42,-58}}, 
                      textColor={0,0,255}, 
                      textString="2")}), Diagram(graphics)); 
 

      end Demux_2; 
 

      model Demux_2_Bool 
 

        Interfaces.BoolInPort In[2] annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out1 annotation (Placement( 
              transformation(extent={{90,50},{110,70}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out2 annotation (Placement( 
              transformation(extent={{90,-70},{110,-50}}, 
                rotation=0))); 
      equation  
        In[1] = out1; 
        In[2] = out2; 
        annotation (Icon(graphics={Line( 
                      points={{-90,0},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{90,-60},{0,-60},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,60},{90,60}}, 
                      color={0,0,255}),Text( 
                      extent={{78,98},{40,60}}, 
                      textColor={0,0,255}, 
                      textString="1"),Text( 
                      extent={{80,-20},{42,-58}}, 
                      textColor={0,0,255}, 
                      textString="2")}), Diagram(graphics)); 
 

      end Demux_2_Bool; 
 

      model Demux_3 
 

        Interfaces.InPort In[3] annotation (Placement( 
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              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        Interfaces.OutPort out1 annotation (Placement( 
              transformation(extent={{90,50},{110,70}}, 
                rotation=0))); 
        Interfaces.OutPort out3 annotation (Placement( 
              transformation(extent={{90,-70},{110,-50}}, 
                rotation=0))); 
        Interfaces.OutPort out2 annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}, 
                rotation=0))); 
      equation  
        In[1] = out1; 
        In[2] = out2; 
        In[3] = out3; 
        annotation (Icon(graphics={Line( 
                      points={{90,60},{0,60},{0,0},{90,0}}, 
                      color={0,0,255}),Line( 
                      points={{-90,0},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{90,-60},{0,-60},{0,0}}, 
                      color={0,0,255}),Text( 
                      extent={{40,100},{80,60}}, 
                      textColor={0,0,0}, 
                      textString="1"),Text( 
                      extent={{40,40},{80,0}}, 
                      textColor={0,0,0}, 
                      textString="2"),Text( 
                      extent={{40,-20},{80,-60}}, 
                      textColor={0,0,0}, 
                      textString="3")}), Diagram(graphics)); 
 

      end Demux_3; 
 

      model Demux_6 
 

        Interfaces.InPort In[6] annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        Interfaces.OutPort out1 annotation (Placement( 
              transformation(extent={{90,90},{110,110}}, 
                rotation=0))); 
        Interfaces.OutPort out3 annotation (Placement( 
              transformation(extent={{90,10},{110,30}}, 
                rotation=0))); 
        Interfaces.OutPort out2 annotation (Placement( 
              transformation(extent={{90,50},{110,70}}, 
                rotation=0))); 
        Interfaces.OutPort out4 annotation (Placement( 
              transformation(extent={{90,-30},{110,-10}}, 
                rotation=0))); 
        Interfaces.OutPort out5 annotation (Placement( 
              transformation(extent={{90,-70},{110,-50}}, 
                rotation=0))); 
        Interfaces.OutPort out6 annotation (Placement( 
              transformation(extent={{90,-110},{110,-90}}, 
                rotation=0))); 
      equation  
        In = {out1,out2,out3,out4,out5,out6}; 
        annotation (Icon(coordinateSystem( 
              preserveAspectRatio=false, 
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              preserveOrientation=false, 
              extent={{-100,-120},{100,120}}, 
              initialScale=0.1), graphics={Line( 
                      points={{90,60},{0,60},{0,20},{90,20}}, 
                      color={0,0,255}),Line( 
                      points={{-90,0},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{90,-60},{0,-60},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,100},{90,100}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,-20},{90,-20}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,-2},{0,-100},{92,-100}}, 
                      color={0,0,255})}), Diagram( 
              coordinateSystem( 
              preserveAspectRatio=false, 
              preserveOrientation=false, 
              extent={{-100,-120},{100,120}}, 
              initialScale=0.1), graphics)); 
 

      end Demux_6; 
 

      model BoolDemux_6 
 

        Interfaces.BoolInPort In[6] annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out1 annotation (Placement( 
              transformation(extent={{90,90},{110,110}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out3 annotation (Placement( 
              transformation(extent={{90,10},{110,30}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out2 annotation (Placement( 
              transformation(extent={{90,50},{110,70}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out4 annotation (Placement( 
              transformation(extent={{90,-30},{110,-10}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out5 annotation (Placement( 
              transformation(extent={{90,-70},{110,-50}}, 
                rotation=0))); 
        Interfaces.BoolOutPort out6 annotation (Placement( 
              transformation(extent={{90,-110},{110,-90}}, 
                rotation=0))); 
      equation  
        In = {out1,out2,out3,out4,out5,out6}; 
        annotation (Icon(coordinateSystem( 
              preserveAspectRatio=false, 
              preserveOrientation=false, 
              extent={{-100,-120},{100,120}}, 
              initialScale=0.1), graphics={Line( 
                      points={{90,60},{0,60},{0,20},{90,20}}, 
                      color={0,0,255}),Line( 
                      points={{-90,0},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{90,-60},{0,-60},{0,0}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,100},{90,100}}, 
                      color={0,0,255}),Line( 
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                      points={{0,0},{0,-20},{90,-20}}, 
                      color={0,0,255}),Line( 
                      points={{0,0},{0,-2},{0,-100},{92,-100}}, 
                      color={0,0,255})}), Diagram( 
              coordinateSystem( 
              preserveAspectRatio=false, 
              preserveOrientation=false, 
              extent={{-100,-120},{100,120}}, 
              initialScale=0.1), graphics)); 
 

      end BoolDemux_6; 
    end Mux; 
 

    model Multiply 
      Interfaces.OutPort Out annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}))); 
      Interfaces.InPort In1 annotation (Placement( 
            transformation(extent={{-110,30},{-90,50}}))); 
      Interfaces.InPort In2 annotation (Placement( 
            transformation(extent={{-110,-52},{-90,-32}}))); 
    equation  
      Out = In1*In2; 
      annotation (Icon(coordinateSystem(preserveAspectRatio 
              =false), graphics={Text( 
                  extent={{-80,60},{-20,20}}, 
                  textColor={0,0,0}, 
                  textStyle={TextStyle.Bold}, 
                  textString="X"),Text( 
                  extent={{-80,-20},{-20,-60}}, 
                  textColor={0,0,0}, 
                  textStyle={TextStyle.Bold}, 
                  textString="X"),Text( 
                  extent={{98,30},{38,-30}}, 
                  textColor={0,0,0}, 
                  textString=">"),Rectangle( 
                  extent={{-100,100},{98,-100}}, 
                  lineColor={0,0,0}, 
                  lineThickness=0.5)}), Diagram( 
            coordinateSystem(preserveAspectRatio=false))); 
 

    end Multiply; 
  end SignalRouting; 

 

 

A3. Sources 
 
package Sources 
    import Modelica; 
    model Ramp "Step DC voltage source" 
 

      output Interfaces.OutPort Out annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
 

 

      parameter Modelica.Units.SI.Time St=1; 
      parameter Real Slope(min=0); 
      parameter Real InitV=0; 
      parameter Real FinalV=1; 
 



Appendix A - The EPowertrain Modelica Library 

102 

 

 

    initial equation  
 

      Out = InitV; 
 

    equation  
 

      if time >= St then 
        if (InitV <= FinalV and Out <= FinalV) then 
          der(Out) = Slope; 
        elseif (InitV > FinalV and Out >= FinalV) then 
          der(Out) = -Slope; 
        else 
          der(Out) = 0; 
        end if; 
      else 
        der(Out) = 0; 
      end if; 
 

      annotation (Icon(graphics={Rectangle(extent={{-100,100}, 
                  {100,-100}}, lineColor={0,0,0}), Line( 
              points={{-80,-80},{-20,-80},{20,80},{80,80}}, 
              color={0,0,0}, 
              thickness=1)})); 
    end Ramp; 
 

    model Constant 
 

      parameter Real Value=0; 
      EPowertrain.Interfaces.OutPort Out annotation ( 
          Placement(transformation(extent={{90,-8},{110,12}}, 
              rotation=0))); 
    equation  
      Out = Value; 
      annotation (Icon(graphics={Rectangle( 
              extent={{-100,100},{100,-100}}, 
              lineColor={0,0,0}, 
              fillColor={255,255,255}, 
              fillPattern=FillPattern.Solid), Text( 
              extent={{-76,22},{72,-26}}, 
              textColor={0,0,0}, 
              textString="%Value")})); 
    end Constant; 
 

    model BoolConstant "Boolean constant" 
 

      parameter Boolean Value=false; 
      Interfaces.BoolOutPort Out annotation (Placement( 
            transformation(extent={{90,-8},{110,12}}, 
              rotation=0))); 
    equation  
      Out = Value; 
      annotation (Icon(graphics={Rectangle( 
              extent={{-100,100},{100,-100}}, 
              lineColor={0,0,0}, 
              fillColor={255,255,255}, 
              fillPattern=FillPattern.Solid), Text( 
              extent={{-76,22},{72,-26}}, 
              textColor={0,0,0}, 
              textString="%Value")})); 
    end BoolConstant; 
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    model PWM "PWM voltage signal source" 
 

      parameter Real D( 
        min=0, 
        max=1) = 0.5 "Duty cicle"; 
      parameter Real Max=1 "Maximun value"; 
      parameter Real Min=0 "Minimum value"; 
      parameter SI.Time time_start(min=0) = 0 "start time"; 
      parameter SI.Frequency f=1 "frequency"; 
      SI.Time t(start=0); 
      SI.Time T=1/f; 
      SI.Time TOn=D*T; 
 

      constant Real K=1e5; 
 

      Interfaces.OutPort Out annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
    equation  
 

      der(t) = 1; 
 

      when (t >= T) then 
        reinit(t, 0); 
      end when; 
 

      der(Out) = if (time >= time_start and t <= TOn) then  
        K*(Max - Out) else K*(Min - Out); 
 

      annotation ( 
        Icon(graphics={ 
            Line( 
              points={{-40,80},{-60,80},{-60,80},{-60,80},{-80, 
                  80}}, 
              color={0,0,0}, 
              thickness=0.5), 
            Line( 
              points={{-40,80},{-40,-80},{-20,-80},{0,-80},{ 
                  0,80},{40,80},{40,-80},{80,-80}}, 
              color={0,0,0}, 
              thickness=0.5), 
            Rectangle(extent={{-100,100},{100,-100}}, 
                lineColor={0,0,0})}), 
        DymolaStoredErrors, 
        Diagram(graphics)); 
    end PWM; 
 

    model Sine "AC Voltage source" 
 

      parameter SI.Voltage U0=1 "Amplitude"; 
      parameter SI.Frequency f=50 "Frequency"; 
      parameter SI.Angle phi=0 "Phase shift"; 
 

    protected  
      parameter Modelica.Units.SI.AngularFrequency w=2* 
          Modelica.Constants.pi*f; 
    public  
      Interfaces.OutPort p annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
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    equation  
 

      p = U0*sin(w*time + phi); 
      annotation (Icon(graphics={Bitmap(extent={{-60,60},{60, 
                  -60}}, fileName="../UNED/TFM/f02nW.png")}), 
          Diagram(graphics)); 
    end Sine; 
 

    model Step "Step DC voltage source" 
 

      output Interfaces.OutPort Out annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
      replaceable type T = Real; 
      parameter Modelica.Units.SI.Time St=1; 
      parameter T InitV=0; 
      parameter T FinalV=1; 
 

    equation  
      if time >= St then 
        Out = FinalV; 
      else 
        Out = InitV; 
      end if; 
 

      annotation (Icon(graphics={Rectangle(extent={{-100,100}, 
                  {100,-100}}, lineColor={0,0,0}), Line( 
              points={{-78,-80},{0,-80},{0,80},{82,80}}, 
              color={0,0,0}, 
              thickness=1)})); 
    end Step; 
 

    // Define the enumeration for cycle files 
 

    // Model to select and use the cycle data based on the enum 
 

    model UDDS 
      extends Modelica.Blocks.Sources.TimeTable(table=fill(0.0, 
            0, 2)); 
    initial equation  
 

    end UDDS; 
 

    model BoolStep "Boolean step  source" 
 

      output Interfaces.BoolOutPort Out annotation ( 
          Placement(transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
 

      parameter Modelica.Units.SI.Time St=1; 
      parameter Boolean InitV=false; 
      parameter Boolean FinalV=true; 
 

    equation  
      if time >= St then 
        Out = FinalV; 
      else 
        Out = InitV; 
      end if; 
 

      annotation (Icon(graphics={Rectangle(extent={{-100,100}, 
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                  {100,-100}}, lineColor={0,0,0}), Line( 
              points={{-78,-80},{0,-80},{0,80},{82,80}}, 
              color={0,0,0}, 
              thickness=1)})); 
    end BoolStep; 
 

    model BoolPWM "PWM voltage signal source" 
 

      parameter Real D( 
        min=0, 
        max=1) = 0.5 "Duty cicle"; 
      parameter SI.Time time_start(min=0) = 0 "start time"; 
      parameter SI.Frequency f=1 "frequency"; 
      SI.Time t(start=0); 
      SI.Time T=1/f; 
      SI.Time TOn=D*T; 
 

      Interfaces.BoolOutPort Out annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
    equation  
 

      der(t) = 1; 
 

      Out = (time >= time_start and t <= TOn); 
 

      when (t >= T) then 
        reinit(t, 0); 
      end when; 
      annotation ( 
        Icon(graphics={ 
            Line( 
              points={{-40,80},{-60,80},{-60,80},{-60,80},{-80, 
                  80}}, 
              color={0,0,0}, 
              thickness=0.5), 
            Line( 
              points={{-40,80},{-40,-80},{-20,-80},{0,-80},{ 
                  0,80},{40,80},{40,-80},{80,-80}}, 
              color={0,0,0}, 
              thickness=0.5), 
            Rectangle(extent={{-100,100},{100,-100}}, 
                lineColor={0,0,0})}), 
        DymolaStoredErrors, 
        Diagram(graphics)); 
    end BoolPWM; 
  end Sources; 

 

 

A4. Electrical 
 
package Electrical 
 

    package Sources 
      model AC_Source "AC Voltage source" 
 

        parameter SI.Voltage U0=1 "Amplitude"; 
        parameter SI.Frequency f=50 "Frequency"; 
        parameter SI.Angle phi=0 "Phase shift"; 
        SI.Angle theta; 
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        constant Real pi=Modelica.Constants.pi; 
 

        SI.Voltage v; 
        SI.Current i; 
 

 

      public  
        EPowertrain.Interfaces.PosPin p annotation ( 
            Placement(transformation(extent={{-10,90},{10,110}}, 
                rotation=0))); 
        EPowertrain.Interfaces.NegPin n annotation ( 
            Placement(transformation(extent={{-10,-110},{10, 
                  -90}}, rotation=0))); 
      initial equation  
        theta = phi; 
 

      equation  
        0 = p.i + n.i; 
        i = p.i; 
        v = p.v - n.v; 
 

        when theta >= 2*pi then 
          reinit(theta, 0); 
        end when; 
 

        der(theta) = 2*pi*f; 
 

        v = U0*Modelica.Math.sin(theta); 
        annotation (Icon(graphics={Bitmap( 
                      extent={{-60,60},{60,-60}}, 
                      fileName="../UNED/TFM/f02nW.png"), 
                Line( points={{0,-90},{0,-46}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
                      points={{0,48},{0,90}}, 
                      color={0,0,0}, 
                      thickness=0.5),Text( 
                      extent={{50,10},{136,-12}}, 
                      textColor={0,0,0}, 
                      textString="%name")}), Diagram( 
              graphics)); 
      end AC_Source; 
 

      model DC_Source "DC voltage source" 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter Modelica.Units.SI.Voltage U0=12; 
      equation  
        v = U0; 
        annotation (Icon(graphics={Line( 
                      points={{-90,0},{-36,0},{-10,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{90,0},{10,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-10,40},{-10,-40},{-10,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{10,20},{10,-20}}, 
                      color={0,0,0}, 
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                      thickness=1),Line( 
                      points={{-80,20},{-60,20}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
                      points={{-70,30},{-70,10}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
                      points={{60,20},{80,20}}, 
                      color={0,0,0}, 
                      thickness=0.5)})); 
      end DC_Source; 
 

      model DC_Current_Source  
        "Direct current source" 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter Modelica.Units.SI.Current I0=1; 
      equation  
        i = I0; 
        annotation (Icon(graphics={Ellipse( 
                      extent={{-60,60},{60,-60}}, 
                      lineColor={0,0,0}, 
                      lineThickness=1),Line( 
                      points={{-90,0},{-60,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{60,0},{90,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-40,0},{40,0}}, 
                      color={0,0,0}, 
                      thickness=1),Polygon( 
                      points={{-12,0},{10,10},{10,-12},{-12, 
                  0}},lineColor={0,0,0}, 
                      lineThickness=1, 
                      fillColor={0,0,0}, 
                      fillPattern=FillPattern.Solid), 
                Rectangle( 
                      extent={{-100,100},{100,-100}}, 
                      lineColor={0,0,0})})); 
      end DC_Current_Source; 
 

      model VStep "Step DC voltage source" 
        extends EPowertrain.Interfaces.ElectricPort  
          annotation (Icon(Line(points=[-80,-80; 0,-80; 0,80; 
                  80,80], style( 
                color=0, 
                rgbcolor={0,0,0}, 
                thickness=8)), Rectangle(extent=[-100,100; 100, 
                  -100], style( 
                color=0, 
                rgbcolor={0,0,0}, 
                thickness=4)))); 
 

        Real v_step(start=v0); 
 

        parameter Modelica.Units.SI.Time St=1; 
        parameter Real v0=0; 
        parameter Real vf=1; 
      equation  
        v_step = if time < St then v0 else vf; 
        v = v_step; 
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        annotation (Icon(graphics={Line( 
                      points={{80,80},{0,80},{0,-60},{0,-80}, 
                  {-80,-80}}, 
                      color={0,0,0}, 
                      thickness=1),Rectangle( 
                      extent={{-100,100},{100,-100}}, 
                      lineColor={0,0,0})})); 
      end VStep; 
 

      model Battery "DC voltage source" 
 

        parameter Modelica.Units.NonSI.ElectricCharge_Ah 
          Cap(min=0) = 1 "Battery capacity"; 
 

        parameter Modelica.Units.SI.Voltage Vd=0  
          "Dischargued voltage (SOC = 0)"; 
        parameter Modelica.Units.SI.Voltage Vf=12  
          "Full voltage (SOC = 100)"; 
 

        parameter Real InitSOC( 
          quantity="Percent", 
          final unit="1", 
          final displayUnit="%", 
          min=0, 
          max=100) = 100 "Initial state of charge"; 
 

        Real SOC( 
          quantity="Percent", 
          final unit="1", 
          final displayUnit="%", 
          min=0, 
          max=100); 
 

        parameter SI.Resistance Rs=0.06 "Serie resistance"; 
        parameter SI.Resistance Rp=1e-3  
          "Parallel resistance"; 
        parameter SI.Capacitance C=1e-6  
          "Battery capacitance"; 
        parameter SI.Current Imax=400  
          "Maximum, peak current"; 
 

        SI.Voltage Vout=posPin.v - negPin.v; 
        SI.Current Iout( 
          min=-Imax, 
          max=Imax) = posPin.i; 
 

 

 

        Interfaces.PosPin posPin annotation (Placement( 
              transformation(extent={{-10,90},{10,110}}, 
                rotation=0))); 
        Interfaces.NegPin negPin annotation (Placement( 
              transformation(extent={{-10,-110},{10,-90}}, 
                rotation=0))); 
 

        Basic.Resistance RP(R=Rp) annotation (Placement( 
              transformation( 
              origin={20,10}, 
              extent={{-10,-10},{10,10}}, 
              rotation=270))); 
      public  
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        Basic.Capacitor C1(C=C) annotation (Placement( 
              transformation( 
              origin={-22,10}, 
              extent={{-10,-10},{10,10}}, 
              rotation=270))); 
        Basic.Resistance RS(R=Rs) annotation (Placement( 
              transformation( 
              origin={0,38}, 
              extent={{-10,-10},{10,10}}, 
              rotation=270))); 
      public  
        Var_DC_Source Batt annotation (Placement( 
              transformation( 
              origin={0,-44}, 
              extent={{-10,-10},{10,10}}, 
              rotation=270))); 
        Devices.CurrentSaturation currentSaturation(IMax= 
              Imax, IMin=-Imax) annotation (Placement( 
              transformation( 
              extent={{-10,-10},{10,10}}, 
              rotation=90, 
              origin={0,68}))); 
      initial equation  
        SOC = InitSOC; 
        RS.v = 0; 
        C1.v = 0; 
      equation  
        der(SOC) = Iout/(3600*Cap); 
 

        if SOC > 0 then 
          Batt.v = Vd + (Vf - Vd)*SOC/100; 
        else 
          Batt.i = 0; 
        end if; 
 

 

 

        connect(C1.p, RS.n) annotation (Line(points={{-22,20}, 
                {-22,26},{-14,26},{-14,24},{0,24},{0,28}}, 
              color={0,0,255})); 
        connect(RP.p, RS.n) annotation (Line(points={{20,20}, 
                {20,26},{14,26},{14,24},{0,24},{0,28}}, 
              color={0,0,255})); 
        connect(C1.n, RP.n) annotation (Line(points={{-22,0}, 
                {-22,-4},{20,-4},{20,0}}, color={0,0,255})); 
        connect(Batt.p, RP.n) annotation (Line(points={{0,-34}, 
                {0,-4},{20,-4},{20,0}}, color={0,0,255})); 
        connect(Batt.n, negPin) annotation (Line(points={{0, 
                -54},{0,-100}}, color={0,0,255})); 
        connect(currentSaturation.In, RS.p) annotation ( 
            Line(points={{0,58},{0,48}}, color={0,0,255})); 
        connect(currentSaturation.Out, posPin) annotation ( 
            Line(points={{0.2,78},{0,80},{0,100}}, color={0, 
                0,255})); 
        annotation ( 
          extent=[-30,0; -10,20], 
          rotation=270, 
          Icon(graphics={Line( 
                      points={{0,84},{0,22}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
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                      points={{-40,20},{40,20}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-20,0},{20,0}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
                      points={{-40,-20},{40,-20}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-20,-40},{20,-40}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
                      points={{0,-40},{0,-90}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
                      points={{-40,-38},{46,40}}, 
                      color={0,0,0}, 
                      thickness=1),Polygon( 
                      points={{46,40},{32,40},{46,28},{46,40}}, 
                      lineColor={0,0,0}, 
                      lineThickness=1, 
                      fillColor={0,0,0}, 
                      fillPattern=FillPattern.Solid)}), 
          Placement(transformation( 
              origin={-20,10}, 
              extent={{-10,-10},{10,10}}, 
              rotation=270)), 
          extent=[-30,0; -10,20], 
          rotation=270); 
 

 

      end Battery; 
 

      model Var_DC_Source  
        "Variable DC voltage source" 
 

        SI.Voltage v "Voltage between pines (= p.u - n.u)"; 
        flow SI.Current i "Current from pin p to pin n"; 
 

        Interfaces.PosPin p annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}), 
              iconTransformation(extent={{-110,-10},{-90,10}}))); 
        Interfaces.NegPin n annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}), 
              iconTransformation(extent={{90,-10},{110,10}}))); 
      equation  
 

        v = p.v - n.v; 
        0 = p.i + n.i; 
        i = p.i; 
        annotation (Icon(graphics={Line( 
                      points={{-40,0},{14,0},{40,0}}, 
                      color={0,0,0}, 
                      thickness=1, 
                      origin={-50,0}, 
                      rotation=360),Line( 
                      points={{40,0},{-40,0}}, 
                      color={0,0,0}, 
                      thickness=1, 
                      origin={50,0}, 
                      rotation=360),Line( 
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                      points={{0,40},{0,-40},{0,-40}}, 
                      color={0,0,0}, 
                      thickness=1, 
                      origin={-10,0}, 
                      rotation=360),Line( 
                      points={{0,20},{0,-20}}, 
                      color={0,0,0}, 
                      thickness=1, 
                      origin={10,0}, 
                      rotation=360),Line( 
                      points={{-10,0},{10,0}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
                      origin={-70,20}, 
                      rotation=360),Line( 
                      points={{0,10},{0,-10}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
                      origin={-70,20}, 
                      rotation=360),Line( 
                      points={{-10,0},{10,0}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
                      origin={70,20}, 
                      rotation=360),Line( 
                      points={{40,-40},{-40,40}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
                      rotation=360),Polygon( 
                      points={{-7,7},{-1,-7},{7,3},{-7,7}}, 
                      lineColor={0,0,0}, 
                      lineThickness=0.5, 
                      fillColor={0,0,0}, 
                      fillPattern=FillPattern.Solid, 
                      origin={-33,33}, 
                      rotation=360)})); 
      end Var_DC_Source; 
 

      model Ground "Zero voltage reference" 
 

        EPowertrain.Interfaces.PosPin p annotation ( 
            Placement(transformation(extent={{-10,110},{10,90}}, 
                rotation=0))); 
      equation  
        p.v = 0; 
        annotation (Diagram(graphics), Icon(graphics={Line( 
                      points={{0,90},{0,20}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-60,20},{60,20}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-40,0},{40,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-20,-20},{20,-20}}, 
                      color={0,0,0}, 
                      thickness=1)})); 
      end Ground; 
 

      model Square "Squarevoltage signal source" 
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        Interfaces.PosPin Out annotation (Placement( 
              transformation(extent={{90,-10},{110,10}}, 
                rotation=0))); 
 

        parameter Real D( 
          min=0, 
          max=1) = 0.5 "Duty cicle"; 
        parameter SI.Time time_start(min=0) = 0  
          "start time"; 
        parameter SI.Frequency f=1 "frequency"; 
        parameter SI.Voltage Von=1; 
        parameter SI.Voltage Voff=0; 
        parameter Real k=1000 "smooth factor"; 
 

        SI.Time t(start=0); 
        SI.Time T=1/f; 
        SI.Time eps=1e-6; 
        SI.Time TOn=D*T; 
 

      equation  
 

        der(t) = 1; 
 

        when (t >= T) then 
          reinit(t, 0); 
        end when; 
 

        der(Out.v) = if (t < TOn) then k*(Von - Out.v) 
           else k*(Voff - Out.v); 
 

 

        annotation ( 
          Icon(graphics={Line( 
                      points={{-40,80},{-60,80},{-60,80},{-60, 
                  80},{-80,80}}, 
                      color={0,0,0}, 
                      thickness=0.5),Line( 
                      points={{-40,80},{-40,-80},{-20,-80},{ 
                  0,-80},{0,80},{40,80},{40,-80},{80,-80}}, 
                      color={0,0,0}, 
                      thickness=0.5),Rectangle( 
                      extent={{-100,100},{100,-100}}, 
                      lineColor={0,0,0})}), 
          Diagram(graphics), 
          experiment( 
            StopTime=2, 
            Tolerance=0.1, 
            __Dymola_Algorithm="Dassl")); 
      end Square; 
    end Sources; 
 

    package Basic 
      model IdealCoil 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter Modelica.Units.SI.Inductance L=1  
          "Inductance"; 
      equation  
        v = smooth(1, L*der(i)); 
 

        annotation (Icon(graphics={Line( 
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                      points={{-90,0},{-64,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{64,0},{90,0}}, 
                      color={0,0,0}, 
                      thickness=1),Bitmap( 
                      extent={{-60,60},{60,-60}}, 
                      fileName="../../Downloads/2560px-

Coil_illustration.svg.png")})) 
          ; 
      end IdealCoil; 
 

      model Resistance "Ideal resistance" 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter Modelica.Units.SI.Resistance R=100  
          "Resistance"; 
      equation  
        v = smooth(1, R*i); 
        annotation (Icon(graphics={Line( 
                      points={{-90,0},{-60,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-60,0},{-50,20},{-30,-20},{-10, 
                  20},{10,-20},{30,20},{50,-20}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{50,-20},{60,0},{90,0}}, 
                      color={0,0,0}, 
                      thickness=1)}), Diagram(graphics)); 
      end Resistance; 
 

      model VariableResistance  
        "Variable parameter resistance" 
        extends EPowertrain.Interfaces.ElectricPort; 
        Modelica.Units.SI.Resistance R "Resistance"; 
      equation  
        v = smooth(1, R*i); 
        annotation (Icon(graphics={Line( 
                      points={{-90,0},{-60,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-60,0},{-50,20},{-30,-20},{-10, 
                  20},{10,-20},{30,20},{50,-20}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{50,-20},{60,0},{90,0}}, 
                      color={0,0,0}, 
                      thickness=1)}), Diagram(graphics)); 
      end VariableResistance; 
 

      model Capacitor "Ideal capacitor" 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter Modelica.Units.SI.Capacitance C=1e-6  
          "Capacitance"; 
      equation  
        i = smooth(1, C*der(v)); 
 

        annotation (Diagram(graphics={Line( 
                      points={{-20,40},{-20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
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                      points={{20,40},{20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-88,0},{-20,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{20,0},{88,0}}, 
                      color={0,0,0}, 
                      thickness=1)}), Icon(graphics={Line( 
                      points={{-20,40},{-20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{20,40},{20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-88,0},{-20,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{20,0},{88,0}}, 
                      color={0,0,0}, 
                      thickness=1)})); 
      end Capacitor; 
 

      model VariableCapacitor  
        "Variable parameter capacitor" 
        extends EPowertrain.Interfaces.ElectricPort; 
        Modelica.Units.SI.Capacitance C "Capacitance"; 
      equation  
        i = smooth(1, C*der(v)); 
 

        annotation (Diagram(graphics={Line( 
                      points={{-20,40},{-20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{20,40},{20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-88,0},{-20,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{20,0},{88,0}}, 
                      color={0,0,0}, 
                      thickness=1)}), Icon(graphics={Line( 
                      points={{-20,40},{-20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{20,40},{20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-88,0},{-20,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{20,0},{88,0}}, 
                      color={0,0,0}, 
                      thickness=1)})); 
      end VariableCapacitor; 
 

      model Y_Conection 
 

        parameter Modelica.Units.SI.Capacitance C=1; 
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        Capacitor capacitor(C=C) annotation (Placement( 
              transformation(extent={{48,-10},{68,10}}))); 
        Capacitor capacitor1(C=C) annotation (Placement( 
              transformation(extent={{46,16},{70,40}}))); 
        Capacitor capacitor2(C=C) annotation (Placement( 
              transformation(extent={{46,-38},{66,-18}}))); 
        Sources.Ground ground annotation (Placement( 
              transformation(extent={{84,-20},{104,0}}))); 
        Interfaces.PosPin posPin[3] annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}))); 
        SignalRouting.Mux.Bus_to_ThreePhase 
          bus_to_ThreePhase annotation (Placement( 
              transformation(extent={{-82,-46},{10,46}}))); 
      equation  
        connect(capacitor1.n, capacitor.n) annotation (Line( 
              points={{70,28},{70,0},{68,0}}, color={0,0,255})); 
        connect(capacitor2.n, capacitor.n) annotation (Line( 
              points={{66,-28},{70,-28},{70,0},{68,0}}, 
              color={0,0,255})); 
        connect(bus_to_ThreePhase.out2, capacitor.p)  
          annotation (Line(points={{10,0},{48,0}}, color={0, 
                0,255})); 
        connect(bus_to_ThreePhase.out3, capacitor2.p)  
          annotation (Line(points={{10,-27.6},{42,-27.6},{42, 
                -28},{46,-28}}, color={0,0,255})); 
        connect(bus_to_ThreePhase.out1, capacitor1.p)  
          annotation (Line(points={{10,27.6},{42,27.6},{42,28}, 
                {46,28}}, color={0,0,255})); 
        connect(capacitor.n, ground.p) annotation (Line( 
              points={{68,0},{70,0},{70,6},{94,6},{94,0}}, 
              color={0,0,255})); 
        connect(posPin, bus_to_ThreePhase.In) annotation ( 
            Line(points={{-100,0},{-82,0}}, color={0,0,255})); 
        annotation (Icon(coordinateSystem( 
                preserveAspectRatio=false), graphics={Line( 
                      points={{-70,-70},{0,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{0,0},{70,-70}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{0,0},{0,80}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{0,0},{0,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-20,-40},{20,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-10,-50},{10,-50}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-4,-60},{4,-60}}, 
                      color={0,0,0}, 
                      thickness=1)}), Diagram( 
              coordinateSystem(preserveAspectRatio=false))); 
      end Y_Conection; 
 

      model Delta_Conection 
 



Appendix A - The EPowertrain Modelica Library 

116 

 

        parameter Modelica.Units.SI.Capacitance C=1e-6; 
 

        Capacitor C_bc(C=C) annotation (Placement( 
              transformation( 
              extent={{-7,-7.99998},{7,8}}, 
              rotation=270, 
              origin={40,-11}))); 
        Interfaces.PosPin posPin[3] annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}))); 
        SignalRouting.Mux.Bus_to_ThreePhase 
          bus_to_ThreePhase annotation (Placement( 
              transformation(extent={{-60,-40},{20,40}}))); 
        Capacitor C_ab(C=C) annotation (Placement( 
              transformation( 
              extent={{-7,-7.99999},{7,7.99999}}, 
              rotation=270, 
              origin={40,11}))); 
        Capacitor C_ac(C=C) annotation (Placement( 
              transformation( 
              extent={{-7,-7.99998},{7,8}}, 
              rotation=270, 
              origin={60,1}))); 
      equation  
        connect(bus_to_ThreePhase.out3, C_bc.n) annotation  
          (Line(points={{20,-24},{40,-24},{40,-18}}, color={ 
                0,0,255})); 
        connect(bus_to_ThreePhase.out1, C_ab.p) annotation  
          (Line(points={{20,24},{40,24},{40,18}}, color={0,0, 
                255})); 
        connect(C_ac.p, C_ab.p) annotation (Line(points={{60, 
                8},{60,24},{40,24},{40,18}}, color={0,0,255})); 
        connect(C_ac.n, C_bc.n) annotation (Line(points={{60, 
                -6},{60,-24},{40,-24},{40,-18}}, color={0,0, 
                255})); 
        connect(bus_to_ThreePhase.out2, C_bc.p) annotation  
          (Line(points={{20,0},{40,0},{40,-4}}, color={0,0,255})); 
        connect(C_ab.n, C_bc.p) annotation (Line(points={{40, 
                4},{40,0},{40,-4},{40,-4}}, color={0,0,255})); 
        connect(posPin, bus_to_ThreePhase.In) annotation ( 
            Line(points={{-100,0},{-60,0}}, color={0,0,255})); 
        annotation (Icon(coordinateSystem( 
                preserveAspectRatio=false), graphics={ 
                Polygon( 
                      points={{-80,-80},{0,80},{80,-80},{-80, 
                  -80}}, 
                      lineColor={0,0,0}, 
                      lineThickness=1),Rectangle( 
                      extent={{-100,100},{100,-100}}, 
                      lineColor={0,0,0})}), Diagram( 
              coordinateSystem(preserveAspectRatio=false))); 
      end Delta_Conection; 
    end Basic; 
 

    package Semiconductors 
      model NMOS "Ideal NMOS" 
 

        EPowertrain.Interfaces.PosPin d "drain" annotation ( 
            Placement(transformation(extent={{-10,110},{10,90}}, 
                rotation=0))); 
        EPowertrain.Interfaces.PosPin g "gate" annotation ( 
            Placement(transformation(extent={{-110,-10},{-90, 
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                  10}}, rotation=0))); 
        EPowertrain.Interfaces.PosPin s "source" annotation  
          (Placement(transformation(extent={{-10,-110},{10,-90}}, 
                rotation=0))); 
 

        Modelica.Units.SI.Current Ids(start=0); 
        Modelica.Units.SI.Voltage Vgs(start=0)  
          "Pins voltage (= g.v - s.v)"; 
        Modelica.Units.SI.Voltage Vds(start=0)  
          "Pins voltage  (= d.v - s.v)"; 
 

        parameter Modelica.Units.SI.Voltage Vt=3; 
        parameter Modelica.Units.SI.Length L=2e-6; 
        parameter Modelica.Units.SI.Length W=10e-6; 
        parameter Real Kp(unit="A/V^2") = 100e-6; 
        parameter Real Lambda(unit="V^-1") = 0; 
 

      equation  
        Vgs = g.v - s.v; 
        Vds = d.v - s.v; 
 

        g.i = 0; 
        d.i = Ids; 
        d.i = -s.i; 
 

        // Cut 
        if (Vgs < Vt) then 
          Ids = 0; 
        else 
          // Lineal 
          if (Vds <= (Vgs - Vt)) then 
            Ids = Kp*(W/L)*((Vgs - Vt)*Vds - (Vds^2)/2)*(1 + 
              Lambda*Vds); 
            // Saturation 
          else 
            Ids = 0.5*Kp*(W/L)*(Vgs - Vt)^2*(1 + Lambda*Vds); 
          end if; 
        end if; 
 

        annotation (Icon(graphics={Line( 
                      points={{-46,0},{-30,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-90,0},{-46,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{0,90},{0,40},{-20,40},{-20,-40}, 
                  {0,-40},{0,-90}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-30,40},{-30,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Polygon( 
                      points={{0,-40},{-10,-34},{-10,-46},{0, 
                  -40}}, 
                      lineColor={0,0,0}, 
                      lineThickness=1, 
                      fillColor={0,0,0}, 
                      fillPattern=FillPattern.Solid)}), 
            DymolaStoredErrors); 
      end NMOS; 
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      model PMOS "Ideal PMOS" 
 

        EPowertrain.Interfaces.PosPin d "source" annotation  
          (Placement(transformation(extent={{-10,-110},{10,-90}}, 
                rotation=0))); 
        EPowertrain.Interfaces.PosPin g "gate" annotation ( 
            Placement(transformation(extent={{-110,-10},{-90, 
                  10}}, rotation=0))); 
        EPowertrain.Interfaces.PosPin s "drain" annotation ( 
            Placement(transformation(extent={{-10,110},{10,90}}, 
                rotation=0))); 
 

        Modelica.Units.SI.Current Ids(start=0); 
        Modelica.Units.SI.Voltage Vgs(start=0)  
          "Pins voltage (= g.v - s.v)"; 
        Modelica.Units.SI.Voltage Vds(start=0)  
          "Pins voltage (= d.v - s.v)"; 
 

        parameter Modelica.Units.SI.Voltage Vt=3; 
        parameter Modelica.Units.SI.Length L=2e-6; 
        parameter Modelica.Units.SI.Length W=10e-6; 
        parameter Real Kp(unit="A/V^2") = 100e-6; 
        parameter Real Lambda(unit="V^-1") = 0; 
 

      equation  
        Vgs = g.v - s.v; 
        Vds = d.v - s.v; 
 

        g.i = 0; 
        d.i = Ids; 
        d.i = -s.i; 
 

        // Cut 
        if (Vgs > Vt) then 
          Ids = 0; 
        else 
          // Lineal 
          if (Vds >= (Vgs - Vt)) then 
            Ids = Kp*(W/L)*((Vgs - Vt)*Vds - (Vds^2)/2)*(1 + 
              Lambda*Vds); 
            // Saturation 
          else 
            Ids = 0.5*Kp*(W/L)*(Vgs - Vt)^2*(1 + Lambda*Vds); 
          end if; 
        end if; 
 

        annotation (Icon(graphics={Ellipse( 
                      extent={{-46,8},{-30,-8}}, 
                      lineColor={0,0,0}, 
                      lineThickness=1),Line( 
                      points={{-90,0},{-46,0},{-48,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{0,90},{0,40},{-20,40},{-20,-40}, 
                  {0,-40},{0,-90}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-30,40},{-30,-40}}, 
                      color={0,0,0}, 
                      thickness=1),Polygon( 
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                      points={{-20,40},{-10,46},{-10,34},{-20, 
                  40}}, 
                      lineColor={0,0,0}, 
                      lineThickness=1, 
                      fillColor={0,0,0}, 
                      fillPattern=FillPattern.Solid)})); 
      end PMOS; 
 

      model Diode "Ideal diode" 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter Modelica.Units.SI.Current Is=1e-6  
          "Saturation current"; 
        parameter Modelica.Units.SI.Voltage Vt=0.04  
          "Thermal voltage"; 
        parameter Real Maxexp(final min=Modelica.Constants.small) 
           = 15 "Max. exponent for linear continuation"; 
        parameter SI.Resistance R=1.e8  
          "Parallel ohmic resistance"; 
      equation  
 

        i = smooth(1, (if (v/Vt > Maxexp) then Is*(exp( 
          Maxexp)*(1 + v/Vt - Maxexp) - 1) + v/R else Is*( 
          exp(v/Vt) - 1) + v/R)); 
        annotation (Icon(graphics={Line( 
                      points={{-84,0},{86,0}}, 
                      color={0,0,0}, 
                      thickness=1),Polygon( 
                      points={{0,0},{-20,20},{-20,-20},{0,0}}, 
                      lineColor={0,0,0}, 
                      lineThickness=1),Line( 
                      points={{0,20},{0,-20}}, 
                      color={0,0,0}, 
                      thickness=1)}), DymolaStoredErrors); 
      end Diode; 
 

      model IdealIGBT 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter SI.Current Is=1e-9 "Saturation current"; 
        parameter SI.Voltage Vt=0.025 "Thermal voltage"; 
        parameter Real Maxexp(final min=Modelica.Constants.small) 
           = 15 "Max. exponent for linear continuation"; 
        parameter SI.Resistance R=1.e8  
          "Parallel ohmic resistance"; 
        EPowertrain.Interfaces.PosPin c annotation ( 
            Placement(transformation(extent={{-20,-100},{0,-80}}, 
                rotation=0))); 
      equation  
        c.i = 0; 
        if (c.v > 0) then 
          i = smooth(1, (if (v/Vt > Maxexp) then Is*(exp( 
            Maxexp)*(1 + v/Vt - Maxexp) - 1) + v/R else Is*( 
            exp(v/Vt) - 1) + v/R)); 
        else 
          i = smooth(1, v/R); 
        end if; 
 

        annotation (Icon(graphics={Line( 
                      points={{-84,0},{86,0}}, 
                      color={0,0,0}, 
                      thickness=1),Polygon( 
                      points={{0,0},{-20,20},{-20,-20},{0,0}}, 
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                      lineColor={0,0,0}, 
                      lineThickness=1),Line( 
                      points={{0,20},{0,-20}}, 
                      color={0,0,0}, 
                      thickness=1),Ellipse( 
                      extent={{-34,24},{14,-24}}, 
                      lineColor={0,0,0}, 
                      lineThickness=0.5),Line( 
                      points={{-10,-80},{-10,-76},{-10,-26}}, 
                      color={0,0,0}, 
                      pattern=LinePattern.Dash, 
                      thickness=0.5)}), Diagram(graphics)); 
      end IdealIGBT; 
 

      model IdealISwitch 
        extends EPowertrain.Interfaces.ElectricPort; 
        parameter SI.Resistance ROpen=1e5  
          "Opened circuit conductance"; 
        parameter SI.Resistance RClose=1.e-5  
          "Closed circuit resistance"; 
        parameter SI.Time St(min=1e-9) = 1e-6 "Switch time"; 
 

        Real Smooth_aux  
          "Aux variable to smooth resistance variation"; 
 

        SI.Resistance R(start=ROpen); 
 

 

 

        Interfaces.BoolInPort c annotation (Placement( 
              transformation(extent={{-20,-100},{0,-80}}, 
                rotation=0))); 
 

 

      equation  
 

        der(Smooth_aux)*St = if c then 1 - Smooth_aux else - 
          Smooth_aux; 
 

        R = ROpen + (RClose - ROpen)*Smooth_aux; 
 

        i = v/R; 
 

 

        annotation ( 
          Icon(graphics={Line( 
                      points={{-10,-80},{-10,-76},{-10,-26}}, 
                      color={0,0,0}, 
                      pattern=LinePattern.Dash, 
                      thickness=0.5),Line( 
                      points={{-90,0},{-40,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{40,0},{90,0}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-40,0},{38,-28}}, 
                      color={0,0,0}, 
                      thickness=1),Line( 
                      points={{-40,0},{40,0}}, 
                      color={0,0,0}, 
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                      pattern=LinePattern.Dot, 
                      thickness=1)}), 
          Diagram(graphics), 
          DymolaStoredErrors); 
      end IdealISwitch; 
    end Semiconductors; 
 

    package Devices 
 

      package Converters 
 

        model BackEMF  
          "Counter-electromotive force" 
          Interfaces.PosPin Pp annotation (Placement( 
                transformation(extent={{-8,88},{12,108}}), 
                iconTransformation(extent={{-8,88},{12,108}}))); 
          Interfaces.NegPin Np annotation (Placement( 
                transformation(extent={{-10,-110},{10,-90}}), 
                iconTransformation(extent={{-10,-110},{10,-90}}))); 
          Interfaces.MechanicalAxis mechanicalAxis  
            annotation (Placement(transformation(extent={{-10, 
                    -110},{10,-90}}), iconTransformation( 
                  extent={{90,-10},{110,10}}))); 
          parameter Real Ke(unit="V.s/rad") = 0.0064  
            "Back emf constant"; 
          parameter Real Kt(unit="N.m/A") = 0.0065  
            "Torque constant"; 
          parameter SI.RotationalDampingConstant bm=4.121*1e-6 
            "Friction constant"; 
          parameter Modelica.Units.SI.Inertia J=3.87*1e-7; 
          Modelica.Units.SI.Voltage Vemf; 
          Modelica.Units.SI.Current i=Pp.i; 
          Modelica.Units.SI.Torque Te "Electrical torque"; 
          Modelica.Units.SI.Torque Tb "Friction torque"; 
          Modelica.Units.SI.Torque Tload=mechanicalAxis.T  
            "Axis torque"; 
          Modelica.Units.SI.Angle Phi=mechanicalAxis.Phi; 
          Modelica.Units.SI.AngularVelocity w=der(Phi); 
          constant Real pi=Modelica.Constants.pi; 
 

        equation  
          Pp.i + Np.i = 0; 
          Vemf = Ke*w; 
          Vemf = Pp.v - Np.v; 
          Te = i*Kt; 
          Tb = bm*w; 
          Te - Tb - Tload = J*der(w); 
          annotation (Icon(coordinateSystem( 
                  preserveAspectRatio=false), graphics={ 
                  Rectangle( 
                          extent={{-30,80},{30,60}}, 
                          lineColor={28,108,200}, 
                          fillColor={215,215,215}, 
                          fillPattern=FillPattern.Solid), 
                  Rectangle( 
                          extent={{-30,-60},{30,-80}}, 
                          lineColor={28,108,200}, 
                          fillColor={0,128,255}, 
                          fillPattern=FillPattern.Solid), 
                  Ellipse(extent={{-50,50},{50,-50}}, 
                          lineColor={28,108,200}, 
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                          fillColor={135,135,135}, 
                          fillPattern=FillPattern.Solid), 
                  Line(   points={{60,-40},{60,40}}, 
                          color={28,108,200}, 
                          smooth=Smooth.Bezier, 
                          arrow={Arrow.None,Arrow.Open}, 
                          thickness=1),Line( 
                          points={{-60,40},{-60,-40}}, 
                          color={28,108,200}, 
                          smooth=Smooth.Bezier, 
                          arrow={Arrow.None,Arrow.Open}, 
                          thickness=1)}), Diagram( 
                coordinateSystem(preserveAspectRatio=false))); 
 

 

 

        end BackEMF; 
 

        model ElectricConverter 
          Interfaces.PosPin P_In annotation (Placement( 
                transformation(extent={{-110,50},{-90,70}}), 
                iconTransformation(extent={{-110,50},{-90,70}}))); 
          Interfaces.NegPin N_In annotation (Placement( 
                transformation(extent={{-110,-70},{-90,-50}}), 
                iconTransformation(extent={{-110,-70},{-90,-50}}))); 
          Interfaces.PosPin P_Out annotation (Placement( 
                transformation(extent={{90,50},{110,70}}), 
                iconTransformation(extent={{90,50},{110,70}}))); 
          Interfaces.NegPin N_Out annotation (Placement( 
                transformation(extent={{90,-70},{110,-50}}), 
                iconTransformation(extent={{90,-70},{110,-50}}))); 
          Interfaces.InPort DutyCycle annotation (Placement( 
                transformation( 
                extent={{-10,-10},{10,10}}, 
                rotation=270, 
                origin={0,100}), iconTransformation( 
                extent={{-10,-10},{10,10}}, 
                rotation=270, 
                origin={0,100}))); 
          input SI.Voltage V_In=P_In.v - N_In.v; 
          output SI.Voltage V_Out=P_Out.v - N_Out.v; 
          input SI.Current I_In; 
          // Input port current (Source side) 
          output SI.Current I_Out=P_Out.i; 
          // Output port curren (Load side) 
 

          SI.Power PwIn=V_In*I_In; 
          SI.Power PwOut=V_Out*I_Out; 
 

          SI.Energy EBalance(start=0); 
        equation  
 

          der(EBalance) = PwIn + PwOut; 
 

          I_In = if DutyCycle >= 0 then P_In.i else -P_In.i; 
 

          // Set V_Out 
          V_Out = DutyCycle*V_In; 
 

          PwIn + PwOut = 0; 
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          //Currents balnce 
          P_In.i + N_In.i = 0; 
          P_Out.i + N_Out.i = 0; 
 

          annotation (Icon(coordinateSystem( 
                  preserveAspectRatio=false), graphics={ 
                  Line(   points={{-100,-100},{100,100}}, 
                          color={0,0,0}, 
                          thickness=1),Text( 
                          extent={{-80,80},{0,0}}, 
                          textColor={0,0,0}, 
                          textString="DC-IN"),Text( 
                          extent={{0,0},{80,-80}}, 
                          textColor={0,0,0}, 
                          textString="DC-OUT"),Rectangle( 
                          extent={{-100,100},{100,-100}}, 
                          lineColor={0,0,0}, 
                          lineThickness=1)}), Diagram( 
                coordinateSystem(preserveAspectRatio=false))); 
 

        end ElectricConverter; 
      end Converters; 
 

      package Machines 
 

        model PMSM 
 

          constant Real pi=Constant.pi; 
          Interfaces.PosPin Vin[3] annotation (Placement( 
                transformation(extent={{-110,-10},{-90,10}}, 
                  rotation=0))); 
          Interfaces.MechanicalAxis Rotor annotation ( 
              Placement(transformation(extent={{90,-10},{110, 
                    10}}, rotation=0))); 
          parameter Integer Pp(min=1) = 2 "Poles pairs"; 
          parameter SI.Resistance Rs=2.98  
            "Stator winding resistance"; 
          parameter SI.Inductance Ld=7e-3; 
          parameter SI.Inductance Lq=7e-3; 
          parameter SI.Inertia J=4.7e-5; 
          parameter Real Bv( 
            unit="N.m.s/rad", 
            min=0) = 1.1e-4 " Dynamic viscosity"; 
          parameter SI.MagneticFlux Fmg=0.125; 
          SI.Angle Th_e; 
          SI.Angle Th_m; 
          SI.AngularVelocity we  
            "Electrical angular velocity"; 
          SI.AngularVelocity wm(start=0)  
            "Mechanical angular velocity"; 
          SI.Torque Tl=Rotor.T; 
          SI.Torque Te; 
          SI.Current Ia=Vin[1].i; 
          SI.Current Ib=Vin[2].i; 
          SI.Current Ic=Vin[3].i; 
          SI.Current Id "Current on direct axis"; 
          SI.Current Iq "Current on normal axis"; 
          SI.Voltage Va=smooth(1, Vin[1].v); 
          SI.Voltage Vb=smooth(1, Vin[2].v); 
          SI.Voltage Vc=smooth(1, Vin[3].v); 
          SI.Voltage Vd; 
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          SI.Voltage Vq; 
          SI.MagneticFlux Fd "Stator magnetic fluxes"; 
          SI.MagneticFlux Fq  
            "Stator permanent magnetic fluxes"; 
          Real PT[2,3]=2/3*[cos(Th_e),cos(Th_e - 2*pi/3), 
              cos(Th_e - 4*pi/3); -sin(Th_e),-sin(Th_e - 2* 
              pi/3),-sin(Th_e - 4*pi/3)]; 
        equation  
          [Id; Iq] = PT*[Ia; Ib; Ic]; 
          [Vd; Vq] = PT*[Va; Vb; Vc]; 
          Ia + Ib + Ic = 0; 
 

          Fd = Ld*Id + Fmg; 
          Fq = Lq*Iq; 
 

          Vq = Rs*Iq + we*Fd + der(Fq); 
          Vd = Rs*Id - we*Fq + der(Fd); 
 

          Te = 1.5*Pp*(Fd*Iq - Fq*Id); 
 

          Te - Tl - Bv*wm = J*der(wm); 
 

 

          we = Pp*wm; 
 

          der(Th_e) = we; 
          der(Th_m) = wm; 
 

          Rotor.Phi = Th_m; 
          annotation (Icon(graphics={Ellipse( 
                          extent={{-80,80},{80,-80}}, 
                          lineColor={0,0,255}, 
                          fillColor={175,175,175}, 
                          fillPattern=FillPattern.Solid), 
                  Ellipse(extent={{-70,70},{70,-70}}, 
                          lineColor={0,0,255}, 
                          fillColor={255,255,255}, 
                          fillPattern=FillPattern.Solid), 
                  Rectangle( 
                          extent={{-36,40},{-28,-40}}, 
                          lineColor={0,0,255}, 
                          fillColor={255,0,0}, 
                          fillPattern=FillPattern.Solid), 
                  Rectangle( 
                          extent={{22,42},{30,-36}}, 
                          lineColor={0,0,255}, 
                          fillColor={0,0,255}, 
                          fillPattern=FillPattern.Solid)}), 
              Diagram(graphics)); 
 

 

 

        end PMSM; 
 

        model DCMotor 
 

          constant Real pi=Constant.pi; 
          Interfaces.PosPin Vp annotation (Placement( 
                transformation(extent={{-108,50},{-88,70}}, 
                  rotation=0), iconTransformation(extent={{-108, 
                    50},{-88,70}}))); 
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          Interfaces.MechanicalAxis Rotor annotation ( 
              Placement(transformation(extent={{90,-10},{110, 
                    10}}, rotation=0))); 
 

 

 

          Interfaces.NegPin Vn annotation (Placement( 
                transformation(extent={{-110,-70},{-90,-50}}, 
                  rotation=0), iconTransformation(extent={{-110, 
                    -70},{-90,-50}}))); 
          Basic.Resistance R1(R=Rm) annotation (Placement( 
                transformation( 
                extent={{-20,-20},{20,20}}, 
                rotation=180, 
                origin={-60,60}))); 
          Basic.IdealCoil L1(L=Lm) annotation (Placement( 
                transformation( 
                extent={{-20,-20},{20,20}}, 
                rotation=180, 
                origin={0,60}))); 
 

 

          parameter Modelica.Units.SI.Resistance Rm=0.837  
            "Motor electrical resistance"; 
          parameter Modelica.Units.SI.Inductance Lm=0.0008  
            "Motor electrical inductance"; 
 

          parameter Real Ke(unit="V.s/rad") = 0.0064  
            "Back emf constant"; 
          parameter Real Kt(unit="N.m/A") = 0.0065  
            "Torque constant"; 
          parameter  
            Modelica.Units.SI.RotationalDampingConstant bm=4.121 
              *1e-6 "Visc. friction constant"; 
          parameter Modelica.Units.SI.Inertia J=3.87*1e-7  
            "Rotor's inertia"; 
 

          Converters.BackEMF backEMF( 
            Ke=Ke, 
            Kt=Kt, 
            bm=bm, 
            J=J) annotation (Placement(transformation( 
                  extent={{-20,-40},{60,40}}))); 
        equation  
          connect(backEMF.mechanicalAxis, Rotor)  
            annotation (Line( 
              points={{60,0},{100,0}}, 
              color={135,135,135}, 
              smooth=Smooth.Bezier, 
              thickness=1)); 
          connect(R1.p, L1.n) annotation (Line( 
              points={{-40,60},{-20,60}}, 
              color={0,0,255}, 
              thickness=0.5)); 
          connect(R1.n, Vp) annotation (Line( 
              points={{-80,60},{-98,60}}, 
              color={0,0,255}, 
              thickness=0.5)); 
          connect(L1.p, backEMF.Pp) annotation (Line( 
              points={{20,60},{20.8,60},{20.8,39.2}}, 
              color={0,0,255}, 
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              thickness=0.5)); 
          connect(backEMF.Np, Vn) annotation (Line( 
              points={{20,-40},{20,-60},{-100,-60}}, 
              color={0,0,255}, 
              thickness=0.5)); 
          annotation (Icon(graphics={Ellipse( 
                          extent={{-80,80},{80,-80}}, 
                          lineColor={0,0,255}, 
                          fillColor={175,175,175}, 
                          fillPattern=FillPattern.Solid), 
                  Ellipse(extent={{-70,70},{70,-70}}, 
                          lineColor={0,0,255}, 
                          fillColor={255,255,255}, 
                          fillPattern=FillPattern.Solid), 
                  Rectangle( 
                          extent={{-36,40},{-28,-40}}, 
                          lineColor={0,0,255}, 
                          fillColor={255,0,0}, 
                          fillPattern=FillPattern.Solid), 
                  Rectangle( 
                          extent={{22,42},{30,-36}}, 
                          lineColor={0,0,255}, 
                          fillColor={0,0,255}, 
                          fillPattern=FillPattern.Solid)})); 
 

        end DCMotor; 
 

      end Machines; 
 

      model CurrentSaturation 
 

        input Interfaces.NegPin In annotation (Placement( 
              transformation(extent={{-110,-10},{-90,10}}, 
                rotation=0))); 
        output Interfaces.PosPin Out annotation (Placement( 
              transformation(extent={{90,-12},{110,8}}, 
                rotation=0))); 
        parameter Real IMax=1e6; 
        parameter Real IMin=-1e-6; 
 

        SI.Current Iout=Out.i; 
        SI.Current Iin=In.i; 
      equation  
        Iout = min(IMax, max(IMin, Iin)); 
        Out.v = In.v; 
        annotation (Icon(graphics={Line( 
                      points={{-80,80},{80,80}}, 
                      color={0,0,255}),Line( 
                      points={{-80,-80},{80,-80},{80,-80}}, 
                      color={0,0,255}),Line( 
                      points={{-80,-80},{-74,-80},{-60,-80}, 
                  {-20,80},{14,80},{40,-76},{40,-80},{60,-80}, 
                  {76,-6}}, 
                      color={0,0,0}, 
                      thickness=0.5)}), Diagram(graphics)); 
 

      end CurrentSaturation; 
    end Devices; 
 

  end Electrical; 
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A5. Mechanical 
 
package Mechanical 
    package Basic 
      model RotLoad 
 

        Interfaces.MechanicalAxis Axis annotation ( 
            Placement(transformation(extent={{-10,88},{10,108}}, 
                rotation=0))); 
        parameter SI.Inertia J=10 "Inertial load"; 
        parameter SI.DynamicViscosity fs=8.5e-6 
          " Dynamic viscosity"; 
        constant Real eps=1e-3; 
        SI.AngularVelocity w; 
      equation  
        der(Axis.Phi) = w; 
        J*der(w) = -Axis.T - w*fs; 
        annotation (Icon(graphics={Line( 
                      points={{0,88},{0,2},{0,0}}, 
                      color={0,0,255}),Ellipse( 
                      extent={{-80,-20},{80,-2}}, 
                      lineColor={0,0,255}, 
                      fillColor={175,175,175}, 
                      fillPattern=FillPattern.Solid),Line( 
                      points={{-56,-28},{42,-28},{50,-28}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
                      arrow={Arrow.None,Arrow.Filled})})); 
 

      end RotLoad; 
 

      model RotAxis 
 

        Interfaces.MechanicalAxis AxisA annotation ( 
            Placement(transformation(extent={{-110,-10},{-90, 
                  10}}, rotation=0))); 
        Interfaces.MechanicalAxis AxisB annotation ( 
            Placement(transformation(extent={{88,-10},{108,10}}, 
                rotation=0))); 
        parameter SI.Inertia J=10 "Inertial load"; 
        SI.AngularVelocity w; 
        SI.Angle Phi; 
      equation  
        der(Phi) = w; 
        J*der(w) = AxisA.T + AxisB.T; 
        AxisA.Phi = Phi; 
        AxisB.Phi = Phi; 
        annotation (Icon(graphics={Rectangle( 
                      extent={{-92,-6},{88,6}}, 
                      lineColor={95,95,95}, 
                      lineThickness=0.5, 
                      fillColor={255,255,255}, 
                      fillPattern=FillPattern.Backward)}), 
            Diagram(graphics)); 
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      end RotAxis; 
 

      model Wheel 
        constant Real pi=Constant.pi; 
        Interfaces.MechanicalAxis Axis annotation ( 
            Placement(transformation(extent={{-10,88},{10,108}}, 
                rotation=0))); 
        parameter SI.Inertia J=10 "Inertial load"; 
        parameter SI.Length R=0.3 "Radius"; 
        parameter Real fs( 
          unit="N.m.s/rad", 
          min=0) = 8.5e-6 " Dynamic viscosity"; 
        parameter SI.Mass M=1200 "Vehicle mass"; 
        constant Real eps=1e-3; 
        SI.AngularVelocity w; 
        SI.Velocity V(start=0); 
        Interfaces.OutPort Vwheel annotation (Placement( 
              transformation( 
              origin={-60,100}, 
              extent={{-10,-10},{10,10}}, 
              rotation=90))); 
      equation  
        der(Axis.Phi) = w; 
 

        V = 2*pi*R*w; 
 

        if abs(V) < eps and abs(Axis.T) < eps then 
          //Stacionary state 
          der(w) = -1e3*w; 
        else 
          Axis.T + w*fs + (J + M*R^2)*der(w) = 0; 
 

        end if; 
        Vwheel = V; 
        annotation (Icon(graphics={Line( 
                      points={{0,88},{0,2},{0,0}}, 
                      color={0,0,255}),Ellipse( 
                      extent={{-70,-70},{70,70}}, 
                      lineColor={0,0,255}, 
                      fillColor={0,0,0}, 
                      fillPattern=FillPattern.Solid),Line( 
                      points={{-50,-94},{48,-94},{56,-94}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
                      arrow={Arrow.None,Arrow.Filled}), 
                Ellipse( 
                      extent={{-60,60},{60,-60}}, 
                      lineColor={215,215,215}, 
                      pattern=LinePattern.None, 
                      fillColor={255,255,255}, 
                      fillPattern=FillPattern.CrossDiag), 
                Ellipse( 
                      extent={{-10,10},{10,-10}}, 
                      lineColor={215,215,215}, 
                      fillColor={175,175,175}, 
                      fillPattern=FillPattern.CrossDiag)})); 
 

      end Wheel; 
 

      model FixedTorque 
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        Interfaces.MechanicalAxis Axis annotation ( 
            Placement(transformation(extent={{-10,88},{10,108}}, 
                rotation=0))); 
        parameter SI.Torque T=10 "Torque"; 
 

      equation  
 

        T = Axis.T annotation (Icon(graphics={Line( 
                      points={{0,88},{0,2},{0,0}}, 
                      color={0,0,255}),Ellipse( 
                      extent={{-80,-20},{80,-2}}, 
                      lineColor={0,0,255}, 
                      fillColor={175,175,175}, 
                      fillPattern=FillPattern.Backward, 
                      startAngle=0, 
                      endAngle=360),Line( 
                      points={{-56,-28},{42,-28},{50,-28}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
                      arrow={Arrow.None,Arrow.Filled}), 
                Rectangle( 
                      extent={{-4,88},{4,-2}}, 
                      lineColor={0,0,255}, 
                      lineThickness=0.5, 
                      fillColor={135,135,135}, 
                      fillPattern=FillPattern.Solid)})); 
 

        annotation (Icon(graphics={Rectangle( 
                      extent={{-4,88},{4,0}}, 
                      lineColor={0,0,255}, 
                      lineThickness=0.5, 
                      fillColor={135,135,135}, 
                      fillPattern=FillPattern.Solid), 
                Rectangle( 
                      extent={{-20,0},{22,-40}}, 
                      lineColor={0,0,255}, 
                      lineThickness=0.5, 
                      fillColor={135,135,135}, 
                      fillPattern=FillPattern.CrossDiag)})); 
      end FixedTorque; 
 

      model FixedSpeed 
 

        Interfaces.MechanicalAxis Axis annotation ( 
            Placement(transformation(extent={{-10,88},{10,108}}, 
                rotation=0))); 
        parameter SI.AngularVelocity w=1 "Angular velocity"; 
      equation  
        der(Axis.Phi) = w; 
 

        annotation (Icon(graphics={Line( 
                      points={{0,88},{0,2},{0,0}}, 
                      color={0,0,255}),Ellipse( 
                      extent={{-80,-20},{80,-2}}, 
                      lineColor={0,0,255}, 
                      fillColor={175,175,175}, 
                      fillPattern=FillPattern.CrossDiag), 
                Line( points={{-56,-28},{42,-28},{50,-28}}, 
                      color={0,0,0}, 
                      thickness=0.5, 
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                      arrow={Arrow.None,Arrow.Filled})})); 
 

      end FixedSpeed; 
 

      model Gearbox 
 

        input Interfaces.MechanicalAxis AxisA annotation ( 
            Placement(transformation(extent={{-112,-10},{-92, 
                  10}}, rotation=0), iconTransformation( 
                extent={{-112,-10},{-92,10}}))); 
        output Interfaces.MechanicalAxis AxisB annotation ( 
            Placement(transformation(extent={{88,-10},{108,10}}, 
                rotation=0))); 
        parameter Real N(min=0.01) = 1 "Conversion ratio"; 
 

        SI.Torque TIn=AxisA.T; 
        SI.Torque TOut=AxisB.T; 
 

 

        SI.Angle PhiIn=AxisA.Phi; 
        SI.Angle PhiOut=AxisB.Phi; 
      equation  
 

        der(PhiOut) = der(N*PhiIn); 
        TIn + N*TOut = 0; 
 

        annotation (Icon(graphics={Rectangle( 
                      extent={{-92,-6},{88,6}}, 
                      lineColor={95,95,95}, 
                      lineThickness=0.5, 
                      fillColor={255,255,255}, 
                      fillPattern=FillPattern.Backward)}), 
            Diagram(graphics)); 
 

      end Gearbox; 
    end Basic; 
 

    model BodyFrame1DOF 
      "1 degree of freedom body frame" 
 

      Interfaces.MechanicalAxis TorqueIN annotation ( 
          Placement(transformation(extent={{-110,50},{-90,70}}, 
              rotation=0))); 
      output Interfaces.OutPort V "Vehicle speed" 
        annotation (Placement(transformation(extent={{90,50}, 
                {110,70}}, rotation=0))); 
      input Interfaces.InPort Alpha "Terrain slope" 
        annotation (Placement(transformation(extent={{-110,-50}, 
                {-90,-30}}, rotation=0))); 
      constant SI.Acceleration g=Modelica.Constants.g_n; 
      constant Real pi=Modelica.Constants.pi; 
      parameter SI.Length R(min=0.01) = 0.25 "Wheel radius"; 
      parameter SI.Mass M=1500 "Vehicle mass"; 
      parameter SI.Area Af=2 "Vehicle front area"; 
      parameter Real Cd(min=0) = 0.248 "Vehicle drag coef."; 
      parameter Real Cr(min=0) = 0.01 
        "Tyres rolling resistance coef."; 
      parameter SI.Density rho(displayUnit="kg/m3") = 1.2 
        "Air density"; 
 

      SI.Force F "Powertrain provided force"; 
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      SI.Force Fd "Drag force"; 
      SI.Force Fr "Rolling resistance"; 
      SI.Force Fg "Weight poryected force"; 
      SI.Force Fi "Inertial force"; 
 

    equation  
      Fd = 0.5*Cd*Af*rho*(V^2)*sign(V); 
      Fr = M*g*cos(Alpha*pi/180)*Cr; 
      Fg = M*g*sin(Alpha*pi/180); 
      Fi = M*der(V); 
 

      F - Fd - Fr - Fg - Fi = 0; 
      F = -TorqueIN.T/R; 
      der(TorqueIN.Phi) = V/(2*pi*R); 
 

      annotation (Icon(graphics={Rectangle( 
                  extent={{-100,100},{100,-100}}, 
                  lineColor={0,0,255}, 
                  fillColor={241,241,241}, 
                  fillPattern=FillPattern.Solid),Text( 
                  extent={{-60,100},{60,-20}}, 
                  textColor={0,0,255}, 
                  textString="BODY"),Text( 
                  extent={{-60,40},{60,-80}}, 
                  textColor={0,0,255}, 
                  textString="1 DOF")}), Diagram(graphics)); 
 

 

    end BodyFrame1DOF; 
 

    model Slope 
 

      Interfaces.InPort H "Current Heigth" annotation ( 
          Placement(transformation(extent={{-110,50},{-90,70}}, 
              rotation=0))); 
      Interfaces.OutPort Alpha "Slope" annotation ( 
          Placement(transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
 

      Interfaces.InPort d "Current displacement" 
        annotation (Placement(transformation(extent={{-110,-50}, 
                {-90,-30}}, rotation=0))); 
 

 

    equation  
      when (time > 0) then 
        Alpha = asin(der(H)/der(d)); 
      end when annotation (Diagram(graphics={Text( 
                  extent={{-60,-60},{-80,-40}}, 
                  textColor={28,108,200}, 
                  textString="d"),Text( 
                  extent={{-60,40},{-80,60}}, 
                  textColor={28,108,200}, 
                  textString="H")}), Icon(graphics={ 
              Rectangle( 
                  extent={{-100,100},{100,-100}}, 
                  lineColor={28,108,200}),Line( 
                  points={{-60,-60},{60,-60}}, 
                  color={28,108,200}, 
                  thickness=1, 
                  arrow={Arrow.None,Arrow.Filled}),Line( 
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                  points={{-60,-60},{60,60}}, 
                  color={28,108,200}, 
                  thickness=1, 
                  arrow={Arrow.None,Arrow.Filled}),Line( 
                  points={{60,60},{60,-60}}, 
                  color={28,108,200}, 
                  thickness=1, 
                  arrow={Arrow.Filled,Arrow.None}),Text( 
                  extent={{-14,-32},{-46,-62}}, 
                  textColor={28,108,200}, 
                  textString="α"),Text( 
                  extent={{-80,92},{-100,72}}, 
                  textColor={28,108,200}, 
                  textString="y"),Text( 
                  extent={{-80,-8},{-100,-28}}, 
                  textColor={28,108,200}, 
                  textString="x"),Text( 
                  extent={{20,-62},{0,-82}}, 
                  textColor={28,108,200}, 
                  textString="Δx"),Text( 
                  extent={{82,0},{62,-20}}, 
                  textColor={28,108,200}, 
                  textString="Δy")})); 
    end Slope; 
  end Mechanical; 

 

 

A6. Control 
 
package Control 
    model PID 
 

      Interfaces.OutPort Out annotation (Placement( 
            transformation(extent={{90,8},{110,28}}, 
              rotation=0))); 
      Interfaces.InPort In annotation (Placement( 
            transformation(extent={{-110,-30},{-90,-10}}, 
              rotation=0))); 
      Interfaces.InPort Ref annotation (Placement( 
            transformation(extent={{-110,30},{-90,50}}, 
              rotation=0))); 
 

 

      parameter Boolean LimitOut=false 
        annotation (choices(checkBox=true)); 
      parameter Real Max=0; 
      parameter Real Min=0; 
 

      parameter Boolean DeadZone=false 
        annotation (choices(checkBox=true)); 
      parameter Real eps(min=0) = 1e-9 "Dead zone range"; 
 

      parameter Real K=1; 
      parameter Real I=0; 
      parameter Real D=0; 
 

      parameter Real Smt=1e6 "Smooth factor"; 
 

      Real AuxOut(start=0); 
      Real Error(start=0); 
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      Real IntEr(start=0); 
 

    equation  
      AuxOut = K*Error + D*der(Error) + I*IntEr; 
      Error = Ref - In; 
 

      // DEADZONE 
      if DeadZone == true and noEvent(abs(AuxOut) < eps) 
           then 
        der(Out) = -Smt*Out; 
        der(IntEr) = 0; 
      elseif LimitOut == true then 
        //ANTIWINDUP 
        if noEvent(AuxOut >= Max) then 
          der(Out) = Smt*(Max - Out); 
          der(IntEr) = 0; 
        elseif noEvent(AuxOut <= Min) then 
          der(Out) = Smt*(Min - Out); 
          der(IntEr) = 0; 
        else 
          der(Out) = Smt*(AuxOut - Out); 
          der(IntEr) = Error; 
        end if; 
      else 
        der(Out) = Smt*(AuxOut - Out); 
        der(IntEr) = Error; 
      end if; 
 

      annotation (Icon(graphics={Text( 
              extent={{80,-40},{-80,60}}, 
              textColor={0,0,255}, 
              textString="PID"), Rectangle(extent={{-100,80}, 
                  {100,-60}}, lineColor={0,0,255})}), 
          DymolaStoredErrors); 
 

 

    end PID; 
 

    model PI 
 

      Interfaces.OutPort Out annotation (Placement( 
            transformation(extent={{90,8},{110,28}}, 
              rotation=0))); 
      Interfaces.InPort In annotation (Placement( 
            transformation(extent={{-110,-30},{-90,-10}}, 
              rotation=0))); 
      Interfaces.InPort Ref annotation (Placement( 
            transformation(extent={{-110,30},{-90,50}}, 
              rotation=0))); 
      parameter Real K=1; 
      parameter Real I=0; 
      Real Error; 
      Real IntEr(start=0); 
 

 

 

    initial equation  
      IntEr = 0; 
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    equation  
      Out = K*Error + I*IntEr; 
      Error = Ref - In; 
      der(IntEr) = Error; 
 

      annotation (Icon(graphics={Text( 
              extent={{80,-40},{-80,60}}, 
              textColor={0,0,255}, 
              textString="PI"), Rectangle(extent={{-100,80}, 
                  {100,-60}}, lineColor={0,0,255})}), 
          DymolaStoredErrors); 
 

    end PI; 
 

  end Control; 

 

 

A7. Sensors 
 
package Sensors 
    model Vsensor 
 

      EPowertrain.Interfaces.PosPin p annotation (Placement( 
            transformation(extent={{-110,-10},{-90,10}}, 
              rotation=0))); 
      EPowertrain.Interfaces.PosPin n annotation (Placement( 
            transformation(extent={{90,-10},{110,10}}, 
              rotation=0))); 
 

      Modelica.Units.SI.Voltage v; 
      Interfaces.OutPort outPort annotation (Placement( 
            transformation( 
            origin={0,100}, 
            extent={{-10,-10},{10,10}}, 
            rotation=90))); 
    equation  
      p.i = 0; 
      n.i = 0; 
      v = p.v - n.v; 
      outPort = v; 
      annotation (Diagram(graphics), Icon(graphics={ 
            Rectangle( 
              extent={{-74,6},{-34,-6}}, 
              lineColor={0,0,0}, 
              lineThickness=1, 
              fillColor={0,0,0}, 
              fillPattern=FillPattern.Solid), 
            Rectangle( 
              extent={{-60,20},{-48,-20}}, 
              lineColor={0,0,0}, 
              lineThickness=1, 
              fillColor={0,0,0}, 
              fillPattern=FillPattern.Solid), 
            Rectangle( 
              extent={{68,20},{54,-20}}, 
              lineColor={0,0,0}, 
              lineThickness=1, 
              fillColor={0,0,0}, 
              fillPattern=FillPattern.Solid), 
            Ellipse(extent={{-80,80},{80,-80}}, lineColor={0, 
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                  0,0})})); 
    end Vsensor; 
 

    model AxialSpeed 
 

      Interfaces.MechanicalAxis Axis_In annotation ( 
          Placement(transformation(extent={{-10,90},{10,110}}, 
              rotation=0))); 
      Interfaces.MechanicalAxis Axis_Out annotation ( 
          Placement(transformation(extent={{-10,-110},{10,-90}}, 
              rotation=0))); 
      Interfaces.OutPort Wm annotation (Placement( 
            transformation(extent={{90,70},{110,90}}, 
              rotation=0))); 
      Interfaces.OutPort Th_m annotation (Placement( 
            transformation(extent={{90,-50},{110,-30}}, 
              rotation=0))); 
      Interfaces.OutPort We annotation (Placement( 
            transformation(extent={{90,32},{110,52}}, 
              rotation=0))); 
      Interfaces.OutPort Th_e annotation (Placement( 
            transformation(extent={{90,-90},{110,-70}}, 
              rotation=0))); 
      parameter Integer N(min=1) "Pole pairs"; 
      constant Real pi=Constant.pi; 
 

 

 

    equation  
 

      Th_e = N*Axis_In.Phi; 
      Th_m = Axis_In.Phi; 
 

      when (Th_e >= 2*pi) then 
        reinit(Th_e, 0); 
      end when; 
 

 

      Wm = der(Th_e); 
      We = der(Th_m); 
      connect(Axis_In, Axis_Out) annotation (Line(points={{0, 
              100},{0,-100}}, color={0,0,255})); 
      annotation ( 
        Icon(graphics={ 
            Rectangle( 
              extent={{-100,100},{100,-100}}, 
              lineColor={0,0,255}, 
              fillColor={255,255,255}, 
              fillPattern=FillPattern.Solid), 
            Text( 
              extent={{20,110},{80,50}}, 
              textColor={0,0,255}, 
              textString="Wm"), 
            Text( 
              extent={{20,-10},{80,-70}}, 
              textColor={0,0,255}, 
              textString="Th_m"), 
            Text( 
              extent={{22,72},{82,12}}, 
              textColor={0,0,255}, 
              textString="We"), 
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            Text( 
              extent={{22,-48},{82,-108}}, 
              textColor={0,0,255}, 
              textString="Th_e"), 
            Rectangle(extent={{-92,100},{-98,100}}, 
                lineColor={28,108,200})}), 
        Diagram(graphics), 
        DymolaStoredErrors); 
 

    end AxialSpeed; 
 

    model CurrentSensor 
 

      Interfaces.PosPin P annotation (Placement( 
            transformation(extent={{-110,-10},{-90,10}}, 
              rotation=0))); 
      Interfaces.NegPin N annotation (Placement( 
            transformation(extent={{90,-12},{110,8}}, 
              rotation=0))); 
      Interfaces.OutPort Imeas annotation (Placement( 
            transformation(extent={{-10,88},{10,108}}, 
              rotation=0))); 
 

 

    equation  
      P.v = N.v; 
      N.i = Imeas; 
      P.i + N.i = 0; 
      annotation ( 
        Icon(graphics={ 
            Ellipse( 
              extent={{-60,60},{60,-62}}, 
              lineColor={0,0,0}, 
              lineThickness=0.5), 
            Text( 
              extent={{-40,40},{40,-40}}, 
              textColor={0,0,0}, 
              textString="A"), 
            Line( 
              points={{-90,0},{-60,0}}, 
              color={0,0,0}, 
              thickness=0.5), 
            Line( 
              points={{60,0},{90,0}}, 
              color={0,0,0}, 
              thickness=0.5), 
            Line( 
              points={{0,86},{0,60}}, 
              color={0,0,0}, 
              pattern=LinePattern.Dash, 
              thickness=0.5)}), 
        DymolaStoredErrors, 
        Diagram(graphics)); 
 

 

    end CurrentSensor; 
 

    model Encoder 
 

      Interfaces.MechanicalAxis Axis_In annotation ( 
          Placement(transformation(extent={{-10,90},{10,110}}, 
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              rotation=0))); 
      Interfaces.MechanicalAxis Axis_Out annotation ( 
          Placement(transformation(extent={{-10,-110},{10,-90}}, 
              rotation=0))); 
      Interfaces.OutPort Th_m annotation (Placement( 
            transformation(extent={{90,40},{110,60}}, 
              rotation=0))); 
      Interfaces.OutPort Th_e annotation (Placement( 
            transformation(extent={{90,-60},{110,-40}}, 
              rotation=0))); 
      parameter Integer N(min=1) "Pole pairs"; 
      constant Real pi=Constant.pi; 
 

      Real Th_e_raw; 
      Real Th_m_raw; 
 

 

      Real Th_e_event(start=0); 
      Real Th_m_event(start=0); 
 

    equation  
 

      Th_m_raw = Axis_In.Phi; 
      Th_e_raw = N*Axis_In.Phi; 
 

 

      Th_m_event = Th_m_raw; 
      Th_e_event = Th_e_raw; 
 

 

      Th_e = smooth(1, Th_e_event); 
      Th_m = smooth(1, Th_m_event); 
 

      connect(Axis_In, Axis_Out) annotation (Line(points={{0, 
              100},{0,-100}}, color={0,0,255})); 
      annotation ( 
        Icon(graphics={ 
            Rectangle(extent={{-100,100},{100,-100}}, 
                lineColor={0,0,255}), 
            Text( 
              extent={{-80,100},{20,0}}, 
              textColor={0,0,255}, 
              textString="Th_m"), 
            Text( 
              extent={{-80,0},{20,-100}}, 
              textColor={0,0,255}, 
              textString="Th_e")}), 
        Diagram(graphics={Rectangle( 
                  extent={{-100,100},{100,-100}}, 
                  lineColor={28,108,200})}), 
        DymolaStoredErrors); 
 

    end Encoder; 
  end Sensors; 

 

 

A8. Examples 
 

 
package Examples 
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    model UDDS_Cycle 
      "Example experiment under UDDS drive cycle" 
      Electrical.Devices.Converters.ElectricConverter 
        electricConverter annotation (Placement( 
            transformation(extent={{194,-24},{214,-4}}))); 
      Mechanical.BodyFrame1DOF bodyFrame1DOF( 
        M=1500, 
        Af=2.2, 
        Cd=0.29, 
        Cr=0.009, 
        rho=1.2) annotation (Placement(transformation( 
              extent={{326,-84},{346,-64}}))); 
      Electrical.Sources.Ground ground2 annotation ( 
          Placement(transformation(extent={{234,-74},{254,-54}}))); 
      Electrical.Sources.Ground ground1 annotation ( 
          Placement(transformation(extent={{128,-60},{148,-40}}))); 
      Control.PID pID( 
        LimitOut=false, 
        Max=1, 
        Min=-1, 
        K=20, 
        I=0.1) annotation (Placement(transformation(extent={ 
                {132,4},{152,24}}))); 
      Sources.UDDS uDDS annotation (Placement( 
            transformation(extent={{2,22},{22,42}}))); 
      Modelica.Blocks.Math.Gain mph_to_ms(k=0.44704) 
        annotation (Placement(transformation(extent={{62,22}, 
                {82,42}}))); 
      Sources.Constant Constant(Value=0) annotation ( 
          Placement(transformation(extent={{268,-90},{288,-70}}))); 
      Electrical.Sources.Battery battery( 
        Cap=30, 
        Vd=300, 
        Vf=420, 
        InitSOC=0.8) annotation (Placement(transformation( 
              extent={{108,-34},{128,-14}}))); 
      Electrical.Devices.Machines.DCMotor dCMotor_2_1( 
        Rm=0.025, 
        Lm=1e-3, 
        Ke=1.4, 
        Kt=1.4) annotation (Placement(transformation( 
            extent={{-10,-10},{10,10}}, 
            rotation=0, 
            origin={306,-16}))); 
    equation  
      connect(ground2.p, electricConverter.N_Out) 
        annotation (Line(points={{244,-54},{244,-36},{222,-36}, 
              {222,-20},{214,-20}}, color={0,0,255})); 
      connect(pID.Out, electricConverter.DutyCycle) 
        annotation (Line(points={{152,15.8},{204,15.8},{204, 
              -4}}, color={0,0,0})); 
      connect(uDDS.y, mph_to_ms.u) annotation (Line(points={ 
              {23,32},{60,32}}, color={0,0,127})); 
      connect(mph_to_ms.y, pID.Ref) annotation (Line(points 
            ={{83,32},{114,32},{114,18},{132,18}}, color={0, 
              0,127})); 
      connect(bodyFrame1DOF.V, pID.In) annotation (Line( 
            points={{346,-68},{360,-68},{360,-66},{374,-66}, 
              {374,-98},{48,-98},{48,12},{132,12}}, color={0, 
              0,0})); 
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      connect(Constant.Out, bodyFrame1DOF.Alpha) 
        annotation (Line(points={{288,-79.8},{320,-79.8},{320, 
              -78},{326,-78}}, color={0,0,0})); 
      connect(battery.posPin, electricConverter.P_In) 
        annotation (Line(points={{118,-14},{118,-8},{194,-8}}, 
            color={0,0,255})); 
      connect(battery.negPin, ground1.p) annotation (Line( 
            points={{118,-34},{118,-68},{154,-68},{154,-34}, 
              {138,-34},{138,-40}}, color={0,0,255})); 
      connect(battery.negPin, electricConverter.N_In) 
        annotation (Line(points={{118,-34},{118,-68},{154,-68}, 
              {154,-20},{194,-20}}, color={0,0,255})); 
      connect(electricConverter.P_Out, dCMotor_2_1.Vp) 
        annotation (Line(points={{214,-8},{290,-8},{290,-10}, 
              {296.2,-10}}, color={0,0,255})); 
      connect(electricConverter.N_Out, dCMotor_2_1.Vn) 
        annotation (Line(points={{214,-20},{222,-20},{222,-36}, 
              {290,-36},{290,-22},{296,-22}}, color={0,0,255})); 
      connect(dCMotor_2_1.Rotor, bodyFrame1DOF.TorqueIN) 
        annotation (Line(points={{316,-16},{316,-68},{326,-68}}, 
            color={0,0,255})); 
      annotation ( 
        experiment( 
          StopTime=1400, 
          __Dymola_NumberOfIntervals=50000, 
          Tolerance=0.01, 
          __Dymola_Algorithm="Dassl"), 
        Diagram(coordinateSystem(extent={{-100,-200},{580,100}})), 
        Icon(coordinateSystem(extent={{-100,-200},{580,100}}))); 
    end UDDS_Cycle; 
 

    model Trip "Example experiment" 
      Electrical.Devices.Converters.ElectricConverter 
        electricConverter annotation (Placement( 
            transformation(extent={{196,-24},{216,-4}}))); 
      Mechanical.BodyFrame1DOF bodyFrame1DOF( 
        R=0.29, 
        M=1280, 
        Af=2.38, 
        Cd=0.29, 
        Cr=0.0084, 
        rho=1.225) annotation (Placement(transformation( 
              extent={{324,-30},{344,-10}}))); 
      Electrical.Sources.Ground ground2 annotation ( 
          Placement(transformation(extent={{222,-60},{242,-40}}))); 
      Electrical.Sources.Ground ground1 annotation ( 
          Placement(transformation(extent={{114,-66},{134,-46}}))); 
      Control.PID Driver( 
        LimitOut=true, 
        Max=1, 
        Min=-0.5, 
        K=0.5, 
        I=0.005, 
        D=0.1, 
        Out(start=1)) annotation (Placement(transformation( 
              extent={{132,4},{152,24}}))); 
      Modelica.Blocks.Sources.CombiTimeTable Cycle(table= 
            fill(0.0, 0, 2)) annotation (Placement( 
            transformation(extent={{-60,8},{-40,28}}))); 
      Electrical.Sources.Battery battery( 
        Cap=60, 
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        Vd=335, 
        Vf=360, 
        InitSOC=0.869, 
        Rs=0.06, 
        Imax=400) annotation (Placement(transformation( 
              extent={{114,-32},{134,-12}}))); 
      Modelica.Blocks.Math.Gain kph2ms(k=1/3.6) annotation 
        (Placement(transformation(extent={{20,8},{40,28}}))); 
      SignalRouting.Terminator DataSOC annotation ( 
          Placement(transformation(extent={{20,-20},{40,0}}))); 
      Mechanical.Slope slope annotation (Placement( 
            transformation(extent={{254,-106},{274,-86}}))); 
      Modelica.Blocks.Continuous.Integrator integrator 
        annotation (Placement(transformation( 
            extent={{-10,-10},{10,10}}, 
            rotation=180, 
            origin={338,-124}))); 
      SignalRouting.Terminator DataIbatt annotation ( 
          Placement(transformation(extent={{20,-40},{40,-20}}))); 
      SignalRouting.Terminator DataTorque annotation ( 
          Placement(transformation(extent={{20,-60},{40,-40}}))); 
      Mechanical.Basic.Gearbox gearbox1(N=1/6) annotation ( 
          Placement(transformation(extent={{288,-24},{308,-4}}))); 
      Electrical.Basic.Resistance RLoad(R=80.4765) 
        annotation (Placement(transformation( 
            extent={{-9,-10},{9,10}}, 
            rotation=90, 
            origin={185,-44}))); 
      Electrical.Devices.Machines.DCMotor dCMotor( 
        Rm=1.72, 
        Lm=106.26e-6, 
        Ke=0.7144, 
        Kt=0.72, 
        bm=5e-4, 
        J=31e-3) annotation (Placement(transformation( 
            extent={{-10,-10},{10,10}}, 
            rotation=0, 
            origin={260,-14}))); 
    equation  
      connect(dCMotor.Vp, electricConverter.P_Out) 
        annotation (Line(points={{250.2,-8},{216,-8}}, 
            color={0,0,255})); 
      connect(ground2.p, electricConverter.N_Out) 
        annotation (Line(points={{232,-40},{232,-20},{216,-20}}, 
            color={0,0,255})); 
      connect(Driver.Out, electricConverter.DutyCycle) 
        annotation (Line(points={{152,15.8},{206,15.8},{206, 
              -4}}, color={0,0,0})); 
      connect(dCMotor.Vn, electricConverter.N_Out) 
        annotation (Line(points={{250,-20},{216,-20}}, 
            color={0,0,255})); 
      connect(bodyFrame1DOF.V, Driver.In) annotation (Line( 
            points={{344,-14},{358,-14},{358,-68},{102,-68}, 
              {102,12},{132,12}}, color={0,0,0})); 
      connect(battery.posPin, electricConverter.P_In) 
        annotation (Line(points={{124,-12},{124,-8},{196,-8}}, 
            color={0,0,255})); 
      connect(battery.negPin, ground1.p) annotation (Line( 
            points={{124,-32},{124,-46}}, color={0,0,255})); 
      connect(battery.negPin, electricConverter.N_In) 
        annotation (Line(points={{124,-32},{124,-36},{154,-36}, 
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              {154,-20},{196,-20}}, color={0,0,255})); 
      connect(kph2ms.y, Driver.Ref) annotation (Line(points 
            ={{41,18},{132,18}}, color={0,0,127})); 
      connect(Cycle.y[1], kph2ms.u) annotation (Line(points 
            ={{-39,18},{18,18}}, color={0,0,127})); 
      connect(DataSOC.inPort, Cycle.y[7]) annotation (Line( 
            points={{19.8,-10},{-32,-10},{-32,18},{-39,18}}, 
            color={0,0,0})); 
      connect(slope.Alpha, bodyFrame1DOF.Alpha) annotation 
        (Line(points={{274,-96},{310,-96},{310,-24},{324,-24}}, 
            color={0,0,0})); 
      connect(Cycle.y[2], slope.H) annotation (Line(points={ 
              {-39,18},{-32,18},{-32,-90},{254,-90}}, color 
            ={0,0,127})); 
      connect(integrator.y, slope.d) annotation (Line( 
            points={{327,-124},{248,-124},{248,-100},{254,-100}}, 
            color={0,0,127})); 
      connect(integrator.u, bodyFrame1DOF.V) annotation ( 
          Line(points={{350,-124},{358,-124},{358,-14},{344, 
              -14}}, color={0,0,127})); 
      connect(DataIbatt.inPort, Cycle.y[6]) annotation ( 
          Line(points={{19.8,-30},{-32,-30},{-32,18},{-39,18}}, 
            color={0,0,0})); 
      connect(DataTorque.inPort, Cycle.y[4]) annotation ( 
          Line(points={{19.8,-50},{-32,-50},{-32,18},{-39,18}}, 
            color={0,0,0})); 
      connect(dCMotor.Rotor, gearbox1.AxisA) annotation ( 
          Line(points={{270,-14},{287.8,-14}}, color={0,0,255})); 
      connect(gearbox1.AxisB, bodyFrame1DOF.TorqueIN) 
        annotation (Line(points={{307.8,-14},{324,-14}}, 
            color={0,0,255})); 
      connect(RLoad.n, electricConverter.P_In) annotation ( 
          Line(points={{185,-35},{185,-8},{196,-8}}, color={ 
              0,0,255})); 
      connect(RLoad.p, electricConverter.N_In) annotation ( 
          Line(points={{185,-53},{154,-53},{154,-36},{152,-36}, 
              {152,-20},{196,-20}}, color={0,0,255})); 
      annotation ( 
        experiment( 
          StopTime=1000, 
          Tolerance=1e-05, 
          __Dymola_Algorithm="Dassl"), 
        Diagram(coordinateSystem(extent={{-100,-200},{580,100}}), 
            graphics={Text( 
                  extent={{-94,30},{-60,8}}, 
                  textColor={28,108,200}, 
                  horizontalAlignment=TextAlignment.Left, 
                  textString="output: 
1 Vel[kph] 
2 Elevation[m] 
3 Throtle [-] 
4 Torque [Nm] 
5 V batt [V] 
6 I batt [A] 
7 SoC [%]"),Text( extent={{364,-26},{370,-34}}, 
                  textColor={28,108,200}, 
                  textString="V"),Text( 
                  extent={{262,-128},{304,-136}}, 
                  textColor={28,108,200}, 
                  textString="Displacement"),Text( 
                  extent={{276,-80},{308,-90}}, 
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                  textColor={28,108,200}, 
                  textString="Slope"),Text( 
                  extent={{70,30},{82,20}}, 
                  textColor={28,108,200}, 
                  textString="Vref"),Text( 
                  extent={{42,-8},{54,-18}}, 
                  textColor={28,108,200}, 
                  textString="SoC"),Text( 
                  extent={{42,-26},{54,-36}}, 
                  textColor={28,108,200}, 
                  textString="Ibatt"),Text( 
                  extent={{40,-46},{60,-58}}, 
                  textColor={28,108,200}, 
                  textString="Torque"),Text( 
                  extent={{176,-78},{218,-86}}, 
                  textColor={28,108,200}, 
                  textString="Height")}), 
        Icon(coordinateSystem(extent={{-100,-200},{580,100}}))); 
    end Trip; 
 

    model DCMotor 
      Electrical.Devices.Machines.DCMotor Moments( 
        Rm=30.9, 
        Lm=0.803, 
        Ke=1.323, 
        Kt=1.323, 
        bm=0.0005, 
        J=0.0031) annotation (Placement(transformation( 
              extent={{30,2},{50,22}}))); 
      Electrical.Sources.VStep vStep( 
        St=0.5, 
        v0=60, 
        vf=248) annotation (Placement(transformation( 
            extent={{-9,-10},{9,10}}, 
            rotation=270, 
            origin={-75,30}))); 
      Electrical.Sources.Ground ground annotation ( 
          Placement(transformation(extent={{-64,-24},{-44,-4}}))); 
      Electrical.Devices.Machines.DCMotor Pasek( 
        Rm=30.9, 
        Lm=0.438, 
        Ke=1.323, 
        Kt=1.323, 
        bm=0.0005, 
        J=0.0036) annotation (Placement(transformation( 
              extent={{-22,66},{-2,86}}))); 
    equation  
      connect(vStep.n, Moments.Vn) annotation (Line(points={ 
              {-75,21},{-76,21},{-76,4},{-72,4},{-72,6},{30, 
              6}}, color={0,0,255})); 
      connect(vStep.p, Moments.Vp) annotation (Line(points={ 
              {-75,39},{-76,39},{-76,48},{6,48},{6,18},{30.2, 
              18}}, color={0,0,255})); 
      connect(ground.p, Moments.Vn) annotation (Line(points 
            ={{-54,-4},{-54,6},{30,6}}, color={0,0,255})); 
      connect(Pasek.Vp, vStep.p) annotation (Line(points={{-21.8, 
              82},{-75,82},{-75,39}}, color={0,0,255})); 
      connect(Pasek.Vn, vStep.n) annotation (Line(points={{-22, 
              70},{-26,70},{-26,6},{-72,6},{-72,4},{-76,4},{ 
              -76,21},{-75,21}}, color={0,0,255})); 
      annotation ( 
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        Icon(coordinateSystem(preserveAspectRatio=false)), 
        Diagram(coordinateSystem(preserveAspectRatio=false)), 
        experiment(__Dymola_Algorithm="Dassl")); 
    end DCMotor; 
 

  end Examples
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