

Universidad Nacional

de Educación a Distancia

Escuela Técnica Superior de

Ingeniería Informática

Universidad

Complutense de Madrid

Facultad de Informática

ELECTRIC POWERTRAIN MODELING
IN MODELICA

Samuel Rodrigo Rubio

Director: Alfonso Urquía Moraleda

Co-director: José Manuel Díaz Martínez

Trabajo de Fin de Máster

Máster Universitario

en Ingeniería de Sistemas y de Control

Curso 2024/2025, convocatoria ordinaria

Master’s Degree Thesis

Master’s Degree in Systems and Control Engineering

ELECTRIC POWERTRAIN MODELING
IN MODELICA

Type B Project

Specific project proposed by student

Thesis presented by

Samuel Rodrigo Rubio

Under the supervision of

Alfonso Urquía Moraleda

José Manuel Díaz Martínez

Autorización

Autorizamos a la Universidad Complutense y a la UNED a difundir y utilizar con fines académicos, no

comerciales y mencionando expresamente a sus autores, tanto la memoria de este Trabajo Fin de Máster,

como el código, la documentación y/o el prototipo desarrollado.

 Firmado: Samuel Rodrigo Rubio

Abstract

In recent years, the rise of electric mobility has significantly boosted the

development of electric vehicles (EVs) and their main components. Among

them, the battery stands out as one of the most critical elements, as it

directly affects key parameters such as range, charging speed and system

lifetime.

To advance in the design and optimisation of these vehicles, it is essential to

have simulation tools to analyse the energy behaviour of the system under

different driving conditions. These tools reduce the need for physical

prototypes and allow configurations to be evaluated quickly and at low cost.

Existing libraries and tools in simulation environments such as Modelica

offer general electrical components or detailed motor models, but in many

cases lack a unified, flexible framework specifically oriented to the

simulation of complete EV powertrains.

This thesis presents the EPowertrain library, a modular and reusable Modelica-

based library designed to simulate the energy behaviour of electric powertrains

under standardised and real-world driving cycles. The library includes

configurable models for the main electrical components (battery, DC motor,

converter, control blocks), and is focused on lithium-ion powered electric

passenger cars. Its architecture is optimised for fast yet realistic simulations,

aiming to support research, education, and early-stage development.

The library's performance has been validated through simulations using both the

UDDS driving cycle and experimental data from real-world trips of a BMW i3.

Results confirm its suitability for analysing energy consumption, comparing

configurations, and evaluating the impact of control strategies in a physically

consistent and computationally efficient environment.

Keywords: Modelica, Electric Vehicles, Energy Simulation, Battery

Consumption, EPowertrain Library

Resumen

En los últimos años, el auge de la movilidad eléctrica ha impulsado

notablemente el desarrollo de los vehículos eléctricos (VE) y de sus

principales componentes. Entre ellos, destaca la batería como uno de los

elementos más críticos, ya que afecta directamente a parámetros clave como

la autonomía, la velocidad de carga y la vida útil del sistema.

Para avanzar en el diseño y optimización de estos vehículos, es fundamental

disponer de herramientas de simulación que permitan analizar el

comportamiento energético del sistema en diferentes condiciones de

conducción. Estas herramientas reducen la necesidad de prototipos físicos y

permiten evaluar configuraciones rápidamente y a bajo coste.

Las librerías y herramientas existentes en entornos de simulación como

Modelica ofrecen componentes eléctricos generales o modelos detallados de

motores, pero en muchos casos carecen de un marco unificado y flexible

orientado específicamente a la simulación de cadenas cinemáticas completas

de VE.

Esta tesis presenta la librería EPowertrain, una librería modular y reutilizable

basada en Modelica diseñada para simular el comportamiento energético de

las cadenas cinemáticas eléctricas bajo ciclos de conducción estandarizados y

reales. La biblioteca incluye modelos configurables para los principales

componentes eléctricos (batería, motor de corriente continua, convertidor,

bloques de control), y se centra en turismos eléctricos alimentados con iones

de litio. Su arquitectura está optimizada para realizar simulaciones rápidas

pero realistas, con el objetivo de apoyar la investigación, la educación y el

desarrollo en fases tempranas.

El rendimiento de la biblioteca se ha validado mediante simulaciones que

utilizan tanto el ciclo de conducción UDDS como datos experimentales de

viajes reales de un BMW i3. Los resultados confirman su idoneidad para

analizar el consumo de energía, comparar configuraciones y evaluar el

impacto de las estrategias de control en un entorno físicamente consistente y

computacionalmente eficiente.

Palabras clave: Modelica, Vehículos Eléctricos, Simulación Energética,

Consumo de Baterías, Biblioteca EPowertrain.

X

Contents

Abstract

Resumen

Contents ... X

Figures .. XIV

Tables .. XV

Glossary .. XVI

1 Introduction, Goals and Structure ... 1

1.1 Introduction .. 1

1.2 Goals .. 2

1.3 Document Structure ... 3

2 State of the Art .. 5

2.1 Introduction .. 5

2.2 Multi-domain Physical Modeling in Acausal Environments 6

2.3 Relevant Modelica Libraries .. 8

2.3.1 Electric Powertrain Modeling ... 12

2.3.2 Battery Modeling ... 13

2.4 Alternative Tools ... 16

2.4.1 Simulation Tools Considered .. 16

2.4.2 Physical Modeling Capabilities and Multi-Domain Approach 18

2.4.3 Simulation Precision and Performance ... 21

2.4.4 Compatibility, Integration and Standards .. 23

2.4.5 Computational Performance and Scalability 26

2.5 Modelica and its Alternatives .. 29

2.6 Conclusions .. 31

3 Modeling of the Electric Powertrain .. 33

3.1 Introduction .. 33

3.2 System Overview ... 33

3.3 DC Motor .. 35

3.4 Voltage Regulator .. 36

3.5 Battery Model .. 37

3.6 Body Frame Model .. 38

3.7 Conclusions .. 40

 Contents

XI

4 The EPowertrain Modelica Library .. 41

4.1 Introduction .. 41

4.2 Library Structure .. 41

4.3 Interfaces .. 43

4.4 SignalRouting .. 43

4.5 Sources .. 44

4.6 Electrical .. 44

4.6.1 Battery ... 45

4.6.2 ElectricConverter... 47

4.6.3 DCMotor ... 48

4.7 Mechanical .. 49

4.7.1 Wheel .. 49

4.7.2 BodyFrame1DOF .. 51

4.7.3 Slope .. 52

4.8 Control .. 53

4.9 Sensors .. 57

4.9.1 Vsensor – Electrical Voltage Sensor ... 57

4.9.2 CurrentSensor – Electric Current Sensor .. 57

4.9.3 AxialSpeed – Angular Position and Velocity Sensor 58

4.10 Interfaces and Interoperability ... 59

4.11 Conclusions .. 60

5 EPowertrain Library Validation ... 61

5.1 Introduction .. 61

5.2 Validation of Individual Components ... 61

5.2.1 DC Motor .. 61

5.2.2 Battery ... 63

5.2.3 Electric Converter.. 67

5.3 UDDS Cycle .. 70

5.4 Real Driving Cycle Data .. 73

5.5 Simulation Result ... 75

5.5.1 Variables Usually Compared... 75

5.5.2 Accuracy Levels and Tolerable Deviations... 76

5.5.3 Results Analysis .. 77

5.6 Conclusions .. 80

6 Conclusions and Future Work .. 81

6.1 Conclusions .. 81

6.2 Future Work .. 82

Bibliography .. 84

 Contents

XII

Appendix A - The EPowertrain Modelica Library 88

A1. Interfaces .. 89

A2. SignalRouting .. 93

A3. Sources ... 101

A4. Electrical .. 105

A5. Mechanical ... 127

A6. Control ... 132

A7. Sensors ... 134

A8. Examples .. 137

Appendix B – EPowertrain Library Documentation 144

XIV

Figures

Figure 2.1: Permanent Magnet, DC Machine MSL Model. ... 11
Figure 2.2: Modelica's VehicleInterfaces Library [6]. .. 17
Figure 3.1: Typical EV Power Flows. .. 35
Figure 4.1: EPowertrain Library Main Structure. ... 43
Figure 4.2: Interfaces Package Composition. .. 43
Figure 4.3: SignalRouting Package Structure. .. 44
Figure 4.4: Sources Package Models. .. 44
Figure 4.5: Electrical Package Components. .. 45
Figure 4.6: Battery Model Component Diagram. .. 46
Figure 4.7: Battery Model Parametrization Interface. .. 46
Figure 4.8: ElectricConverter Implementation in Modelica. ... 47
Figure 4.9: DC Motor Modelica Implementation. ... 48
Figure 4.10: BackEMF Submodel Source Code. ... 48
Figure 4.11: Mechanical Subpackage Modules. .. 49
Figure 4.12: Wheel Model Lineal Inertia Force. ... 50
Figure 4.13: Wheel Model Source Code. ... 51
Figure 4.14: BodyFrame1DOF Forces Distribution. .. 52
Figure 4.15: BodyFrame1DOF Source Code. ... 52
Figure 4.16: Slope Source Code... 53
Figure 4.17: Slope Angle Representation... 53
Figure 4.18: Control Package Module... 53
Figure 4.19: PID Controller Modelica Implementation. ... 56
Figure 4.20: PID Block Interface. .. 56
Figure 4.21: Sensors Package Components. .. 57
Figure 4.22: Vsensor Source Code. ... 57
Figure 4.23: CurrentSensor Source Code. ... 58
Figure 4.24: AxialSpeed Source Code. .. 59
Figure 5.1: Modelica Results of Pasek and Moments Estimated Model Simulations. ... 62
Figure 5.2: TripB14 Battery Dataset. From Top to Bottom: Soc, Voltage, Current

Consumption. .. 63
Figure 5.3: Battery Parameter Estimation. From Top to Bottom: Series Resistance,

Parallel Resistance, Parallel Capacitance. .. 65
Figure 5.4: Battery Data and Simulation Comparison. From Top to Bottom: SoC,

Current Consumption, Battery Voltage. ... 66
Figure 5.5: DC Converter Test Layout. ... 68
Figure 5.6: DC Converter and Motor Response to Square Velocity Reference. 69
Figure 5.7: DC Converter and Motor Response to Sine Velocity Reference. 69
Figure 5.8: Test Layout of the UDDS Cycle Experiment. .. 70
Figure 5.9: Results of the UDDS_Cycle Model. From Top to Bottom: Speed Tracking,

Motor Torque, SOC, Battery Current, SoC Variation, Converter Energy

Balance. .. 72
Figure 5.10: Battery Current Data vs Simulation. ... 78
Figure 5.11: Simulated vs Data State of Charge. .. 78
Figure 5.12: Simulated vs Data Torque. .. 79
Figure 5.13: TripA01 Simulation Results. .. 79

XV

Tables

Table 2.1: Comparison Between Acausal and Causal Modeling Approaches. 8

Table 2.2: Summary Comparison of Modelica and Main Alternative Tools. 32

Table 3.1: DC Motor Parameters. ... 36

Table 3.2: Voltage Regulator Parameters. ... 37

Table 3.3: Battery Model Parameters. ... 38

Table 3.4: Body Frame Model Parameters. ... 39

Table 5.1: Comparison of DC Motor Parameters Identified by Pasek's Method and

Moments Method. ... 62

Table 5.2: Battery Parameter Estimation... 65

Table 5.3: Battery Simulation Parameters. .. 67

Table 5.4: DC Converter Validation Experiment Parameters. 68

Table 5.5: UDDS Experiment Parameters. .. 71

Table 5.6: TripA01 Experiment Parametrization. .. 75

XVI

Glossary

0D Zero-Dimensional Model

1D One-Dimensional Model

1DOF One Degree of Freedom Model

2D Two-Dimensional Model

3D Three-Dimensional Model

AC Alternating Current

AMS Analog Mixed Signal

API Application Programming Interface

ARC Accelerated Rate Calorimetry

AWD All Wheels Drive

BDF Backward Differentiation Formula

BMS Battery Management System

CAD Computer Assisted Design

CAE Computer-Aided Engineering

CFD Computational Fluid Dynamics

DAE Differential-Algebraic Equations

DASSL Differential Algebraic System Solver

DC Direct Current

DFN Doyle-Fuller-Newman Model

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Cerospace

Center)

DOE Design of Experiments

DOF Degree of Freedom

ECU Electronic Control Unit

EES Electric eEnergy Storage

EHM Electrochemical-Hydraulic Model

EMF ElectroMagnetic Field

EMS Energy Management Strategy

EV Electrical Vehicle

FEM Finite Element Model

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

FPGA Field Programmable Gate Arrays

HIL Hardware In the Loop

IDA Implicit Differential Algebraic Equations System Solver

IoT Internet of Things

MCU Motor Control Unit

MSL Modelica Standard Library

NEDC New European Driving Cycle

NMPC Non Lineal Predictive Control

OCV Open-Circuit Voltage

ODE Ordinary Differential Equation

OEM Original Equipment Manufacturer

PID Proportional Integral and Derivative Controller

Glossary

XVII

PMDC Permanent-Magnet DC Motor

PMSM Permanent-magnet, Synchronous Motor

PWM Pulse Width Modulation

RC Resistance-Capacitor Model

Rint Internal Resistance Model

ROM Reduced Order Model

SOC State of Charge

SPICE Software Process Improvement Capability Determination

TR Thermal Runaway

UDDS Urban Dynamometer Driving Schedule

VHDL Very High-Speed Hardware Description Language

WLTP World Harmonized Light-duty Vehicle Test Procedure

1

1 Introduction, Goals and Structure

1.1 Introduction

The increasing awareness about climate change, the need to reduce greenhouse gas

emissions and the search for greater energy efficiency have driven the development of

alternatives to fossil-fuelled vehicles. In this context, electric vehicles (EVs) have

established themselves as a viable solution for moving towards a more sustainable

mobility model.

However, the energy performance of these vehicles still presents significant challenges,

especially in terms of range, recharging times and battery degradation. These limitations

are related to the design and operation of the electric powertrain, which is the system

responsible for transforming the electrical energy stored in the battery into useful

movement on the wheels.

A typical electric powertrain in a battery-powered vehicle is composed of the following

main subsystems:

• A battery (in this case lithium-ion), which acts as the energy source.

• A power converter (DC-DC or inverter), which adapts the voltage and current

required for the motor.

• An electric motor (DC or AC), which converts electrical energy into mechanical

energy.

• And the corresponding control systems, which manage traction, regenerative

braking and overall system efficiency.

Compared to internal combustion engine (ICE) vehicles, EVs have an architecture that

is mechanically simpler but much more dependent on power electronics and optimised

energy management. The overall system efficiency therefore depends on multiple

interrelated factors, such as control strategy, powertrain topology and driving

conditions.

To evaluate and optimise these systems, simulation tools play a key role. They allow

exploring alternative configurations, validating control algorithms and estimating

energy consumption under standardised (such as WLTP or UDDS) or real driving

cycles, all without the costs associated with building physical prototypes.

However, the existing libraries in Modelica, although powerful, often offer isolated or

too general component models, without a structured and modular framework

specifically oriented to the energy analysis of complete electric vehicle powertrains.

1. Introduction, Goals and Structure

2

This project responds to this need by developing EPowertrain, a modular and reusable

library implemented in Modelica, designed to simulate the energy behaviour of an

electric vehicle of the passenger car type, powered by a lithium-ion battery. The library

has been designed to facilitate the design, validation, and comparison of propulsion

architectures from a flexible, reproducible and physically coherent approach.

1.2 Goals

The main objective of this work is the development of a modular and reusable library in

Modelica, oriented to the simulation of the energy consumption of battery electric

vehicles. The library, called EPowertrain, has been designed to faithfully represent the

interactions between the main components of the electric powertrain, maintaining a

level of complexity suitable for efficient and flexible simulations.

Through this library, the purpose is to facilitate the analysis of alternative propulsion

architectures, as well as the evaluation of control strategies under realistic driving

conditions. The specific objectives of the work can described as follows:

• Develop modular models of the main electrical components of the system:

battery, motor, power converter and control interfaces.

• To ensure the reusability and extensibility of the models by means of an

object-oriented structure and acausal connectors, following the clever design

practices in Modelica.

• Simulate the energy behaviour of the system under different driving profiles,

including standardised cycles such as UDDS [1] and real data obtained from

urban journeys [2].

• Validate simulation results against experimental data, analysing the accuracy

of the library in the estimation of key variables such as energy consumption,

torque or battery state of charge (SOC).

To maintain the focus on the analysis of energy consumption, certain aspects have been

left out of the scope of the project that, although relevant in other contexts, are not

essential for the defined objectives:

• Detailed thermal Modeling: The thermal domain and thermal management

systems are not included in order to avoid unnecessary complexity in

simulations focused on power consumption.

• Battery degradation: Long-term evolution of internal capacity or resistance is

not considered, as this is a cumulative phenomenon outside the framework of

individual cycles.

• Advanced longitudinal vehicle dynamics: A simplified equivalent load model

has been adopted, without including suspensions, mass transfers or detailed tyre

models.

1. Introduction, Goals and Structure

3

These decisions have allowed work to focus on the electrical representation of the

system, optimising the fidelity and computational performance of the simulations. The

EPowertrain library thus aims to be a useful educational and technical tool for the

exploration, validation and comparison of electric vehicle configurations from an

energy perspective.

1.3 Document Structure

This document is structured in seven chapters, organised in a progressive way for the

development of the work from its motivation to the experimental validation of the

implemented models:

• Chapter 1 introduces the motivation for the work, the objectives set, and the

scoping decisions taken. It also describes the general characteristics of the

library developed.

• Chapter 2 presents a review of the state of the art in electric vehicle Modeling,

with special emphasis on the use of Modelica and its most relevant libraries.

Different battery and powertrain Modeling approaches are also discussed, as

well as fidelity levels and validation strategies present in the literature. Finally,

compares Modelica with other simulation tools commonly used in the electric

vehicle industry, evaluating their physical Modeling capabilities, computational

performance and integration with open standards.

• Chapter 3 focuses on the conceptual and mathematical description of the

system to be modelled. A functional decomposition of the electric powertrain

into subsystems (battery, converter, motor, chassis) is presented, detailing the

differential and algebraic equations governing their behaviour. Modeling

assumptions, definitions of symbols and units are presented, and the selection of

simplified models is justified to ensure computational efficiency.

• Chapter 4 describes the internal structure of the developed library, explaining

the function of each subpackage (Interfaces, Electrical, Mechanical, Control,

Sensors, etc.). The design decisions, the connections between components and

the modularity strategies adopted are detailed. Diagrams, icons and graphical

annotations taken directly from the Modelica environment are included to

facilitate the understanding and implementation of the mathematical models

presented in chapter 3.

• Chapter 5 deals with the validation of the complete system by means of driving

cycles, both standardised (UDDS) and real (BMW i3), analysing the agreement

of the model with the measured data and justifying the observed deviations.

• Chapter 6 presents the conclusions of the work, as well as a proposal of future

lines for the extension and improvement of the library.

• Appendix A contains the complete list of the Modelica code that makes up the

developed library. It is structured according to the functional order of the

1. Introduction, Goals and Structure

4

subpackages and is accompanied by brief descriptions to facilitate its navigation.

This annex allows the full reproducibility of the models and their reuse in future

projects.

• Appendix B contains the self-generated documentation from the Dymola

environment for the EPowertrain library. It includes a hierarchical

representation of the packages and models, as well as the descriptions,

annotations and iconographic diagrams defined in each class. This

documentation provides a global view of the functional structure of the library,

facilitating its understanding, maintenance and reuse.

5

2 State of the Art

2.1 Introduction

In the context of the transition towards electromobility, the analysis and optimisation of

the energy performance of electric vehicles (EVs) is essential to improve their range,

charging efficiency and commercial viability. However, direct experimentation with

physical prototypes has significant limitations in terms of cost, time and flexibility.

Therefore, Modeling and simulation of physical systems have become fundamental

tools in EV design and validation, allowing the virtual exploration of multiple

configurations and operational scenarios without the need to build numerous prototypes

[3]. In fact, the practice of virtual validation (e.g. using digital twins) is becoming

increasingly widespread in the automotive industry, as it significantly reduces the costs

associated with prototyping and speeds up the development cycle.

An electric vehicle involves the interaction of sub-systems of different physical nature -

mechanical, electrical, electronic, thermal, etc. - whose integrated behaviour determines

the overall performance of the vehicle. The complexity of these multi-domain systems

makes it necessary to have simulation environments that allow Modeling components

from different physical disciplines in a coupled way, reproducing phenomena such as

electro-mechanical conversion in the engine, battery power delivery under different

conditions, or vehicle dynamics in response to load profiles. Having sufficiently

accurate computational models of each subsystem, integrated on a common platform,

enables advanced approaches to validate and optimise electric powertrains prior to the

construction of real prototypes. For example, simulators are extensively used to develop

optimal energy management strategies in hybrid and electric vehicles (e.g. predictive

control), taking advantage of the increasing computational capacity to optimise the

coordinated use of the vehicle's different power sources. The need for physical

Modeling tools in the field of EVs is justified by:

• The possibility to study vehicle energy and dynamic behaviour under a

multitude of conditions without incurring the costs and time of physical

prototyping,

• Capacity to evaluate novel component configurations and control strategies in a

safe and reproducible environment.

• Multi-disciplinary nature of EVs, which requires a multi-domain simulation

approach to capture the interdependencies between electrical, mechanical and

control components.

The following sections detail the fundamentals of acausal, multi-domain physical

Modeling (section 2.2), the characteristics of the Modelica language as a leading

environment for this purpose (2.3), the main alternative simulation tools used in

industry (2.4) and, finally, a comparison from the literature between Modelica and these

alternatives in the context of EV Modeling (2.5).

2. State of the Art

6

2.2 Multi-domain Physical Modeling in Acausal

Environments

Multidomain physics Modeling consists of representing complex systems spanning

multiple domains of physics (electrical, mechanical, thermal, hydraulic, etc.) under a

unified framework of equations. A modern approach to achieve this is equation-based

acausal environments, in contrast to traditional block diagram (causal) tools. In an

acausal environment, model components are defined by mathematical relationships

(algebraic and differential equations) that describe their behaviour, without

predetermining the direction of information flow (input/output) between them. This

means that the connections between components represent bidirectional physical

interactions (e.g., an electrical connector imposes equal voltage and conserves current,

or a mechanical joint balances forces and accelerations between connected bodies)

rather than a unidirectional signal. The result is a declarative model, where the user

describes which physical relationships govern the system, leaving it to the solver to

determine how causal dependencies propagate during the simulation [4].

Example: Consider an ideal electrical resistor. In acausal language, its behaviour can be

specified by Ohm's law declaratively:

 𝑉 = 𝑅 ∙ 𝐼 (2.1)

where 𝑉 is the voltage drop across the resistor, 𝑅 it is the resistance and 𝐼 the current

through it. This single equation works whether the resistor is connected to a voltage

source (determining a current) or a current source (determining a voltage), as the system

solver will calculate the appropriate causality in each context. In causal environments

(e.g. Simulink), on the other hand, it would be necessary to define different blocks or

configure the resistor block in different modes depending on whether it is excited with a

current or a voltage, as it is required to fix a priori which variable is input and which is

output. Acausal Modeling avoids this drawback by not fixing the direction of the

relationships, providing great flexibility and reusability of components in different

scenarios [5].

Multidomain acausal Modeling environments (such as Modelica, see section 2.3) are

mathematically based on systems of differential-algebraic equations (DAEs). A

complete model is formed by assembling elementary components (each with its internal

equations) through connectors that impose continuity constraints (e.g., equal electric

potential at a common node, equal velocity in a mechanical coupling) and conservation

laws (e.g., zero sum of currents at a node, zero sum of forces at a static junction).

The symbolic environment solver gathers all the equations of the system and applies

analysis methods (e.g. index reduction, selection of state variables, etc.) to prepare a

numerically solvable system. Finally, a numerical integrator (e.g., explicit or implicit

integration methods) solves the equations in time. This automatic chain (translation of

models to DAEs and numerical solution) frees the modeller from having to manually

derive the causal forms of each equation, allowing to focus on the physics of the

problem.

2. State of the Art

7

Acausal Modeling offers several advantages:

• Modularity: it is possible to freely drag and connect component instances in

almost any physically valid configuration, without the need to manually adapt

interfaces, as acausal connectors ensure physical compatibility (e.g. freely

connecting electrical elements by common nodes, mechanical elements by

flanges, etc.) [6].

• Reusability and modularity: the same sub-model (e.g. an electric motor) can

be used at different system levels or in different projects without modification,

as it does not carry signal direction assumptions; furthermore, thanks to

inheritance and parameterisation support, basic models can be extended to create

specialised variants without rewriting from scratch [5, 7].

• Multi-domain capability: by relying on generic equations, acausal languages

can represent electrical, mechanical, thermal, etc. components and their

interactions on a single platform, avoiding fragmentation into multiple tools.

This facilitates comprehensive studies of complex systems such as EVs, where

the battery (electrical/chemical), motor (electrical/mechanical) and electronic

control (digital/algorithmic) must be evaluated together [8].

• Flexibility of configuration changes: replacing one component with another

(e.g. a detailed motor model with a simplified map-based one) does not require

redoing connections and interfaces, as long as they share the same connector

type, which speeds up the exploration of alternative designs in multiple tools.

This facilitates comprehensive studies of complex systems such as EVs, where

the battery (electrical/chemical), motor (electrical/mechanical) and electronic

control (digital/algorithmic) must be evaluated together [9].

Despite its advantages, the acausal approach comes with some challenges. One of

them is the longer learning curve: engineers must familiarise themselves with the

equation-based paradigm and concepts of DAEs, which differs from the sequential

signal flow they might be used to with causal tools. For example, it has been observed

that Modelica tools such as Dymola require a higher initial learning effort compared to

environments such as Simulink [10], in exchange for greater customisation and

expressive. This flexibility can be overwhelming for novice users, although access to

libraries of predefined components and didactic examples mitigates the problem [5, 6].

Another aspect is model debugging: since the source code is declarative equations,

when an error occurs (e.g., redundant or missing equations that make the system

overdetermined or indeterminate), diagnosis may be less intuitive than in causal

schemes. However, modern environments often provide symbolic debugging tools and

messages that guide the user in the correction (e.g., indicating a variable without an

associated equation, suggestions to provide initial conditions, etc.). In terms of

simulation performance, while acausal engines allow efficient simulations in many

cases, certain very detailed models (e.g., high frequency switched circuits, or systems

with very frequent discontinuous events) may require very small integration steps or

special techniques, similar to other platforms [5]. Thus, averaging models or order

reductions are sometimes used to tractably simulate fast phenomena in long-term

studies [11, 12].

2. State of the Art

8

In summary, multi-domain acausal environments provide a powerful and general

framework for physical Modeling, with great benefits in versatility and model accuracy,

while requiring the user to be properly trained in the fundamentals of equation

Modeling and to use the available libraries correctly.

Table 2.1: Comparison Between Acausal and Causal Modeling Approaches.

Acausal Modeling Causal Modeling

Paradigm Based on algebraic and

differential equations (DAEs),

with no predefined direction of

data flow.

Based on block diagrams with

explicitly defined inputs and

outputs (cause-effect relations).

Flow direction Determined automatically by the

solver at simulation time.

Manually defined by the user for

each block.

Component

connectivity

Bidirectional; represents shared

physical variables (e.g., voltage,

force, torque).

Unidirectional; signals are

propagated from output to input.

Physical

representation

Closer to actual physical

formulation (laws of physics

expressed as equations).

Requires transforming physical

laws into signal-based

structures.

Model reusability High; components can be reused

in multiple contexts without

rewriting equations.

Limited; models often need to

be adapted to each signal flow

configuration.

Modularity and

composability

High; components can be

interchanged if physical

connectors are compatible.

Lower; changes in model

structure often require

reworking block connections.

Typical

environments

Modelica, Simscape, Simcenter

Amesim.

Simulink, LabVIEW, classic

control systems.

Learning curve
Longer, requires understanding

of physical Modeling and DAEs.

Faster, intuitive for users with

signal-flow or control

background.

Typical

applications

Physical Modeling of electrical,

mechanical, thermal, and hybrid

systems.

Control design, signal

processing, process simulation.

2.3 Relevant Modelica Libraries

Developed since the late 1990s by the Modelica Association [13], Modelica has

established itself as one of the most widely used multi-domain causal languages in

academia and industry. Modelica is an equation-based, object-oriented language for

Modeling complex physical systems [14].

Its philosophy is based on describing the behaviour of components by means of

mathematical relationships (ordinary algebraic-differential equations) rather than

sequential procedures, allowing a declarative representation of system dynamics. The

2. State of the Art

9

language also supports discrete events, allowing the simulation of hybrid (continuous-

discrete) systems to include control logics, condition-triggering, etc. The language

specification is open and maintained by the Modelica Association, which also provides

a comprehensive Modelica Standard Library (MSL) [15] with fundamental models in

numerous domains: electrical (analogue and digital), translational and rotational

mechanical, thermal, hydraulic, among others. Thanks to this standard library and

many other available libraries, modellers can build virtual prototypes of a wide variety

of physical systems by combining predefined components and adding their own

equations when necessary.

In Modelica, each model is essentially a class that encapsulates equations and variables

that can be reused as a subcomponent in higher-level models. The language fully

supports the principles of modularity and inheritance: one model can extend (inherit)

from another by adding or modifying equations/parameters, facilitating the creation of

specialised variants without duplicating code. Modelica also allows acausal connectors

to be defined for different domains (e.g. electrical pin connectors with voltage and

current variables, mechanical flange connectors with position and force, etc.), allowing

components to be graphically connected in a physically meaningful way. During

compilation, the Modelica engine gathers all the equations of the connected components

and generates the overall system to be solved. This ability to bring together multiple

formalisms under a unified syntax makes Modelica a particularly suitable tool for

complex systems such as electric vehicles, where heterogeneous phenomena coexist.

Modelica libraries play a fundamental role in the process of Modeling and simulating

complex physical systems. These libraries group sets of parameterizable models of

basic components -such as resistors, electric motors, batteries, converters or mechanical

elements- that can be reused and combined to build complete systems [1,2]. Their main

functions include:

• Facilitating reusability and modularity: Libraries allow complex models to be

built from validated blocks, reducing development time and increasing the ro-

bustness of simulations.

• Promoting physical consistency: By using standardised connectors (based on

stress and flow variables), it is guaranteed that the interaction between subsys-

tems respects physical principles such as energy conservation.

• Speed up validation and comparison: By relying on previously tested compo-

nents, it facilitates the validation of new models and speeds up the comparison

between different configurations.

• Encourage extensibility: Many libraries are designed in an open way, allowing

users to extend or specialise models to suit specific needs.

Modelica has been widely used in academic research on electric vehicles, ranging from

single component studies to complete system optimisation. For example, Qin et al. [12]

modelled a lithium-ion battery pack with a second-order equivalent circuit scheme in

Modelica, successfully simulating its dynamic behaviour inside an electric vehicle and

validating it against experimental data.

Bui et al. [16] used Modelica to develop and evaluate in real time an energy

management strategy for a hybrid vessel, demonstrating the language's ability to

integrate battery models, motors and control algorithms in a modular way. Another

2. State of the Art

10

example is provided by Milishchuk and Bogodorova [17], who implemented a

Thevenin-type battery model in Modelica incorporating ageing (degradation) effects,

and reported the effectiveness of this approach to study the evolution of battery

performance with use.

These cases, together with numerous contributions in specialised conferences (e.g.

International Modelica Conference, IEEE Vehicular Technology, etc.), show the

maturity of Modelica as a reference platform for electric vehicle research.

Finally, it is worth mentioning that the Modelica ecosystem is supported by multiple

simulation environments. Among the commercial environments, Dymola (Dassault

Systemes) has historically been the most widely used, offering a robust Modeling and

simulation environment with Modelica and powerful analysis tools (optimisation,

linearisation, etc.). There are also open-source tools such as OpenModelica, which

implements the Modelica standard and allows models to be simulated free of charge,

encouraging its use in academia.

This wide adoption by different vendors confirms Modelica's status as a standard

language for system-level physical Modeling. Within the Modelica ecosystem, several

libraries are relevant for the simulation of electric powertrains:

• Modelica Standard Library (MSL): The Modelica Standard Library provides

a basic collection of models in multiple domains (electrical, mechanical, ther-

mal, etc.), including ideal electric motors, simple batteries, transmission ele-

ments and control components. Although the MSL provides the basis for start-

ing the Modeling of an EV, it does not by itself cover all specific aspects of a

complete electric powertrain. Even so, the library’s open and extensively vali-

dated character makes it the starting point for many specialised developments.

In fact, the MSL has served as a foundation for vehicle-focused extensions, incorporat-

ing models of electrical machines (induction, synchronous, etc.), friction losses or ther-

mal effects in power components. In Figure 2.1 illustrates the constitution of a DC mo-

tor by using blocks from the standard Modelica standard library.

2. State of the Art

11

Figure 2.1: Permanent Magnet, DC Machine MSL Model.

• VehicleInterfaces Library: This is an architecture library that defines a

standardised framework for vehicle interfaces. It provides generic templates and

connectors to assemble subsystems (powertrain, chassis, driver, etc.) in a

consistent way. Although the VehicleInterfaces library itself does not provide

detailed models, its importance lies in facilitating the integration of components

from different libraries under a unified vehicle schema [7]. Many works have

adopted these common interfaces to build electric vehicle models by easily

interchanging components (e.g. different motor or battery types).

• Electric propulsion specific libraries: In response to the need for more detailed

and efficient models to simulate EVs, several authors have developed

specialised Modelica libraries for electric powertrains. Ceraolo presented one of

the first free libraries for electric and hybrid vehicles [5], incorporating

adjustable physical models of motors (synchronous and asynchronous

machines), generators, converters and batteries. A key feature of this library is

the use of averaged models in the power electronics components, forgoing the

reproduction of high frequency switching to achieve more efficient simulations

in long duration scenarios (e.g. the standard NEDC cycle of ~1200 s). In this

way, a compromise between detail and computational cost was achieved that

was adequate to evaluate EV dynamics over full driving cycles. The library also

includes battery models and aerodynamic resistances and has served as a basis

for building pure electric and hybrid EV examples in Dymola and

OpenModelica.

• ElectricDrives (Modelon): There are commercial libraries, such as Modelon's

ElectricDrives, focused on Modeling electric drives (DC motors, induction mo-

tors, PMSM, converters, basic controllers, etc.). These libraries provide detailed

component-level models and multiple electric drive configurations. However,

their scope tends to focus on the electrical behaviour of the motor and its invert-

er, and they do not explicitly address the energy integration of the whole vehicle

2. State of the Art

12

under different driving profiles. In other words, they offer an excellent level of

fidelity in the simulation of a single inverter-drive train, but aspects such as en-

ergy management at vehicle level (battery operation strategies, regeneration un-

der braking, etc.) or the influence of driving are outside their direct scope.

In addition to the above, other relevant libraries can be mentioned: for example, the

AlternativeVehicles (DLR) library [18], of a commercial type, oriented towards hybrid,

electric and fuel cell vehicles. In 2011, the Electric Energy Storage (EES) library was

proposed [19], with battery models from cells to complete packs, a precursor to later

developments incorporated in the MSL. In general, the availability of specific libraries

has grown to cover distinct levels of detail according to simulation needs: from fast

models for range estimation to complex thermo-electrochemical models for degradation

analysis or design of advanced control strategies.

The proper use of these libraries, combined with the development of specific

components, when necessary, constitutes an essential pillar for simulation projects

oriented to the analysis of energy consumption in electric vehicles, such as the one

proposed in this thesis.

2.3.1 Electric Powertrain Modeling

Powertrain Modeling is a central aspect in the simulation of electric vehicles, since it

directly conditions the estimation of energy efficiency, autonomy and interaction

between subsystems. In the Modelica environment, this process is addressed through

modular architectures that allow the hierarchical and reusable representation of each

functional component: from the battery to the wheels. This structure facilitates the

scalability of the model and its adaptation to diverse levels of fidelity according to the

analysis objectives, from fast quasi-real-time simulations to detailed studies of dynamic

behaviour.

Authors such as Ceraolo [5] have developed pioneering libraries in the representation of

electric and hybrid vehicles, introducing physical models with adjustable

parameterization to represent generators, motors, converters and batteries. These

libraries are built with an acausal approach, which allows defining the physical

equations without the need to explicitly fix the directions of power or signal flow, thus

favouring flexibility in the coupling between components.

In more recent work, Liu et al [20] implemented a simulation framework oriented to the

analysis of energy control strategies, combining electrical, mechanical and thermal

components within a Modelica environment. Using tools such as Dymola, their library

allows configuring different powertrain topologies (single drive, dual drive, parallel or

series hybrid), with the possibility of adjusting the complexity levels depending on the

required detail. This modularity is particularly useful for applications such as virtual

testing of drive cycles, optimization of acceleration profiles, or validation against

experimental data. A major advantage of Modelica Modeling is the possibility of

defining various levels of abstraction:

• Simplified 0D or 1D type models, suitable for rapid simulations and high-level

prototyping.

2. State of the Art

13

• Intermediate physical models, which include nonlinear equations representative

of dynamic behaviour (for example, models of losses in electric motors or

transient response of converters).

• Detailed multiscale models, capable of representing thermal, electromagnetic or

electrochemical phenomena more accurately, although at the cost of a higher

computational load.

These methodologies are also supported by libraries or proprietary developments from

manufacturers and academic institutions. The reuse and parameterization of blocks

facilitates not only the Modeling, but also the calibration and validation of complete

propulsion systems under variable conditions, allowing the easy integration of sensors,

controllers and user models.

One of the most relevant contributions of the study is the treatment of co-simulation as

the structuring axis of the complete vehicle model. Through standards such as FMI

(Functional Mock-up Interface) and tools such as Dymola, Simulink, or GT-SUITE the

authors show that it is possible to integrate subsystems developed on different platforms

without compromising the fidelity of the overall system.

Different integration configurations (model exchange, standalone co-simulation,

coupling per server) are exemplified, each with advantages and limitations in terms of

simulation speed, model transparency and inter-tool compatibility.

Also, special emphasis is placed on the need to use fast 1D models to speed up

simulation times in optimization contexts, without sacrificing the ability to capture

relevant transient effects.

2.3.2 Battery Modeling

The battery represents the energy core of an electric vehicle, the Modeling of which

directly influences range estimation, energy management strategies and thermal control.

There are multiple methodologies to simulate its behaviour, differentiated by the level

of fidelity required and the physical phenomenon of interest (electrical, thermal or

electrochemical). In the field of electric vehicle simulation in Modelica, three

predominant approaches can be found, each with advantages and limitations depending

on the use case.

Simplified Electrical Models

Electrical models based on equivalent circuits, such as Rint, RC or Thevenin schemes,

are widely used in the simulation of batteries for electric vehicles due to their low

computational cost, ease of implementation and compatibility with multidomain

simulation environments. These models represent the dynamic behaviour of the battery

through combinations of resistors, capacitors and controlled voltage sources, which

allows capturing effects such as the voltage drop associated with the internal resistance

or the transient response to load changes.

However, the fidelity of these representations can vary depending on the order of the

model and the phenomena considered. In this context, Qin et al [12] propose a relevant

2. State of the Art

14

evolution using a third-order RC model that explicitly incorporates the voltage

hysteresis observed in 𝐿𝑖𝐹𝑒𝑃𝑂₄ cells. This structure allows capturing the internal

overpotential and simulating with high accuracy both the dynamic response and the

behavior in real cycles such as UDDS or NEDC, with errors lower than 2%.

Implemented in Modelica using the MWorks tool, the model is easily integrated into

complete electric vehicle simulations, demonstrating its usefulness in both validation

and SOC estimation.

Complementarily, Chen and Rincón-Mora [21] develop a comprehensive electrical

model oriented to the accurate prediction of runtime and I-V performance of batteries in

portable electronics. Their proposal combines elements of Thevenin, impedance and

usable capacity models, introducing a dual RC network that simulates two differentiated

time constants (short and long), together with a SOC-dependent voltage source to reflect

the open-circuit voltage (OCV) nonlinearity. Although its implementation is performed

in the Cadence environment, the underlying principles-modularity, parameterization,

and transient response are extrapolable to Modelica architectures.

Both approaches reflect a common trend: the refinement of RC models to integrate

previously ignored phenomena, such as hysteresis or state-of-charge and temperature-

dependent variations, without incurring the computational complexity of full

electrochemical models. Thanks to their modular and parameterizable structure, these

models can be implemented in libraries or proprietary developments, being particularly

suitable for autonomy studies, on-board control and validation of BMS algorithms in

hardware-in-the-loop (HIL) simulations.

Thermal and Heat Propagation Modeling

The thermal behaviour of lithium-ion batteries has become a critical aspect of

Modeling, especially in the face of increasing energy density, fast charging demands,

and the need to ensure system operational safety. During normal electric vehicle

operation, the battery generates heat because of ohmic losses, non-reversible

electrochemical reactions and hysteresis effects. If this heat is not properly managed, it

can cause significant temperature gradients within the battery pack, accelerating

degradation phenomena and even triggering thermally hazardous events such as thermal

runaway (TR). The increasing energy density and the need for ultra-fast loading have

intensified the interest in predictive strategies capable of anticipating these events and

assessing the effectiveness of containment measures.

Thermal models aim to represent both the internal generation of heat and its propagation

and dissipation to the surroundings, considering the geometrical design of the package,

the thermal connectivity between cells, and the cooling systems (air, liquid or phase

change materials). At the computational level, these dynamics can be addressed by 1D,

2D or pseudo-3D formulations, depending on the balance between accuracy and

computational cost.

An interesting contribution in this field is the BatterySafety library, developed in

Modelica by Groß and Golubkov [22]. It includes a simplified but efficient model for

simulating TR propagation in battery packs. Based on experimental data obtained by

accelerated rate calorimetry (ARC), the model employs a so-called simple tracing

approach, which allows predicting the temperature evolution during the exothermic

2. State of the Art

15

reaction without requiring curve fitting. This approach facilitates the simulation of

critical events at the cell, module and pack scale, allowing both heat generation and heat

transfer between thermally connected cells to be modelled. The model incorporates

variable thermal resistances that decrease in value when a cell enters TR, simulating

thermal propagation driven by the release of hot gases.

From the simulation perspective in Modelica, thermal Modeling can be addressed

through the Modelica.Thermal.HeatTransfer [23], ThermoPower [24] libraries, or by

developing specific submodules that couple the thermal balance to temperature-

dependent electrical parameters. One of the most widespread applications consists in

Modeling the internally generated heat by means of:

 𝑄𝑔𝑒𝑛 = 𝐼2 ∙ 𝑅𝑠 + 𝐼 ∙ (𝑉𝑜𝑢𝑡 − 𝑉𝑇ℎ𝑒) = 𝐼2 ∙ 𝑍𝑇ℎ𝑒 (2.2)

Where the first term represents Joule losses and the second term represents polarisation

losses on a 1RC Thevenin model [21]. This heat can then be coupled to 1D or 3D

thermal models that simulate dissipation through the package, cooling modules and

environment. TR propagation models allow simulating failure scenarios, evaluating

passive safety strategies (insulators, compartmentalisation) and designing active

countermeasures (cooling, thermal fuses). Moreover, their integration in pack-level

simulations enables sensitivity analysis and validation against experimental data without

resorting to expensive CFD models.

Simplified Electrochemical Models

Electrochemical models provide a detailed description of the internal phenomena of the

cell, including electrolyte dynamics, charge and discharge reactions, and ion migration

through the separator. However, full models - such as those based on the Nernst-Planck

equation [25], Fick diffusion [26] or the Doyle-Fuller-Newman (DFN) model [27] -

involve a high computational burden due to the solution of coupled partial differential

equation systems, which limits their applicability in simulations of complete electric

vehicle systems, especially under optimisation or co-simulation conditions.

In this context, simplified electrochemical models have emerged that allow capturing

the main physic-chemical effects of interest - such as internal polarisation, potential

unbalance between electrodes, and thermal dependence of capacitance - without the

need for fine spatial discretisation or three-dimensional grids. These models strike a

balance between realism and efficiency, making them ideal candidates for integration

into energy management strategy (EMS) simulations, thermal control or validation

under aggressive driving cycles.

A representative example of this approach is the work of Romero and Angerer [8], who

present a formulation based on an equivalent electrochemical-hydraulic model (EHM)

implemented in Modelica to simulate fast-charge dynamics under thermal and

electrochemical constraints at the cell and pack level. This model considers two main

states per electrode (bulk and surface concentration), allowing to simulate phenomena

such as lithium plating, voltage drop associated with reaction kinetics and heat

generation. The formulation includes dependencies on temperature and charge transfer

parameters and is implemented in a non-linear predictive control (NMPC) environment

using JModelica.org.

2. State of the Art

16

One of the key contributions of the study is the use of the EHM model within an

optimal control scheme to minimise charging time while keeping internal variables

(such as anode potential and cell temperature) within safe limits. Through simulations

under fast charge cycles (up to 2C), it is demonstrated that the model is able to

accurately reproduce the thermal and electrochemical behaviour of 21700 cells with

immersion cooling, allowing the design of charge profiles that reduce the charge time of

a full pack to 36 minutes without compromising operational safety.

2.4 Alternative Tools

The rise of the electric vehicle (EV) has pushed the need for accurate models of

batteries and electric powertrains (motors, inverters, transmissions, etc.) for

performance, efficiency and ageing analysis. Several multi-domain simulation tools

allow these models to be built, each with different approaches and capabilities. In this

chapter we analyse Modelica (as a language and ecosystem of tools, e.g. Dymola,

OpenModelica, etc.) in comparison with its main alternatives widely used in

automotive: MATLAB/Simulink (with the physical extension Simscape), ANSYS Twin

Builder, GT-SUITE, Simcenter Amesim, among others.

Several key aspects will be evaluated and compared: the physical Modeling capabilities

(multi-domain, use of acausal vs. causal equations, support of different physical

domains), numerical accuracy and robustness of the simulation, compatibility and

integration with other environments (including FMI/FMU standards and co-simulation),

usability and learning curve, availability of specialised libraries (in particular for

batteries and electric powertrain components), support of open standards and model

reuse, as well as computational performance and scalability for large models.

While Modelica offers a particularly powerful approach to physical EV Modeling, there

are several simulation tools and environments widely used in industry and research. In

the following, some of the most relevant alternatives are briefly described - highlighting

their approaches and capabilities - and compared to Modelica from an EV Modeling

perspective.

2.4.1 Simulation Tools Considered

• Modelica - An acausal, object-oriented language for multi-domain physical

Modeling. It is an open standard maintained by the Modelica Association, with

commercial (e.g. Dassault Systemes Dymola, Wolfram SystemModeler,

MapleSim) and open source (OpenModelica, JModelica.org, etc.)

implementations. Modelica makes it possible to describe complex systems using

differential-algebraic equations (DAE) instead of causal block diagrams, which

facilitates the integration of different physical domains (electrical, mechanical,

thermal, etc.) in a single model. It has the free Modelica Standard Library and

numerous additional libraries (free to use or commercial) for different sectors

(from electrical systems to complete vehicles).

2. State of the Art

17

Figure 2.2: Modelica's VehicleInterfaces Library [6].

• MATLAB/Simulink + Simscape - MathWorks Simulink is a causal block

diagram (one-way signal) based environment widely used in control

engineering. For physical Modeling, Simulink is complemented by Simscape, a

set of libraries and an infrastructure for acausal Modeling of physical networks

(e.g., electrical circuits, hydraulic or mechanical networks). Simscape provides

predefined components for multiple domains (Simscape Electrical for electrical

and power electronics systems, Simscape Driveline for mechanical

transmissions, Simscape Fluids for fluids and thermal, Simscape Multibody for

3D, etc.), which are integrated into Simulink diagrams. This makes it possible to

combine physical plant models with control systems in the same environment.

Simscape uses its own internal equations (the user can create custom

components in Simscape language), solving connections in an analogous way to

Modelica (energy balance, Kirchhoff, etc.), but under the hood it remains tied to

the MATLAB environment.

• ANSYS Twin Builder - ANSYS digital twin and system simulation platform.

Twin Builder (formerly Simplorer) supports hybrid multi-domain Modeling,

combining acausal and causal models. In particular, it allows the use of different

standard languages: from Modelica and VHDL-AMS (acausal languages of

conservative components) to SPICE circuit languages, causal functional blocks

and even C/C++ or Python code. Includes own libraries for power electronics,

fluid-thermal systems and an integrated Modelica library with EV specific

components, e.g. battery cell templates (equivalent circuits dependent on SOC,

temperature, etc.), thermal management (Heating & Cooling) and electrical

powertrain (motors, converters) libraries. It is especially oriented to the creation

of digital twins, integrating 0D/1D models with 3D simulation (via co-

simulation or reduced models) and facilitating the connection with IoT or

control platforms.

• GT-SUITE - Multi-physics 1D simulation suite from Gamma Technologies,

widely used in the automotive industry. It was born focused on internal

2. State of the Art

18

combustion engine Modeling (GT-Power for thermodynamic cycle) but evolved

to cover all vehicle systems (air/fuel flows, aftertreatment, battery thermal

systems, electrical machines, transmissions, air conditioning systems, etc.). GT-

SUITE offers pre-built component libraries with a high level of fidelity (e.g.

detailed models of turbochargers, intercoolers, or electric motor maps). It uses a

flow-port connected component Modeling approach (like an acausal

mass/energy balance scheme), although the tool takes care of resolving causality

directions internally. It is highly optimised for automotive applications and

supports open/closed loop simulation, parametric optimisation and real-time

execution (many manufacturers use it for HIL on engine and vehicle test

benches). GT-SUITE can also be integrated with Simulink (e.g. via S-Functions)

and supports standards such as FMI for model exchange.

• Simcenter Amesim - Siemens' multi-domain 0D/1D simulation environment

(originally LMS Amesim). Allows Modeling of complex mechatronic systems

through a graphical drag-and-drop interface of components from a wide variety

of physical libraries (electrical, mechanical, hydraulic, pneumatic, thermal, etc.).

Components are connected by ports representing stress/flow variables (e.g.

voltage-current, pressure-flow); connecting one component to another

automatically establishes the necessary causality relationships (inputs/outputs).

Amesim is characterised by its extensive catalogue of validated and ready-to-use

components (valves, cylinders, pumps, exchangers, electric motors, converters,

etc.), which speeds up the construction of industrial models. Additionally, it

supports the Modelica language within its components, allowing the

incorporation of custom models in Modelica or the reuse of non-native Modelica

libraries from Amesim. It is a tool recognised for its ease of use and focused on

systems engineers; it also offers integrated optimisation, calibration and results

analysis functionalities.

Other specialised platforms also exist in this field, such as AVL CRUISE (oriented to

energy efficiency simulation of complete vehicles, including electric vehicles and fuel

cells) or tools focused on power electronics such as PLECS or Synopsys Saber, among

others. However, in this analysis we will focus on the generalist platforms mentioned

above, which are the most widely used for comprehensive physical Modeling of EVs.

2.4.2 Physical Modeling Capabilities and Multi-Domain Approach

A differentiating factor between the tools is their Modeling paradigm: acausal vs.

causal, and the intrinsic support of multiple physical domains in a single model.

• Modelica: is based on acausal Modeling by equations. The user defines the

physical laws (e.g. Kirchhoff equations, conservation of energy, etc.) within

components, and the connections represent bidirectional flow/potential

exchanges (current-voltage, torque-velocity, temperature-heat flow, etc.). This

allows for a natural integration of multiple domains: for example, a battery

model in Modelica can simultaneously include the cell's electrical circuit, its

heat balance and even degradation kinetics equations, all consistently connected.

Modelica is domain agnostic, so electrical, mechanical and fluid coexist without

the need for artificial partitions. In addition, the language supports hierarchies

2. State of the Art

19

and object-oriented reuse, making it easy to build complex systems from sub-

models. In summary, Modelica was designed for general-purpose, multi-domain

physical Modeling, with acausal equations offering flexibility to reconfigure

models without re-specifying inputs/outputs.

• MATLAB/Simulink + Simscape: Simulink itself uses a causal Modeling

approach: each block has defined inputs and outputs, which is suitable for

representing signal flows in control systems, but less suitable for Modeling

physical laws (which are often inherently acausal). The introduction of Simscape

added the capability of physical Modeling using acausal networks within the

Simulink environment. Simscape provides conserving ports analogous to

Modelica connectors: by connecting Simscape components (e.g., a resistor to a

battery), the charge and energy conservation equations are automatically

established at that node, without the user specifying the direction of flow.

Simscape adopts the same principle of implicit equations as Modelica, but

encapsulated by domain in different libraries (Electrical, Mechanical, Thermal,

etc.) within MATLAB.

It is important to note that Simulink + Simscape is still less open than Modelica:

the acausal equations exist behind the Simscape components, but there is no

unified multi-domain language that the user can freely extend beyond using the

Simscape Language syntax in MATLAB to create new physics blocks. Still, in

terms of Modeling capabilities, Simscape allows combining domains (e.g., an

electric motor with electrical circuit and mechanical shaft, coupled to a thermal

model), like Modelica, achieving integrated multi-physics models.

• Simcenter Amesim: is also a multi-domain platform of acausal nature in the

connection of components. Historically, Amesim was based on the formalism of

bond graphs and equations assigned to components solved by implicit numerical

methods. The user assembles the model with icons of components (pumps,

motors, batteries, etc.) connected by ports; each port imposes a stress/flow

interaction between connected components. Causality is solved automatically:

that is, the software decides internally which variable will be calculated as a

function of which, to solve the system. In practice, this gives Amesim similar

capabilities to Modelica/Simscape in terms of coupling different domains

without manual effort. One difference is that Amesim originally did not expose a

Modeling language to the user (everything was done via pre-defined

components), although it now allows importing or writing components in

Modelica and other languages. Amesim comes with extensive multi-domain

libraries, so an engineer can put together, for example, a complete battery-

motor-inverter system by selecting library components, without having to handle

equations.

• GT-SUITE: has multi-domain capabilities but with a slightly different approach

due to its legacy in engines. GT uses a simulation engine with different

specialised solvers for different sub-domains (fluid, mechanical, electrical)

within the same model. For example, it integrates electrical circuit solutions (for

cable networks, batteries and inverters), 1D flow solutions for gases and

refrigerants, and discrete elements for mechanical kinematics. The construction

of the model is by means of 1D diagrams where volumes, ducts, resistors, etc.

2. State of the Art

20

are connected. Like Modelica/Amesim, the physical laws (e.g. 1D Navier-Stokes

equations in a duct, or RC circuit equations in a battery) are predefined in

components, which are connected by establishing flow balances. There is no

need to define the direction of the variables: GT determines how to solve the

networks. It is therefore acausally multi-domain in practice (although internally

it can partition the solution). A strength of GT is its fusion of 1D with 3D: it

allows importing CAD geometries or CFD/FEM results to generate equivalent

1D models, being able for example to derive a 1D cooling network from a 3D

CAD model of a battery pack. This extends the scope of physical Modeling,

combining 1D speed with 3D detail where necessary.

• ANSYS Twin Builder: its philosophy is hybrid. On the one hand, it acts as a

Modelica environment: it directly supports the inclusion of Modelica models

within its schematic (in fact it comes with the Modelica Standard Library and its

own Modelica libraries). On the other hand, it retains capabilities of its

predecessor Simplorer, allowing SPICE-type circuit diagrams (especially useful

for power electronics) and control block diagrams. In Twin Builder one can, for

example, connect an electric motor model written in Modelica with a PID

controller in block diagram and an IGBT firing circuit in VHDL-AMS, all in a

unified simulation. This combination of acausal and causal in the same

environment is unique to Twin Builder. As for multi-domain, it is fully capable:

electrical, mechanical, hydraulic, thermal - with the advantage that ANSYS

provides coupling with its 3D tools (you can include reduce-order sub-models of

3D electromagnetics, structures, CFD, etc., generated in Maxwell, Fluent, etc.).

In sum, Twin Builder stands out for its flexibility in Modeling approaches (from

Modelica equations to 3D reduced-order models), which gives it strong multi-

domain support.

For EV applications, it is common to involve model interaction of multiple subsystems:

the battery (electrochemical/electrical + thermal), the power electronics (electrical +

digital control + thermal losses), the electric motor (electrical + mechanical + thermal),

the transmission (mechanical) and eventually the complete vehicle (vehicle mechanical

dynamics with controls) [28], [8], [20]. Tools with solid multi-domain support and

acausality allow building integrated models where all these parts coexist in a consistent

way.

Modelica provides perhaps the most unified experience in this respect: everything is

expressed in a single declarative language, with great freedom to create custom

components if they do not exist. Simulink/Simscape achieves something similar but

fragmented into different libraries and with some friction if custom components are

required (they must be programmed in Simscape language). Amesim and GT-SUITE

bring the convenience of very complete libraries, designed specifically for automotive

use cases, minimising the need to program equations - at the cost of being more closed

environments (although Amesim and Twin Builder partially compensate by accepting

Modelica, inheriting some of its openness).

2. State of the Art

21

2.4.3 Simulation Precision and Performance

The accuracy of the simulations and numerical robustness (ability to solve complex

systems of equations in a stable way) are critical considerations when evaluating these

tools. All the environments analysed can, in principle, produce very accurate results if

the physical models are well set up and calibrated. Differences arise in the numerical

methods available, the ease of handling stiff systems and the default tolerances they

employ, which impact on the fidelity and stability of the solutions.

• Modelica (Dymola/OpenModelica): Modelica tools typically use advanced

solvers of DAEs (e.g. DASSL, IDA) with variable step and event detectors,

complemented by symbolic processing that simplifies equations prior to

simulation. Dymola performs index reduction and algebraic optimisation

techniques that improve stability and speed, reducing cumulative numerical

errors. This results in very robust simulations even when dynamics of different

time scales coexist (for example, the slow evolution of the temperature of a

battery together with fast switching of an inverter). In terms of accuracy,

Modelica does not impose simplifications: one can enter very detailed equations

(even small ODEs for transient effects within a cell) and the solver will solve

them together. Comparative studies have shown that Modelica can match or

exceed the accuracy of other tools [29].

• Simulink/Simscape: Traditional Simulink uses ODE solvers (Runge-Kutta,

BDF, etc.) for causal systems. When Simscape is introduced, implicit equation

systems appear that require algebraic solvers in the loop. MathWorks provides

specialised solvers for Simscape (e.g. ode15s or other implicit integrators), plus

the option of discrete local solvers for certain physical networks. In terms of

accuracy, Simscape can achieve very precise solutions, but sometimes needs

careful settings: for example, setting very tight tolerances or small maximum

integration steps to capture fast transient effects (such as current pulses in an

inverter). A common challenge with Simscape is solver tuning for rigid systems:

if a battery has time constants of hours in thermal but microseconds in an

electronic circuit, the variable solver can face difficulties in efficiently resolving

both extremes. MathWorks has introduced improvements (such as automatic

stiff mode), but users report that large Simscape models may require manual

adjustments for convergence.

This suggests that, with default parameters, Simscape may have introduced more

error or would require a smaller step to match the others. Nevertheless, it is

capable of high accuracy if properly configured. On robustness, Simscape

includes an initialisation solver to find consistent initial conditions, similar to

Modelica. However, users may encounter initialisation error messages or

singularities in Simscape if the model is over- or under-determined, problems

analogous to those that arise in Modelica (e.g. under-conditioned systems of

equations). With good practices (using Simscape's memory blocks or initial

conditions appropriately, etc.), Simscape is robust. It should be noted that

Simulink (without Simscape), if one models physics manually with blocks, can

be more prone to user errors in the equations, affecting accuracy; thus, Simscape

is key to robustness in physics models within Simulink.

2. State of the Art

22

• Amesim: It is renowned for its numerical reliability in industrial contexts. Its

components are pre-validated and often include internal algorithms to improve

stability (e.g. numerical damping on certain valves to avoid unphysical

oscillations). Amesim allows to choose several types of solvers (explicit,

implicit, fixed or variable step) depending on the model and objective (fast

simulation vs. accuracy). In general, Amesim behaves robustly even with large

models, and is tolerant to initial configurations (it has a good steady state solver

to start simulations). In accuracy, as we saw, it can replicate experimental data

well after calibration. One interesting aspect: being an application-focused tool,

it sometimes employs specific numerical tricks - for example, in a combustion

engine, it limits steep derivatives - to keep the simulation stable at the cost of

more than sufficient accuracy for engineering but without overloading the

solver. This contrasts with Modelica, which by default is more purist in solving

equations as they are formulated. In short, Amesim offers high practical

accuracy and excellent robustness, with a bit of numerical conservatism to avoid

problems.

• GT-SUITE: Like Amesim, GT prioritizes robustness in industrial scenarios. It

can simulate engines in cycles of thousands of combustions without diverging,

or complex cooling systems. It achieves this with a combination of specialized

solvers: for example, it can use fast explicit integrators for gas flows (where

small errors are averaged), and implicit integrators for very stiff loops (e.g., RC

electric circuit of a battery). GT allows the user to specify convergence criteria,

relaxation, etc. In accuracy, it is highly reliable in its strong domains (e.g.

prediction of pressure drops, temperatures, battery SOC) because its models are

calibrated with real data frequently. For very fast phenomena (e.g., switching

pulses at 20 kHz), GT may prefer that the user use an average model (e.g., an

average inverter rather than simulating each pulse) to maintain robustness and

not sacrifice time, although in Twin Builder or Simscape one could simulate

each pulse with small step. That is, GT tends to balance precision with stability

and speed depending on the target. Overall, properly configured, GT-SUITE can

be as accurate as the others in most metrics.

• Twin Builder: Incorporating Modelica, VHDL-AMS and SPICE, it also

inherited their solver capabilities. Simplorer (core of Twin Builder) was known

for its prowess in simulating power electronics combined with controls. It offers

continuous-discrete integration solvers that handle events (switch on/off) well

without losing accuracy. In addition, Twin Builder facilitates co-simulation with

ANSYS 3D; for example, you could run a 3D finite element thermal model

alongside a 1D battery model. In such cases, the overall accuracy will depend on

the synchronization between solvers, but ANSYS provides error-controlled co-

simulation methods. In general, Twin Builder can be relied upon for accurate

results, backed by ANSYS algorithms (famous in FEM/CFD areas) now applied

to 0D/1D. Robustness is also high, although with the caveat that the flexibility of

languages (Modelica, etc.) means that the user has more responsibility for

ensuring that the model is well formulated.

In conclusion, all platforms can achieve high accuracy if the models are properly

constructed. There is no absolute most accurate, since the physics represented is the

2. State of the Art

23

same, the difference is in the ease of achieving that accuracy.

2.4.4 Compatibility, Integration and Standards

The capacity of each tool to integrate into wider development flows is crucial. In the

automotive domain, a plant model (battery + engine) is rarely isolated: it often interacts

with control models (ECUs), with other subsystems (e.g. complete vehicle model) and

even with upstream (CAD, detailed circuits) or downstream (HIL, real time) design

tools. For each tool, the compatibility with other environments, the support of open

standards (especially FMI/FMU for model exchange), and the possibilities for co-

simulation and reuse will be evaluated below.

• Modelica: Since Modelica itself is an open standard, its philosophy promotes

model portability. Using the FMI (Functional Mock-up Interface) standard,

virtually all Modelica tools (Dymola, OpenModelica, etc.) can export the model

as FMU (Functional Mock-up Unit) for either model exchange or co-simulation.

This means that a model created in Modelica can be packaged and then imported

into other compatible platforms. For example, it is common to export a

Modelica plant model (battery-engine) and import it into Simulink as an FMU

block for testing with MATLAB-developed controllers. Modelica, through FMI,

manages to integrate with Simulink, LabVIEW, Python, Java, etc., in a standard

way. In addition, Modelica offers other ways: tools such as Dymola have APIs

to interact with MATLAB, Excel, Python (to run simulations, sweeps, etc.). In

co-simulation environments, Modelica can be both master and slave in FMI

schemes. This makes it easy, for example, to split a problem: simulate the

battery in Dymola and the motor/inverter in another tool, synchronising them by

FMI.

In addition to FMI, Modelica is highly reusable because it is not vendor-bound:

the .mo or. mdl models you create can be opened with any Modelica tool (as

long as you have the same libraries). This ensures longevity of the models and

avoids lock-in. Additionally, Modelica supports interaction with hardware:

executables can be generated to run on real-time platforms (dSPACE, xPC

Target) and there is even support for Modelica real-time. In terms of control,

although Modelica is not a very interactive driver design environment, it does

allow drivers to be incorporated (in the form of causal block diagrams within

Modelica, or by importing external C/algorithms). For example, a user can

implement a PI control in Modelica or import a calibrated control table.

However, most prefer to develop the control in MATLAB and use Modelica for

the plant - something that, as mentioned, is entirely feasible via FMI.

• Simulink/Simscape: Integration is one of its strongest points, especially in the

context of control and signal design. Simulink is the industry standard for

developing and verifying control algorithms (battery management, motor

control, energy strategies, etc.). The advantage here is that the physical model

(Simscape) can run in the same simulation environment as the controllers

without the need for additional interfaces. For example, an engineer can co-

simulate the battery pack in Simscape along with the BMS model in Stateflow,

the PWM-controlled inverter in Simulink and a vehicle model in Simulink, all

within a single diagram. This native integration reduces complexity and

2. State of the Art

24

potential coupling errors. In addition, Simulink supports integrations with CAD

tools (via data import, e.g. suspension geometries in Simscape Multibody), with

requirements software, and very importantly: with Hardware-in-the-Loop (HIL)

environments. With Simulink and Simscape, it is straightforward to generate

optimised C code (using Simulink Coder and Simscape Real-Time) to run the

model on a HIL platform in real time.

Many companies use this way to virtually test electric vehicle ECUs: the

Simscape plant model runs in a real-time simulator while the physical ECU

interacts with it. Regarding FMI, MathWorks was initially reluctant to adopt it,

but today it offers support: there is FMU Import and FMU Export (as free add-

ons from 2019+) that allow Simulink to be used as FMU master or slave. In

practice, Simulink can import Modelica FMUs (co-simulation) or export a

Simulink subsystem as FMU (usually for co-simulation, as exporting Simscape

models for model-exchange has limitations). This has improved compatibility,

although it is not as transparent as in Modelica. Another valuable integration is

with major system design tools: Simulink can connect with data management

software, optimisation (MATLAB environment) and even co-simulate with

Simcenter Amesim, GT or others via vendor-provided interfaces (e.g. GT-

SUITE offers S-functions for Simulink and Amesim has Simulink Interface

blocks).

Thus, Simulink often acts as a hub where different exported models converge. In

short, in compatibility Simulink shines with its MATLAB ecosystem (data

processing, control design, graphical interface) and supports enough standards

(FMI, C code, etc.) to not be isolated.

• Twin Builder: It is presented as an open solution in terms of standards: we have

already mentioned its support for Modelica and VHDL-AMS, standard

Modeling languages. It also natively supports FMI for both importing and

exporting models. This means that Twin Builder can be used to orchestrate co-

simulations with third-party models. For example, one could import an FMU of

a vehicle model in CarMaker and combine it with a battery model in Twin

Builder. Or export a complete Twin Builder model (say a digital battery twin) as

an FMU for a customer to run on their system. Additionally, Twin Builder

integrates tightly with the ANSYS portfolio: it is possible to co-simulate with

ANSYS Fluent, Mechanical, Maxwell, etc. using proprietary links. A relevant

use case for EVs is to couple Twin Builder (1D system) with a 3D CFD model

of battery cooling in Fluent - Twin Builder manages the electrical and basic

thermal part, while Fluent calculates detailed temperature distribution,

exchanging results at each step.

This type of multi-scale integration is an added value. Also, using ANSYS

SCADE, Twin Builder can incorporate certifiable control logics (e.g. motor

control strategies in self-coded SCADE code) and verify the complete system.

As for HIL, ANSYS offers outputs to dSPACE or NI platforms, so a Twin

Builder model can be prepared to run on real-time. Its adoption of open

standards means that we are not forced to use only ANSYS tools; for example,

Twin Builder can generate a model in C code for inclusion in another

environment or take advantage of Python/Matlab scripts for automations. This

2. State of the Art

25

open and integration philosophy is one of the reasons why Twin Builder is

called Twin Builder: it is designed to integrate with the real world and with

various data sources.

• GT-SUITE: Although it is a proprietary environment, it has evolved to coexist

with other tools. It is commonly used in conjunction with Simulink: GT allows

models to be exported as Simulink S-Functions or even directly as FMUs

(currently supports up to FMI 3.0). For example, a complete plant model made

in GT (engine + battery + vehicle) can be exported as a co-simulation FMU and

run inside a Simulink schematic containing the controllers. Many OEMs use this

approach: they design the detailed plant in GT, but test the controls in Simulink

where they have their algorithms. On the other hand, GT-SUITE integrates with

CAD/CAE software: it can import geometries, CFD results (e.g. radiator flow

maps) and also export data for cross validation.

GT-SUITE has its own co-simulation server called GT-COE, which makes it

easy to connect multiple instances of GT with other runtime tools, synchronising

them. Regarding open standards, outside of FMI, GT does not expose a general

language (its models are stored in proprietary. gts format). However, it offers

APIs in Python and MATLAB to handle simulations programmatically, which is

useful for parametric or optimisation studies. In addition, GT incorporates model

reuse tools such as templates and sub-models that can be shared within a

company. In sum, GT makes sure not to isolate the user as some validations are

done on third-party platforms, and therefore provides connectors (co-simulation,

FMI) to accommodate it.

• Amesim Simcenter: Traditionally, Amesim has coexisted closely with

MATLAB/Simulink. It provides a module called Simulink Interface that allows

an Amesim model to be easily converted into a Simulink block, and vice versa

(co-simulate). Before FMI, this was the most common way: for example, an

engineer could assemble the EV plant model in Amesim and then co-simulate it

with the controller in Simulink via this dedicated link. Today, Amesim fully

supports FMI (it was an early adopter in the 1D world). You can export Amesim

subsystems as FMUs for external use or import FMUs into an Amesim diagram.

In fact, by supporting Modelica internally, importing models is easier (Modelica

models can be imported directly). In addition, Amesim has integration with

other elements of the Siemens Simcenter portfolio: for example, with Simcenter

STAR-CCM+ (CFD) for 1D-3D fluid dynamic co-simulation, or with Simcenter

Prescan (autonomous driving simulation environment) to include plant models

in traffic environments.

For the control part, Siemens offers solutions like Simcenter AMESim Control,

but the reality is that most users use MATLAB/Simulink for control and

Amesim for plant, integrating them via FMI or co-simulation. An interesting

point is the customisation via open languages: Amesim allows embedding

Python, C or Modelica scripts in components, which means that an expert can

add his own algorithm (e.g. an advanced SOC calculation in Python) inside a

model and share that component. This flexibility, combined with FMI, makes

the reuse of Amesim models quite good within the industrial ecosystem

(although not so much academically, as it is an expensive commercial tool).

2. State of the Art

26

Regarding HIL, Siemens also provides solutions to run Amesim models on real-

time platforms, or via C code export, so that it is not just a desktop simulation.

In a nutshell, all the tools analysed allow integration with other tools, but Modelica

and Simulink stand out by nature: Modelica, for embracing open standards such as

FMI and being multi-tool, and Simulink for being the de facto standard for integration

with control and having a multitude of bridges with other applications. Amesim, GT and

Twin Builder have followed the trend by opening to FMI and Modelica, which levels

the field quite a bit in terms of compatibility. An engineer can mix these tools in one

process (e.g. use Modelica for detailed Modeling of certain subsystems and GT for

others, coupling them via FMI). Model reuse is easier and cleaner in Modelica, thanks

to object orientation (e.g. inheriting from a base electric motor model to create variants).

In Simulink/Simscape it is possible to reuse subsystems and masks, but without a

mechanism as powerful as Modelica's inheritance. Amesim allows reuse of submodules

but within its environment, similar GT with parametric templates. Twin Builder, by

using Modelica, inherits Modelica code reuse. Thus, Modelica leads in open

standardisation and reuse, with Twin Builder leveraging those same standards, while

Simulink/Simscape leads in integration with the control and system design stage.

2.4.5 Computational Performance and Scalability

Finally, let us compare computational performance, i.e. simulation speed and the ability

to scale to large models (many components or long simulations), including real-time

simulation possibilities. In the aforementioned comparative study, concrete performance

data were obtained: using the same battery aging model, running 10 years of simulated

operation, Dymola (Modelica) was the fastest by far, followed by Simulink, next

Amesim and the slowest was Simscape [29].

In numbers: Dymola completed the 10-year simulation in 288 seconds, while Simulink

took ~3-5 times as long, and Simscape even longer. This is evidence that the Modelica

implementation (Dymola) took advantage of its optimisation to efficiently solve even a

long time horizon. Simscape, being heavier on implicit equations, had difficulties to

match that speed.

• Modelica/Dymola: Its performance strengths come from symbolic processing

and highly optimised code generation in C. Prior to simulation, Dymola

simplifies the system of equations, reduces indices and eliminates unnecessary

algebraic states. This results in models that are more compact and faster to solve.

In addition, Dymola supports parallelisation of certain parts (e.g., when

compiling, it can parallelise loops on multiple cores if it detects independence).

In terms of scalability, it is known that Modelica can handle models with tens of

thousands of equations. For example, simulating a battery pack with 100

individual cells is feasible in Modelica; although it will take longer than

representing the pack with 1 equivalent cell, the tool will be able to solve it. In

fact, one of the benefits of Modelica is that it allows you to vectorise

components.

For example, 100 identical cells can be modelled in series using an array of

components, which the compiler can exploit to generate efficient loops in the

resulting C code. There are reported cases of Modelica running power grid

2. State of the Art

27

models with tens of thousands of nodes in acceptable time, thanks to its

robustness on large systems. For real-time simulation, Dymola has an optimised

code generation mode (using fixed-step solvers, eliminating dynamic allocation,

etc.) and has been used in HIL simulations with success. Obviously, achieving

HIL with a detailed full battery-engine model may require simplifications (e.g.,

using a simpler solver, or reducing the size of the model), but it is possible.

Modelica's scalability is also shown in parametric or Monte Carlo sweeps [9]: its

Python API allows launching multiple simulations in parallel with different

parameters [30], taking advantage of multi-core hardware or clusters - very

useful when exploring manufacturing variability in batteries, for instance.

• Simulink/Simscape: Simulink as a platform is very efficient for causal control

models (which tend to be computationally light). When Simscape is introduced,

the computational burden goes up because of the implicit systems to be solved.

Simscape has improved over the years in solver, but there is still some penalty.

For example, doubling the number of Simscape components does not always

scale linearly in time, sometimes worse because of the increasing difficulty of

solving the system matrix. In moderate models (tens of components), Simscape

works well; in large models (hundreds of explicit cells, for example), it can

become slow or even unstable. MathWorks recommends in such cases using sub

Modeling techniques (e.g., grouping cells into submodules and reducing thermal

nodes) to keep the simulation manageable. One area where Simulink is excellent

is in co-simulation and real-time: it integrates with simulation hardware easily,

and one can migrate parts of the model to FPGA or similar if required. However,

when complexity is high, one sometimes opts for decoupling: e.g., simulating

the battery on a separate microcontroller from the motor, etc.., in HIL. Simulink

supports this with its Simulink Real-Time tool. In general, Simulink scales well

at the complete system level (that is why it is used for virtual vehicle

integration), but the physical part is its limit: you do not usually simulate every

detail in Simulink because it can become slow.

For intensive calculations (e.g. magnetic motor saturation, or conjugating

hundreds of cell ODEs), Modelica or manual C++ sometimes perform better.

One indicator: in the benchmark, Simulink was 3 times slower than Modelica in

simple scenarios, and 5 times slower in long scenarios [29]. Still, it should be

noted: Simulink can benefit from tricks like compiling to native code

(accelerator mode), using fixed solvers with steps calculated for the case, and

with that you can get closer. In HIL, many companies use simplified Simscape

models (e.g., reduce a 100-cell pack to 10 representative cells) to meet the

computation cycle in 1ms. Simscape has a configurable Local Solver in some

subsystems to parallelise (e.g., simulate the battery pack with a separate solver

in parallel to the rest of the model), which can take advantage of multi-core.

These are advanced solutions, but they demonstrate that Simulink/Simscape can

be adapted to scale reasonably, albeit with more manual intervention than

Modelica.

• Amesim: In performance, it ranked between Simulink and Simscape in the

above-mentioned study. Its simulation engine is efficient for many classes of

problems but can be challenged by large systems. Amesim is optimised in

components of its libraries - many use simplified numerical methods that allow

2. State of the Art

28

for larger time steps without losing stability. For example, in hydraulics,

Amesim can use specific implicit methods that allow 1e-3s time steps where

Modelica might need 1e-4s. In electrical, if not simulating switching of each

transistor, Amesim can solve an inverter as an average element and move

forward with large steps. Therefore, Amesim scales well in full system models

and can often run faster than Simscape equivalents (as seen). Where it might

have limitations is in real time: although Amesim models have been used in

HIL, co-simulation with Simulink is sometimes used for that task or C code

export.

Siemens offers a FMU tool for HIL that takes Amesim models and prepares

them for real time [31]. Regarding parallelisation, there is not much public

information; it is known that some Amesim solvers can use multi-threading

internally, but in general, scalability is achieved more by numerical robustness

than by parallelism. In any case, Amesim has proven to be able to simulate large

models (complete vehicles with multiple subsystems) with acceptable

performance, especially when the model is fit for purpose (e.g., not overloaded

with unnecessary detail in each part).

• GT-SUITE: GT is designed for efficiency in the simulation of complex systems

since its origin is to simulate engines in real time. It uses several tricks: it

linearizes certain parts, uses fast explicit integrators when it can, and allows

macro-stepping (large jumps) in slow submodels while computing fast ones with

small steps. The user has control to define priorities (e.g., simulate combustion

dynamics with 0.1° crankshaft step but the rest with 1° step). In an EV, you can

simulate the electronics with a finer pitch and the thermal with a thicker one, all

in the same run. GT also supports distributed computing: you can distribute

subsystems on different threads or even machines (which is used for co-

simulation with third parties but could also be used to parallelize within GT

certain decoupled loops). As for HIL, Gamma Tech has GT-RealTime, which is

a guide for exporting optimized models to dSPACE platforms, etc. Many

manufacturers run GT models of engines on HIL to test engine ECUs. For EV,

this extends to testing the inverter ECU with a GT model of the engine and

vehicle.

Typically, some parameters must be adjusted (e.g. setting explicit integrators,

pre-interpolated tables, etc.), but GT can achieve run times on the order of

microseconds per step for medium-sized models. On scalability, GT can handle

integrated models of the whole vehicle: there are examples where they simulate

engine, battery, transmission, cabin together. Its hierarchical solver handles the

load well. GT is not necessarily always the fastest, for purely algebraic-

differential equations as in Modelica, Dymola can optimize more globally. But

for certain automotive applications, GT is tuned to be efficient. For example, to

iterate engine designs on a WLTP cycle repeatedly, GT is often the tool of

choice for its speed in those specific calculations (and its integration of

parametric optimization). In EV, we might see something similar: to optimize a

battery design and its cooling through 100 drive cycle simulations, GT can

handle it with its batch execution engine and robustness.

2. State of the Art

29

• Twin Builder: On performance, there is no public comparative data, but we can

extrapolate. Twin Builder by supporting Modelica inherits in part its efficiency,

but its flexibility (multi-solver, co-sims) can add overhead. ANSYS has surely

worked on optimizing it for digital twins running in the cloud in near real time

[32], [33]. Its ability to generate (reduced) ROM models to use instead of

complex 3D models is a scalability strategy: better to spend time pre-computing

a ROM than then running a slow model repeatedly. Twin Builder also has

sensitivity analysis and DOE tools that take advantage of multiprocessing. In the

end, it is reasonable to assume that Twin Builder can simulate an EV powertrain

in near-real time, given that it is marketed for operational twins. And with its

control software integration, they expect it to run fast enough to interface with

controllers. However, compared to pure Modelica, Twin Builder is likely to

introduce some overhead, depending on how optimized its libraries and solver

integrator are.

2.5 Modelica and its Alternatives

After this comparative analysis, we can conclude that each tool has particular strengths,

but Modelica (as a language supported by environments such as Dymola) offers several

unique strengths that give it notable competitive advantages in the development of

battery and electric powertrain models for vehicles:

• Unified multi-domain model: Modelica allows the entire EV system to be

described with a single declarative language, natively integrating electrical,

mechanical, thermal and control. It does not require partitioning the problem or

using multiple tools - a single Modelica model can include everything from

simplified cell electrochemistry to vehicle dynamics to power electronics. This

integrated approach reduces interface errors and ensures physical consistency in

the interactions between subsystems. Other tools also achieve multi-domain

integration but often require external couplings (Simulink with different

toolboxes, co-simulation, etc.) or are focused on certain domains rather than

others. Modelica by design is generic and extensible, which is ideal in a field

such as electromobility where several engineering fields are involved.

• Acausality and model reuse: Modelica's acausal approach makes it quite easy

to reuse models in different configurations. For example, the same battery

module submodel can be reused in different pack sizes by simply connecting

more modules in series/parallel, without modifying internal equations. If

tomorrow the topology of the system changes (e.g., a second electric motor is

added to make an AWD), in Modelica it is a matter of connecting that new

motor to the rest; the solver will redistribute the equations without the modeler

having to rework inputs and outputs. This flexibility is not so easy in causal

environments (where adding a component often means redesigning the signal

scheme). Modelica also supports the creation of modular libraries: companies

can develop their own component libraries (for example, a proprietary battery

cell model) and reuse it in all their projects, and even update it in one place so

that all models using it benefit from the improvement. This modularity is an

important asset in long-term or variant projects (think of vehicle platforms

sharing engine/battery with different calibrations; Modelica makes it possible to

have a single base model and specialize it with inheritance for each case).

2. State of the Art

30

• Accuracy and fidelity with efficiency: Modelica has proven to be able to

achieve high levels of fidelity without sacrificing performance. The ability to

include complex equations (e.g. non-linear temperature dependencies, additional

differential equations for degradation phenomena) within the model, and still

simulate quickly thanks to symbolic optimization, is a great advantage. In the

EV domain, where you want to evaluate long scenarios (battery charge cycles,

10+ year lifetime, etc.), Modelica's efficiency translates into less computational

time to obtain results, which speeds up the design iteration. Quantitative studies

confirmed that Dymola (Modelica) can be several times faster than the

alternatives in simulating long cycle times without loss of accuracy.

In addition, the robustness of its DAEs solvers allows models with very different

dynamics (such as those present in an EV: electronics in microseconds vs.

degradation in hours) to be solved together in a stable way, avoiding the need to

separate models.

• Open standards support: As Modelica is a free standard, its use avoids lock-in

to a single tool or vendor. This is strategic for automotive companies looking for

longevity of their model investments and compatibility over the years. They can

develop a model today in Modelica with Dymola and later decide to run it in

another Modelica tool or integrate it into a different digital twin platform, with

minimal effort. FMI's native support also makes Modelica work well with

almost any workflow: it is easy to hand over an encapsulated Modelica plant

model to a control team, or to import a given external vendor's model into

Modelica as an FMU. In the EV environment, where many vendors coexist

(each might provide a model of their component), this interoperability is crucial.

In addition, Modelica's open ecosystem promotes academic collaboration and

innovation: many universities research batteries and electric propulsion using

Modelica and share their findings in the form of models or publications, thus

feeding the state of the art available to the industry.

• Customisability and state-of-the-art: Related to the above, Modelica allows

new knowledge or effects to be easily incorporated into the model as they

become better understood. For example, if a company develops a new algorithm

for calculating battery health based on, say, entropy counting, it can implement

it in Modelica within the existing model, without waiting for a software vendor

to include that functionality. This makes Modelica very suitable for upfront

research and development, which is often the source of competitive advantage in

electromobility (batteries with better management, motors with finer controls,

etc.). Other tools, being more closed, limit the user to what the supplier offers

(although they can be extended, it is not usually with the same freedom). In this

sense, Modelica future-proofs Modeling efforts: any new physics or component

can be integrated by describing its equations.

• Integration with FMI: While Simulink leads in control design, Modelica

complements that strength rather than opposing it. An optimal flow that many

follow is plant model in Modelica (accurate and multi-physics), exported as

FMU, and integrated into Simulink to design and test controllers. Thanks to the

efficiency of the Dymola FMU, it can be simulated in near real-time within

2. State of the Art

31

Simulink [34]. This combines the ‘best of both worlds’: the quality of the

Modelica physical model with the familiarity and power of MATLAB/Simulink

for control. In our times where multi-tool collaboration is commonplace,

Modelica fits very well. On the other hand, if desired, Modelica also allows

controls to be incorporated into the same model (e.g. using Modelica control

libraries or importing external logic), offering the possibility of having a self-

contained plant + control model ready to, for example, be run as a digital twin in

a connected vehicle.

• Real-time execution and HIL: Although not unique, Modelica (especially

Dymola) has demonstrated that it can compile complex models to efficient C

code suitable for running in real-time on hardware simulators. This is essential

for HIL testing of inverters, BMS, etc. With the right optimisations, a Modelica

powertrain model on a dSPACE platform [35], taking advantage of its superior

performance. This coupled with FMI means that even in heterogeneous HIL

benches, a Modelica model can be integrated as a component.

However, it is fair to recognise that Modelica also has challenges: the need for qualified

staff to master the language and the management of the libraries, as well as the

investment in tools (Dymola is commercial, although there are free alternatives with

fewer features). However, once the learning curve is overcome, the benefits in

flexibility, speed and fidelity tend to justify their use, especially in projects where many

simulations will be performed (design optimisation, use cycles, etc.) or where the model

will be continuously refined.

2.6 Conclusions

The Modelica alternative tools have significant merits: Simulink/Simscape is almost

irreplaceable in loop with control and for rapid industrial adoption, Amesim offers

immediate productivity with validated models, GT-SUITE is unbeatable in integrated

thermal simulation, Twin Builder facilitates digital twins connected with ANSYS

corporate tools. In fact, many organisations use combinations of these tools, assigning

each to the role where it is most relevant.

However, Modelica is positioned as a powerful solution for electric vehicle simulation,

offering a hard-to-achieve combination of fidelity, flexibility and speed. For

organisations willing to invest in initial training and adopt open standards, Modelica can

pay big dividends: more comprehensive and adaptable models, reduced computational

time, and freedom to innovate. For these reasons, Modelica has been gaining a place in

modern automotive, complementing and sometimes replacing traditional tools,

especially as simulation challenges become more interdisciplinary (such as marrying

battery chemistry with vehicle dynamics and control software). For battery and electric

powertrain applications, Modelica competitively offers the ability to cover the entire

system with high accuracy and reusability, positioning itself as a key part of the electric

vehicle engineering toolset.

A comparative summary of the strengths and weaknesses of the aforementioned tools is

shown in Table 2.2.

2. State of the Art

32

Table 2.2: Summary Comparison of Modelica and Main Alternative Tools.

Tool Modeling

Approach

Integration and

Standards

Performance

Modelica

(Dymola,

OpenModelica)

Multi-domain

acausal equations;

Modelica open

language.

Open standard; FMI

support (model and co-

sim), portable models

between different tools.

Very high: DAE

solvers with

symbolic

optimisation (up to

~5× faster than

Simulink in a

battery test) [29].

Simulink/

Simscape

Causal block

diagram + acausal

physical networks

(Simscape);

separate multi-

domain libraries.

Native integration with

drivers

(MATLAB/Simulink);

FMI export (co-sim)

available.

Good with simple

models; can be

slower with complex

physical models

[29].

ANSYS Twin

Builder

Hybrid Modeling:

supports Modelica

(acausal), VHDL-

AMS, SPICE and

causal blocks in

schemas.

FMI support; co-

simulation with Ansys

3D tools (Fluent,

Mechanical via ROM);

integration with SCADE

(control software).

High: digital twin

oriented, including

3D model reduction;

robust multi-domain

solvers (incl. fast

electrical events).

GT-SUITE Specialised multi-

physics 1D

simulation;

acausal approach

with dedicated

domain solver.

Import/export models via

FMI (co-sim);

integration with

Simulink (S-function)

for control loops.

Very high in its

domain: optimised

for large systems

(used in real-time

and HIL); proven

scalability in models

of hundreds of

components.

Simcenter

Amesim

0D/1D acausal

Modeling;

connection of

components by

ports (causality

automatically

assigned).

Supports FMI; allows C,

Python or Modelica

models to be included

within components; co-

simulation with

Simulink or other

common industry

environments.

High: Reliable

simulation; in

comparative studies

its performance was

intermediate (faster

than Simscape but

beaten by Dymola in

speed) [29].

33

3 Modeling of the Electric Powertrain

In this chapter, the physical architecture of the system implemented using the

EPowertrain library is described, detailing the main models developed to represent the

energy behaviour of an electric vehicle. The approach adopted seeks a balance between

physical realism and computational efficiency, allowing energy consumption to be

accurately simulated without incurring unnecessary complexity for the analysis of

driving cycles.

3.1 Introduction

In this chapter the mathematical Modeling of the physical systems corresponding to the

main components of the EPowertrain library is presented. The mathematical Modeling

of each of these components is discussed.

The main objective of this chapter is not to describe their implementation in the

Modelica environment, which is discussed in Chapter 4, but to provide a conceptual and

mathematical basis that justifies the choice and structure of the models used. The aim is

to provide the physical and mathematical foundations for their subsequent

implementation, which will be described in Chapter 4.

3.2 System Overview

The modelled system represents the powertrain of an electric passenger vehicle powered

by a lithium-ion battery. Its objective is to transform the energy stored in the battery

into useful wheel motion, through a chain composed of electrical, electromechanical

and mechanical components. The overall architecture includes the following main

subsystems:

• Battery: source of electrical energy.

• Power converter: regulates the voltage delivered to the motor.

• Direct current (DC) motor: converts electrical energy into mechanical torque.

• Frame model: represents the vehicle’s body frame inertia and resistance to

movement.

The interaction between these elements is based on the conservation of energy and the

continuity of physical variables such as voltage, current, torque and angular velocity.

In an electric powertrain, the energy flow analysis is essential to evaluate the overall

efficiency, to identify the main sources of losses and to study phenomena such as

energy recovery through regenerative braking. An adequate representation of these

flows allows for more realistic simulations and optimisation of the design and energy

management of the electric vehicle (EV).

3. Modelling of the Electrical Powertrain

34

The Modeling of the energy flows in the powertrain developed considers the main

stages of energy conversion and transfer, from electrochemical storage in the battery to

its transformation into useful mechanical energy in the wheels, passing through the

electronic conversion and control devices. Along this chain, various losses are

introduced that affect the overall system performance and must be carefully considered

in the model.

The simulated model represents a passenger car-type electric vehicle in a single-drive

configuration. The energy chain starts at the battery, which supplies electrical energy

through a power converter to a direct current (DC) motor. This motor generates torque,

which is applied to the chassis, represented by a simplified kinematic model.

The main energy flows represented in the EPowertrain library are as follows:

• Battery discharge flow corresponds to the transfer of positive current from the

battery to the power converter, and then to the electric motor to generate motion.

This flow implies a decrease in the state of charge (SoC) of the battery.

• Regenerative braking charge flow: during deceleration phases, the motor can

act as a generator, reversing the direction of current flow and allowing some of

the kinetic energy to be recovered as a battery charge.

• Resistive losses: modelled as voltage drops associated with the internal

resistance of the battery and power electronics such as converters and inverters.

These losses manifest themselves as heat generation not explicitly modelled in

this version of the library.

• Switching losses: in the present model, the fast-switching effects of

semiconductor devices have been idealised through continuous behaviour,

eliminating discrete state change events and favouring the numerical efficiency

of the simulations.

• Mechanical losses: represented by viscous friction and dynamic inertia of the

drive system, they affect the conversion of electrical energy into usable

mechanical energy.

The energy balance of the system can be expressed in simplified form by the following

relationship:

 𝑃𝑏𝑎𝑡 = 𝑃𝑚𝑜𝑡𝑜𝑟 + 𝑃𝑙𝑜𝑜𝑠𝑒𝑠 (3.1)

where 𝑃𝑏𝑎𝑡 represents the net power supplied to or absorbed by the battery, 𝑃𝑚𝑜𝑡𝑜𝑟 is

the useful power converted into mechanical work, and 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 groups the different

sources of inefficiency present in the system. It should be noted that, to maintain the

focus on energy efficient simulation, the following simplifications have been adopted:

• Neither the detailed thermal behaviour of components nor their effect on

electrical or mechanical losses has been modelled.

3. Modelling of the Electrical Powertrain

35

• Switching losses of power electronics have been represented continuously,

without introducing discrete events associated with PWM operation of inverters

or converters.

• The thermal dissipation of the electric motor and the influence of temperature on

its behaviour have not been explicitly considered.

These Modeling decisions make it possible to accurately simulate energy consumption

under complete driving cycles, optimising simulation times without sacrificing the

validity of the results from an energy point of view.

Figure 3.1: Typical EV Power Flows.

3.3 DC Motor

The Motor model corresponds to the dynamic behaviour of a permanent magnet direct

current (PMDC) motor. The main phenomena represented in the model are:

• Armature voltage drops due to resistance and inductance.

• Generation of counter-electromotive force proportional to the angular velocity of

the rotor.

• Torque production proportional to the current in the winding.

• Effects of viscous friction and inertia dynamics of the motor shaft.

The motor is represented by the following coupled equations, which represent the

electromechanical interactions corresponding to a DC motor:

𝑉𝑚 = 𝑅𝑚 ∙ 𝐼𝑚 + 𝐿𝑚 ∙

𝑑𝐼𝑚

𝑑𝑡
+ 𝐾𝑒 ∙ 𝜔 (3.2)

𝐽 ∙

𝑑𝜔

𝑑𝑡
= 𝐾𝑡 ∙ 𝐼𝑚 − 𝑇𝑙𝑜𝑎𝑑 − 𝐵 ∙ 𝜔 (3.3)

Where corresponding parameters are shown on table 3.1.

3. Modelling of the Electrical Powertrain

36

Table 3.1: DC Motor Parameters.

Parameter Symbol Unit

Motor’s applied voltage 𝑉𝑚 𝑉

Motor’s current 𝐼𝑚 𝐴

Winding resistance 𝑅𝑚 Ω

Winding inductance 𝐿𝑚 𝐻

Counter-electromotive constant 𝐾𝑒 𝑉 ∙ 𝑠/𝑟𝑎𝑑

Shaft’s angular speed 𝜔 𝑟𝑎𝑑/𝑠

Rotor’s inertia 𝐽 𝐾𝑔/𝑚2

Torque constant 𝐾𝑡 𝑁 ∙ 𝑚/𝐴

Shaft’s load resistance 𝑇𝑙𝑜𝑎𝑑 𝑁 ∙ 𝑚

Viscous friction coefficient 𝐵 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑

3.4 Voltage Regulator

In power converter Modeling, it is common to represent output voltage control using

pulse width modulation (PWM) strategies. However, this approach involves introducing

many discrete switches in the system, generating discontinuities in the state variables

and in the current and voltage flows.

These discontinuities significantly increase the computational load and simulation time

for several reasons:

• They force the numerical solver to detect and handle high frequency events.

• The need to reduce integration steps to correctly capture the jumps.

• Can make convergence and numerical stability difficult in complex multi-

domain models.

Since the purpose of this work is focused on energy analysis and not on the detailed

representation of electronic switching, we have chosen to idealise the behaviour of the

converter. The approach adopted is to model the converter as an ideal voltage adaptor,

where the output:

 𝑉𝑂𝑢𝑡 = 𝐷 ∙ 𝑉𝐼𝑛 (3.4)

This idealization presents some benefits:

• Discrete event generation is eliminated, favouring continuous dynamics.

• Simulation efficiency is significantly improved, allowing complete standardised

driving cycles (WLTP, UDDS) to be performed with reasonable times.

• It facilitates the reconfiguration and extension of the model for future simulation

scenarios.

3. Modelling of the Electrical Powertrain

37

In addition, an energy balance equation has been introduced to ensure that the

conservation of energy in this model is fulfilled.

 𝑑𝐸𝐵𝑎𝑙𝑎𝑛𝑐𝑒

𝑑𝑡
= 𝑃𝐼𝑛 + 𝑃𝑂𝑢𝑡 = 𝑉𝐼𝑛 ∙ 𝐼𝐼𝑛 + 𝑉𝑂𝑢𝑡 ∙ 𝐼𝑂𝑢𝑡 (3.5)

Table 3.2: Voltage Regulator Parameters.

Parameter Symbol Unit

Output voltage 𝑉𝑂𝑢𝑡 𝑉

Input voltage 𝑉𝐼𝑛 𝑉

Output current 𝐼𝑂𝑢𝑡 𝐴

Input current 𝐼𝐼𝑛 𝐴

Energy balance 𝐸𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝐽

Modulation factor 𝐷 -

Input power 𝑃𝐼𝑛 𝑊

Output power 𝑃𝑂𝑢𝑡 𝑊

3.5 Battery Model

The battery model represents an idealised cell with a second-order equivalent circuit

structure. This configuration seeks to capture both the static response and certain

transient dynamics of the electrical storage system, while maintaining a low

computational load.

The equivalent circuit includes:

• A state-of-charge (𝑆𝑂𝐶) controlled voltage source, whose value ranges from a

minimum discharge voltage (𝑉𝑑) to a maximum charge voltage (𝑉𝑓).

• A series resistor (𝑅𝑠) that models the internal resistive losses.

• A parallel network consisting of a resistor (𝑅𝑝) and a capacitor (𝐶), which cap-

tures the polarisation effects and dynamic response of the cell.

• An internal calculation of the 𝑆𝑂𝐶 from the net current supplied or absorbed,

considering a total capacity (𝐶𝑎𝑝) and a configurable initial state (𝑆𝑂𝐶𝑖𝑛𝑖𝑡).

Model equations

The main equations of the model are:

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 −

100

𝑄
∫ 𝐼(𝜏) ∙ 𝑑𝜏

𝑡

0

(3.6)

 𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝑉𝑑 + (𝑉𝑓 − 𝑉𝑑) ⋅ 𝑆𝑂𝐶

(3.7)

3. Modelling of the Electrical Powertrain

38

 𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑂𝐶 − 𝐼 ⋅ 𝑅𝑠 − 𝑉𝑅𝐶 (3.8)

Where 𝑉𝑅𝐶 is the voltage drop in the parallel RC network:

𝐶 ⋅

𝑑𝑉𝑅𝐶

𝑑𝑡
=

𝑉𝑂𝐶 − 𝑉𝑅𝐶

𝑅𝑝
− 𝐼

(3.9)

Table 3.3: Battery Model Parameters.

Parameter Symbol Unit

Open circuit voltage 𝑉𝑜𝑐 𝑉

Series resistance 𝑅𝑠 Ω

Parallel resistance 𝑅𝑝 Ω

Capacitor capacitance 𝐶 𝐹

Battery’s charge capacity 𝑄 𝐴 ∙ ℎ

State of charge 𝑆𝑂𝐶 %

Initial state of charge 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 %

RC-branch voltage drop 𝑉𝑅𝐶 V

Battery cell voltage 𝑉𝐵𝑎𝑡𝑡 𝑉

Full-state voltage 𝑉𝑓 𝑉

Depleted-stated voltage 𝑉𝑑 𝑉

Delivered current I 𝐴

3.6 Body Frame Model

The frame model implements a simplified representation of a vehicle chassis, focusing

exclusively on its longitudinal dynamics. This simplification is suitable for the purposes

of this work, as it allows capturing the main effects of mass, inertia and terrain slope on

energy consumption, without introducing the complexity associated with more

comprehensive vehicle dynamics models. The model considers the following effects:

• Longitudinal inertia: This represents the resistance of the vehicle to changes in

its linear velocity, modelled through the equivalent mass 𝑚.

• Resistive forces: Rolling forces, aerodynamic drag (if extension is desired) and

gravitational effects associated with terrain inclination are included.

• Terrain slope: A slope angle 𝛼 is introduced which modifies the component of

the gravitational force acting on the vehicle.

The used equation of movement is:

 𝐹𝑚 = 𝐹𝐼 + 𝐹𝑑 + 𝐹𝑟 + 𝐹𝑔 (3.10)

Where 𝐹𝑚, 𝐹𝐼, 𝐹𝑑, 𝐹𝑟 and 𝐹𝑔 represent the forces provided by the engine, the inertia of

the vehicle mass, the aerodynamic loads, the friction losses of the tyres and the effects

of weight as a function of terrain gradient respectively. The force coming from the

3. Modelling of the Electrical Powertrain

39

engine can be calculated from the torque applied to the wheels.

𝐹𝑚 =

𝑇𝑚

𝑅𝑤ℎ𝑒𝑒𝑙
 (3.11)

Where 𝑇𝑚 is the torque applied by the motor shaft and 𝑅𝑤ℎ𝑒𝑒𝑙 is the radius of the wheel.

The inertia forces to which the chassis of the vehicle is subjected correspond directly to

its speed variation.

𝐹𝐼 = 𝑚 ∙

𝑑𝑣

𝑑𝑡
 (3.12)

Where 𝑣 is the vehicle speed and 𝑚 is the vehicle’s body mass. The aerodynamic drag

force loads are expressed as:

𝐹𝑑 =

1

2
⋅

𝐶𝑑 ∙ 𝜌 ∙ 𝑣2

𝐴𝑓
 (3.13)

With 𝐶𝑑 as the characteristic vehicle drag coefficient, 𝜌 the fluid (air) density and 𝐴𝑓 as

the vehicle front area. The tyres friction force is estimated as a function of a coefficient

and the projection of the vehicle's weight on the ground.

 𝐹𝑟 = 𝐶𝑟 ∙ 𝑚 ∙ 𝑔 ∙ 𝑐𝑜𝑠(𝛼) (3.14)

With 𝐶𝑟 as the rolling coefficient of the vehicle’s tyres. Finally, the contribution of the

weight obeys the equation of the inclined plane.

 𝐹𝑔 = 𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝛼) (3.15)

In table 3.4, the parameters of the body frame are presented as follows.

Table 3.4: Body Frame Model Parameters.

Parameter Symbol Unit

Motor’s applied force 𝐹𝑚 𝑁

Motor’s applied torque 𝑇𝑚 𝑁 ∙ 𝑚

Wheels’ radius 𝑅𝑤ℎ𝑒𝑒𝑙 𝑚

Inertia force 𝐹𝐼 𝑁

Vehicle’s mass 𝑚 𝐾𝑔

Vehicle’s velocity 𝑣 𝑚/𝑠

Drag force 𝐹𝑑 𝑁

Drag coefficient 𝐶𝑑 -

Fluid density 𝜌 𝐾𝑔/𝑚3

Front area 𝐴𝑓 𝑚2

Rolling friction force 𝐹𝑟 𝑁

Rolling coefficient 𝐶𝑟 -

Weight force 𝐹𝑔 𝑁

Gravity constant 𝑔 𝑚/𝑠2

Terrain’s slope 𝛼 𝑟𝑎𝑑

3. Modelling of the Electrical Powertrain

40

3.7 Conclusions

This chapter has approached the mathematical formulation of the most important

physical systems in the electric powertrain of a passenger car. By means of a functional

decomposition in its main components, the fundamental models that allow to represent

the energy flow from the electrochemical storage to the mechanical movement in the

wheels have been defined.

For each component, the Modeling hypotheses, the differential or algebraic equations

that describe its behaviour, and the key variables with their respective units have been

established. This description allows capturing the essential interactions of the system in

a physically coherent way, facilitating its subsequent implementation in an acausal

simulation environment such as Modelica.

Chapter 5 will show that these models, despite their simplicity, offer an adequate

balance between physical fidelity and computational efficiency, suitable for system-

level simulations and energy consumption analysis.

The simplification of certain effects, such as thermal losses or battery aging, has been a

conscious decision to focus on electrical behaviour and energy validation under driving

profiles. This conceptual and mathematical framework forms the basis on which the

modular implementation of the EPowertrain library, described in chapter 4 below, is

structured.

41

4 The EPowertrain Modelica Library

4.1 Introduction

The EPowertrain library has been developed as a central part of this work with the aim

of providing a modular, extensible and physically coherent simulation tool for the

energy study of battery electric vehicles. Based on the Modelica language and following

object-oriented design principles, this library allows to easily compose realistic electric

powertrain architectures, with an intermediate level of complexity that balances

accuracy and computational efficiency.

The main motivation behind the design of this library is to reduce the limitations found

in existing libraries, which are either too general (MSL) or too component-oriented

without a common framework for system-level energy simulation. In contrast,

EPowertrain structures its models by functionality, which allows to compose complete

electric vehicles from reusable blocks that can be coupled together in a natural way by

means of physical connectors.

This chapter describes the structure of the library, the functional content of each of its

packages and the key models implemented.

4.2 Library Structure

The EPowertrain library has been designed following a modular and functional

architecture, which allows to build, analyse and extend electrical kinematic chains in a

flexible and reusable way. Its internal organisation responds to the principle of

separation of responsibilities, grouping the models according to their physical domain

or logical function within the system. This arrangement favours structural clarity,

facilitates error diagnosis and allows individual validation of the different subsystems.

Although the entire implementation is contained in a single Modelica main package,

internally the library is divided into well-defined functional groups, which encapsulate

components of a similar nature - such as power elements, mechanical structures, sensors

or control blocks - and expose coherent interfaces to ensure interoperability. The

architecture follows the principles of object-oriented Modeling:

• Encapsulation: each component hides its internal equations and exposes only

the necessary variables using standard connectors.

• Inheritance and reusability: new specialised versions of components can be

derived from base classes without modifying the original code.

• Acausality: connections between components are made using physical variables

(such as voltage-current or torque-speed), without the need to define an explicit

direction of signal flow, making it easy to reconfigure the model.

4. The EPowertrain Modelica Library

42

In addition to the main blocks, the library incorporates auxiliary modules for signal

routing and data acquisition, as well as a set of example models. These examples

illustrate the use of the library in practical cases, such as the analysis of energy

consumption under standardised or real driving profiles. This structure responds to the

following objectives:

• To allow modular expansion of the library and independent validation of its

components.

• Facilitate the configuration of different electric vehicle architectures (varying

battery, motor, converters or control strategies).

• Effortlessly integrate the control logic in a multi-domain physical context.

The main subpackages that make up the library, which will be described in detail below,

are described below:

• Interfaces: Defines the physical connectors used by electrical, mechanical and

control components. Ensures physical consistency in the connection of

heterogeneous models.

• SignalRouting: Contains auxiliary blocks for signal routing and manipulation,

such as adders, gains or input generators.

• Sources: Provides models of electrical sources and input generators, both ideal

and controllable, used to simulate external conditions or experiments.

• Electrical: Includes models of major electrical components, such as the battery,

converter and passive elements. Represents the electrical domain of the

powertrain.

• Mechanical: Groups models of the mechanical domain, such as bodies with

inertia, ideal wheels and chassis models. Represents the physical interaction

with the environment.

• Control: Provides functional control blocks, including speed controllers,

modulators and table-based reference systems.

• Sensors: Provides sensor models for reading physical variables such as current,

voltage, speed, torque and energy. They are essential for performance analysis.

• Examples: Contains complete example models for validation and demonstration

of use. Their detailed analysis is covered in Chapter 5.

The concrete structure of the library and the details of each functional module are

described in more detail in Appendix A, where representative fragments of the

implemented code are presented and the function of each package is explained.

4. The EPowertrain Modelica Library

43

Figure 4.1: EPowertrain Library Main Structure.

4.3 Interfaces

Figure 4.2 shows the Interfaces package, witch contains the physical connectors that

allow interactions between models from different domains. The following types are

defined:

• Electrical connectors whose variables are voltage and current.

• Mechanical connectors with torque and position variables.

• Generalist input, output or input and output connectors. Intended for the

manipulation of real or Boolean signals.

Figure 4.2: Interfaces Package Composition.

4.4 SignalRouting

The SignalRouting package provides signal processing blocks, especially useful for

experiments like saturation negation or delays among others. It also includes blocks for

multiplexing signals and creating electrical buses. Facilitating the routing of signals in a

clean and organised way. These blocks do not model physical phenomena directly but

are essential in the modular structure of complete models. The SignalRouting package

structure is shown below in Figure 4.3.

4. The EPowertrain Modelica Library

44

Figure 4.3: SignalRouting Package Structure.

4.5 Sources

The Sources package (Figure 4.4) contains models of controlled or ideal sources,

necessary for experimentation and simulation of external conditions as well as for the

generation of input profiles.

Figure 4.4: Sources Package Models.

4.6 Electrical

The Electrical subpackage is one of the core components of the EPowertrain library, as

it houses the components responsible for Modeling the electrical behaviour of the

propulsion system. These models simulate the conversion, distribution and dissipation

of electrical energy in the vehicle's powertrain, from the battery to the engine.

The design of the models contained in this package follows a balanced philosophy

between physical realism and computational efficiency. Priority is given to the

representation of phenomena relevant to energy analysis (such as voltage drop under

load or dynamic motor response), while avoiding the use of excessively detailed models

that would introduce discontinuities or unnecessary numerical rigidity, especially in

long duration simulations.

4. The EPowertrain Modelica Library

45

All electrical components implement electrical pin connectors, defined in the Interfaces

subpackage, which guarantees automatic current conservation and electrical potential

continuity for all connections. The main models included in this package are described

in Figure 4.5.

Figure 4.5: Electrical Package Components.

4.6.1 Battery

The battery model implemented in Electrical.Sources.Battery represents an idealised

cell with a second-order equivalent circuit structure. This configuration seeks to capture

both the static response and certain transient dynamics of the electrical storage system,

while maintaining a low computational load. The equivalent circuit includes:

• A state-of-charge (𝑆𝑂𝐶) controlled voltage source, whose value ranges from a

minimum discharge voltage (𝑉𝑑) to a maximum charge voltage (𝑉𝑓).

• A series resistor (𝑅𝑠) that models the internal resistive losses.

4. The EPowertrain Modelica Library

46

• A parallel network consisting of a resistor (𝑅𝑝) and a capacitor (𝐶), which cap-

tures the polarisation effects and dynamic response of the cell.

• An internal calculation of the 𝑆𝑂𝐶 from the net current supplied or absorbed,

considering a total capacity (𝐶𝑎𝑝) and a configurable initial state (𝐼𝑛𝑖𝑡𝑆𝑂𝐶).

The model is implemented in Modelica (Figures 4.6, 4.7) from basic components and

algorithmic equations for the 𝑆𝑂𝐶. Additionally, current limitation has been

implemented to constrain the maximum current that the actual physical device would be

capable of providing.

Figure 4.6: Battery Model Component Diagram.

Figure 4.7: Battery Model Parametrization Interface.

Rs

Rp C

4. The EPowertrain Modelica Library

47

4.6.2 ElectricConverter

The ElectricConverter model implements an idealised representation of a power

converter (such as an inverter or a DC-DC converter) by means of a simple linear

relationship controlled by a modulating signal as shown in chapter 3.3.

 𝑉𝑜𝑢𝑡 = 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒 ∙ 𝑉𝑖𝑛 (4.1)

This approach avoids Modeling the individual PWM switching cycles, which reduces

the computational burden and avoids introducing discontinuities that can degrade the

numerical performance of the simulator. This type of model is especially useful for long

duration driving simulations such as UDDS. To ensure the ideal behaviour of the

converter, the following restriction has been introduced in the power calculation.

Forcing the power balance to be fulfilled.

 𝑃𝑤𝐼𝑛 + 𝑃𝑤𝑂𝑢𝑡 = 𝑉𝐼𝑛 ∙ 𝐼𝐼𝑛 + 𝑉𝑂𝑢𝑡 ∙ 𝐼𝑂𝑢𝑡 = 0 (4.2)

Where the current flow is reversed depending on the mode of operation:

𝐼𝑖𝑛 = {
−𝐼𝑖𝑛𝑝𝑢𝑡𝑃𝑖𝑛 𝑖𝑓 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒 ≥ 0 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒

𝐼𝑖𝑛𝑝𝑢𝑡𝑃𝑖𝑛 𝑖𝑓 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒 < 0 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒

(4.3)

This inversion of current flows has been introduced to control the charging mode

(regenerative braking) where a negative DutyCycle implies a power flow to the battery

(charging) and a positive DutyCycle symbolises a power flow from the battery to the

engine (discharging). Figure 4.8 below shows the source code of the modelica

implementation of this submodule.

Figure 4.8: ElectricConverter Implementation in Modelica.

4. The EPowertrain Modelica Library

48

4.6.3 DCMotor

The DCMotor model (Figures 4.9, 4.10) is the Modelica implementation of a permanent

magnet direct current (PMDC) motor whose mathematical model was discussed in

chapter 3.2. For the implementation, the motor is composed of 3 elements: Resistance

𝑅1 and inductance 𝐿1 represent the input impedance to the motor while the BackEMF

submodel integrates the electromechanical phenomena that allow the transformation

from the electrical to the mechanical domain.

𝑉𝑝 − 𝑉𝑛 = 𝑅1 ∙ 𝐼 + 𝐿1 ∙

𝑑𝐼

𝑑𝑡
+ 𝑉𝑒𝑚𝑓 = 𝑅1 ∙ 𝐼 + 𝐿1 ∙

𝑑𝐼

𝑑𝑡
+ 𝐾𝑒 ∙ 𝜔 (4.4)

𝑇𝑚 = 𝐾𝑡 ∙ 𝐼 = 𝑇𝑙𝑜𝑎𝑑 + 𝐵 ∙ 𝑤 + 𝐽 ∙

𝑑𝜔

𝑑𝑡
 (4.5)

The BackEMF submodule deals with the conversion of electric current to torque and

vice versa. For this purpose, it integrates the counter-electromotive force equations

discussed in chapter 3.2.

Figure 4.9: DC Motor Modelica Implementation.

Figure 4.10: BackEMF Submodel Source Code.

R1 L1

BackEMF

Vp

Vn

Vemf Tm Tload

Rotor

mechanicalAxis

4. The EPowertrain Modelica Library

49

4.7 Mechanical

The Mechanical package (Figure 4.11) provides essential models to represent both

rotational dynamics and longitudinal displacement of the electric vehicle. The models

were designed to maintain physical compatibility with the rest of the library

architecture, coherently integrating the mechanical domain with the electrical and

control components. This section extends the previously introduced rotational type

models and incorporates the key models used to represent the linear motion of the

vehicle, in particular the chassis (BodyFrame1DOF), the wheel (Wheel) and the effect

of the terrain slope (Slope).

Figure 4.11: Mechanical Subpackage Modules.

4.7.1 Wheel

The Wheel model acts as an ideal transformer that converts the mechanical torque T

applied to the axle of a wheel into a linear force F, transmitted to the vehicle body

through a translational interface.

The relationships used are:

• Vehicle linear velocity:

 𝑣 = 2 ∙ 𝜋 ∙ 𝑅 ∙ 𝜔 (4.6)

Where 𝑅 and 𝜔 represents the wheel radius and angular speed respectively.

• Transmitted traction force balance:

𝑇𝑎𝑥𝑖𝑠 + 𝑓𝑠 ∙ 𝜔 + (𝐽 + 𝑀 ∙ 𝑅2) ∙

𝑑𝜔

𝑑𝑡
= 0 (4.7)

With 𝑇𝑎𝑥𝑖𝑠 is the shaft provided torque, 𝑓𝑠 the dynamic viscosity friction coefficient.

The term:

(𝐽 + 𝑀 ∙ 𝑅2) ∙

𝑑𝜔

𝑑𝑡
 (4.8)

Models the inertia forces resulting from both linear and angular acceleration of the

wheel. The rotational component corresponds to a disc inertia:

4. The EPowertrain Modelica Library

50

𝐹𝑟𝑜𝑡 = 𝐽 ∙

𝑑𝜔

𝑑𝑡
 (4.9)

With J as the inertial coefficient of the disc(wheel). The linear acceleration inertia can

be transformed in an equivalent applied torque on the wheel axis (Figure 4.12) if we

consider that the mass works in opposition to the mass acceleration.

𝐹𝐼 = 𝑀 ∙

𝑑𝑣

𝑑𝑡
= 𝑀 ∙ 𝑅 ∙

𝑑𝜔

𝑑𝑡
 (4.10)

𝑇𝐹𝐼

= 𝐹𝐼 ∙ 𝑅 = 𝑀 ∙ 𝑅2 ∙
𝑑𝜔

𝑑𝑡
 (4.11)

Figure 4.12: Wheel Model Lineal Inertia Force.

The total torque resulting from the inertial forces then results:

𝑇𝐼 = 𝑇𝐹𝐼

 + 𝑇𝑟𝑜𝑡 = 𝐽 ∙
𝑑𝜔

𝑑𝑡
 + 𝑀 ∙ 𝑅2 ∙

𝑑𝜔

𝑑𝑡
 = (𝐽 + 𝑀 ∙ 𝑅2) ∙

𝑑𝜔

𝑑𝑡
 (4.12)

The model also integrates a steady state mode, where the steady state friction force is

modelled when the velocity and accelerations are close to zero. Instead of assigning an

equation on 𝜔 directly, we work on its derivative so that the continuity of the variable in

the changing modes of operation can be respected. Avoiding chattering problems.

𝑑𝜔

𝑑𝑡
= {

−103 ∙ 𝜔 |𝜔| < 𝑒𝑝𝑠
𝑇𝑎𝑥𝑖𝑠 + 𝑓𝑠 ∙ 𝜔

(𝐽 + 𝑀 ∙ 𝑅2)
 |𝜔| ≥ 𝑒𝑝𝑠

 (4.13)

 Figure 4.13 illustrates the Wheel model implementation below.

4. The EPowertrain Modelica Library

51

Figure 4.13: Wheel Model Source Code.

4.7.2 BodyFrame1DOF

BodyFrame1DOF represents the vehicle body as a point mass with only one degree of

freedom (longitudinal displacement). It is the model that simulates the motion of the

vehicle under the action of the driving and resisting forces (Figure 4.14).

The model is implemented as a body of mass 𝑚 subjected to a net force according to the

equation:

 𝐹𝑚 = 𝐹𝐼 + 𝐹𝑑 + 𝐹𝑟 + 𝐹𝑔 (4.14)

The calculated forces correspond to those given in section 3.5:

𝐹𝑚 =

𝑇𝐼𝑛

𝑅
 (4.15)

Where 𝑇𝑖𝑛 is the torque provided by the motor and 𝑅 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙𝑠 𝑟𝑎𝑑𝑖𝑢𝑠.

𝐹𝐼 = 𝑚 ∙

𝑑𝑣

𝑑𝑡
 (4.16)

With v as the vehicle’s linear velocity.

𝐹𝑑 =

1

2
⋅

𝐶𝑑 ∙ 𝜌 ∙ 𝑣2

𝐴𝑓
 (4.17)

In which 𝐶𝑑, 𝐴𝑓 represents the vehicle’s drag coefficient and front area respectively and

𝜌 the media fluid (air) density.

 𝐹𝑟 = 𝐶𝑟 ∙ 𝑚 ∙ 𝑔 ∙ 𝑐𝑜𝑠(𝛼) (4.18)

Where 𝐶𝑟 is the tyres’ rolling friction coefficient and g the gravity constant.

 𝐹𝑔 = 𝑚 ∙ 𝑔 ∙ 𝑠𝑒𝑛(𝛼) (4.19)

4. The EPowertrain Modelica Library

52

This model allows to simulate the basic physics of the vehicle as well as to take into

consideration the effects of the terrain in terms of slope changes on the stresses required

to the vehicle's powertrain.

Figure 4.14: BodyFrame1DOF Forces Distribution.

Figure 4.15: BodyFrame1DOF Source Code.

4.7.3 Slope

The Slope model, defined in the Mechanical subpackage, allows the instantaneous

terrain slope to be calculated from a height profile and the vehicle position. It is an

auxiliary component that converts two input signals, height and displacement into an

output signal representing the slope angle of the terrain.

𝛼 = arcsin (

𝑑𝐻
𝑑𝑡
𝑑𝑠
𝑑𝑡

) (4.20)

4. The EPowertrain Modelica Library

53

This model is especially useful in realistic simulations with routes extracted from

topographic profiles, as it allows the effect of variable slopes to be dynamically

incorporated without the need for manual coding. As show in Figure 4.16, this

calculation is performed only after instant 𝑡 > 0, to avoid division by zero in the

initialisation.

Figure 4.16: Slope Source Code.

This model does not represent a physical force directly but generates a slope angle that

can be used by other blocks (Figure 4.17), such as the BodyFrame1DOF model, to

apply the corresponding gravitational and tyre rolling forces.

Figure 4.17: Slope Angle Representation.

4.8 Control

The Control package (Figure 4.18) contains the necessary blocks to implement control

strategies within the electric drive system. Its purpose is to dynamically regulate the

behaviour of actuators (such as electric motors or inverters) based on references and

feedback signals. Although a simple structure has been kept, the models included are

flexible enough to address common tasks in energy management and speed control.

Modelica's modular and acausal architecture allows these controllers to be easily

coupled to different physical components of the system, with generic connectors

carrying continuous variables.

Figure 4.18: Control Package Module.

4. The EPowertrain Modelica Library

54

PID

This block implements a continuous PID controller with extended functionalities such

as dead zone, output saturation limits and anti-windup. It allows to adjust the three

classical PID control terms, proportional K, Integral I and derivative D. The model is

implemented in differential form, with explicit equations for the calculation of the

filtered output (Out) and the integration of the accumulated error (𝐼𝑛𝑡𝐸𝑟). The gross

output (𝐴𝑢𝑥𝑂𝑢𝑡) of the controller is calculated as a classical PID:

𝐴𝑢𝑥𝑂𝑢𝑡 = 𝐾 ∙ 𝑒 + 𝐷 ∙

𝑑𝑒

𝑑𝑡
+ 𝐼 ∙ 𝐼𝑛𝑡𝐸𝑟 (4.21)

Where 𝐾, 𝐷 and 𝐼 are the proportional, derivative and integral constants of the

controller respectively. The input error is calculated form the difference between the

reference value and the actual feedback signal input:

 𝑒 = 𝑅𝑒𝑓 − 𝐼𝑛 (4.22)

The term 𝐼𝑛𝑡𝐸𝑟 corresponds to the error integration. However, in Modelica it is more

convenient to define the error as the derivative of its integral.

𝐼𝑛𝑡𝐸𝑟 = ∫ 𝑒 ∙ 𝑑𝜏

𝑡

0

→
𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
= 𝑒 (4.23)

The controller includes two advanced mechanisms to adapt the response of the

controller. The first of these is the implementation of a dead zone. When this option is

activated, the controller suppresses the output action and prevents the accumulation of

the integral error in a near-zero environment. This approach is useful to avoid

unnecessary oscillations or reactions to small disturbances. If the enable condition is

met:

 𝐷𝑒𝑎𝑑𝑍𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 |𝐴𝑢𝑥𝑂𝑢𝑡| < 𝜖 (4.24)

Then the output and error integration are suppressed.

 𝑑𝑂𝑢𝑡

𝑑𝑡
= −𝑆𝑚𝑡 ∙ 𝑂𝑢𝑡 (4.25)

 𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
= 0 (4.26)

Where 𝜖 is the width of the dead zone while 𝑆𝑚𝑡 is a smoothing factor to decay the

output to zero without introducing discontinuities. The further implemented

functionality is the limitation of the controller output. In addition, an anti-windup

mechanism has been considered to avoid integral error accumulation when the

controller output is saturated. These consider three working modes:

4. The EPowertrain Modelica Library

55

• If the auxiliary output exceeds the upper limit:

𝐴𝑢𝑥𝑂𝑢𝑡 ≥ 𝑀𝑎𝑥 → {

𝑑𝑂𝑢𝑡

𝑑𝑡
 = 𝑆𝑚𝑡 ∙ (𝑀𝑎𝑥 − 𝑂𝑢𝑡)

𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
 = 0

 (4.27)

• When the auxiliary output falls below the lower limit:

𝐴𝑢𝑥𝑂𝑢𝑡 ≤ 𝑀𝑖𝑛 → {

𝑑𝑂𝑢𝑡

𝑑𝑡
 = 𝑆𝑚𝑡 ∙ (𝑀𝑖𝑛 − 𝑂𝑢𝑡)

𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
 = 0

 (4.28)

• In any other case the output is adjusted to the previously calculated raw

performance.

𝑀𝑖𝑛 < 𝐴𝑢𝑥𝑂𝑢𝑡 < 𝑀𝑎𝑥 → {

𝑑𝑂𝑢𝑡

𝑑𝑡
 = 𝑆𝑚𝑡 ∙ (𝐴𝑢𝑥𝑂𝑢𝑡 − 𝑂𝑢𝑡)

𝑑𝐼𝑛𝑡𝐸𝑟

𝑑𝑡
 = 𝑒

 (4.29)

This approach avoids undesired behaviour when the actuator cannot follow the setpoint

signal, retaining a more realistic and stable response in the presence of saturations in

addition to ensuring the continuity of the output signal. In Figures 4.19 , 4.20 the

internal source code and parametrization model interface are displayed.

4. The EPowertrain Modelica Library

56

Figure 4.19: PID Controller Modelica Implementation.

Figure 4.20: PID Block Interface.

4. The EPowertrain Modelica Library

57

4.9 Sensors

The Sensors package (Figure 4.21) contains blocks ideal for measuring key physical

variables in an electrical powertrain, such as voltage, current, angular velocity and

position. These sensors are used for two purposes: controller feedback (such as the PID

block) and recording simulation results.

All models are implemented as ideal sensors, without delay, offset or noise, which

simplifies their integration into functional experiments. However, their modular

structure allows them to be easily extended with dynamics or errors if more realistic

simulations are desired.

Figure 4.21: Sensors Package Components.

4.9.1 Vsensor – Electrical Voltage Sensor

The Vsensor model (Figure 4.22) measures the electrical potential difference between

the two pins (𝑝,𝑛) of the system and delivers the result through a continuous output

connector (outPort), which can be connected to control or display blocks.

 𝑣 = 𝑣𝑝 − 𝑣𝑛 (4.30)

 𝑜𝑢𝑡𝑃𝑜𝑟𝑡 = 𝑣 (4.31)

This sensor is non-intrusive: it imposes zero current on the terminals, which makes it

suitable for idealised measurements.

 𝐼𝑝 = 𝐼𝑛 = 0 (4.32)

Figure 4.22: Vsensor Source Code.

4.9.2 CurrentSensor – Electric Current Sensor

This block measures the current flowing between two electrical nodes. The connection

is made via a positive pin (P) and a negative pin (N). The sensor imposes equal potential

between the two terminals, so it does not introduce voltage drops.

4. The EPowertrain Modelica Library

58

 𝑣𝑝 = 𝑣𝑛 (4.33)

 𝐼𝑝 + 𝐼𝑛 = 0 (4.34)

The unit of measurement 𝐼𝑚𝑒𝑎𝑠 , is the current passing through and out of the

component, i.e. the negative terminal.

 𝐼𝑛 = 𝐼𝑚𝑒𝑎𝑠 (4.35)

This ideal sensor assumes perfect coupling and no losses. Its output can be used to

assess energy consumption, estimate battery state of charge or feed power control

algorithms. Figure 4.23 illustrates the Modelica’s implementation of this module.

Figure 4.23: CurrentSensor Source Code.

4.9.3 AxialSpeed – Angular Position and Velocity Sensor

The AxialSpeed model measures the position 𝜃𝑚 and angular velocity 𝜔𝑚 of the

mechanical axis of a machine and also calculates the electrical equivalent values

(𝜃𝑒 , 𝜔𝑒) considering the number of pole pairs 𝑁. It is connected between two rotational

axes (𝐴𝑥𝑖𝑠𝐼𝑛 and 𝐴𝑥𝑖𝑠𝑂𝑢𝑡), without introducing friction or inertia.

 𝜃𝑒 = 𝑁 ∙ 𝜃𝑚 (4.36)

𝜔𝑚 =

𝑑𝜃𝑚

𝑑𝑡
 (4.37)

𝜔𝑒 =

𝑑𝜃𝑒

𝑑𝑡
 (4.38)

In addition, the model includes an electric cycle reset:

 𝑖𝑓 𝜃𝑒 ≥ 2𝜋 → 𝑟𝑒𝑖𝑛𝑖𝑡(𝜃𝑒 , 0) (4.39)

This condition prevents indefinite growth of the electrical angular position, facilitating

its use in cyclic logic as a switching or synchronisation control (Figure 4.24).

4. The EPowertrain Modelica Library

59

Figure 4.24: AxialSpeed Source Code.

4.10 Interfaces and Interoperability

Interoperability between components within the EPowertrain library is achieved through

a coherent set of interfaces, developed under the acausal Modeling paradigm of the

Modelica language. These interfaces ensure physical compatibility and simplify the

integration of new elements, even when they belong to different physical domains.

The library defines a set of standard connectors, including:

• Electrical interfaces: Based on PosPin and NegPin, these connectors define

voltage and current as ‘stress’ and ‘flow’ variables, respectively. They are used

consistently on all electrical components to ensure proper signal and power

transmission.

• Mechanical interfaces: The MechanicalAxis connector enables the

transmission of torque and angular velocity between elements such as motors,

shafts and loads.

• Control interfaces: Control signals are handled by connectors such as IO_Port,

InPort and OutPort, which carry scalar or logical variables (Boolean, Real). This

facilitates the integration of control strategies without creating rigid couplings

between components.

Although the library has been designed primarily for internal use, the definition of

interfaces is generic and compatible with other Modelica libraries. This allows external

components to be integrated into simulations with minimal adaptations, provided that

compatible connector types are used.

4. The EPowertrain Modelica Library

60

4.11 Conclusions

This chapter has presented the structured implementation of the EPowertrain library,

developed in the Modelica environment for the simulation of electric power trains. The

internal architecture of the library, organized in functional subpackages grouping

electrical, mechanical, control, sensor and interface components, has been detailed. This

modular structure facilitates the reuse, extension and understanding of the models by

other users and developers.

Each subcomponent has been designed following acausal modeling and object-oriented

programming principles, taking advantage of the capabilities of the Modelica language

to represent physical interactions through declarative equations. This has made it

possible to define configurable components that can be connected to each other in a

physically consistent way, keeping compatibility between interfaces and preserving the

conservation of quantities such as energy, current or mechanical stress.

At the same time, we have sought to parameterize as much as possible the calibration of

the components in order to facilitate reuse and integration in more complex systems.

61

5 EPowertrain Library Validation

5.1 Introduction

Once the individual models and the general architecture of the EPowertrain library have

been developed, it is necessary to verify that their simulated behaviour adequately

matches the expected physical behaviour. This chapter presents the validation process

carried out on the different components and configurations of the library, in order to

evaluate their accuracy, physical consistency and applicability in real electric vehicle

simulation contexts. First, the individual validation of the following key components is

described:

• DC motor

• Battery

• DC-DC Electric Converter

Following this, the validation of the complete system is introduced It was first tested in

a synthetic test under the UDDS driving [1] cycle followed by the use of real driving

data of a real vehicle, the BMW i3 [2], to compare real versus simulated results.

The main goal of this chapter is to demonstrate that the developed library allows to

reproduce, with fidelity and computational efficiency, the energy behaviour of an

electric power train under realistic dynamic conditions, as well as being a valid tool for

consumption studies, control strategies and architecture comparison.

5.2 Validation of Individual Components

Before proceeding to the validation of complete systems, individual validation of the

main components developed in the EPowertrain library was carried out. This process

was essential to ensure that each model presented a behaviour consistent with its

theoretical description and met the established functional requirements.

5.2.1 DC Motor

The dynamic response of the model was checked using parameter identified based on

Moments and Pasek techniques, following the procedures described in [36] .The

relationship between current, torque and angular velocity under voltage step excitations

was evaluated.

To validate both methods, the authors performed dynamic tests by applying a voltage

step excitation to an independently excited DC motor. A voltage step varying from 60 V

to 248 V was applied to the motor armature, and the current and angular velocity

responses were recorded. Test parameters can be checked in Table 5.1.

5. EPowertrain Library Validation

62

Table 5.1: Comparison of DC Motor Parameters Identified by Pasek's Method and

Moments Method.

Parameter Symbol Pasek’s Moments Unit

Armature resistance 𝑅𝑎 30.9 30.9 Ω

Armature inductance 𝐿𝑎 0.438 0.803 𝐻

Torque and back-EMF constant 𝐾 1.323 1.323 𝑁 ∙ 𝑚/𝐴

Rotor inertia 𝐽 0.0036 0.0031 𝑘𝑔 ∙ 𝑚2

Viscous friction coefficient 𝑓 0.0005 0.0005 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑

Static torque 𝑇𝑠𝑡 𝑇𝑠𝑡 0.128 0.128 𝑁 ∙ 𝑚

During these tests, the following experimental values were observed:

• Armature current went from 0.113 A in the initial state to 0.167 A in the final

state after excitation.

• The angular velocity of the rotor increased from 400 rpm to 1745 rpm.

• The maximum instantaneous current was recorded at approximately 0.026

seconds after the start of the step. With a peak of approximately 4.5 A in the

case of Pasek's estimation and 4 A in the moments’ estimation.

In the case of our simulation (Figure 5.1), we obtain a steady-state speed of

approximately 1772 rpm for both methods, as well as peak currents of 4.5 and 3.985 A

using the Pasek and moments models respectively. These results allow us to conclude

that the model developed is capable of accurately reproducing the dynamic behaviour of

the motor under controlled excitation conditions, thus validating its use in the context of

energy analysis of electric kinematic chains.

Figure 5.1: Modelica Results of Pasek and Moments Estimated Model Simulations.

5. EPowertrain Library Validation

63

5.2.2 Battery

Before proceeding to the validation of the equivalent battery model proposed in this

library, it is necessary to have experimental data to compare the response of the model

with the real behaviour of the physical system. For this purpose, an urban driving

project with a BMW i3 dataset will be used [2].

Within the set of available trips, the file named TripB14 has been specifically chosen,

since it presents one of the largest state-of-charge (SOC) variations between start and

end of the trip (Figure 5.2). This feature is particularly relevant for validation, as it

allows to evaluate the ability of the model to reproduce not only the instantaneous

voltage variations, but also the cumulative evolution of the SOC over time under

dynamic conditions.

Figure 5.2: TripB14 Battery Dataset. From Top to Bottom: Soc, Voltage, Current

Consumption.

The battery consists of a RC1 model whose characteristic equations have already been

specified in chapter 3.4.

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 −

1

𝑄
∫ 𝐼(𝜏) ∙ 𝑑𝜏

𝑡

0

(5.1)

5. EPowertrain Library Validation

64

 𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝑉𝑑 + (𝑉𝑓 − 𝑉𝑑) ⋅ 𝑆𝑂𝐶

(5.2)

 𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑂𝐶 − 𝐼 ⋅ 𝑅𝑠 − 𝑉𝑅𝐶 (5.3)

Where 𝑉𝑅𝐶 is the voltage drop in the parallel RC network:

𝐶 ⋅

𝑑𝑉𝑅𝐶

𝑑𝑡
=

𝑉𝑂𝐶 − 𝑉𝑅𝐶

𝑅𝑝
− 𝐼

(5.4)

This model has been previously described by other authors as a system in state space

[37].

 𝑑𝑉𝑅𝐶

𝑑𝑡
=

1

𝑅𝑝∙𝐶
∙ 𝑉𝑅𝐶 +

1

𝐶
∙ 𝐼 (5.5)

 𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑅𝐶 + 𝑅𝑆 ∙ 𝐼 + 𝑉𝑜𝑐 (5.6)

There is not available data for the estimation of open circuit voltage; however, it is

possible to estimate it by taking points where the current is as constant and reduced as

possible to minimize the layer and resistive effects of the battery. For this purpose, we

have chosen initial and final points of the driving cycle where the vehicle is at rest.

 𝑉𝐵𝑎𝑡𝑡 ≈ 𝑉𝑜𝑐 (5.7)

Under these assumptions, we can make a linear estimation of the open circuit voltage of

the battery as a function of its state of charge such that:

[
𝑉𝐵𝑎𝑡𝑡0

𝑉𝐵𝑎𝑡𝑡𝑓

] = [
1 − 𝑆𝑂𝐶0 𝑆𝑂𝐶
1 − 𝑆𝑂𝐶𝑓 𝑆𝑂𝐶] [

𝑉𝑑

𝑉𝑓
] (5.8)

[
391.6
362.8

] = [
0.145 0.855
0.654 0.346

] [
𝑉𝑑

𝑉𝑓
] (5.9)

This gives us an estimate for the full and depleted battery tension of:

 𝑉𝑑 ≈ 343.22 V (5.10)

 𝑉𝑓 ≈ 399.80 V (5.11)

To estimate the parameters Rs, Rp and C it is possible to take advantage of the dataset's

sample space to perform an estimation using the System Identification MATLAB

toolbox. Once we have an estimate of 𝑉𝑜𝑐 , we can perform several estimates for

different SoC.

5. EPowertrain Library Validation

65

Table 5.2: Battery Parameter Estimation.

SoC 𝑅𝑠 𝑅𝑝 𝐶

10 % 0.1159 Ω 1.337 ∙ 10−4 Ω 1.81 ∙ 105 𝐹

25 % 0.0896 Ω 6.8102 ∙ 10−4 Ω 1.2497 ∙ 104 𝐹

50 % 0.1051 Ω 1.7834 ∙ 10−4 Ω 9.5329 ∙ 103 𝐹

75 % 0.1093 Ω 6.9485 ∙ 10−4 Ω 2.008 ∙ 104 𝐹

100 % 0.1183 Ω 2.2333 ∙ 10−4 Ω 1.4817 ∙ 105 𝐹

It is worth noting the variability of the parameter estimates (Figure 5.3) depending on

whether the state of charge is close to extreme values of unloaded or full or whether it is

in more average values. This may be due either to the characteristics of the battery itself

or to the fact that calculations have been made for SoC values outside the sample space

(it must be pointed out that in the dataset the SoC of the battery is between 85.5% and

34.6%).

Figure 5.3: Battery Parameter Estimation. From Top to Bottom: Series Resistance,

Parallel Resistance, Parallel Capacitance.

For this reason, it might be preferable to be conservative and choose the estimated

parameters for a 50% state of charge in a first approximation. Once a parameterization

that characterizes the battery has been estimated, it is necessary to check that the battery

behaviour matches reality. For this purpose, as will be explained later in chapter 5.4, the

TripA01 [2] driving cycle has been used as validation data for the complete system and

comparing the simulated model response against real terminal voltage and state-of-

charge data. As shown in Figure 5.4, the model reproduces with high fidelity the SOC

5. EPowertrain Library Validation

66

evolution along the path, with a practically negligible cumulative error. This confirms

that the integration of the net current is consistent and that the model correctly

represents the load balance under dynamic conditions.

As for the terminal voltage, the model adequately captures the general trend and rapid

variations due to current transients, although it shows some point deviations in the

steeper areas. These differences are attributable, in part, to the simplicity of the first-

order RC model employed, which does not account for effects such as hysteresis,

thermal dependence of the parameters or nonlinearity of the open-circuit curve (OCV).

Therefore, the proposed model is suitable for applications focused on energy

consumption analysis, SOC estimation or evaluation of control strategies in early design

stages.

Figure 5.4: Battery Data and Simulation Comparison. From Top to Bottom: SoC,

Current Consumption, Battery Voltage.

0 100 200 300 400 500 600 700 800 900 1000

81

82

83

84

85

86

87

88

Time [s]

DataSOC.inPort battery.SOC [%]

0 100 200 300 400 500 600 700 800 900 1000

-250

-200

-150

-100

-50

0

50

100

150

Time [s]

battery.Iout [A] DataIbatt.inPort

0 100 200 300 400 500 600 700 800 900 1000

370

380

390

400

410

420

Time [s]

DataVolt.inPort battery.Vout [V]

5. EPowertrain Library Validation

67

Table 5.3: Battery Simulation Parameters.

Parameter Symbol Value

Series resistance 𝑅𝑠 0.1051 Ω

Parallel resistance 𝑅𝑝 1.7834 e − 4 Ω

Capacitor capacitance 𝐶 9.5329 ∙ 10−3 𝐹

Battery’s charge capacity 𝑄 60 𝐴 ∙ ℎ

Initial state of charge 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 86.9 %

Full-state voltage 𝑉𝑓 399.8 𝑉

Depleted-stated voltage 𝑉𝑑 343.22 𝑉

5.2.3 Electric Converter

The ElectricConverter model implemented in the library represents an ideal DC/DC

converter, whose behaviour is governed by the equation:

 𝑉𝑂𝑢𝑡 = 𝐷 ∙ 𝑉𝐼𝑛 (5.12)

Where a positive Duty Cycle (𝐷) indicates a power flow from the battery while a

negative one indicates that it is the battery that is absorbing energy. In other words, the

sign of D determines the power flow.

𝑃𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤: {

𝐷 < 0 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑀𝑜𝑑𝑒
𝐷 > 0 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑀𝑜𝑑𝑒
𝐷 = 0 𝐼𝑑𝑙𝑒

 (5.13)

This model disregards internal losses and transients, considering only a linear transfer of

power between ports, with ideal conservation of energy:

 𝑃𝑤𝐼𝑛 + 𝑃𝑤𝑂𝑢𝑡 = 𝑉𝐼𝑛 ∙ 𝐼𝐼𝑛 + 𝑉𝑂𝑢𝑡 ∙ 𝐼𝑂𝑢𝑡 = 0 (5.12)

The purpose of this validation is to verify that the model responds adequately to

dynamic variations in the duty cycle, and that the output voltage adjusts linearly to the

expected value as a function of the input voltage.

To perform the experiment, a DC motor connected to a rotational load represented by an

equivalent inertia has been used. The motor has been excited by means of an angular

velocity reference signal composed of two components:

• A low frequency sinusoidal signal, which generates a continuous load variation

on the converter.

• A PWM (pulse width modulation) signal, which introduces fast commutations in

the duty cycle applied to the converter.

This combined stimulus allows to verify both the linearity of the model under smooth

variations and its robustness against fast changes in the Duty Cycle.

5. EPowertrain Library Validation

68

Figure 5.5 shows the experimental scheme used in the validation. In it, it can be seen

how the input signal is an angular velocity reference that feeds a PID block, in charge of

regulating the performance of the DC/DC converter. This PID generates the DutyCycle

signal that is applied to the converter, allowing to control the voltage supplied to the DC

motor. Through this topology, it is possible to impose a desired speed evolution on the

motor, while observing the system response to combined setpoint profiles (Square and

Sine velocity reference).

Figure 5.5: DC Converter Test Layout.

This test bench allows the converter to be subjected to controlled dynamic conditions,

evaluating its behaviour against smooth and fast setpoint variations, as shown in Figures

5.6, 5.7. The results show an almost perfect match in all scenarios, which is to be

expected in an idealized model. The energy balance always remains at 0 indicating that

this model is neither a consumer nor a generator of energy to the system.

Table 5.4: DC Converter Validation Experiment Parameters.

Parameter Symbol Value

Motor armature resistance 𝑅𝑚 0.025 𝛺

Motor armature inductance 𝐿𝑚 1 𝑚𝐻

Counter EMF constant 𝐾𝑒 0.7144 𝑉 ∙ 𝑠/𝑟𝑎𝑑

Torque constant 𝐾𝑡 0.72 𝑁 ∙ 𝑚/𝐴

Rotor’s friction constant 𝑏𝑚 5 ∙ 10−4 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑

Rotor’s inertia 𝐽 0.031 𝑘𝑔/𝑚2

DC Source Voltage 𝑉 400 𝑉

Load’s inertia 𝐽𝑙𝑜𝑎𝑑 10 𝑘𝑔/𝑚2

Load’s Dynamic Viscosity 𝑓𝑠 8.5 ∙ 10−6 𝑃𝑎 ∙ 𝑠

DC-IN

DC-OUT

PID

Wm

Th_m

We

Th_e

Out

Out

Rotor

Axis_In

Axis_Out

Wm

Th_m

We

Th_e

Axis

5. EPowertrain Library Validation

69

Figure 5.6: DC Converter and Motor Response to Square Velocity Reference.

Figure 5.7: DC Converter and Motor Response to Sine Velocity Reference.

0 4 8 12 16 20

-12

-8

-4

0

4

8

12

Time [s]

pID.Ref axialSpeed.We

0 4 8 12 16 20

-8E6

-4E6

0E0

4E6

8E6

Time [s]

electricConverter.PwIn electricConverter.PwOut

0 4 8 12 16 20

-4000

-2000

0

2000

4000

Time [s]

electricConverter.V_Out

0 4 8 12 16 20

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Time [s]

electricConverter.EBalance

0 4 8 12 16 20

-12

-8

-4

0

4

8

12

Time [s]

pID.Ref axialSpeed.We

0 4 8 12 16 20

-3E5

-2E5

-1E5

0E0

1E5

2E5

3E5

Time [s]

electricConverter.PwIn electricConverter.PwOut

0 4 8 12 16 20

-800

-600

-400

-200

0

200

400

600

800

Time [s]

electricConverter.V_Out

0 4 8 12 16 20

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Time [s]

electricConverter.EBalance

5. EPowertrain Library Validation

70

5.3 UDDS Cycle

To validate the behaviour of the proposed system and analyse its energy efficiency

under realistic urban driving conditions, a model called UDDS_Cycle has been

implemented in the EPowertrain library (Figure 5.8). This model reproduces the typical

architecture of an electric power train and subjects it to a dynamic speed profile based

on the standard UDDS (Urban Dynamometer Driving Schedule) cycle.

The UDDS_Cycle model integrates the following components:

• Speed Profile Source (UDDS): A TimeTable block that defines the target

vehicle speed as a function of time, following the UDDS cycle.

• Power converter (ElectricConverter): Implemented as an ideal voltage adapter

to eliminate the need to represent commutations, which reduces numerical

discontinuities and improves computational efficiency.

• Motor (DCMotor): Model previously validated using parametric identification

techniques (Moments and Pasek), with parametrised resistance, inductance and

torque constant values.

• Chassis model (BodyFrame1DOF): Represents the longitudinal dynamics of

the vehicle and includes mass, ground friction, slope and aerodynamic drag.

• Speed controller: implemented through a PID control loop, the output controls

the output voltage of the converter, and thus indirectly regulates the torque

applied by the motor.

Figure 5.8: Test Layout of the UDDS Cycle Experiment.

DC-IN

DC-OUT

BODY

1 DOF

PID

uDDS

offset=0 k=0.44704

mph_to_ms

0

TorqueIN
V

Out

Out

Rotor

5. EPowertrain Library Validation

71

Table 5.5: UDDS Experiment Parameters.

Parameter Symbol Value

Motor armature resistance 𝑅𝑚 0.025 𝛺

Motor armature inductance 𝐿𝑚 1 𝑚𝐻

Counter EMF constant 𝐾𝑒 0.65 𝑉 ∙ 𝑠/𝑟𝑎𝑑

Torque constant 𝐾𝑡 0.65 𝑁 ∙ 𝑚/𝐴

Rotor’s friction constant 𝑏𝑚 4.21 ∙ 10−6 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑

Rotor’s inertia 𝐽 3.87 ∙ 10−7 𝑘𝑔/𝑚2

Battery voltage (discharged) 𝑉𝑑 500 𝑉

Battery voltage (fully charged) 𝑉𝑓 600 𝑉

Battery capacity 𝐶𝑎𝑝 30 𝐴 ∙ ℎ

Initial SoC 𝐼𝑛𝑖𝑡𝑆𝑂𝐶 0.8 (80%)

Battery resistance (series branch) 𝑅𝑠 0.06 𝛺

Battery resistance (parallel branch) 𝑅𝑝 10−3 𝛺

Battery capacitance 𝐶 10−6 𝐹

Battery maximum output current 𝐼𝑚𝑎𝑥 400 𝐴

Vehicle’s mass 𝑀 1500 𝑘𝑔

Vehicle’s front area 𝐴𝑓 2.2 𝑚²

Wheels radius 𝑅 0.25 𝑚

Vehicle’s drag coefficient 𝐶𝑑 0.29

Tyres’ rolling friction coefficient 𝐶𝑟 0.009

Air density 𝜌 1.2 𝑘𝑔/𝑚3

Simulation Results

Figure 5.9 shows the results obtained by simulating the complete electric powertrain

system under the standard UDDS (Urban Dynamometer Driving Schedule) cycle, with a

duration of 1369 seconds.

Speed profile tracking

The controller achieves fully accurate tracking of the reference speed (pID.Ref) using

the actual system signal (pID.In). This validates both the efficiency of the PID

controller and the adequacy of the motor and mechanical system parameters.

Motor torque

The motor (dCMotor2.Rotor.T) shows torque variations from -900 Nm to +1000 Nm,

with the following highlights:

• Positive values during acceleration phases.

• Negative peaks during regenerative braking.

These strong oscillations are to be expected in urban cycles [28], which highlights the

dynamic demands of these scenarios.

5. EPowertrain Library Validation

72

Battery current

The output current (battery.Iout) shows:

• Peak consumption above 60 A.

• Negative currents (up to -40 A), indicating effective energy recovery.

The evolution in current is less violent than that of the motor torque due to the electrical

inertia and the buffering capacity of the storage system.

State of charge (SOC)

The battery starts from a SOC of 80% and progressively drops to approximately 74.3%,

reflecting a net energy consumption after compensation for regenerative recovery. This

drop in SOC is within the expected range for an urban cycle and validates the size of the

battery.

Energy balance and motor flux

electricConverter.EBalance reflects small variations around zero, which confirms a

good power balance in the ideally modelled system. This is important to ensure that the

ideal converter is not "creating" energy. The variations in this power balance are tiny

and are due to the numerical deviation introduced by the finite precision of the solver.

Figure 5.9: Results of the UDDS_Cycle Model. From Top to Bottom: Speed Tracking,

Motor Torque, SOC, Battery Current, SoC Variation, Converter Energy

Balance.

0 500 1000

0

10

20

30

Time [s]

pID.Ref pID.In

0 500 1000

-1000

0

1000

Time [s]

dCMotor_2_1.Rotor.T

0 500 1000

77

78

79

80

Time [s]

battery.SOC

0 500 1000

-80

-40

0

40

Time [s]

battery.Iout

0 500 1000

-8E-4

-4E-4

0E0

4E-4

Time [s]

battery.der(SOC)

0 500 1000

-1

0

1

Time [s]

electricConverter.EBalance

5. EPowertrain Library Validation

73

5.4 Real Driving Cycle Data

To validate the fidelity of the library, it is essential to check the simulation results

against experimental data. For this purpose, driving data from the BWM i3 (60 Ah)

have been used [2].

Model Identification

To test the simulation, we must first parameterise the model as accurately as possible. It

is usually difficult to obtain all vehicle, battery and powertrain specific data, but we can

approximate it.

Let us characterise the BWM i3 motor as an equivalent DC motor. For this we can rely

on the technical data of the manufacturer [38]. According to the manufacturer the

engine has a peak power of 125 kW with a nominal battery voltage of 360 V. This gives

an approximate peak current of:

𝐼𝑝𝑒𝑎𝑘 =

𝑃𝑝𝑒𝑎𝑘

𝑉𝑟𝑎𝑡𝑒𝑑
=

125000𝑊

360𝑉
= 347.22 𝐴 (6.1)

This is within the usual range of currents. From this maximum current we can estimate

the torque constant:

𝑘𝑇 =

Tpeak

𝐼𝑝𝑒𝑎𝑘
=

250𝑁𝑚

347.22𝐴
= 0.72

𝑁 ∙ 𝑚

𝐴
 (6.2)

The EMF constant can also be estimated. We know that the BWM i3 has a steady state

power of 75 kW at 4800 rpm. Assuming a voltage 𝑉𝑏𝑎𝑡𝑡 of 360 V that gives a current of

208.33 A approx. We can calculate the counter-electromotive constant 𝑘𝑒 as:

𝑘𝑒 =

𝑉𝐸𝑀𝐹

𝜔
≈

360 𝑉

4800 𝑟𝑝𝑚
=

360 𝑉

502.65
𝑟𝑎𝑑

𝑠

= 0.7162
𝑉 ∙ 𝑠

𝑟𝑎𝑑
 (6.3)

Considering that not all the battery power is invested in overcoming the counter-

electromotive force but that there are also losses in the power train, we will approximate

𝑘𝑒 to 𝑘𝑡 which is a common assumption for DC motors [39].

 𝑘𝑒 ≈ 𝑘𝑡 (6.4)

The internal resistance of the motor can also be derived from the power in steady state.

considering that in steady state we can disregard the inductive component in a DC

motor.

 𝑑𝐼

𝑑𝑡
≈ 0 →

𝑃𝑠𝑡𝑒𝑎𝑑𝑦

𝑉𝑠𝑡𝑒𝑎𝑑𝑦
=

75000 𝑊

360 𝑉
= 208.33 𝐴 → 𝑅𝑚 ≈

360𝑉

208.33𝐴
= 1.728 Ω (6.5)

5. EPowertrain Library Validation

74

The inductance value has been estimated based on typical values for this type of motors.

 𝐿𝑚𝑒𝑠𝑡
= 100𝜇𝐻 (6.6)

There are additional vehicle power losses to be considered. The most representative one

is the energy expenditure in cabin cooling. In the case of [2], in the corresponding

TripA01 cycle datasheet, the average power consumed by the air conditioning is:

 𝑃𝑎𝑐𝑎𝑣𝑔
= 1610.4𝑊 (6.7)

This additional power demand has been approximated by an additional charge to the

battery:

𝑅𝑙𝑜𝑎𝑑 =

𝑃𝑎𝑐𝑎𝑣𝑔

𝑉𝑏𝑎𝑡𝑡
= 80.4765Ω (6.8)

According to [38, 40, 41] , the rolling coefficient for C1 (passenger car) class tyres and

C fuel efficiency on dry asphalt is:

 0.0078 ≤ 𝐶𝑟 ≤ 0.009 (6.9)

On a first approach a middle value will be considered:

 𝐶𝑟 = 0.0084 (6.10)

The physical characteristics of the vehicle frame can be obtained directly from [38].

Although the specified gear ratio is 1:9.665, it has been modified to 1:6 to approximate

the torque efforts recorded in the real data to those calculated for the speed profile. The

complete parametrization of the experiment is shown below in Table 5.6.

5. EPowertrain Library Validation

75

Table 5.6: TripA01 Experiment Parametrization.

Parameter Symbol Value

TripA01 - Munich East Drive cycle [2]

Sunny Weather [2]

Motor armature resistance 𝑅𝑚 1.72 𝛺

Motor armature inductance 𝐿𝑚 106.26 𝜇𝐻

Counter EMF constant 𝐾𝑒 0.7144 𝑉 · 𝑠/𝑟𝑎𝑑

Torque constant 𝐾𝑡 0.72 𝑁 ∙ 𝑚/𝐴

Rotor’s friction constant 𝑏𝑚 5 ∙ 10−4 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑

Rotor’s inertia 𝐽 31 ∙ 10−3𝑘𝑔/𝑚2

Battery voltage (discharged) 𝑉𝑑 343.22 𝑉

Battery voltage (fully charged) 𝑉𝑓 399.8 𝑉

Battery capacity 𝐶𝑎𝑝 60 𝐴 ∙ ℎ

Initial SoC 𝐼𝑛𝑖𝑡𝑆𝑂𝐶 86.9 %

Battery resistance (series branch) 𝑅𝑠 0.1051 𝛺

Battery resistance (parallel branch) 𝑅𝑝 1.7834 ∙ 10−4 𝛺

Battery capacitance 𝐶 9.5329 ∙ 103𝐹

Battery maximum output current 𝐼𝑚𝑎𝑥 400 𝐴

Electric consumptions resistance 𝑅𝑙𝑜𝑎𝑑 80.4765 𝛺

Gear ratio 𝑁 1:6*

Vehicle + driver mass 𝑀 1280 𝑘𝑔

Vehicle’s front area 𝐴𝑓 2.38 𝑚²

Wheels’ radius 𝑅 0.29 𝑚

Vehicle’s drag coefficient 𝐶𝑑 0.29

Tyres’ rolling friction coefficient 𝐶𝑟 0.0084

Air density 𝜌 1.225 𝑘𝑔/𝑚3

5.5 Simulation Result

5.5.1 Variables Usually Compared

In the validation of electric vehicle models using real driving cycles, it is common to

compare the main simulated vs. measured vehicle performance variables. Among the

most common are:

• Battery state of charge (SoC): SoC over the cycle (or total SoC drop after a

run) is a direct indicator of energy consumed. Validating the SoC evolution in

the model against reality allows verifying whether the predicted energy

consumption matches the real one. For example, Covello et al. compared the

difference in SoC before and after each trip between simulation and experiment,

as a measure of the energy consumed, obtaining very small discrepancies [42].

5. EPowertrain Library Validation

76

• Battery current/power: Battery current or instantaneous delivered/recuperated

power is another key variable. Comparing the current profiles of the model with

real data allows to assess whether the electrical system (battery, inverter, motor)

is correctly reproducing the demands of the driving cycle. This also includes

validating energy recovery (regen) under braking.

• Vehicle speed: Although typically the speed profile of the driving cycle is used

as input, in models with a driver model controller it is verified that the

simulation tracks the target speed accurately. The speed tracking error between

the model and the actual cycle is analysed, especially in acceleration/braking

transients. For example, Tollner et al. [43] define validation criteria for tracking

the target speed and report that the largest deviations occur during hard braking

or acceleration overshoots. A good model should minimise the speed error to

ensure that the motor/battery load conditions are comparable to the real ones.

• Engine torque: When CAN or instrument data is available, the simulated

engine torque (or wheel drive force) is often compared to the measured torque.

This verifies that the propulsion model delivers the torque required by the cycle.

In [43], measured vs. simulated engine torque was plotted during an urban cycle,

and a good match was observed except at peaks where the drive controller

introduced small overcorrections. The coincidence in torque (both in traction

and regenerative braking) is fundamental to affirm that the longitudinal

dynamics and the engine model are accurate.

In summary, the variables typically validated include speed (as a reference),

power/torque delivered, battery current and SoC, and derived metrics such as energy

consumed. These direct comparisons between simulation and reality allow to

evaluate the degree of realism of the model in each key aspect of electric vehicle

performance.

5.5.2 Accuracy Levels and Tolerable Deviations

The literature indicates that good quantitative agreement between model and

experimental data is expected, although small deviations are always tolerated. In electric

vehicle validation studies, relative errors in the order of one digit percentage for the

main energy variables are often considered acceptable:

• Deviation in energy consumption/SoC: An error of less than ~5-10% in total

consumed energy or SoC drop is usually considered reasonable. For example,

Sandrini et al. [44] report that after validation with real data, the maximum

differences were in the order of 5% in mechanical quantities (e.g. velocity,

acceleration) and always below 10% in electrical quantities. Similarly, Tollner et

al. [43] establish as a criterion that the relative difference in accumulated energy

(consumed from the pack) must be less than 10% to consider the model

validated. These ranges (5-10%) are a frequent threshold for judging the energy

fidelity of the model.

• Error in velocity tracking: For the velocity profile, a tracking of the cycle is

required. In simulation environments very narrow tolerances are imposed, e.g.

5. EPowertrain Library Validation

77

±1 mph (~1.6 km/h) instantaneous error, although in practice minor differences

during transients are tolerated. What is important is that the model's average

speed and acceleration distribution match the actual ones, so that the dynamic

loading is equivalent [43].

• Error in instantaneous electrical variables: Simulated battery current and

torque should follow the same profile as the actual data. It is common to

calculate metrics such as root mean square error (RMSE) or root mean square

error. Low values (a few percent of the range) indicate a good fit. In some cases,

after calibration, almost imperceptible differences are obtained.

• Deviation thresholds: When errors exceed ~10% in energy or show systematic

trends, they are usually interpreted as indicating that the model needs to be

refined. Errors within ~5% are usually called good agreement. In fact, an

informal consensus in vehicle simulation is that a variance of ~2% represents

very high agreement, 5% is good, and above 10% requires justification or

improvement of the model [44]. The uncertainty of the actual measurements

must also be considered: for example, SoC sensors in vehicles can have

tolerances of ±0.5% [42]. which puts a limit to the accuracy with which they can

be expected.

In summary, a valid model should reproduce with high fidelity the trends of the

measured variables, admitting only small discrepancies. Divergences of less than 5-10%

are expected for global indicators (and ideally even smaller). Values within this range

are considered acceptable and attributable to experimental uncertainty or reasonable

simplifications. Larger discrepancies, on the other hand, require attention and

explanation.

Deviations between simulation and reality are typically explained by measurement

limits, different environmental conditions, model simplifications and control

assumptions, or inherent variability. Academic work justifies that the observed

discrepancies are within the expected range given these causes. If significant,

improvements to the model are proposed or the effect of the cause is quantified. This

critical analysis of deviations strengthens confidence in the model, showing that it is

understood why and how much it differs from reality under certain circumstances.

5.5.3 Results Analysis

Figure 5.10 displays the results obtained in the validation of the model against real data.

A good degree of agreement in the key variables analysed (SoC, battery current and

motor torque) is achieved, which supports the model accuracy of the Modeling

approach adopted. However, some localised deviations are observed in the SoC

evolution and in the current profile during some phases of the real driving cycle.

On the one hand, part of the deviation observed in the SoC can be attributed to the fact

that the model uses a manually adjusted gear ratio to better match the torque profile.

This decision was made deliberately to compensate for the lack of accurate information

about the actual vehicle's gearbox and to improve the tuning of the dynamic behaviour.

Although it improves the torque response of the system, this simplification may slightly

affect the accuracy of the current evolution and, consequently, of the SoC.

5. EPowertrain Library Validation

78

Figure 5.10: Battery Current Data vs Simulation.

Furthermore, it is important to consider that the experimental data used comes from a

real campaign with a BMW i3 (60 Ah), where factors such as the activation of auxiliary

systems (air conditioning, on-board electronics), ambient temperature, or the slope

profile were not explicitly modelled in this version of the model. These external effects

can introduce non-negligible variations in consumption, as documented in previous

studies. For example, [42] found that real-world energy consumption is significantly

affected by the use of auxiliary systems, especially in urban travel, leading to

differences of more than 5% in the SoC (Figure 5.11) consumed for similar speed and

distance profiles.

It should be noted that the error levels obtained (below 5 %) are in line with what is

considered acceptable in the specialised literature. In fact, works such as [43] or [44]

establish margins of 5-10 % as a reasonable threshold for the validation of electric

vehicle models under real conditions. In this context, the observed discrepancies do not

compromise the overall validity of the model and can be justified by the aforementioned

factors: drivetrain simplifications, external conditions not modelled, and

instrumentation limitations.

Figure 5.11: Simulated vs Data State of Charge.

0 100 200 300 400 500 600 700 800 900 1000

-300

-250

-200

-150

-100

-50

0

50

100

Time [s]

battery.Iout [A] DataIbatt.inPort

0 100 200 300 400 500 600 700 800 900 1000

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

Time [s]

battery.SOC [%] DataSOC.inPort

5. EPowertrain Library Validation

79

On the other hand, the observed behaviour of the battery current and the simulated

torque profile (Figure 5.12) , shows a good qualitative agreement with the real data. The

point differences in the peaks can be explained by the idealised character of the driving

controller employed, which does not fully replicate the decisions or smooth transitions

of a human driver.

Figure 5.12: Simulated vs Data Torque.

In summary, these observations reinforce the validity of the model developed to

simulate the energy behaviour of an electric vehicle in real conditions, while

recognising its current limits and areas of improvement for future iterations. Figure 5.13

shows the main results of the experiment.

Figure 5.13: TripA01 Simulation Results.

0 100 200 300 400 500 600 700 800 900 1000

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

Time [s]

DataTorque.inPort dCMotor.Rotor.T [N ⋅ m]

0 100 200 300 400 500 600 700 800 900 1000

-2

0

2

4

6

8

10

12

14

16

Time [s]

Driver.In Driver.Ref

0 100 200 300 400 500 600 700 800 900 1000

-80

-40

0

40

80

120

160

200

Time [s]

DataTorque.inPort dCMotor.Rotor.T [N ⋅ m]

0 100 200 300 400 500 600 700 800 900 1000

81

82

83

84

85

86

87

Time [s]

battery.SOC [%] DataSOC.inPort

0 100 200 300 400 500 600 700 800 900 1000

-250

-200

-150

-100

-50

0

50

100

Time [s]

DataIbatt.inPort battery.Iout [A]

5. EPowertrain Library Validation

80

5.6 Conclusions

The results obtained demonstrate that the models presented in this library, in spite of

their simplicity, are capable of producing realistic results in dynamic and realistic

environments.The observed deviations can be attributed to simplifications adopted in

the modeling (e.g., absence of thermal modeling, idealized mechanical loads or ignored

nonlinear saturations). Nevertheless, the overall results support the consistency of the

approach followed and its usefulness as a modular, reproducible and extensible

simulation platform.

Overall, the results provide support for the use of the library as a preliminary analysis

tool in the design and evaluation of electric powertrains and set the basis for future

extensions to increase its fidelity without compromising its operational efficiency.

Chapter 6 will then discuss how these results fit into the complete EPowertrain library

project. As well as possible points of improvement.

81

6 Conclusions and Future Work

6.1 Conclusions

The completion of this project resulted in several important technical achievements,

among which the following stand out:

• Development of a modular library in Modelica: A reusable and open

architecture library was implemented in Modelica, capable of simulating the

energetic behaviour of a complete electric powertrain for a passenger vehicle.

• Configurable models of each subsystem: The library integrates parametrizable

models of the main components of the electric vehicle (lithium-ion battery, DC

electric motor, power converter, control blocks and sensors), allowing the

simulation to be easily adapted to different configurations and scenarios.

• Validation with real data: The performance of the complete model was

validated by comparing the simulations with data from the standard UDDS

urban driving cycle and with experimental data from a BMW i3. The results

showed a good correlation between simulation and actual behaviour,

demonstrating the accuracy and reliability of the developed models.

Overall, these achievements confirm that the objectives set for the thesis have been

satisfactorily met. In addition to the technical aspects, the usefulness of the developed

library is significant in both the educational and research fields.

In the educational context, this tool allows students and professionals to interactively

explore the operation of an electric vehicle, examining how its different components

interact in a safe simulation environment. The modular and transparent structure of the

models facilitates learning, as it is possible to isolate subsystems (e.g. the battery or the

motor) to study their individual behaviour and then understand their integration into the

entire system. Also, the use of Modelica as an object-oriented, equation-based Modeling

language provides a clear framework for assimilating concepts of physical Modeling

and control of real systems.

From an academic perspective, the development process of this project has also entailed

important methodological lessons. The adoption of an acausal Modeling approach,

specific to the Modelica language, represented a relevant conceptual change with

respect to traditional simulation tools based on causal models. This experience allowed

us to appreciate the advantages of describing the system by means of declarative

equations, without the need to predefine the direction of causation between variables,

which results in greater flexibility and reusability of the models while maintaining the

physical clarity of the internal relationships.

In addition, Modelica's object-oriented syntax facilitated the hierarchical organisation of

the library and the encapsulation of components, reinforcing good practice in the design

of complex models. Moreover, the multi-domain character of the approach (integrating

6. Conclusions and Future work

82

electrical, mechanical and control subsystems) provided a global view of the system and

allowed simulating phenomena of different physical nature concurrently.

The latter was crucial for understanding the interdependencies in the powertrain: for

example, how control decisions affect the current demand of the battery, or how battery

limitations influence the torque delivery of the motor. In summary, the development of

the library not only achieved the intended technical objectives but also provided a

valuable training exercise in Modeling and simulation techniques for complex systems.

All these results and learnings demonstrate the value of the project both for systems

engineering education and for the advancement of electric vehicle Modeling,

providing the community with an effective tool and benchmark experience in the field

of electric powertrain Modeling.

6.2 Future Work

The current work provided the basis for a modular and reusable library for electric

powertrain simulation in Modelica. While the current implementation captures the main

electromechanical dynamics and offers acceptable accuracy under real driving

conditions, several lines of future development can be identified to extend its scope and

fidelity:

• Thermal domain integration: one of the main simplifications of the current

model is the absence of thermal Modeling. Including thermal sub-models for

both the battery and the electrical machine would allow more accurate

estimation of performance degradation under high load conditions, as well as the

study of thermal protection strategies and thermal management systems (TMS).

This is particularly relevant in contexts where phenomena such as regenerative

braking or the use of auxiliary loads play a role, as reflected in the actual data

used.

• Advanced battery Modeling: The current battery model is based on an

equivalent lumped electrical circuit. Future extensions could incorporate

electrochemistry-based models (e.g. Single Particle Model or Doyle-Fuller-

Newman) or hybrid approaches to represent ageing phenomena, lithium

deposition or temperature-dependent internal resistance. This would be

particularly useful for long-term energy management studies.

• System control improvements: An ideal driver and a simplified voltage

converter have been implemented in this version to reduce the computational

burden. Including more realistic control logic - such as pedal mapping,

regenerative braking thresholds or converter switching - would allow the impact

of control strategies on energy consumption to be simulated more closely.

• Inclusion of auxiliary systems: The current model does not consider air

conditioning systems and other auxiliary consumption, which in practice can

represent a significant fraction of energy demand. Incorporating these elements

would allow a more complete view of the vehicle's energy flow under varying

conditions of environment and use.

6. Conclusions and Future work

83

• Extension to other vehicle architectures: The modular structure of the library

facilitates its extension to hybrid (HEV), plug-in hybrid (PHEV) or fuel cell

electric vehicles (FCEV). A future line of work could focus on the development

of new components to simulate these architectures and compare their

performance under equivalent driving cycles.

• System-level optimisation and HIL compatibility: Once validated, the library

can serve as a basis for evaluating energy management strategies, component

sizing or real-time optimisation. Its integration with hardware-in-the-loop (HIL)

platforms would also enable rapid prototyping of controllers and embedded

software.

• Robust parameter identification: Finally, the integration of data-driven tools

for automatic parameter estimation from experimental records - especially for

components such as the motor or battery - would help improve model accuracy

and reduce the need for manual adjustments during validation.

These future lines of work would allow consolidating the proposed library as a flexible

and robust tool for the analysis, design and optimisation of electric vehicles,

contributing to the progress towards a more sustainable mobility.

84

Bibliography

[1] United States Enviromental Protection Agency (EPA), “Dynamometer Drive

Schedules,” 18 04 2025. [Online]. Available: https://www.epa.gov/vehicle-and-

fuel-emissions-testing/dynamometer-drive-schedules. [Accessed 27 05 2025].

[2] M. Steinstraeter, “ Battery and Heating Data in Real Driving Cycles,” ieee-

dataport.org, 19 10 2020. [Online]. Available: https://ieee-dataport.org/open-

access/battery-and-heating-data-real-driving-cycles. [Accessed 07 05 2025].

[3] K. Tammi, T. Minav and J. Kortelainen, “Thirty Years of Electro-Hybrid

Powertrain Simulation,” IEEE Access, vol. 6, pp. 35250-35259, 2018.

[4] D. Zimmer, “Equation-Based Modeling with Modelica – Principles and Future

Challenges.,” SNE Simulation Notes Europe, vol. 26, pp. 67-74, 06 2016.

[5] M. Ceraolo, “A new Modelica Electric and Hybrid Power Trains library,”

Proceedings of the 11th International Modelica Conference, pp. 785-794, 09 2015.

[6] Modelica.org, “VehicleInterfaces Library,” 2 04 2025. [Online]. Available:

https://github.com/modelica/VehicleInterfaces. [Accessed 22 05 2025].

[7] M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter and P. Treffinger,

“Coordinated automotive libraries for vehicle system Modeling,” in 5th

International Modelica Conference, Vienna, Austria, 2006.

[8] A. Romero and J. Angerer, “Fast Charge Algorithm Development for Battery

Packs under Electrochemical and Thermal Constraints with JModelica.org,” in

Proceedings of the 15th International Modelica Conference, Aachen, Germany,

2023.

[9] J. Batteh, M. Tiller, A. Goodman, Ford Motor Company, USA, “Monte Carlo

Simulations for Evaluating Engine NVH Robustness,” in Proceedings of the 4th

International Modelica Conference, Hamburg, 2005.

[10] The MathWorks Inc., “EV Reference Application,” he MathWorks, Inc., 2021.

[Online]. Available: https://es.mathworks.com/help/autoblks/ug/electric-vehicle-

reference-application.html. [Accessed 22 05 2025].

[11] E. Altuğ, Ö. Akyünci and E. Özgül, “Virtual battery electric vehicle development

via 1D tools,” Advances in Mechanical Engineering., vol. 15, 10 2023.

[12] D. Qin, J. Li, T. Wang and D. Zhang, “Modeling and Simulating a Battery for an

Electric Vehicle Based,” Automotive Innovation, vol. 2, pp. 191-202, 08 2019.

[13] Modelica Association, “modelica.org,” [Online]. Available: https://modelica.org/.

[Accessed 03 06 2025].

[14] W. Schamai, P. Fritzson, C. Paredis and A. Pop, “Towards Unified System

Modeling and Simulation with ModelicaML Modeling of Executable Behavior

Using Graphical Notations,” in Proceedings of the 7th International Modelica

Conference., Como, Italy, 2009.

[15] A. Haumer, “Modelica Standard Library,” modelica.org, 25 05 2025. [Online].

Available: https://github.com/modelica/ModelicaStandardLibrary. [Accessed 25 05

2025].

[16] T. M. N. Bui, T. Q. Dinh, J. Marco and C. Watts, “Development and Real-Time

Performance Evaluation of Energy Management Strategy for a Dynamic

Positioning Hybrid Electric Marine Vessel,” Electronics, vol. 10, 2021.

Bibliography

85

[17] R. Milishchuk and T. Bogodorova, “Thevenin-based Battery Model with Ageing

Effects in Modelica,” in IEEE 21st Mediterranean Electrotechnical Conference

(MELECON), Palermo, Italy, 2022.

[18] LTX Simulation GmbH, “LTX Modelica Libraries Catalog,” 01 03 2019. [Online].

Available: https://www.ltx.de/download/Modelica_Libraries_Catalog_LTX.pdf.

[Accessed 18 05 2025].

[19] M. Einhorn, F. V. Conte, C. Kral, C. Niklas, H. Popp and J. Fleig, “A Modelica

Library for Simulation of Elecric Energy Storages,” in Proceedings of the 8th

International Modelica Conference, Dresden, 2011.

[20] R. Yuan, T. Fletcher, A. Ahmedov, N. Kalantzis, A. Pezouvanis, N. Dutta, A.

Watson and K. M. K. Ebrahimi, “Modeling and Co-simulation of hybrid vehicles:

A thermal management perspective,” Applied Thermal Engineering, vol. 180, p.

115883, 08 2020.

[21] M. Chen and G. Rincon-Mora, “Accurate electrical battery model capable of

predicting runtime and I-V performance,” IEEE Transactions on Energy

Conversion, vol. 21, no. 2, pp. 504-511, 2006.

[22] C. Groß and A. W. Golubkov, “A Modelica library for Thermal-Runaway

Propagation in Lithium-Ion Batteries,” in Proceedings of 14th Modelica

Conference, Linköping, Sweden, 2021.

[23] A. Haumer, “Modelica.Thermal.HeatTransfer,” modelica.org, 26 08 2009.

[Online]. Available:

https://doc.modelica.org/om/Modelica.Thermal.HeatTransfer.html. [Accessed 17

05 2025].

[24] Politecnico di Milano, “ThermoPower Modelica Library,” 26 06 2024. [Online].

Available: https://build.openmodelica.org/Documentation/ThermoPower.html.

[Accessed 17 05 2025].

[25] J. Marcicki, A. Conlisk and G. Rizzoni, “A lithium-ion battery model including

electrical double layer effects,” Journal of Power Sources, vol. 251, pp. 157-169,

2014.

[26] J. Summerfield and C. Curtis, “Modeling the Lithium Ion/Electrode Battery

Interface Using Fick’s Second Law of Diffusion, the Laplace Transform, Charge

Transfer Functions, and a [4, 4] Padé Approximant,” nternational Journal of

Electrochemistry, no. 10.1155/2015/496905, 2015.

[27] A. Innocenti, I. Álvarez, J.-F. Gohy and S. Passerini, “A modified Doyle-Fuller-

Newman model enables the macroscale physical simulation of dual-ion batteries,”

Journal of Power Sources, vol. 580, p. 233429, 1 10 2023.

[28] H. S. Ali, M. Hossein and F. M. Majid, “A new control algorithm of regenerative

braking management for energy efficiency and safety enhancement of electric

vehicles,” Energy Conversion and Management, vol. 276, p. 116564, 2023.

[29] F. D. Marco, “Comparative study of multiphysics Modeling and simulation

software for lifetime performance evaluation of battery systems.,” Master’s

Programme in Energy Storage – EIT InnoEnergy, 2023.

[30] M. Torabzadeh-Tari, P. Fritzson, M. Sjölund and A. Pop, “OpenModelica-Python

Interoperability. Applied to Monte Carlo Simulation..,” in Proceedings of the 50th

Scandinavian Conference on Simulation and Modeling, Fredericia, Denmark, 2009.

[31] J. Fang, M. Luo, J. Wang and Z. Hu, “FMI-Based Multi-Domain Simulation for an

Aero-Engine Control System,” Aerospace, vol. 8, p. 180, 07 2021.

Bibliography

86

[32] ANSYS, “Ansys Twin Builder. Create and Deploy Digital Twin Models,” 2025.

[Online]. Available: https://www.ansys.com/products/digital-twin/ansys-twin-

builder#tab1-1. [Accessed 18 05 2025].

[33] B. Huang, Y. Hui, Y. Liu and H. Wang, “Design of Twin Builder-Based Digital

Twin Online Monitoring System for Crane Girders,” sensors, vol. 23, no. 22, 2023.

[34] T. Ensbury, N. Horn and M. Dempsey, “Dymola and Simulink in Co-Simulation:

A Vehicle Electronic Stability Control case study,” American Modelica

Conference, 2020.

[35] dSPACE, “Integrating Functional Mock-up Units for HIL Simulation,” 2025.

[Online]. Available:

https://www.dspace.com/en/pub/home/news/event_modelica.cfm#179_16604.

[Accessed 18 05 2025].

[36] M. Hadef and M. Mekideche, “Moments and Pasek’s methods for parameter

identification of a DC motor,” Journal of Zhejiang University-SCIENCE C

(Computers & Electronics), vol. 12, no. 2, pp. 124-131, 2011.

[37] C. Birkl and D. Howey, “Model identification and parameter estimation for

LiFePO4 batteries,” in IET Hybrid and Electric Vehicles Conference, London,

2013.

[38] BMW, “autoblog.gr,” 07 2016. [Online]. Available: https://www.autoblog.gr/wp-

content/uploads/2016/05/BMW_i3_Specifications_valid_0716.pdf. [Accessed 10

05 2025].

[39] IMC, Dipl.-Ing. Ingo Völlmecke, Parameter Identification of DC Motors.

[40] neumaticos-pneus-online.es, “Tyre 155/70 R19,” 11 05 2025. [Online]. Available:

https://www.neumaticos-pneus-online.es/auto-neumatico-155-70-19.html.

[Accessed 11 05 2025].

[41] European commision, “Regulation (EU) 2020/740 of the European Parliament and

of the Council of 25 May 2020 on the labelling of tyres with respect to fuel

efficiency and other parameters, amending Regulation (EU) 2017/1369 and

repealing Regulation (EC) No 1222/2009,” 25 05 2020. [Online]. Available:

https://eur-lex.europa.eu/eli/reg/2020/740. [Accessed 11 05 2025].

[42] A. Covello, A. Di Martino and M. Longo, “Experimental Observation and

Validation of EV Model for Real Driving Behavior,” IEEE Access, vol. 12, pp.

130763-130776, 2024.

[43] D. Tollner, Á. Nyerges, M. Jneid, A. Geleta and M. Zöldy, “How Do We Calibrate

a Battery Electric Vehicle Model Based on Controller Area Network Bus Data?,”

Sensors, vol. 24, 07 2024.

[44] G. Sandrini, M. Gadola and D. Chindamo, “Longitudinal Dynamics Simulation

Tool for Hybrid APU and Full Electric Vehicle,” Energies, vol. 14, 2021.

[45] H. J., “Modeling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping,”

pp. 247-256, 2002.

[46] Z. S. K. Ahmed, “Power system simulation of fuel cell and supercapacitor based

hybrid electric vehicle," International Journal of Hydrogen Energy,” vol. 40, no.

15, 2015.

[47] I. ANSYS, “Charge Up EV Development with Battery Digital Twins,” ANSYS,

Inc, 2025. [Online]. Available: https://www.ansys.com/blog/charge-up-ev-

development-with-battery-digital-twins. [Accessed 22 05 2025].

Bibliography

87

[48] L. Chang, J. Dai and S. Liu, “Design and feasibility analysis of a novel auto hold

system in hydrostatic transmission wheeled vehicle,” Automatika, vol. 61, pp. 35-

45, 2020.

[49] T.-S. Dao and C. Schmitke, “Developing Mathematical Models of Batteries in

Modelica for Energy Storage Applications.,” in The 11th International Modelica

Conference, Versailles, France, 2015.

[50] S. Chandra, A. C. Nair, A. K. Yadav and S. Singhal, “An integrated approach for

Modeling Electric Powertrain,” in 5th Global Power, Energy and Communication

Conference (GPECOM), Nevsehir, Turkiye, 2023.

88

Appendix A - The EPowertrain

Modelica Library

The EPowertrain library has been developed at Modelica with the aim of offering a

modular and flexible solution for the energy simulation of electric vehicles. Although it

is contained in a single main package, its internal structure is organised in functional

groups that group components with common purposes within the system architecture.

This organisation favours reusability facilitates maintenance and improves the overall

understanding of the model by the user or developer. The main functional groups

included in the library are briefly described below:

• Interfaces: Includes models ports and connectors which allow coupling between

electrical, mechanical and control components. Based on conservation of effort

and flow, they are fundamental to maintain physical coherence in the system.

• SignalRouting: This package contains auxiliary components for the manipula-

tion and distribution of internal signals within the model. It includes selectors,

switches and conditional routing blocks that allow the implementation of dis-

crete or decision logic.

• Sources: Gathers input signal sources such as speed, torque, voltage or current

generators, used as stimuli to simulate specific operating conditions or standard-

ised driving profiles.

• Electrical: Models such as Resistance, Capacitor, IdealCoil, Diode, NMOS,

PMOS, IGBT, IdealISwitch. They represent basic elements of power electronics.

This package also encompasses conversion components, such as DC-DC as well

as electric machines for converting energy between electrical and mechanical

domains.

• Sensors: Includes models such as CurrentSensor, VoltageSensor, or AxialSpeed.

They are designed to measure key system variables without interfering with

dynamic behaviour.

• Mechanical: Comprises models like RotLoad, Wheel, BodyFrame1DOF, or

TerrainSlope which simulate the interaction between the powertrain and the ve-

hicle’s mechanical load, including terrain effects.

• Control: Includes components such as PID, PI, which allow the implementation

and tuning of closed-loop control strategies for regulating power, speed, or other

key variables.

• Examples: It contains complete configurations of electric vehicles under differ-

ent operating conditions, integrating the above components to validate the li-

Appendix A - The EPowertrain Modelica Library

89

brary. These models allow driving cycles to be reproduced, energy consumption

to be studied and control strategies to be compared.

The following sections present the most representative source code for each of these

modules, with the original formatting and indentation preserved for readability and

interpretation.

A1. Interfaces

 package Interfaces
 connector PosPin
 Modelica.Units.SI.Voltage v;
 flow Modelica.Units.SI.Current i;
 annotation (Icon(graphics={
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,255},
 fillColor={0,0,255},
 fillPattern=FillPattern.Solid),
 Text(
 extent={{-98,-52},{100,-100}},
 textColor={255,255,255},
 textString=""),
 Rectangle(
 extent={{10,-60},{-10,60}},
 lineColor={28,108,200},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid,
 pattern=LinePattern.None),
 Rectangle(
 extent={{-60,10},{60,-10}},
 lineColor={28,108,200},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid,
 pattern=LinePattern.None)}));
 end PosPin;

 connector NegPin
 Modelica.Units.SI.Voltage v;
 flow Modelica.Units.SI.Current i;
 annotation (Icon(graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,255},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid), Rectangle(
 extent={{-60,10},{60,-10}},
 lineColor={28,108,200},
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid,
 pattern=LinePattern.None)}));
 end NegPin;

 partial model ElectricPort

 SI.Voltage v "Voltage between pines (= p.u - n.u)";
 flow SI.Current i "Current from pin p to pin n";

Appendix A - The EPowertrain Modelica Library

90

 public
 PosPin p annotation (Placement(transformation(extent={
 {-110,-10},{-90,10}}, rotation=0),
 iconTransformation(extent={{-110,-10},{-90,10}})));
 NegPin n annotation (Placement(transformation(extent={
 {70,-10},{90,10}}, rotation=0),
 iconTransformation(extent={{70,-10},{90,10}})));
 equation
 v = p.v - n.v;
 0 = p.i + n.i;
 i = p.i;

 annotation (Diagram(coordinateSystem(extent={{-100,-100},
 {100,100}})), Icon(coordinateSystem(extent={
 {-100,-100},{80,100}})));
 end ElectricPort;

 connector MechanicalAxis
 "Mechanical axis coupling"
 SI.Angle Phi;
 flow SI.Torque T;
 annotation (Icon(graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,255},
 fillColor={215,215,215},
 fillPattern=FillPattern.Solid), Text(
 extent={{-98,-52},{100,-100}},
 textColor={255,255,255},
 textString="%name")}));
 end MechanicalAxis;

 connector IO_Port = Real annotation (Icon(graphics={
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={0,255,0},
 fillPattern=FillPattern.Solid),Text(
 extent={{-44,138},{40,88}},
 textColor={0,0,0},
 textString="%name"),Polygon(
 points={{0,100},{100,0},{0,-100},{0,100}},
 lineColor={0,0,255},
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),Polygon(
 points={{0,100},{-100,0},{0,-100},{0,100}},
 lineColor={0,0,255})}));
 connector BoolOutPort = output Boolean annotation (Icon(
 graphics={
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={28,108,200},
 fillPattern=FillPattern.Solid),
 Text(
 extent={{-44,138},{40,88}},
 textColor={0,0,0},
 textString="%name"),
 Polygon(
 points={{0,100},{100,0},{0,-100},{0,100}},
 lineColor={0,0,255},
 fillColor={0,0,0},

Appendix A - The EPowertrain Modelica Library

91

 fillPattern=FillPattern.Solid)}));
 connector BoolInPort = input Boolean annotation (Icon(
 graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={28,108,200},
 fillPattern=FillPattern.Solid),Text(
 extent={{-44,138},{40,88}},
 textColor={0,0,0},
 textString="%name"),Polygon(
 points={{-100,100},{0,0},{-100,-100},{-100,100}},
 lineColor={0,0,255},
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid)}));
 connector OutPort = output Real annotation (Icon(
 graphics={
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={0,255,0},
 fillPattern=FillPattern.Solid),
 Text(
 extent={{-44,138},{40,88}},
 textColor={0,0,0},
 textString="%name"),
 Polygon(
 points={{0,100},{100,0},{0,-100},{0,100}},
 lineColor={0,0,255},
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid)}));
 connector InPort = input Real annotation (Icon(graphics
 ={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={0,255,0},
 fillPattern=FillPattern.Solid), Polygon(
 points={{-100,100},{0,0},{-100,-100},{-100,100}},
 lineColor={0,0,255},
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid)}));
 partial model ThreePins

 EPowertrain.Interfaces.PosPin d "drain" annotation (
 Placement(transformation(extent={{-10,110},{10,90}},
 rotation=0)));
 EPowertrain.Interfaces.PosPin g "gate" annotation (
 Placement(transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 EPowertrain.Interfaces.PosPin s "source" annotation (
 Placement(transformation(extent={{-10,-110},{10,-90}},
 rotation=0)));

 annotation (Icon(graphics={Line(
 points={{0,90},{0,40}},
 color={0,0,0},
 thickness=1),Line(
 points={{0,40},{-20,40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-20,40},{-20,-40}},
 color={0,0,0},

Appendix A - The EPowertrain Modelica Library

92

 thickness=1),Line(
 points={{-20,-40},{0,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{0,-40},{0,-90}},
 color={0,0,0},
 thickness=1),Line(
 points={{-30,40},{-30,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-90,0},{-46,0}},
 color={0,0,0},
 thickness=1)}));
 end ThreePins;

 model Voltage_to_Control
 PosPin posPin annotation (Placement(transformation(
 extent={{-120,-80},{-60,80}}, rotation=0)));
 OutPort outPort annotation (Placement(transformation(
 extent={{60,-80},{120,80}}, rotation=0)));
 equation
 posPin.i = 0;
 posPin.v = outPort;
 annotation (
 Diagram(graphics),
 Icon(graphics={Line(
 points={{-90,0},{90,0}},
 color={0,0,0},
 thickness=0.5),Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 lineThickness=0.5)}),
 DymolaStoredErrors);
 end Voltage_to_Control;

 model Space3Phasor

 parameter Integer n=3 "Number of phases";
 constant Real pi=Modelica.Constants.pi;

 // Clark tranformation matrix
 Real T[2,n]=2/n*{{cos(k)/n*2*pi for k in 0:n - 1},{
 sin(k)/n*2*pi for k in 0:n - 1}};

 // Clark Inverse tranformation matrix
 Real InvT[n,2]={{cos(-k)/n*2*pi,-sin(-k)/n*2*pi} for
 k in 0:n - 1};

 Modelica.Units.SI.Voltage V[n]
 "instantaneous phase voltages";
 Modelica.Units.SI.Current I[n]
 "instantaneous phase currents";

 PosPin Vin[n] annotation (Placement(transformation(
 extent={{-110,-8},{-90,12}}, rotation=0)));
 PosPin Vout[2] annotation (Placement(transformation(
 extent={{90,50},{110,70}}, rotation=0)));
 NegPin Zero annotation (Placement(transformation(
 extent={{90,-50},{110,-30}}, rotation=0)));
 equation
 V[:] = Vin[:].v;

Appendix A - The EPowertrain Modelica Library

93

 I[:] = Vin[:].i;
 Vout.v = T*V;
 Vout.i = -T*I;
 Zero.v = sum(V)/n;
 Zero.i = sum(I)/n;
 annotation (Diagram(graphics), Icon(graphics={
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0}),Line(
 points={{-60,-40},{-60,78},{-60,80}},
 color={0,0,0}),Line(
 points={{-60,-40},{60,-40}},
 color={0,0,0}),Polygon(
 points={{-60,80},{-50,80},{-60,92},{-70,80},
 {-60,80}},
 lineColor={0,0,0}),Polygon(
 points={{60,-48},{70,-40},{60,-32},{60,-40},
 {60,-48}},
 lineColor={0,0,0}),Line(
 points={{-60,-40},{60,-80}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{-60,-40},{-20,80}},
 color={0,0,0},
 thickness=0.5),Polygon(
 points={{-24,78},{-18,76},{-20,80},{-24,78}},
 lineColor={0,0,0},
 lineThickness=0.5,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),Polygon(
 points={{54,-82},{60,-80},{56,-76},{54,-82}},
 lineColor={0,0,0},
 lineThickness=0.5,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid)}));

 end Space3Phasor;

 end Interfaces;

A2. SignalRouting

package SignalRouting
 model Not

 Interfaces.BoolInPort In annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.BoolOutPort Out annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation
 Out = not (In);
 annotation (Icon(graphics={Line(
 points={{-90,0},{-40,0},{-40,40},{20,0},{-40,
 -40},{-40,0}},
 color={0,0,0},
 thickness=0.5),Ellipse(

Appendix A - The EPowertrain Modelica Library

94

 extent={{20,6},{32,-6}},
 lineColor={0,0,0},
 lineThickness=0.5,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),Line(
 points={{32,0},{90,0},{78,0}},
 color={0,0,0},
 thickness=0.5)}), Diagram(graphics));
 end Not;

 model Terminator

 Interfaces.InPort inPort annotation (Placement(
 transformation(extent={{-112,-10},{-92,10}},
 rotation=0)));
 annotation (Icon(graphics={Line(
 points={{-92,0},{20,0}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{20,80},{20,-80},{-20,-80}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{-20,80},{20,80}},
 color={0,0,0},
 thickness=0.5)}), Diagram(graphics));
 end Terminator;

 model unitDelay
 Interfaces.InPort inPort annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.OutPort outPort annotation (Placement(
 transformation(extent={{90,-12},{110,8}},
 rotation=0)));
 initial equation
 outPort = 0;
 equation
 when time > 0 then
 outPort = pre(inPort);
 end when;
 annotation (Icon(graphics={Text(
 extent={{20,60},{60,20}},
 textColor={0,0,0},
 textString="-1"),Text(
 extent={{-40,40},{40,-40}},
 textColor={0,0,0},
 textString="Z")}));

 end unitDelay;

 model Saturation

 Interfaces.InPort In annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.OutPort Out annotation (Placement(
 transformation(extent={{90,-12},{110,8}},
 rotation=0)));
 parameter Real Max=1e6;
 parameter Real Min=-1e-6;
 equation

Appendix A - The EPowertrain Modelica Library

95

 Out = min(Max, max(Min, In));
 annotation (Icon(graphics={Line(
 points={{-80,80},{80,80}},
 color={0,0,255}),Line(
 points={{-80,-80},{80,-80},{80,-80}},
 color={0,0,255}),Line(
 points={{-80,-80},{-74,-80},{-60,-80},{-20,
 80},{14,80},{40,-76},{40,-80},{60,-80},{76,-6}},
 color={0,0,0},
 thickness=0.5)}), Diagram(graphics));

 end Saturation;

 model AND
 Interfaces.BoolInPort IN_1 annotation (Placement(
 transformation(extent={{-110,50},{-90,70}}),
 iconTransformation(extent={{-110,50},{-90,70}})));
 Interfaces.BoolInPort IN_2 annotation (Placement(
 transformation(extent={{-110,50},{-90,70}}),
 iconTransformation(extent={{-110,-70},{-90,-50}})));
 Interfaces.BoolOutPort Out annotation (Placement(
 transformation(extent={{88,-10},{108,10}}),
 iconTransformation(extent={{88,-10},{108,10}})));
 equation
 Out = if (IN_1 and IN_2) then true else false;
 annotation (Icon(coordinateSystem(preserveAspectRatio
 =false), graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid),Text(
 extent={{-98,56},{100,-142}},
 textColor={0,0,0},
 textString="AND
")}), Diagram(coordinateSystem(preserveAspectRatio=false)));

 end AND;

 package Mux "Multiplexers"
 model Mux_3_in

 Interfaces.InPort In3 annotation (Placement(
 transformation(extent={{-110,-70},{-90,-50}},
 rotation=0)));
 Interfaces.InPort In2 annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.InPort In1 annotation (Placement(
 transformation(extent={{-110,50},{-90,70}},
 rotation=0)));
 Interfaces.OutPort out[3] annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation
 out[1] = In1;
 out[2] = In2;
 out[3] = In3;
 annotation (Icon(graphics={Line(
 points={{-90,60},{0,60},{0,0},{90,0}},
 color={0,0,255}),Line(
 points={{-90,0},{0,0}},

Appendix A - The EPowertrain Modelica Library

96

 color={0,0,255}),Line(
 points={{-90,-60},{0,-60},{0,0}},
 color={0,0,255})}));

 end Mux_3_in;

 model Mux_2_in

 Interfaces.InPort In2 annotation (Placement(
 transformation(extent={{-110,-70},{-90,-50}},
 rotation=0)));
 Interfaces.InPort In1 annotation (Placement(
 transformation(extent={{-110,50},{-90,70}},
 rotation=0)));
 Interfaces.OutPort out[2] annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation
 out[1] = In1;
 out[2] = In2;
 annotation (Icon(graphics={Line(
 points={{-90,60},{0,60},{0,0},{90,0}},
 color={0,0,255}),Line(
 points={{-90,-60},{0,-60},{0,0}},
 color={0,0,255}),Text(
 extent={{-40,58},{-80,98}},
 textColor={0,0,255},
 textString="1"),Text(
 extent={{-40,-62},{-80,-22}},
 textColor={0,0,255},
 textString="2")}), Diagram(graphics));

 end Mux_2_in;

 model Mux_2_in_Bool

 Interfaces.BoolInPort In2 annotation (Placement(
 transformation(extent={{-110,-70},{-90,-50}},
 rotation=0)));
 Interfaces.BoolInPort In1 annotation (Placement(
 transformation(extent={{-110,50},{-90,70}},
 rotation=0)));
 Interfaces.BoolOutPort out[2] annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation
 out[1] = In1;
 out[2] = In2;
 annotation (Icon(graphics={Line(
 points={{-90,60},{0,60},{0,0},{90,0}},
 color={0,0,255}),Line(
 points={{-90,-60},{0,-60},{0,0}},
 color={0,0,255}),Text(
 extent={{-40,58},{-80,98}},
 textColor={0,0,255},
 textString="1"),Text(
 extent={{-40,-62},{-80,-22}},
 textColor={0,0,255},
 textString="2")}), Diagram(graphics));

 end Mux_2_in_Bool;

Appendix A - The EPowertrain Modelica Library

97

 model ThreePhase_to_Bus

 Interfaces.NegPin In3 annotation (Placement(
 transformation(extent={{-110,-70},{-90,-50}},
 rotation=0)));
 Interfaces.NegPin In2 annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.NegPin In1 annotation (Placement(
 transformation(extent={{-110,50},{-90,70}},
 rotation=0)));
 Interfaces.PosPin out[3] annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation
 out[1] = In1;
 out[2] = In2;
 out[3] = In3;
 annotation (Icon(graphics={Line(
 points={{-90,60},{0,60},{0,0},{90,0}},
 color={0,0,255}),Line(
 points={{-90,0},{0,0}},
 color={0,0,255}),Line(
 points={{-90,-60},{0,-60},{0,0}},
 color={0,0,255})}), Diagram(graphics));

 end ThreePhase_to_Bus;

 model Bus_to_ThreePhase

 Interfaces.PosPin out3 annotation (Placement(
 transformation(extent={{90,-70},{110,-50}},
 rotation=0)));
 Interfaces.PosPin out1 annotation (Placement(
 transformation(extent={{90,50},{110,70}},
 rotation=0)));
 Interfaces.PosPin out2 annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 Interfaces.NegPin In[3] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 equation
 In[1] = out1;
 In[2] = out2;
 In[3] = out3;
 annotation (Icon(graphics={Line(
 points={{-90,0},{86,0},{90,0}},
 color={0,0,255}),Line(
 points={{0,0},{0,60},{90,60}},
 color={0,0,255}),Line(
 points={{0,0},{0,-60}},
 color={0,0,255}),Line(
 points={{0,-60},{90,-60}},
 color={0,0,255})}), Diagram(graphics));

 end Bus_to_ThreePhase;

 model Demux_2

Appendix A - The EPowertrain Modelica Library

98

 Interfaces.InPort In[2] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.OutPort out1 annotation (Placement(
 transformation(extent={{90,50},{110,70}},
 rotation=0)));
 Interfaces.OutPort out2 annotation (Placement(
 transformation(extent={{90,-70},{110,-50}},
 rotation=0)));
 equation
 In[1] = out1;
 In[2] = out2;
 annotation (Icon(graphics={Line(
 points={{-90,0},{0,0}},
 color={0,0,255}),Line(
 points={{90,-60},{0,-60},{0,0}},
 color={0,0,255}),Line(
 points={{0,0},{0,60},{90,60}},
 color={0,0,255}),Text(
 extent={{78,98},{40,60}},
 textColor={0,0,255},
 textString="1"),Text(
 extent={{80,-20},{42,-58}},
 textColor={0,0,255},
 textString="2")}), Diagram(graphics));

 end Demux_2;

 model Demux_2_Bool

 Interfaces.BoolInPort In[2] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.BoolOutPort out1 annotation (Placement(
 transformation(extent={{90,50},{110,70}},
 rotation=0)));
 Interfaces.BoolOutPort out2 annotation (Placement(
 transformation(extent={{90,-70},{110,-50}},
 rotation=0)));
 equation
 In[1] = out1;
 In[2] = out2;
 annotation (Icon(graphics={Line(
 points={{-90,0},{0,0}},
 color={0,0,255}),Line(
 points={{90,-60},{0,-60},{0,0}},
 color={0,0,255}),Line(
 points={{0,0},{0,60},{90,60}},
 color={0,0,255}),Text(
 extent={{78,98},{40,60}},
 textColor={0,0,255},
 textString="1"),Text(
 extent={{80,-20},{42,-58}},
 textColor={0,0,255},
 textString="2")}), Diagram(graphics));

 end Demux_2_Bool;

 model Demux_3

 Interfaces.InPort In[3] annotation (Placement(

Appendix A - The EPowertrain Modelica Library

99

 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.OutPort out1 annotation (Placement(
 transformation(extent={{90,50},{110,70}},
 rotation=0)));
 Interfaces.OutPort out3 annotation (Placement(
 transformation(extent={{90,-70},{110,-50}},
 rotation=0)));
 Interfaces.OutPort out2 annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation
 In[1] = out1;
 In[2] = out2;
 In[3] = out3;
 annotation (Icon(graphics={Line(
 points={{90,60},{0,60},{0,0},{90,0}},
 color={0,0,255}),Line(
 points={{-90,0},{0,0}},
 color={0,0,255}),Line(
 points={{90,-60},{0,-60},{0,0}},
 color={0,0,255}),Text(
 extent={{40,100},{80,60}},
 textColor={0,0,0},
 textString="1"),Text(
 extent={{40,40},{80,0}},
 textColor={0,0,0},
 textString="2"),Text(
 extent={{40,-20},{80,-60}},
 textColor={0,0,0},
 textString="3")}), Diagram(graphics));

 end Demux_3;

 model Demux_6

 Interfaces.InPort In[6] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.OutPort out1 annotation (Placement(
 transformation(extent={{90,90},{110,110}},
 rotation=0)));
 Interfaces.OutPort out3 annotation (Placement(
 transformation(extent={{90,10},{110,30}},
 rotation=0)));
 Interfaces.OutPort out2 annotation (Placement(
 transformation(extent={{90,50},{110,70}},
 rotation=0)));
 Interfaces.OutPort out4 annotation (Placement(
 transformation(extent={{90,-30},{110,-10}},
 rotation=0)));
 Interfaces.OutPort out5 annotation (Placement(
 transformation(extent={{90,-70},{110,-50}},
 rotation=0)));
 Interfaces.OutPort out6 annotation (Placement(
 transformation(extent={{90,-110},{110,-90}},
 rotation=0)));
 equation
 In = {out1,out2,out3,out4,out5,out6};
 annotation (Icon(coordinateSystem(
 preserveAspectRatio=false,

Appendix A - The EPowertrain Modelica Library

100

 preserveOrientation=false,
 extent={{-100,-120},{100,120}},
 initialScale=0.1), graphics={Line(
 points={{90,60},{0,60},{0,20},{90,20}},
 color={0,0,255}),Line(
 points={{-90,0},{0,0}},
 color={0,0,255}),Line(
 points={{90,-60},{0,-60},{0,0}},
 color={0,0,255}),Line(
 points={{0,0},{0,100},{90,100}},
 color={0,0,255}),Line(
 points={{0,0},{0,-20},{90,-20}},
 color={0,0,255}),Line(
 points={{0,0},{0,-2},{0,-100},{92,-100}},
 color={0,0,255})}), Diagram(
 coordinateSystem(
 preserveAspectRatio=false,
 preserveOrientation=false,
 extent={{-100,-120},{100,120}},
 initialScale=0.1), graphics));

 end Demux_6;

 model BoolDemux_6

 Interfaces.BoolInPort In[6] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.BoolOutPort out1 annotation (Placement(
 transformation(extent={{90,90},{110,110}},
 rotation=0)));
 Interfaces.BoolOutPort out3 annotation (Placement(
 transformation(extent={{90,10},{110,30}},
 rotation=0)));
 Interfaces.BoolOutPort out2 annotation (Placement(
 transformation(extent={{90,50},{110,70}},
 rotation=0)));
 Interfaces.BoolOutPort out4 annotation (Placement(
 transformation(extent={{90,-30},{110,-10}},
 rotation=0)));
 Interfaces.BoolOutPort out5 annotation (Placement(
 transformation(extent={{90,-70},{110,-50}},
 rotation=0)));
 Interfaces.BoolOutPort out6 annotation (Placement(
 transformation(extent={{90,-110},{110,-90}},
 rotation=0)));
 equation
 In = {out1,out2,out3,out4,out5,out6};
 annotation (Icon(coordinateSystem(
 preserveAspectRatio=false,
 preserveOrientation=false,
 extent={{-100,-120},{100,120}},
 initialScale=0.1), graphics={Line(
 points={{90,60},{0,60},{0,20},{90,20}},
 color={0,0,255}),Line(
 points={{-90,0},{0,0}},
 color={0,0,255}),Line(
 points={{90,-60},{0,-60},{0,0}},
 color={0,0,255}),Line(
 points={{0,0},{0,100},{90,100}},
 color={0,0,255}),Line(

Appendix A - The EPowertrain Modelica Library

101

 points={{0,0},{0,-20},{90,-20}},
 color={0,0,255}),Line(
 points={{0,0},{0,-2},{0,-100},{92,-100}},
 color={0,0,255})}), Diagram(
 coordinateSystem(
 preserveAspectRatio=false,
 preserveOrientation=false,
 extent={{-100,-120},{100,120}},
 initialScale=0.1), graphics));

 end BoolDemux_6;
 end Mux;

 model Multiply
 Interfaces.OutPort Out annotation (Placement(
 transformation(extent={{90,-10},{110,10}})));
 Interfaces.InPort In1 annotation (Placement(
 transformation(extent={{-110,30},{-90,50}})));
 Interfaces.InPort In2 annotation (Placement(
 transformation(extent={{-110,-52},{-90,-32}})));
 equation
 Out = In1*In2;
 annotation (Icon(coordinateSystem(preserveAspectRatio
 =false), graphics={Text(
 extent={{-80,60},{-20,20}},
 textColor={0,0,0},
 textStyle={TextStyle.Bold},
 textString="X"),Text(
 extent={{-80,-20},{-20,-60}},
 textColor={0,0,0},
 textStyle={TextStyle.Bold},
 textString="X"),Text(
 extent={{98,30},{38,-30}},
 textColor={0,0,0},
 textString=">"),Rectangle(
 extent={{-100,100},{98,-100}},
 lineColor={0,0,0},
 lineThickness=0.5)}), Diagram(
 coordinateSystem(preserveAspectRatio=false)));

 end Multiply;
 end SignalRouting;

A3. Sources

package Sources
 import Modelica;
 model Ramp "Step DC voltage source"

 output Interfaces.OutPort Out annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));

 parameter Modelica.Units.SI.Time St=1;
 parameter Real Slope(min=0);
 parameter Real InitV=0;
 parameter Real FinalV=1;

Appendix A - The EPowertrain Modelica Library

102

 initial equation

 Out = InitV;

 equation

 if time >= St then
 if (InitV <= FinalV and Out <= FinalV) then
 der(Out) = Slope;
 elseif (InitV > FinalV and Out >= FinalV) then
 der(Out) = -Slope;
 else
 der(Out) = 0;
 end if;
 else
 der(Out) = 0;
 end if;

 annotation (Icon(graphics={Rectangle(extent={{-100,100},
 {100,-100}}, lineColor={0,0,0}), Line(
 points={{-80,-80},{-20,-80},{20,80},{80,80}},
 color={0,0,0},
 thickness=1)}));
 end Ramp;

 model Constant

 parameter Real Value=0;
 EPowertrain.Interfaces.OutPort Out annotation (
 Placement(transformation(extent={{90,-8},{110,12}},
 rotation=0)));
 equation
 Out = Value;
 annotation (Icon(graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid), Text(
 extent={{-76,22},{72,-26}},
 textColor={0,0,0},
 textString="%Value")}));
 end Constant;

 model BoolConstant "Boolean constant"

 parameter Boolean Value=false;
 Interfaces.BoolOutPort Out annotation (Placement(
 transformation(extent={{90,-8},{110,12}},
 rotation=0)));
 equation
 Out = Value;
 annotation (Icon(graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid), Text(
 extent={{-76,22},{72,-26}},
 textColor={0,0,0},
 textString="%Value")}));
 end BoolConstant;

Appendix A - The EPowertrain Modelica Library

103

 model PWM "PWM voltage signal source"

 parameter Real D(
 min=0,
 max=1) = 0.5 "Duty cicle";
 parameter Real Max=1 "Maximun value";
 parameter Real Min=0 "Minimum value";
 parameter SI.Time time_start(min=0) = 0 "start time";
 parameter SI.Frequency f=1 "frequency";
 SI.Time t(start=0);
 SI.Time T=1/f;
 SI.Time TOn=D*T;

 constant Real K=1e5;

 Interfaces.OutPort Out annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation

 der(t) = 1;

 when (t >= T) then
 reinit(t, 0);
 end when;

 der(Out) = if (time >= time_start and t <= TOn) then
 K*(Max - Out) else K*(Min - Out);

 annotation (
 Icon(graphics={
 Line(
 points={{-40,80},{-60,80},{-60,80},{-60,80},{-80,
 80}},
 color={0,0,0},
 thickness=0.5),
 Line(
 points={{-40,80},{-40,-80},{-20,-80},{0,-80},{
 0,80},{40,80},{40,-80},{80,-80}},
 color={0,0,0},
 thickness=0.5),
 Rectangle(extent={{-100,100},{100,-100}},
 lineColor={0,0,0})}),
 DymolaStoredErrors,
 Diagram(graphics));
 end PWM;

 model Sine "AC Voltage source"

 parameter SI.Voltage U0=1 "Amplitude";
 parameter SI.Frequency f=50 "Frequency";
 parameter SI.Angle phi=0 "Phase shift";

 protected
 parameter Modelica.Units.SI.AngularFrequency w=2*
 Modelica.Constants.pi*f;
 public
 Interfaces.OutPort p annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));

Appendix A - The EPowertrain Modelica Library

104

 equation

 p = U0*sin(w*time + phi);
 annotation (Icon(graphics={Bitmap(extent={{-60,60},{60,
 -60}}, fileName="../UNED/TFM/f02nW.png")}),
 Diagram(graphics));
 end Sine;

 model Step "Step DC voltage source"

 output Interfaces.OutPort Out annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 replaceable type T = Real;
 parameter Modelica.Units.SI.Time St=1;
 parameter T InitV=0;
 parameter T FinalV=1;

 equation
 if time >= St then
 Out = FinalV;
 else
 Out = InitV;
 end if;

 annotation (Icon(graphics={Rectangle(extent={{-100,100},
 {100,-100}}, lineColor={0,0,0}), Line(
 points={{-78,-80},{0,-80},{0,80},{82,80}},
 color={0,0,0},
 thickness=1)}));
 end Step;

 // Define the enumeration for cycle files

 // Model to select and use the cycle data based on the enum

 model UDDS
 extends Modelica.Blocks.Sources.TimeTable(table=fill(0.0,
 0, 2));
 initial equation

 end UDDS;

 model BoolStep "Boolean step source"

 output Interfaces.BoolOutPort Out annotation (
 Placement(transformation(extent={{90,-10},{110,10}},
 rotation=0)));

 parameter Modelica.Units.SI.Time St=1;
 parameter Boolean InitV=false;
 parameter Boolean FinalV=true;

 equation
 if time >= St then
 Out = FinalV;
 else
 Out = InitV;
 end if;

 annotation (Icon(graphics={Rectangle(extent={{-100,100},

Appendix A - The EPowertrain Modelica Library

105

 {100,-100}}, lineColor={0,0,0}), Line(
 points={{-78,-80},{0,-80},{0,80},{82,80}},
 color={0,0,0},
 thickness=1)}));
 end BoolStep;

 model BoolPWM "PWM voltage signal source"

 parameter Real D(
 min=0,
 max=1) = 0.5 "Duty cicle";
 parameter SI.Time time_start(min=0) = 0 "start time";
 parameter SI.Frequency f=1 "frequency";
 SI.Time t(start=0);
 SI.Time T=1/f;
 SI.Time TOn=D*T;

 Interfaces.BoolOutPort Out annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));
 equation

 der(t) = 1;

 Out = (time >= time_start and t <= TOn);

 when (t >= T) then
 reinit(t, 0);
 end when;
 annotation (
 Icon(graphics={
 Line(
 points={{-40,80},{-60,80},{-60,80},{-60,80},{-80,
 80}},
 color={0,0,0},
 thickness=0.5),
 Line(
 points={{-40,80},{-40,-80},{-20,-80},{0,-80},{
 0,80},{40,80},{40,-80},{80,-80}},
 color={0,0,0},
 thickness=0.5),
 Rectangle(extent={{-100,100},{100,-100}},
 lineColor={0,0,0})}),
 DymolaStoredErrors,
 Diagram(graphics));
 end BoolPWM;
 end Sources;

A4. Electrical

package Electrical

 package Sources
 model AC_Source "AC Voltage source"

 parameter SI.Voltage U0=1 "Amplitude";
 parameter SI.Frequency f=50 "Frequency";
 parameter SI.Angle phi=0 "Phase shift";
 SI.Angle theta;

Appendix A - The EPowertrain Modelica Library

106

 constant Real pi=Modelica.Constants.pi;

 SI.Voltage v;
 SI.Current i;

 public
 EPowertrain.Interfaces.PosPin p annotation (
 Placement(transformation(extent={{-10,90},{10,110}},
 rotation=0)));
 EPowertrain.Interfaces.NegPin n annotation (
 Placement(transformation(extent={{-10,-110},{10,
 -90}}, rotation=0)));
 initial equation
 theta = phi;

 equation
 0 = p.i + n.i;
 i = p.i;
 v = p.v - n.v;

 when theta >= 2*pi then
 reinit(theta, 0);
 end when;

 der(theta) = 2*pi*f;

 v = U0*Modelica.Math.sin(theta);
 annotation (Icon(graphics={Bitmap(
 extent={{-60,60},{60,-60}},
 fileName="../UNED/TFM/f02nW.png"),
 Line(points={{0,-90},{0,-46}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{0,48},{0,90}},
 color={0,0,0},
 thickness=0.5),Text(
 extent={{50,10},{136,-12}},
 textColor={0,0,0},
 textString="%name")}), Diagram(
 graphics));
 end AC_Source;

 model DC_Source "DC voltage source"
 extends EPowertrain.Interfaces.ElectricPort;
 parameter Modelica.Units.SI.Voltage U0=12;
 equation
 v = U0;
 annotation (Icon(graphics={Line(
 points={{-90,0},{-36,0},{-10,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{90,0},{10,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{-10,40},{-10,-40},{-10,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{10,20},{10,-20}},
 color={0,0,0},

Appendix A - The EPowertrain Modelica Library

107

 thickness=1),Line(
 points={{-80,20},{-60,20}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{-70,30},{-70,10}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{60,20},{80,20}},
 color={0,0,0},
 thickness=0.5)}));
 end DC_Source;

 model DC_Current_Source
 "Direct current source"
 extends EPowertrain.Interfaces.ElectricPort;
 parameter Modelica.Units.SI.Current I0=1;
 equation
 i = I0;
 annotation (Icon(graphics={Ellipse(
 extent={{-60,60},{60,-60}},
 lineColor={0,0,0},
 lineThickness=1),Line(
 points={{-90,0},{-60,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{60,0},{90,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{-40,0},{40,0}},
 color={0,0,0},
 thickness=1),Polygon(
 points={{-12,0},{10,10},{10,-12},{-12,
 0}},lineColor={0,0,0},
 lineThickness=1,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0})}));
 end DC_Current_Source;

 model VStep "Step DC voltage source"
 extends EPowertrain.Interfaces.ElectricPort
 annotation (Icon(Line(points=[-80,-80; 0,-80; 0,80;
 80,80], style(
 color=0,
 rgbcolor={0,0,0},
 thickness=8)), Rectangle(extent=[-100,100; 100,
 -100], style(
 color=0,
 rgbcolor={0,0,0},
 thickness=4))));

 Real v_step(start=v0);

 parameter Modelica.Units.SI.Time St=1;
 parameter Real v0=0;
 parameter Real vf=1;
 equation
 v_step = if time < St then v0 else vf;
 v = v_step;

Appendix A - The EPowertrain Modelica Library

108

 annotation (Icon(graphics={Line(
 points={{80,80},{0,80},{0,-60},{0,-80},
 {-80,-80}},
 color={0,0,0},
 thickness=1),Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0})}));
 end VStep;

 model Battery "DC voltage source"

 parameter Modelica.Units.NonSI.ElectricCharge_Ah
 Cap(min=0) = 1 "Battery capacity";

 parameter Modelica.Units.SI.Voltage Vd=0
 "Dischargued voltage (SOC = 0)";
 parameter Modelica.Units.SI.Voltage Vf=12
 "Full voltage (SOC = 100)";

 parameter Real InitSOC(
 quantity="Percent",
 final unit="1",
 final displayUnit="%",
 min=0,
 max=100) = 100 "Initial state of charge";

 Real SOC(
 quantity="Percent",
 final unit="1",
 final displayUnit="%",
 min=0,
 max=100);

 parameter SI.Resistance Rs=0.06 "Serie resistance";
 parameter SI.Resistance Rp=1e-3
 "Parallel resistance";
 parameter SI.Capacitance C=1e-6
 "Battery capacitance";
 parameter SI.Current Imax=400
 "Maximum, peak current";

 SI.Voltage Vout=posPin.v - negPin.v;
 SI.Current Iout(
 min=-Imax,
 max=Imax) = posPin.i;

 Interfaces.PosPin posPin annotation (Placement(
 transformation(extent={{-10,90},{10,110}},
 rotation=0)));
 Interfaces.NegPin negPin annotation (Placement(
 transformation(extent={{-10,-110},{10,-90}},
 rotation=0)));

 Basic.Resistance RP(R=Rp) annotation (Placement(
 transformation(
 origin={20,10},
 extent={{-10,-10},{10,10}},
 rotation=270)));
 public

Appendix A - The EPowertrain Modelica Library

109

 Basic.Capacitor C1(C=C) annotation (Placement(
 transformation(
 origin={-22,10},
 extent={{-10,-10},{10,10}},
 rotation=270)));
 Basic.Resistance RS(R=Rs) annotation (Placement(
 transformation(
 origin={0,38},
 extent={{-10,-10},{10,10}},
 rotation=270)));
 public
 Var_DC_Source Batt annotation (Placement(
 transformation(
 origin={0,-44},
 extent={{-10,-10},{10,10}},
 rotation=270)));
 Devices.CurrentSaturation currentSaturation(IMax=
 Imax, IMin=-Imax) annotation (Placement(
 transformation(
 extent={{-10,-10},{10,10}},
 rotation=90,
 origin={0,68})));
 initial equation
 SOC = InitSOC;
 RS.v = 0;
 C1.v = 0;
 equation
 der(SOC) = Iout/(3600*Cap);

 if SOC > 0 then
 Batt.v = Vd + (Vf - Vd)*SOC/100;
 else
 Batt.i = 0;
 end if;

 connect(C1.p, RS.n) annotation (Line(points={{-22,20},
 {-22,26},{-14,26},{-14,24},{0,24},{0,28}},
 color={0,0,255}));
 connect(RP.p, RS.n) annotation (Line(points={{20,20},
 {20,26},{14,26},{14,24},{0,24},{0,28}},
 color={0,0,255}));
 connect(C1.n, RP.n) annotation (Line(points={{-22,0},
 {-22,-4},{20,-4},{20,0}}, color={0,0,255}));
 connect(Batt.p, RP.n) annotation (Line(points={{0,-34},
 {0,-4},{20,-4},{20,0}}, color={0,0,255}));
 connect(Batt.n, negPin) annotation (Line(points={{0,
 -54},{0,-100}}, color={0,0,255}));
 connect(currentSaturation.In, RS.p) annotation (
 Line(points={{0,58},{0,48}}, color={0,0,255}));
 connect(currentSaturation.Out, posPin) annotation (
 Line(points={{0.2,78},{0,80},{0,100}}, color={0,
 0,255}));
 annotation (
 extent=[-30,0; -10,20],
 rotation=270,
 Icon(graphics={Line(
 points={{0,84},{0,22}},
 color={0,0,0},
 thickness=0.5),Line(

Appendix A - The EPowertrain Modelica Library

110

 points={{-40,20},{40,20}},
 color={0,0,0},
 thickness=1),Line(
 points={{-20,0},{20,0}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{-40,-20},{40,-20}},
 color={0,0,0},
 thickness=1),Line(
 points={{-20,-40},{20,-40}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{0,-40},{0,-90}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{-40,-38},{46,40}},
 color={0,0,0},
 thickness=1),Polygon(
 points={{46,40},{32,40},{46,28},{46,40}},
 lineColor={0,0,0},
 lineThickness=1,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid)}),
 Placement(transformation(
 origin={-20,10},
 extent={{-10,-10},{10,10}},
 rotation=270)),
 extent=[-30,0; -10,20],
 rotation=270);

 end Battery;

 model Var_DC_Source
 "Variable DC voltage source"

 SI.Voltage v "Voltage between pines (= p.u - n.u)";
 flow SI.Current i "Current from pin p to pin n";

 Interfaces.PosPin p annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}}),
 iconTransformation(extent={{-110,-10},{-90,10}})));
 Interfaces.NegPin n annotation (Placement(
 transformation(extent={{90,-10},{110,10}}),
 iconTransformation(extent={{90,-10},{110,10}})));
 equation

 v = p.v - n.v;
 0 = p.i + n.i;
 i = p.i;
 annotation (Icon(graphics={Line(
 points={{-40,0},{14,0},{40,0}},
 color={0,0,0},
 thickness=1,
 origin={-50,0},
 rotation=360),Line(
 points={{40,0},{-40,0}},
 color={0,0,0},
 thickness=1,
 origin={50,0},
 rotation=360),Line(

Appendix A - The EPowertrain Modelica Library

111

 points={{0,40},{0,-40},{0,-40}},
 color={0,0,0},
 thickness=1,
 origin={-10,0},
 rotation=360),Line(
 points={{0,20},{0,-20}},
 color={0,0,0},
 thickness=1,
 origin={10,0},
 rotation=360),Line(
 points={{-10,0},{10,0}},
 color={0,0,0},
 thickness=0.5,
 origin={-70,20},
 rotation=360),Line(
 points={{0,10},{0,-10}},
 color={0,0,0},
 thickness=0.5,
 origin={-70,20},
 rotation=360),Line(
 points={{-10,0},{10,0}},
 color={0,0,0},
 thickness=0.5,
 origin={70,20},
 rotation=360),Line(
 points={{40,-40},{-40,40}},
 color={0,0,0},
 thickness=0.5,
 rotation=360),Polygon(
 points={{-7,7},{-1,-7},{7,3},{-7,7}},
 lineColor={0,0,0},
 lineThickness=0.5,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid,
 origin={-33,33},
 rotation=360)}));
 end Var_DC_Source;

 model Ground "Zero voltage reference"

 EPowertrain.Interfaces.PosPin p annotation (
 Placement(transformation(extent={{-10,110},{10,90}},
 rotation=0)));
 equation
 p.v = 0;
 annotation (Diagram(graphics), Icon(graphics={Line(
 points={{0,90},{0,20}},
 color={0,0,0},
 thickness=1),Line(
 points={{-60,20},{60,20}},
 color={0,0,0},
 thickness=1),Line(
 points={{-40,0},{40,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{-20,-20},{20,-20}},
 color={0,0,0},
 thickness=1)}));
 end Ground;

 model Square "Squarevoltage signal source"

Appendix A - The EPowertrain Modelica Library

112

 Interfaces.PosPin Out annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));

 parameter Real D(
 min=0,
 max=1) = 0.5 "Duty cicle";
 parameter SI.Time time_start(min=0) = 0
 "start time";
 parameter SI.Frequency f=1 "frequency";
 parameter SI.Voltage Von=1;
 parameter SI.Voltage Voff=0;
 parameter Real k=1000 "smooth factor";

 SI.Time t(start=0);
 SI.Time T=1/f;
 SI.Time eps=1e-6;
 SI.Time TOn=D*T;

 equation

 der(t) = 1;

 when (t >= T) then
 reinit(t, 0);
 end when;

 der(Out.v) = if (t < TOn) then k*(Von - Out.v)
 else k*(Voff - Out.v);

 annotation (
 Icon(graphics={Line(
 points={{-40,80},{-60,80},{-60,80},{-60,
 80},{-80,80}},
 color={0,0,0},
 thickness=0.5),Line(
 points={{-40,80},{-40,-80},{-20,-80},{
 0,-80},{0,80},{40,80},{40,-80},{80,-80}},
 color={0,0,0},
 thickness=0.5),Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0})}),
 Diagram(graphics),
 experiment(
 StopTime=2,
 Tolerance=0.1,
 __Dymola_Algorithm="Dassl"));
 end Square;
 end Sources;

 package Basic
 model IdealCoil
 extends EPowertrain.Interfaces.ElectricPort;
 parameter Modelica.Units.SI.Inductance L=1
 "Inductance";
 equation
 v = smooth(1, L*der(i));

 annotation (Icon(graphics={Line(

Appendix A - The EPowertrain Modelica Library

113

 points={{-90,0},{-64,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{64,0},{90,0}},
 color={0,0,0},
 thickness=1),Bitmap(
 extent={{-60,60},{60,-60}},
 fileName="../../Downloads/2560px-

Coil_illustration.svg.png")}))
 ;
 end IdealCoil;

 model Resistance "Ideal resistance"
 extends EPowertrain.Interfaces.ElectricPort;
 parameter Modelica.Units.SI.Resistance R=100
 "Resistance";
 equation
 v = smooth(1, R*i);
 annotation (Icon(graphics={Line(
 points={{-90,0},{-60,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{-60,0},{-50,20},{-30,-20},{-10,
 20},{10,-20},{30,20},{50,-20}},
 color={0,0,0},
 thickness=1),Line(
 points={{50,-20},{60,0},{90,0}},
 color={0,0,0},
 thickness=1)}), Diagram(graphics));
 end Resistance;

 model VariableResistance
 "Variable parameter resistance"
 extends EPowertrain.Interfaces.ElectricPort;
 Modelica.Units.SI.Resistance R "Resistance";
 equation
 v = smooth(1, R*i);
 annotation (Icon(graphics={Line(
 points={{-90,0},{-60,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{-60,0},{-50,20},{-30,-20},{-10,
 20},{10,-20},{30,20},{50,-20}},
 color={0,0,0},
 thickness=1),Line(
 points={{50,-20},{60,0},{90,0}},
 color={0,0,0},
 thickness=1)}), Diagram(graphics));
 end VariableResistance;

 model Capacitor "Ideal capacitor"
 extends EPowertrain.Interfaces.ElectricPort;
 parameter Modelica.Units.SI.Capacitance C=1e-6
 "Capacitance";
 equation
 i = smooth(1, C*der(v));

 annotation (Diagram(graphics={Line(
 points={{-20,40},{-20,-40}},
 color={0,0,0},
 thickness=1),Line(

Appendix A - The EPowertrain Modelica Library

114

 points={{20,40},{20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-88,0},{-20,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{20,0},{88,0}},
 color={0,0,0},
 thickness=1)}), Icon(graphics={Line(
 points={{-20,40},{-20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{20,40},{20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-88,0},{-20,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{20,0},{88,0}},
 color={0,0,0},
 thickness=1)}));
 end Capacitor;

 model VariableCapacitor
 "Variable parameter capacitor"
 extends EPowertrain.Interfaces.ElectricPort;
 Modelica.Units.SI.Capacitance C "Capacitance";
 equation
 i = smooth(1, C*der(v));

 annotation (Diagram(graphics={Line(
 points={{-20,40},{-20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{20,40},{20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-88,0},{-20,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{20,0},{88,0}},
 color={0,0,0},
 thickness=1)}), Icon(graphics={Line(
 points={{-20,40},{-20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{20,40},{20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-88,0},{-20,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{20,0},{88,0}},
 color={0,0,0},
 thickness=1)}));
 end VariableCapacitor;

 model Y_Conection

 parameter Modelica.Units.SI.Capacitance C=1;

Appendix A - The EPowertrain Modelica Library

115

 Capacitor capacitor(C=C) annotation (Placement(
 transformation(extent={{48,-10},{68,10}})));
 Capacitor capacitor1(C=C) annotation (Placement(
 transformation(extent={{46,16},{70,40}})));
 Capacitor capacitor2(C=C) annotation (Placement(
 transformation(extent={{46,-38},{66,-18}})));
 Sources.Ground ground annotation (Placement(
 transformation(extent={{84,-20},{104,0}})));
 Interfaces.PosPin posPin[3] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}})));
 SignalRouting.Mux.Bus_to_ThreePhase
 bus_to_ThreePhase annotation (Placement(
 transformation(extent={{-82,-46},{10,46}})));
 equation
 connect(capacitor1.n, capacitor.n) annotation (Line(
 points={{70,28},{70,0},{68,0}}, color={0,0,255}));
 connect(capacitor2.n, capacitor.n) annotation (Line(
 points={{66,-28},{70,-28},{70,0},{68,0}},
 color={0,0,255}));
 connect(bus_to_ThreePhase.out2, capacitor.p)
 annotation (Line(points={{10,0},{48,0}}, color={0,
 0,255}));
 connect(bus_to_ThreePhase.out3, capacitor2.p)
 annotation (Line(points={{10,-27.6},{42,-27.6},{42,
 -28},{46,-28}}, color={0,0,255}));
 connect(bus_to_ThreePhase.out1, capacitor1.p)
 annotation (Line(points={{10,27.6},{42,27.6},{42,28},
 {46,28}}, color={0,0,255}));
 connect(capacitor.n, ground.p) annotation (Line(
 points={{68,0},{70,0},{70,6},{94,6},{94,0}},
 color={0,0,255}));
 connect(posPin, bus_to_ThreePhase.In) annotation (
 Line(points={{-100,0},{-82,0}}, color={0,0,255}));
 annotation (Icon(coordinateSystem(
 preserveAspectRatio=false), graphics={Line(
 points={{-70,-70},{0,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{0,0},{70,-70}},
 color={0,0,0},
 thickness=1),Line(
 points={{0,0},{0,80}},
 color={0,0,0},
 thickness=1),Line(
 points={{0,0},{0,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-20,-40},{20,-40}},
 color={0,0,0},
 thickness=1),Line(
 points={{-10,-50},{10,-50}},
 color={0,0,0},
 thickness=1),Line(
 points={{-4,-60},{4,-60}},
 color={0,0,0},
 thickness=1)}), Diagram(
 coordinateSystem(preserveAspectRatio=false)));
 end Y_Conection;

 model Delta_Conection

Appendix A - The EPowertrain Modelica Library

116

 parameter Modelica.Units.SI.Capacitance C=1e-6;

 Capacitor C_bc(C=C) annotation (Placement(
 transformation(
 extent={{-7,-7.99998},{7,8}},
 rotation=270,
 origin={40,-11})));
 Interfaces.PosPin posPin[3] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}})));
 SignalRouting.Mux.Bus_to_ThreePhase
 bus_to_ThreePhase annotation (Placement(
 transformation(extent={{-60,-40},{20,40}})));
 Capacitor C_ab(C=C) annotation (Placement(
 transformation(
 extent={{-7,-7.99999},{7,7.99999}},
 rotation=270,
 origin={40,11})));
 Capacitor C_ac(C=C) annotation (Placement(
 transformation(
 extent={{-7,-7.99998},{7,8}},
 rotation=270,
 origin={60,1})));
 equation
 connect(bus_to_ThreePhase.out3, C_bc.n) annotation
 (Line(points={{20,-24},{40,-24},{40,-18}}, color={
 0,0,255}));
 connect(bus_to_ThreePhase.out1, C_ab.p) annotation
 (Line(points={{20,24},{40,24},{40,18}}, color={0,0,
 255}));
 connect(C_ac.p, C_ab.p) annotation (Line(points={{60,
 8},{60,24},{40,24},{40,18}}, color={0,0,255}));
 connect(C_ac.n, C_bc.n) annotation (Line(points={{60,
 -6},{60,-24},{40,-24},{40,-18}}, color={0,0,
 255}));
 connect(bus_to_ThreePhase.out2, C_bc.p) annotation
 (Line(points={{20,0},{40,0},{40,-4}}, color={0,0,255}));
 connect(C_ab.n, C_bc.p) annotation (Line(points={{40,
 4},{40,0},{40,-4},{40,-4}}, color={0,0,255}));
 connect(posPin, bus_to_ThreePhase.In) annotation (
 Line(points={{-100,0},{-60,0}}, color={0,0,255}));
 annotation (Icon(coordinateSystem(
 preserveAspectRatio=false), graphics={
 Polygon(
 points={{-80,-80},{0,80},{80,-80},{-80,
 -80}},
 lineColor={0,0,0},
 lineThickness=1),Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0})}), Diagram(
 coordinateSystem(preserveAspectRatio=false)));
 end Delta_Conection;
 end Basic;

 package Semiconductors
 model NMOS "Ideal NMOS"

 EPowertrain.Interfaces.PosPin d "drain" annotation (
 Placement(transformation(extent={{-10,110},{10,90}},
 rotation=0)));
 EPowertrain.Interfaces.PosPin g "gate" annotation (
 Placement(transformation(extent={{-110,-10},{-90,

Appendix A - The EPowertrain Modelica Library

117

 10}}, rotation=0)));
 EPowertrain.Interfaces.PosPin s "source" annotation
 (Placement(transformation(extent={{-10,-110},{10,-90}},
 rotation=0)));

 Modelica.Units.SI.Current Ids(start=0);
 Modelica.Units.SI.Voltage Vgs(start=0)
 "Pins voltage (= g.v - s.v)";
 Modelica.Units.SI.Voltage Vds(start=0)
 "Pins voltage (= d.v - s.v)";

 parameter Modelica.Units.SI.Voltage Vt=3;
 parameter Modelica.Units.SI.Length L=2e-6;
 parameter Modelica.Units.SI.Length W=10e-6;
 parameter Real Kp(unit="A/V^2") = 100e-6;
 parameter Real Lambda(unit="V^-1") = 0;

 equation
 Vgs = g.v - s.v;
 Vds = d.v - s.v;

 g.i = 0;
 d.i = Ids;
 d.i = -s.i;

 // Cut
 if (Vgs < Vt) then
 Ids = 0;
 else
 // Lineal
 if (Vds <= (Vgs - Vt)) then
 Ids = Kp*(W/L)*((Vgs - Vt)*Vds - (Vds^2)/2)*(1 +
 Lambda*Vds);
 // Saturation
 else
 Ids = 0.5*Kp*(W/L)*(Vgs - Vt)^2*(1 + Lambda*Vds);
 end if;
 end if;

 annotation (Icon(graphics={Line(
 points={{-46,0},{-30,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{-90,0},{-46,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{0,90},{0,40},{-20,40},{-20,-40},
 {0,-40},{0,-90}},
 color={0,0,0},
 thickness=1),Line(
 points={{-30,40},{-30,-40}},
 color={0,0,0},
 thickness=1),Polygon(
 points={{0,-40},{-10,-34},{-10,-46},{0,
 -40}},
 lineColor={0,0,0},
 lineThickness=1,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid)}),
 DymolaStoredErrors);
 end NMOS;

Appendix A - The EPowertrain Modelica Library

118

 model PMOS "Ideal PMOS"

 EPowertrain.Interfaces.PosPin d "source" annotation
 (Placement(transformation(extent={{-10,-110},{10,-90}},
 rotation=0)));
 EPowertrain.Interfaces.PosPin g "gate" annotation (
 Placement(transformation(extent={{-110,-10},{-90,
 10}}, rotation=0)));
 EPowertrain.Interfaces.PosPin s "drain" annotation (
 Placement(transformation(extent={{-10,110},{10,90}},
 rotation=0)));

 Modelica.Units.SI.Current Ids(start=0);
 Modelica.Units.SI.Voltage Vgs(start=0)
 "Pins voltage (= g.v - s.v)";
 Modelica.Units.SI.Voltage Vds(start=0)
 "Pins voltage (= d.v - s.v)";

 parameter Modelica.Units.SI.Voltage Vt=3;
 parameter Modelica.Units.SI.Length L=2e-6;
 parameter Modelica.Units.SI.Length W=10e-6;
 parameter Real Kp(unit="A/V^2") = 100e-6;
 parameter Real Lambda(unit="V^-1") = 0;

 equation
 Vgs = g.v - s.v;
 Vds = d.v - s.v;

 g.i = 0;
 d.i = Ids;
 d.i = -s.i;

 // Cut
 if (Vgs > Vt) then
 Ids = 0;
 else
 // Lineal
 if (Vds >= (Vgs - Vt)) then
 Ids = Kp*(W/L)*((Vgs - Vt)*Vds - (Vds^2)/2)*(1 +
 Lambda*Vds);
 // Saturation
 else
 Ids = 0.5*Kp*(W/L)*(Vgs - Vt)^2*(1 + Lambda*Vds);
 end if;
 end if;

 annotation (Icon(graphics={Ellipse(
 extent={{-46,8},{-30,-8}},
 lineColor={0,0,0},
 lineThickness=1),Line(
 points={{-90,0},{-46,0},{-48,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{0,90},{0,40},{-20,40},{-20,-40},
 {0,-40},{0,-90}},
 color={0,0,0},
 thickness=1),Line(
 points={{-30,40},{-30,-40}},
 color={0,0,0},
 thickness=1),Polygon(

Appendix A - The EPowertrain Modelica Library

119

 points={{-20,40},{-10,46},{-10,34},{-20,
 40}},
 lineColor={0,0,0},
 lineThickness=1,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid)}));
 end PMOS;

 model Diode "Ideal diode"
 extends EPowertrain.Interfaces.ElectricPort;
 parameter Modelica.Units.SI.Current Is=1e-6
 "Saturation current";
 parameter Modelica.Units.SI.Voltage Vt=0.04
 "Thermal voltage";
 parameter Real Maxexp(final min=Modelica.Constants.small)
 = 15 "Max. exponent for linear continuation";
 parameter SI.Resistance R=1.e8
 "Parallel ohmic resistance";
 equation

 i = smooth(1, (if (v/Vt > Maxexp) then Is*(exp(
 Maxexp)*(1 + v/Vt - Maxexp) - 1) + v/R else Is*(
 exp(v/Vt) - 1) + v/R));
 annotation (Icon(graphics={Line(
 points={{-84,0},{86,0}},
 color={0,0,0},
 thickness=1),Polygon(
 points={{0,0},{-20,20},{-20,-20},{0,0}},
 lineColor={0,0,0},
 lineThickness=1),Line(
 points={{0,20},{0,-20}},
 color={0,0,0},
 thickness=1)}), DymolaStoredErrors);
 end Diode;

 model IdealIGBT
 extends EPowertrain.Interfaces.ElectricPort;
 parameter SI.Current Is=1e-9 "Saturation current";
 parameter SI.Voltage Vt=0.025 "Thermal voltage";
 parameter Real Maxexp(final min=Modelica.Constants.small)
 = 15 "Max. exponent for linear continuation";
 parameter SI.Resistance R=1.e8
 "Parallel ohmic resistance";
 EPowertrain.Interfaces.PosPin c annotation (
 Placement(transformation(extent={{-20,-100},{0,-80}},
 rotation=0)));
 equation
 c.i = 0;
 if (c.v > 0) then
 i = smooth(1, (if (v/Vt > Maxexp) then Is*(exp(
 Maxexp)*(1 + v/Vt - Maxexp) - 1) + v/R else Is*(
 exp(v/Vt) - 1) + v/R));
 else
 i = smooth(1, v/R);
 end if;

 annotation (Icon(graphics={Line(
 points={{-84,0},{86,0}},
 color={0,0,0},
 thickness=1),Polygon(
 points={{0,0},{-20,20},{-20,-20},{0,0}},

Appendix A - The EPowertrain Modelica Library

120

 lineColor={0,0,0},
 lineThickness=1),Line(
 points={{0,20},{0,-20}},
 color={0,0,0},
 thickness=1),Ellipse(
 extent={{-34,24},{14,-24}},
 lineColor={0,0,0},
 lineThickness=0.5),Line(
 points={{-10,-80},{-10,-76},{-10,-26}},
 color={0,0,0},
 pattern=LinePattern.Dash,
 thickness=0.5)}), Diagram(graphics));
 end IdealIGBT;

 model IdealISwitch
 extends EPowertrain.Interfaces.ElectricPort;
 parameter SI.Resistance ROpen=1e5
 "Opened circuit conductance";
 parameter SI.Resistance RClose=1.e-5
 "Closed circuit resistance";
 parameter SI.Time St(min=1e-9) = 1e-6 "Switch time";

 Real Smooth_aux
 "Aux variable to smooth resistance variation";

 SI.Resistance R(start=ROpen);

 Interfaces.BoolInPort c annotation (Placement(
 transformation(extent={{-20,-100},{0,-80}},
 rotation=0)));

 equation

 der(Smooth_aux)*St = if c then 1 - Smooth_aux else -
 Smooth_aux;

 R = ROpen + (RClose - ROpen)*Smooth_aux;

 i = v/R;

 annotation (
 Icon(graphics={Line(
 points={{-10,-80},{-10,-76},{-10,-26}},
 color={0,0,0},
 pattern=LinePattern.Dash,
 thickness=0.5),Line(
 points={{-90,0},{-40,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{40,0},{90,0}},
 color={0,0,0},
 thickness=1),Line(
 points={{-40,0},{38,-28}},
 color={0,0,0},
 thickness=1),Line(
 points={{-40,0},{40,0}},
 color={0,0,0},

Appendix A - The EPowertrain Modelica Library

121

 pattern=LinePattern.Dot,
 thickness=1)}),
 Diagram(graphics),
 DymolaStoredErrors);
 end IdealISwitch;
 end Semiconductors;

 package Devices

 package Converters

 model BackEMF
 "Counter-electromotive force"
 Interfaces.PosPin Pp annotation (Placement(
 transformation(extent={{-8,88},{12,108}}),
 iconTransformation(extent={{-8,88},{12,108}})));
 Interfaces.NegPin Np annotation (Placement(
 transformation(extent={{-10,-110},{10,-90}}),
 iconTransformation(extent={{-10,-110},{10,-90}})));
 Interfaces.MechanicalAxis mechanicalAxis
 annotation (Placement(transformation(extent={{-10,
 -110},{10,-90}}), iconTransformation(
 extent={{90,-10},{110,10}})));
 parameter Real Ke(unit="V.s/rad") = 0.0064
 "Back emf constant";
 parameter Real Kt(unit="N.m/A") = 0.0065
 "Torque constant";
 parameter SI.RotationalDampingConstant bm=4.121*1e-6
 "Friction constant";
 parameter Modelica.Units.SI.Inertia J=3.87*1e-7;
 Modelica.Units.SI.Voltage Vemf;
 Modelica.Units.SI.Current i=Pp.i;
 Modelica.Units.SI.Torque Te "Electrical torque";
 Modelica.Units.SI.Torque Tb "Friction torque";
 Modelica.Units.SI.Torque Tload=mechanicalAxis.T
 "Axis torque";
 Modelica.Units.SI.Angle Phi=mechanicalAxis.Phi;
 Modelica.Units.SI.AngularVelocity w=der(Phi);
 constant Real pi=Modelica.Constants.pi;

 equation
 Pp.i + Np.i = 0;
 Vemf = Ke*w;
 Vemf = Pp.v - Np.v;
 Te = i*Kt;
 Tb = bm*w;
 Te - Tb - Tload = J*der(w);
 annotation (Icon(coordinateSystem(
 preserveAspectRatio=false), graphics={
 Rectangle(
 extent={{-30,80},{30,60}},
 lineColor={28,108,200},
 fillColor={215,215,215},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{-30,-60},{30,-80}},
 lineColor={28,108,200},
 fillColor={0,128,255},
 fillPattern=FillPattern.Solid),
 Ellipse(extent={{-50,50},{50,-50}},
 lineColor={28,108,200},

Appendix A - The EPowertrain Modelica Library

122

 fillColor={135,135,135},
 fillPattern=FillPattern.Solid),
 Line(points={{60,-40},{60,40}},
 color={28,108,200},
 smooth=Smooth.Bezier,
 arrow={Arrow.None,Arrow.Open},
 thickness=1),Line(
 points={{-60,40},{-60,-40}},
 color={28,108,200},
 smooth=Smooth.Bezier,
 arrow={Arrow.None,Arrow.Open},
 thickness=1)}), Diagram(
 coordinateSystem(preserveAspectRatio=false)));

 end BackEMF;

 model ElectricConverter
 Interfaces.PosPin P_In annotation (Placement(
 transformation(extent={{-110,50},{-90,70}}),
 iconTransformation(extent={{-110,50},{-90,70}})));
 Interfaces.NegPin N_In annotation (Placement(
 transformation(extent={{-110,-70},{-90,-50}}),
 iconTransformation(extent={{-110,-70},{-90,-50}})));
 Interfaces.PosPin P_Out annotation (Placement(
 transformation(extent={{90,50},{110,70}}),
 iconTransformation(extent={{90,50},{110,70}})));
 Interfaces.NegPin N_Out annotation (Placement(
 transformation(extent={{90,-70},{110,-50}}),
 iconTransformation(extent={{90,-70},{110,-50}})));
 Interfaces.InPort DutyCycle annotation (Placement(
 transformation(
 extent={{-10,-10},{10,10}},
 rotation=270,
 origin={0,100}), iconTransformation(
 extent={{-10,-10},{10,10}},
 rotation=270,
 origin={0,100})));
 input SI.Voltage V_In=P_In.v - N_In.v;
 output SI.Voltage V_Out=P_Out.v - N_Out.v;
 input SI.Current I_In;
 // Input port current (Source side)
 output SI.Current I_Out=P_Out.i;
 // Output port curren (Load side)

 SI.Power PwIn=V_In*I_In;
 SI.Power PwOut=V_Out*I_Out;

 SI.Energy EBalance(start=0);
 equation

 der(EBalance) = PwIn + PwOut;

 I_In = if DutyCycle >= 0 then P_In.i else -P_In.i;

 // Set V_Out
 V_Out = DutyCycle*V_In;

 PwIn + PwOut = 0;

Appendix A - The EPowertrain Modelica Library

123

 //Currents balnce
 P_In.i + N_In.i = 0;
 P_Out.i + N_Out.i = 0;

 annotation (Icon(coordinateSystem(
 preserveAspectRatio=false), graphics={
 Line(points={{-100,-100},{100,100}},
 color={0,0,0},
 thickness=1),Text(
 extent={{-80,80},{0,0}},
 textColor={0,0,0},
 textString="DC-IN"),Text(
 extent={{0,0},{80,-80}},
 textColor={0,0,0},
 textString="DC-OUT"),Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,0},
 lineThickness=1)}), Diagram(
 coordinateSystem(preserveAspectRatio=false)));

 end ElectricConverter;
 end Converters;

 package Machines

 model PMSM

 constant Real pi=Constant.pi;
 Interfaces.PosPin Vin[3] annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.MechanicalAxis Rotor annotation (
 Placement(transformation(extent={{90,-10},{110,
 10}}, rotation=0)));
 parameter Integer Pp(min=1) = 2 "Poles pairs";
 parameter SI.Resistance Rs=2.98
 "Stator winding resistance";
 parameter SI.Inductance Ld=7e-3;
 parameter SI.Inductance Lq=7e-3;
 parameter SI.Inertia J=4.7e-5;
 parameter Real Bv(
 unit="N.m.s/rad",
 min=0) = 1.1e-4 " Dynamic viscosity";
 parameter SI.MagneticFlux Fmg=0.125;
 SI.Angle Th_e;
 SI.Angle Th_m;
 SI.AngularVelocity we
 "Electrical angular velocity";
 SI.AngularVelocity wm(start=0)
 "Mechanical angular velocity";
 SI.Torque Tl=Rotor.T;
 SI.Torque Te;
 SI.Current Ia=Vin[1].i;
 SI.Current Ib=Vin[2].i;
 SI.Current Ic=Vin[3].i;
 SI.Current Id "Current on direct axis";
 SI.Current Iq "Current on normal axis";
 SI.Voltage Va=smooth(1, Vin[1].v);
 SI.Voltage Vb=smooth(1, Vin[2].v);
 SI.Voltage Vc=smooth(1, Vin[3].v);
 SI.Voltage Vd;

Appendix A - The EPowertrain Modelica Library

124

 SI.Voltage Vq;
 SI.MagneticFlux Fd "Stator magnetic fluxes";
 SI.MagneticFlux Fq
 "Stator permanent magnetic fluxes";
 Real PT[2,3]=2/3*[cos(Th_e),cos(Th_e - 2*pi/3),
 cos(Th_e - 4*pi/3); -sin(Th_e),-sin(Th_e - 2*
 pi/3),-sin(Th_e - 4*pi/3)];
 equation
 [Id; Iq] = PT*[Ia; Ib; Ic];
 [Vd; Vq] = PT*[Va; Vb; Vc];
 Ia + Ib + Ic = 0;

 Fd = Ld*Id + Fmg;
 Fq = Lq*Iq;

 Vq = Rs*Iq + we*Fd + der(Fq);
 Vd = Rs*Id - we*Fq + der(Fd);

 Te = 1.5*Pp*(Fd*Iq - Fq*Id);

 Te - Tl - Bv*wm = J*der(wm);

 we = Pp*wm;

 der(Th_e) = we;
 der(Th_m) = wm;

 Rotor.Phi = Th_m;
 annotation (Icon(graphics={Ellipse(
 extent={{-80,80},{80,-80}},
 lineColor={0,0,255},
 fillColor={175,175,175},
 fillPattern=FillPattern.Solid),
 Ellipse(extent={{-70,70},{70,-70}},
 lineColor={0,0,255},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{-36,40},{-28,-40}},
 lineColor={0,0,255},
 fillColor={255,0,0},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{22,42},{30,-36}},
 lineColor={0,0,255},
 fillColor={0,0,255},
 fillPattern=FillPattern.Solid)}),
 Diagram(graphics));

 end PMSM;

 model DCMotor

 constant Real pi=Constant.pi;
 Interfaces.PosPin Vp annotation (Placement(
 transformation(extent={{-108,50},{-88,70}},
 rotation=0), iconTransformation(extent={{-108,
 50},{-88,70}})));

Appendix A - The EPowertrain Modelica Library

125

 Interfaces.MechanicalAxis Rotor annotation (
 Placement(transformation(extent={{90,-10},{110,
 10}}, rotation=0)));

 Interfaces.NegPin Vn annotation (Placement(
 transformation(extent={{-110,-70},{-90,-50}},
 rotation=0), iconTransformation(extent={{-110,
 -70},{-90,-50}})));
 Basic.Resistance R1(R=Rm) annotation (Placement(
 transformation(
 extent={{-20,-20},{20,20}},
 rotation=180,
 origin={-60,60})));
 Basic.IdealCoil L1(L=Lm) annotation (Placement(
 transformation(
 extent={{-20,-20},{20,20}},
 rotation=180,
 origin={0,60})));

 parameter Modelica.Units.SI.Resistance Rm=0.837
 "Motor electrical resistance";
 parameter Modelica.Units.SI.Inductance Lm=0.0008
 "Motor electrical inductance";

 parameter Real Ke(unit="V.s/rad") = 0.0064
 "Back emf constant";
 parameter Real Kt(unit="N.m/A") = 0.0065
 "Torque constant";
 parameter
 Modelica.Units.SI.RotationalDampingConstant bm=4.121
 *1e-6 "Visc. friction constant";
 parameter Modelica.Units.SI.Inertia J=3.87*1e-7
 "Rotor's inertia";

 Converters.BackEMF backEMF(
 Ke=Ke,
 Kt=Kt,
 bm=bm,
 J=J) annotation (Placement(transformation(
 extent={{-20,-40},{60,40}})));
 equation
 connect(backEMF.mechanicalAxis, Rotor)
 annotation (Line(
 points={{60,0},{100,0}},
 color={135,135,135},
 smooth=Smooth.Bezier,
 thickness=1));
 connect(R1.p, L1.n) annotation (Line(
 points={{-40,60},{-20,60}},
 color={0,0,255},
 thickness=0.5));
 connect(R1.n, Vp) annotation (Line(
 points={{-80,60},{-98,60}},
 color={0,0,255},
 thickness=0.5));
 connect(L1.p, backEMF.Pp) annotation (Line(
 points={{20,60},{20.8,60},{20.8,39.2}},
 color={0,0,255},

Appendix A - The EPowertrain Modelica Library

126

 thickness=0.5));
 connect(backEMF.Np, Vn) annotation (Line(
 points={{20,-40},{20,-60},{-100,-60}},
 color={0,0,255},
 thickness=0.5));
 annotation (Icon(graphics={Ellipse(
 extent={{-80,80},{80,-80}},
 lineColor={0,0,255},
 fillColor={175,175,175},
 fillPattern=FillPattern.Solid),
 Ellipse(extent={{-70,70},{70,-70}},
 lineColor={0,0,255},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{-36,40},{-28,-40}},
 lineColor={0,0,255},
 fillColor={255,0,0},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{22,42},{30,-36}},
 lineColor={0,0,255},
 fillColor={0,0,255},
 fillPattern=FillPattern.Solid)}));

 end DCMotor;

 end Machines;

 model CurrentSaturation

 input Interfaces.NegPin In annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 output Interfaces.PosPin Out annotation (Placement(
 transformation(extent={{90,-12},{110,8}},
 rotation=0)));
 parameter Real IMax=1e6;
 parameter Real IMin=-1e-6;

 SI.Current Iout=Out.i;
 SI.Current Iin=In.i;
 equation
 Iout = min(IMax, max(IMin, Iin));
 Out.v = In.v;
 annotation (Icon(graphics={Line(
 points={{-80,80},{80,80}},
 color={0,0,255}),Line(
 points={{-80,-80},{80,-80},{80,-80}},
 color={0,0,255}),Line(
 points={{-80,-80},{-74,-80},{-60,-80},
 {-20,80},{14,80},{40,-76},{40,-80},{60,-80},
 {76,-6}},
 color={0,0,0},
 thickness=0.5)}), Diagram(graphics));

 end CurrentSaturation;
 end Devices;

 end Electrical;

Appendix A - The EPowertrain Modelica Library

127

A5. Mechanical

package Mechanical
 package Basic
 model RotLoad

 Interfaces.MechanicalAxis Axis annotation (
 Placement(transformation(extent={{-10,88},{10,108}},
 rotation=0)));
 parameter SI.Inertia J=10 "Inertial load";
 parameter SI.DynamicViscosity fs=8.5e-6
 " Dynamic viscosity";
 constant Real eps=1e-3;
 SI.AngularVelocity w;
 equation
 der(Axis.Phi) = w;
 J*der(w) = -Axis.T - w*fs;
 annotation (Icon(graphics={Line(
 points={{0,88},{0,2},{0,0}},
 color={0,0,255}),Ellipse(
 extent={{-80,-20},{80,-2}},
 lineColor={0,0,255},
 fillColor={175,175,175},
 fillPattern=FillPattern.Solid),Line(
 points={{-56,-28},{42,-28},{50,-28}},
 color={0,0,0},
 thickness=0.5,
 arrow={Arrow.None,Arrow.Filled})}));

 end RotLoad;

 model RotAxis

 Interfaces.MechanicalAxis AxisA annotation (
 Placement(transformation(extent={{-110,-10},{-90,
 10}}, rotation=0)));
 Interfaces.MechanicalAxis AxisB annotation (
 Placement(transformation(extent={{88,-10},{108,10}},
 rotation=0)));
 parameter SI.Inertia J=10 "Inertial load";
 SI.AngularVelocity w;
 SI.Angle Phi;
 equation
 der(Phi) = w;
 J*der(w) = AxisA.T + AxisB.T;
 AxisA.Phi = Phi;
 AxisB.Phi = Phi;
 annotation (Icon(graphics={Rectangle(
 extent={{-92,-6},{88,6}},
 lineColor={95,95,95},
 lineThickness=0.5,
 fillColor={255,255,255},
 fillPattern=FillPattern.Backward)}),
 Diagram(graphics));

Appendix A - The EPowertrain Modelica Library

128

 end RotAxis;

 model Wheel
 constant Real pi=Constant.pi;
 Interfaces.MechanicalAxis Axis annotation (
 Placement(transformation(extent={{-10,88},{10,108}},
 rotation=0)));
 parameter SI.Inertia J=10 "Inertial load";
 parameter SI.Length R=0.3 "Radius";
 parameter Real fs(
 unit="N.m.s/rad",
 min=0) = 8.5e-6 " Dynamic viscosity";
 parameter SI.Mass M=1200 "Vehicle mass";
 constant Real eps=1e-3;
 SI.AngularVelocity w;
 SI.Velocity V(start=0);
 Interfaces.OutPort Vwheel annotation (Placement(
 transformation(
 origin={-60,100},
 extent={{-10,-10},{10,10}},
 rotation=90)));
 equation
 der(Axis.Phi) = w;

 V = 2*pi*R*w;

 if abs(V) < eps and abs(Axis.T) < eps then
 //Stacionary state
 der(w) = -1e3*w;
 else
 Axis.T + w*fs + (J + M*R^2)*der(w) = 0;

 end if;
 Vwheel = V;
 annotation (Icon(graphics={Line(
 points={{0,88},{0,2},{0,0}},
 color={0,0,255}),Ellipse(
 extent={{-70,-70},{70,70}},
 lineColor={0,0,255},
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),Line(
 points={{-50,-94},{48,-94},{56,-94}},
 color={0,0,0},
 thickness=0.5,
 arrow={Arrow.None,Arrow.Filled}),
 Ellipse(
 extent={{-60,60},{60,-60}},
 lineColor={215,215,215},
 pattern=LinePattern.None,
 fillColor={255,255,255},
 fillPattern=FillPattern.CrossDiag),
 Ellipse(
 extent={{-10,10},{10,-10}},
 lineColor={215,215,215},
 fillColor={175,175,175},
 fillPattern=FillPattern.CrossDiag)}));

 end Wheel;

 model FixedTorque

Appendix A - The EPowertrain Modelica Library

129

 Interfaces.MechanicalAxis Axis annotation (
 Placement(transformation(extent={{-10,88},{10,108}},
 rotation=0)));
 parameter SI.Torque T=10 "Torque";

 equation

 T = Axis.T annotation (Icon(graphics={Line(
 points={{0,88},{0,2},{0,0}},
 color={0,0,255}),Ellipse(
 extent={{-80,-20},{80,-2}},
 lineColor={0,0,255},
 fillColor={175,175,175},
 fillPattern=FillPattern.Backward,
 startAngle=0,
 endAngle=360),Line(
 points={{-56,-28},{42,-28},{50,-28}},
 color={0,0,0},
 thickness=0.5,
 arrow={Arrow.None,Arrow.Filled}),
 Rectangle(
 extent={{-4,88},{4,-2}},
 lineColor={0,0,255},
 lineThickness=0.5,
 fillColor={135,135,135},
 fillPattern=FillPattern.Solid)}));

 annotation (Icon(graphics={Rectangle(
 extent={{-4,88},{4,0}},
 lineColor={0,0,255},
 lineThickness=0.5,
 fillColor={135,135,135},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{-20,0},{22,-40}},
 lineColor={0,0,255},
 lineThickness=0.5,
 fillColor={135,135,135},
 fillPattern=FillPattern.CrossDiag)}));
 end FixedTorque;

 model FixedSpeed

 Interfaces.MechanicalAxis Axis annotation (
 Placement(transformation(extent={{-10,88},{10,108}},
 rotation=0)));
 parameter SI.AngularVelocity w=1 "Angular velocity";
 equation
 der(Axis.Phi) = w;

 annotation (Icon(graphics={Line(
 points={{0,88},{0,2},{0,0}},
 color={0,0,255}),Ellipse(
 extent={{-80,-20},{80,-2}},
 lineColor={0,0,255},
 fillColor={175,175,175},
 fillPattern=FillPattern.CrossDiag),
 Line(points={{-56,-28},{42,-28},{50,-28}},
 color={0,0,0},
 thickness=0.5,

Appendix A - The EPowertrain Modelica Library

130

 arrow={Arrow.None,Arrow.Filled})}));

 end FixedSpeed;

 model Gearbox

 input Interfaces.MechanicalAxis AxisA annotation (
 Placement(transformation(extent={{-112,-10},{-92,
 10}}, rotation=0), iconTransformation(
 extent={{-112,-10},{-92,10}})));
 output Interfaces.MechanicalAxis AxisB annotation (
 Placement(transformation(extent={{88,-10},{108,10}},
 rotation=0)));
 parameter Real N(min=0.01) = 1 "Conversion ratio";

 SI.Torque TIn=AxisA.T;
 SI.Torque TOut=AxisB.T;

 SI.Angle PhiIn=AxisA.Phi;
 SI.Angle PhiOut=AxisB.Phi;
 equation

 der(PhiOut) = der(N*PhiIn);
 TIn + N*TOut = 0;

 annotation (Icon(graphics={Rectangle(
 extent={{-92,-6},{88,6}},
 lineColor={95,95,95},
 lineThickness=0.5,
 fillColor={255,255,255},
 fillPattern=FillPattern.Backward)}),
 Diagram(graphics));

 end Gearbox;
 end Basic;

 model BodyFrame1DOF
 "1 degree of freedom body frame"

 Interfaces.MechanicalAxis TorqueIN annotation (
 Placement(transformation(extent={{-110,50},{-90,70}},
 rotation=0)));
 output Interfaces.OutPort V "Vehicle speed"
 annotation (Placement(transformation(extent={{90,50},
 {110,70}}, rotation=0)));
 input Interfaces.InPort Alpha "Terrain slope"
 annotation (Placement(transformation(extent={{-110,-50},
 {-90,-30}}, rotation=0)));
 constant SI.Acceleration g=Modelica.Constants.g_n;
 constant Real pi=Modelica.Constants.pi;
 parameter SI.Length R(min=0.01) = 0.25 "Wheel radius";
 parameter SI.Mass M=1500 "Vehicle mass";
 parameter SI.Area Af=2 "Vehicle front area";
 parameter Real Cd(min=0) = 0.248 "Vehicle drag coef.";
 parameter Real Cr(min=0) = 0.01
 "Tyres rolling resistance coef.";
 parameter SI.Density rho(displayUnit="kg/m3") = 1.2
 "Air density";

 SI.Force F "Powertrain provided force";

Appendix A - The EPowertrain Modelica Library

131

 SI.Force Fd "Drag force";
 SI.Force Fr "Rolling resistance";
 SI.Force Fg "Weight poryected force";
 SI.Force Fi "Inertial force";

 equation
 Fd = 0.5*Cd*Af*rho*(V^2)*sign(V);
 Fr = M*g*cos(Alpha*pi/180)*Cr;
 Fg = M*g*sin(Alpha*pi/180);
 Fi = M*der(V);

 F - Fd - Fr - Fg - Fi = 0;
 F = -TorqueIN.T/R;
 der(TorqueIN.Phi) = V/(2*pi*R);

 annotation (Icon(graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,255},
 fillColor={241,241,241},
 fillPattern=FillPattern.Solid),Text(
 extent={{-60,100},{60,-20}},
 textColor={0,0,255},
 textString="BODY"),Text(
 extent={{-60,40},{60,-80}},
 textColor={0,0,255},
 textString="1 DOF")}), Diagram(graphics));

 end BodyFrame1DOF;

 model Slope

 Interfaces.InPort H "Current Heigth" annotation (
 Placement(transformation(extent={{-110,50},{-90,70}},
 rotation=0)));
 Interfaces.OutPort Alpha "Slope" annotation (
 Placement(transformation(extent={{90,-10},{110,10}},
 rotation=0)));

 Interfaces.InPort d "Current displacement"
 annotation (Placement(transformation(extent={{-110,-50},
 {-90,-30}}, rotation=0)));

 equation
 when (time > 0) then
 Alpha = asin(der(H)/der(d));
 end when annotation (Diagram(graphics={Text(
 extent={{-60,-60},{-80,-40}},
 textColor={28,108,200},
 textString="d"),Text(
 extent={{-60,40},{-80,60}},
 textColor={28,108,200},
 textString="H")}), Icon(graphics={
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={28,108,200}),Line(
 points={{-60,-60},{60,-60}},
 color={28,108,200},
 thickness=1,
 arrow={Arrow.None,Arrow.Filled}),Line(

Appendix A - The EPowertrain Modelica Library

132

 points={{-60,-60},{60,60}},
 color={28,108,200},
 thickness=1,
 arrow={Arrow.None,Arrow.Filled}),Line(
 points={{60,60},{60,-60}},
 color={28,108,200},
 thickness=1,
 arrow={Arrow.Filled,Arrow.None}),Text(
 extent={{-14,-32},{-46,-62}},
 textColor={28,108,200},
 textString="α"),Text(
 extent={{-80,92},{-100,72}},
 textColor={28,108,200},
 textString="y"),Text(
 extent={{-80,-8},{-100,-28}},
 textColor={28,108,200},
 textString="x"),Text(
 extent={{20,-62},{0,-82}},
 textColor={28,108,200},
 textString="Δx"),Text(
 extent={{82,0},{62,-20}},
 textColor={28,108,200},
 textString="Δy")}));
 end Slope;
 end Mechanical;

A6. Control

package Control
 model PID

 Interfaces.OutPort Out annotation (Placement(
 transformation(extent={{90,8},{110,28}},
 rotation=0)));
 Interfaces.InPort In annotation (Placement(
 transformation(extent={{-110,-30},{-90,-10}},
 rotation=0)));
 Interfaces.InPort Ref annotation (Placement(
 transformation(extent={{-110,30},{-90,50}},
 rotation=0)));

 parameter Boolean LimitOut=false
 annotation (choices(checkBox=true));
 parameter Real Max=0;
 parameter Real Min=0;

 parameter Boolean DeadZone=false
 annotation (choices(checkBox=true));
 parameter Real eps(min=0) = 1e-9 "Dead zone range";

 parameter Real K=1;
 parameter Real I=0;
 parameter Real D=0;

 parameter Real Smt=1e6 "Smooth factor";

 Real AuxOut(start=0);
 Real Error(start=0);

Appendix A - The EPowertrain Modelica Library

133

 Real IntEr(start=0);

 equation
 AuxOut = K*Error + D*der(Error) + I*IntEr;
 Error = Ref - In;

 // DEADZONE
 if DeadZone == true and noEvent(abs(AuxOut) < eps)
 then
 der(Out) = -Smt*Out;
 der(IntEr) = 0;
 elseif LimitOut == true then
 //ANTIWINDUP
 if noEvent(AuxOut >= Max) then
 der(Out) = Smt*(Max - Out);
 der(IntEr) = 0;
 elseif noEvent(AuxOut <= Min) then
 der(Out) = Smt*(Min - Out);
 der(IntEr) = 0;
 else
 der(Out) = Smt*(AuxOut - Out);
 der(IntEr) = Error;
 end if;
 else
 der(Out) = Smt*(AuxOut - Out);
 der(IntEr) = Error;
 end if;

 annotation (Icon(graphics={Text(
 extent={{80,-40},{-80,60}},
 textColor={0,0,255},
 textString="PID"), Rectangle(extent={{-100,80},
 {100,-60}}, lineColor={0,0,255})}),
 DymolaStoredErrors);

 end PID;

 model PI

 Interfaces.OutPort Out annotation (Placement(
 transformation(extent={{90,8},{110,28}},
 rotation=0)));
 Interfaces.InPort In annotation (Placement(
 transformation(extent={{-110,-30},{-90,-10}},
 rotation=0)));
 Interfaces.InPort Ref annotation (Placement(
 transformation(extent={{-110,30},{-90,50}},
 rotation=0)));
 parameter Real K=1;
 parameter Real I=0;
 Real Error;
 Real IntEr(start=0);

 initial equation
 IntEr = 0;

Appendix A - The EPowertrain Modelica Library

134

 equation
 Out = K*Error + I*IntEr;
 Error = Ref - In;
 der(IntEr) = Error;

 annotation (Icon(graphics={Text(
 extent={{80,-40},{-80,60}},
 textColor={0,0,255},
 textString="PI"), Rectangle(extent={{-100,80},
 {100,-60}}, lineColor={0,0,255})}),
 DymolaStoredErrors);

 end PI;

 end Control;

A7. Sensors

package Sensors
 model Vsensor

 EPowertrain.Interfaces.PosPin p annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 EPowertrain.Interfaces.PosPin n annotation (Placement(
 transformation(extent={{90,-10},{110,10}},
 rotation=0)));

 Modelica.Units.SI.Voltage v;
 Interfaces.OutPort outPort annotation (Placement(
 transformation(
 origin={0,100},
 extent={{-10,-10},{10,10}},
 rotation=90)));
 equation
 p.i = 0;
 n.i = 0;
 v = p.v - n.v;
 outPort = v;
 annotation (Diagram(graphics), Icon(graphics={
 Rectangle(
 extent={{-74,6},{-34,-6}},
 lineColor={0,0,0},
 lineThickness=1,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{-60,20},{-48,-20}},
 lineColor={0,0,0},
 lineThickness=1,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),
 Rectangle(
 extent={{68,20},{54,-20}},
 lineColor={0,0,0},
 lineThickness=1,
 fillColor={0,0,0},
 fillPattern=FillPattern.Solid),
 Ellipse(extent={{-80,80},{80,-80}}, lineColor={0,

Appendix A - The EPowertrain Modelica Library

135

 0,0})}));
 end Vsensor;

 model AxialSpeed

 Interfaces.MechanicalAxis Axis_In annotation (
 Placement(transformation(extent={{-10,90},{10,110}},
 rotation=0)));
 Interfaces.MechanicalAxis Axis_Out annotation (
 Placement(transformation(extent={{-10,-110},{10,-90}},
 rotation=0)));
 Interfaces.OutPort Wm annotation (Placement(
 transformation(extent={{90,70},{110,90}},
 rotation=0)));
 Interfaces.OutPort Th_m annotation (Placement(
 transformation(extent={{90,-50},{110,-30}},
 rotation=0)));
 Interfaces.OutPort We annotation (Placement(
 transformation(extent={{90,32},{110,52}},
 rotation=0)));
 Interfaces.OutPort Th_e annotation (Placement(
 transformation(extent={{90,-90},{110,-70}},
 rotation=0)));
 parameter Integer N(min=1) "Pole pairs";
 constant Real pi=Constant.pi;

 equation

 Th_e = N*Axis_In.Phi;
 Th_m = Axis_In.Phi;

 when (Th_e >= 2*pi) then
 reinit(Th_e, 0);
 end when;

 Wm = der(Th_e);
 We = der(Th_m);
 connect(Axis_In, Axis_Out) annotation (Line(points={{0,
 100},{0,-100}}, color={0,0,255}));
 annotation (
 Icon(graphics={
 Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={0,0,255},
 fillColor={255,255,255},
 fillPattern=FillPattern.Solid),
 Text(
 extent={{20,110},{80,50}},
 textColor={0,0,255},
 textString="Wm"),
 Text(
 extent={{20,-10},{80,-70}},
 textColor={0,0,255},
 textString="Th_m"),
 Text(
 extent={{22,72},{82,12}},
 textColor={0,0,255},
 textString="We"),

Appendix A - The EPowertrain Modelica Library

136

 Text(
 extent={{22,-48},{82,-108}},
 textColor={0,0,255},
 textString="Th_e"),
 Rectangle(extent={{-92,100},{-98,100}},
 lineColor={28,108,200})}),
 Diagram(graphics),
 DymolaStoredErrors);

 end AxialSpeed;

 model CurrentSensor

 Interfaces.PosPin P annotation (Placement(
 transformation(extent={{-110,-10},{-90,10}},
 rotation=0)));
 Interfaces.NegPin N annotation (Placement(
 transformation(extent={{90,-12},{110,8}},
 rotation=0)));
 Interfaces.OutPort Imeas annotation (Placement(
 transformation(extent={{-10,88},{10,108}},
 rotation=0)));

 equation
 P.v = N.v;
 N.i = Imeas;
 P.i + N.i = 0;
 annotation (
 Icon(graphics={
 Ellipse(
 extent={{-60,60},{60,-62}},
 lineColor={0,0,0},
 lineThickness=0.5),
 Text(
 extent={{-40,40},{40,-40}},
 textColor={0,0,0},
 textString="A"),
 Line(
 points={{-90,0},{-60,0}},
 color={0,0,0},
 thickness=0.5),
 Line(
 points={{60,0},{90,0}},
 color={0,0,0},
 thickness=0.5),
 Line(
 points={{0,86},{0,60}},
 color={0,0,0},
 pattern=LinePattern.Dash,
 thickness=0.5)}),
 DymolaStoredErrors,
 Diagram(graphics));

 end CurrentSensor;

 model Encoder

 Interfaces.MechanicalAxis Axis_In annotation (
 Placement(transformation(extent={{-10,90},{10,110}},

Appendix A - The EPowertrain Modelica Library

137

 rotation=0)));
 Interfaces.MechanicalAxis Axis_Out annotation (
 Placement(transformation(extent={{-10,-110},{10,-90}},
 rotation=0)));
 Interfaces.OutPort Th_m annotation (Placement(
 transformation(extent={{90,40},{110,60}},
 rotation=0)));
 Interfaces.OutPort Th_e annotation (Placement(
 transformation(extent={{90,-60},{110,-40}},
 rotation=0)));
 parameter Integer N(min=1) "Pole pairs";
 constant Real pi=Constant.pi;

 Real Th_e_raw;
 Real Th_m_raw;

 Real Th_e_event(start=0);
 Real Th_m_event(start=0);

 equation

 Th_m_raw = Axis_In.Phi;
 Th_e_raw = N*Axis_In.Phi;

 Th_m_event = Th_m_raw;
 Th_e_event = Th_e_raw;

 Th_e = smooth(1, Th_e_event);
 Th_m = smooth(1, Th_m_event);

 connect(Axis_In, Axis_Out) annotation (Line(points={{0,
 100},{0,-100}}, color={0,0,255}));
 annotation (
 Icon(graphics={
 Rectangle(extent={{-100,100},{100,-100}},
 lineColor={0,0,255}),
 Text(
 extent={{-80,100},{20,0}},
 textColor={0,0,255},
 textString="Th_m"),
 Text(
 extent={{-80,0},{20,-100}},
 textColor={0,0,255},
 textString="Th_e")}),
 Diagram(graphics={Rectangle(
 extent={{-100,100},{100,-100}},
 lineColor={28,108,200})}),
 DymolaStoredErrors);

 end Encoder;
 end Sensors;

A8. Examples

package Examples

Appendix A - The EPowertrain Modelica Library

138

 model UDDS_Cycle
 "Example experiment under UDDS drive cycle"
 Electrical.Devices.Converters.ElectricConverter
 electricConverter annotation (Placement(
 transformation(extent={{194,-24},{214,-4}})));
 Mechanical.BodyFrame1DOF bodyFrame1DOF(
 M=1500,
 Af=2.2,
 Cd=0.29,
 Cr=0.009,
 rho=1.2) annotation (Placement(transformation(
 extent={{326,-84},{346,-64}})));
 Electrical.Sources.Ground ground2 annotation (
 Placement(transformation(extent={{234,-74},{254,-54}})));
 Electrical.Sources.Ground ground1 annotation (
 Placement(transformation(extent={{128,-60},{148,-40}})));
 Control.PID pID(
 LimitOut=false,
 Max=1,
 Min=-1,
 K=20,
 I=0.1) annotation (Placement(transformation(extent={
 {132,4},{152,24}})));
 Sources.UDDS uDDS annotation (Placement(
 transformation(extent={{2,22},{22,42}})));
 Modelica.Blocks.Math.Gain mph_to_ms(k=0.44704)
 annotation (Placement(transformation(extent={{62,22},
 {82,42}})));
 Sources.Constant Constant(Value=0) annotation (
 Placement(transformation(extent={{268,-90},{288,-70}})));
 Electrical.Sources.Battery battery(
 Cap=30,
 Vd=300,
 Vf=420,
 InitSOC=0.8) annotation (Placement(transformation(
 extent={{108,-34},{128,-14}})));
 Electrical.Devices.Machines.DCMotor dCMotor_2_1(
 Rm=0.025,
 Lm=1e-3,
 Ke=1.4,
 Kt=1.4) annotation (Placement(transformation(
 extent={{-10,-10},{10,10}},
 rotation=0,
 origin={306,-16})));
 equation
 connect(ground2.p, electricConverter.N_Out)
 annotation (Line(points={{244,-54},{244,-36},{222,-36},
 {222,-20},{214,-20}}, color={0,0,255}));
 connect(pID.Out, electricConverter.DutyCycle)
 annotation (Line(points={{152,15.8},{204,15.8},{204,
 -4}}, color={0,0,0}));
 connect(uDDS.y, mph_to_ms.u) annotation (Line(points={
 {23,32},{60,32}}, color={0,0,127}));
 connect(mph_to_ms.y, pID.Ref) annotation (Line(points
 ={{83,32},{114,32},{114,18},{132,18}}, color={0,
 0,127}));
 connect(bodyFrame1DOF.V, pID.In) annotation (Line(
 points={{346,-68},{360,-68},{360,-66},{374,-66},
 {374,-98},{48,-98},{48,12},{132,12}}, color={0,
 0,0}));

Appendix A - The EPowertrain Modelica Library

139

 connect(Constant.Out, bodyFrame1DOF.Alpha)
 annotation (Line(points={{288,-79.8},{320,-79.8},{320,
 -78},{326,-78}}, color={0,0,0}));
 connect(battery.posPin, electricConverter.P_In)
 annotation (Line(points={{118,-14},{118,-8},{194,-8}},
 color={0,0,255}));
 connect(battery.negPin, ground1.p) annotation (Line(
 points={{118,-34},{118,-68},{154,-68},{154,-34},
 {138,-34},{138,-40}}, color={0,0,255}));
 connect(battery.negPin, electricConverter.N_In)
 annotation (Line(points={{118,-34},{118,-68},{154,-68},
 {154,-20},{194,-20}}, color={0,0,255}));
 connect(electricConverter.P_Out, dCMotor_2_1.Vp)
 annotation (Line(points={{214,-8},{290,-8},{290,-10},
 {296.2,-10}}, color={0,0,255}));
 connect(electricConverter.N_Out, dCMotor_2_1.Vn)
 annotation (Line(points={{214,-20},{222,-20},{222,-36},
 {290,-36},{290,-22},{296,-22}}, color={0,0,255}));
 connect(dCMotor_2_1.Rotor, bodyFrame1DOF.TorqueIN)
 annotation (Line(points={{316,-16},{316,-68},{326,-68}},
 color={0,0,255}));
 annotation (
 experiment(
 StopTime=1400,
 __Dymola_NumberOfIntervals=50000,
 Tolerance=0.01,
 __Dymola_Algorithm="Dassl"),
 Diagram(coordinateSystem(extent={{-100,-200},{580,100}})),
 Icon(coordinateSystem(extent={{-100,-200},{580,100}})));
 end UDDS_Cycle;

 model Trip "Example experiment"
 Electrical.Devices.Converters.ElectricConverter
 electricConverter annotation (Placement(
 transformation(extent={{196,-24},{216,-4}})));
 Mechanical.BodyFrame1DOF bodyFrame1DOF(
 R=0.29,
 M=1280,
 Af=2.38,
 Cd=0.29,
 Cr=0.0084,
 rho=1.225) annotation (Placement(transformation(
 extent={{324,-30},{344,-10}})));
 Electrical.Sources.Ground ground2 annotation (
 Placement(transformation(extent={{222,-60},{242,-40}})));
 Electrical.Sources.Ground ground1 annotation (
 Placement(transformation(extent={{114,-66},{134,-46}})));
 Control.PID Driver(
 LimitOut=true,
 Max=1,
 Min=-0.5,
 K=0.5,
 I=0.005,
 D=0.1,
 Out(start=1)) annotation (Placement(transformation(
 extent={{132,4},{152,24}})));
 Modelica.Blocks.Sources.CombiTimeTable Cycle(table=
 fill(0.0, 0, 2)) annotation (Placement(
 transformation(extent={{-60,8},{-40,28}})));
 Electrical.Sources.Battery battery(
 Cap=60,

Appendix A - The EPowertrain Modelica Library

140

 Vd=335,
 Vf=360,
 InitSOC=0.869,
 Rs=0.06,
 Imax=400) annotation (Placement(transformation(
 extent={{114,-32},{134,-12}})));
 Modelica.Blocks.Math.Gain kph2ms(k=1/3.6) annotation
 (Placement(transformation(extent={{20,8},{40,28}})));
 SignalRouting.Terminator DataSOC annotation (
 Placement(transformation(extent={{20,-20},{40,0}})));
 Mechanical.Slope slope annotation (Placement(
 transformation(extent={{254,-106},{274,-86}})));
 Modelica.Blocks.Continuous.Integrator integrator
 annotation (Placement(transformation(
 extent={{-10,-10},{10,10}},
 rotation=180,
 origin={338,-124})));
 SignalRouting.Terminator DataIbatt annotation (
 Placement(transformation(extent={{20,-40},{40,-20}})));
 SignalRouting.Terminator DataTorque annotation (
 Placement(transformation(extent={{20,-60},{40,-40}})));
 Mechanical.Basic.Gearbox gearbox1(N=1/6) annotation (
 Placement(transformation(extent={{288,-24},{308,-4}})));
 Electrical.Basic.Resistance RLoad(R=80.4765)
 annotation (Placement(transformation(
 extent={{-9,-10},{9,10}},
 rotation=90,
 origin={185,-44})));
 Electrical.Devices.Machines.DCMotor dCMotor(
 Rm=1.72,
 Lm=106.26e-6,
 Ke=0.7144,
 Kt=0.72,
 bm=5e-4,
 J=31e-3) annotation (Placement(transformation(
 extent={{-10,-10},{10,10}},
 rotation=0,
 origin={260,-14})));
 equation
 connect(dCMotor.Vp, electricConverter.P_Out)
 annotation (Line(points={{250.2,-8},{216,-8}},
 color={0,0,255}));
 connect(ground2.p, electricConverter.N_Out)
 annotation (Line(points={{232,-40},{232,-20},{216,-20}},
 color={0,0,255}));
 connect(Driver.Out, electricConverter.DutyCycle)
 annotation (Line(points={{152,15.8},{206,15.8},{206,
 -4}}, color={0,0,0}));
 connect(dCMotor.Vn, electricConverter.N_Out)
 annotation (Line(points={{250,-20},{216,-20}},
 color={0,0,255}));
 connect(bodyFrame1DOF.V, Driver.In) annotation (Line(
 points={{344,-14},{358,-14},{358,-68},{102,-68},
 {102,12},{132,12}}, color={0,0,0}));
 connect(battery.posPin, electricConverter.P_In)
 annotation (Line(points={{124,-12},{124,-8},{196,-8}},
 color={0,0,255}));
 connect(battery.negPin, ground1.p) annotation (Line(
 points={{124,-32},{124,-46}}, color={0,0,255}));
 connect(battery.negPin, electricConverter.N_In)
 annotation (Line(points={{124,-32},{124,-36},{154,-36},

Appendix A - The EPowertrain Modelica Library

141

 {154,-20},{196,-20}}, color={0,0,255}));
 connect(kph2ms.y, Driver.Ref) annotation (Line(points
 ={{41,18},{132,18}}, color={0,0,127}));
 connect(Cycle.y[1], kph2ms.u) annotation (Line(points
 ={{-39,18},{18,18}}, color={0,0,127}));
 connect(DataSOC.inPort, Cycle.y[7]) annotation (Line(
 points={{19.8,-10},{-32,-10},{-32,18},{-39,18}},
 color={0,0,0}));
 connect(slope.Alpha, bodyFrame1DOF.Alpha) annotation
 (Line(points={{274,-96},{310,-96},{310,-24},{324,-24}},
 color={0,0,0}));
 connect(Cycle.y[2], slope.H) annotation (Line(points={
 {-39,18},{-32,18},{-32,-90},{254,-90}}, color
 ={0,0,127}));
 connect(integrator.y, slope.d) annotation (Line(
 points={{327,-124},{248,-124},{248,-100},{254,-100}},
 color={0,0,127}));
 connect(integrator.u, bodyFrame1DOF.V) annotation (
 Line(points={{350,-124},{358,-124},{358,-14},{344,
 -14}}, color={0,0,127}));
 connect(DataIbatt.inPort, Cycle.y[6]) annotation (
 Line(points={{19.8,-30},{-32,-30},{-32,18},{-39,18}},
 color={0,0,0}));
 connect(DataTorque.inPort, Cycle.y[4]) annotation (
 Line(points={{19.8,-50},{-32,-50},{-32,18},{-39,18}},
 color={0,0,0}));
 connect(dCMotor.Rotor, gearbox1.AxisA) annotation (
 Line(points={{270,-14},{287.8,-14}}, color={0,0,255}));
 connect(gearbox1.AxisB, bodyFrame1DOF.TorqueIN)
 annotation (Line(points={{307.8,-14},{324,-14}},
 color={0,0,255}));
 connect(RLoad.n, electricConverter.P_In) annotation (
 Line(points={{185,-35},{185,-8},{196,-8}}, color={
 0,0,255}));
 connect(RLoad.p, electricConverter.N_In) annotation (
 Line(points={{185,-53},{154,-53},{154,-36},{152,-36},
 {152,-20},{196,-20}}, color={0,0,255}));
 annotation (
 experiment(
 StopTime=1000,
 Tolerance=1e-05,
 __Dymola_Algorithm="Dassl"),
 Diagram(coordinateSystem(extent={{-100,-200},{580,100}}),
 graphics={Text(
 extent={{-94,30},{-60,8}},
 textColor={28,108,200},
 horizontalAlignment=TextAlignment.Left,
 textString="output:
1 Vel[kph]
2 Elevation[m]
3 Throtle [-]
4 Torque [Nm]
5 V batt [V]
6 I batt [A]
7 SoC [%]"),Text(extent={{364,-26},{370,-34}},
 textColor={28,108,200},
 textString="V"),Text(
 extent={{262,-128},{304,-136}},
 textColor={28,108,200},
 textString="Displacement"),Text(
 extent={{276,-80},{308,-90}},

Appendix A - The EPowertrain Modelica Library

142

 textColor={28,108,200},
 textString="Slope"),Text(
 extent={{70,30},{82,20}},
 textColor={28,108,200},
 textString="Vref"),Text(
 extent={{42,-8},{54,-18}},
 textColor={28,108,200},
 textString="SoC"),Text(
 extent={{42,-26},{54,-36}},
 textColor={28,108,200},
 textString="Ibatt"),Text(
 extent={{40,-46},{60,-58}},
 textColor={28,108,200},
 textString="Torque"),Text(
 extent={{176,-78},{218,-86}},
 textColor={28,108,200},
 textString="Height")}),
 Icon(coordinateSystem(extent={{-100,-200},{580,100}})));
 end Trip;

 model DCMotor
 Electrical.Devices.Machines.DCMotor Moments(
 Rm=30.9,
 Lm=0.803,
 Ke=1.323,
 Kt=1.323,
 bm=0.0005,
 J=0.0031) annotation (Placement(transformation(
 extent={{30,2},{50,22}})));
 Electrical.Sources.VStep vStep(
 St=0.5,
 v0=60,
 vf=248) annotation (Placement(transformation(
 extent={{-9,-10},{9,10}},
 rotation=270,
 origin={-75,30})));
 Electrical.Sources.Ground ground annotation (
 Placement(transformation(extent={{-64,-24},{-44,-4}})));
 Electrical.Devices.Machines.DCMotor Pasek(
 Rm=30.9,
 Lm=0.438,
 Ke=1.323,
 Kt=1.323,
 bm=0.0005,
 J=0.0036) annotation (Placement(transformation(
 extent={{-22,66},{-2,86}})));
 equation
 connect(vStep.n, Moments.Vn) annotation (Line(points={
 {-75,21},{-76,21},{-76,4},{-72,4},{-72,6},{30,
 6}}, color={0,0,255}));
 connect(vStep.p, Moments.Vp) annotation (Line(points={
 {-75,39},{-76,39},{-76,48},{6,48},{6,18},{30.2,
 18}}, color={0,0,255}));
 connect(ground.p, Moments.Vn) annotation (Line(points
 ={{-54,-4},{-54,6},{30,6}}, color={0,0,255}));
 connect(Pasek.Vp, vStep.p) annotation (Line(points={{-21.8,
 82},{-75,82},{-75,39}}, color={0,0,255}));
 connect(Pasek.Vn, vStep.n) annotation (Line(points={{-22,
 70},{-26,70},{-26,6},{-72,6},{-72,4},{-76,4},{
 -76,21},{-75,21}}, color={0,0,255}));
 annotation (

Appendix A - The EPowertrain Modelica Library

143

 Icon(coordinateSystem(preserveAspectRatio=false)),
 Diagram(coordinateSystem(preserveAspectRatio=false)),
 experiment(__Dymola_Algorithm="Dassl"));
 end DCMotor;

 end Examples

144

Appendix B – EPowertrain Library

Documentation

Appendix B – EPowertrain Library Documentation

145

Appendix B – EPowertrain Library Documentation

146

Appendix B – EPowertrain Library Documentation

147

Appendix B – EPowertrain Library Documentation

148

Appendix B – EPowertrain Library Documentation

149

Appendix B – EPowertrain Library Documentation

150

Appendix B – EPowertrain Library Documentation

151

Appendix B – EPowertrain Library Documentation

152

Appendix B – EPowertrain Library Documentation

153

Appendix B – EPowertrain Library Documentation

154

Appendix B – EPowertrain Library Documentation

155

Appendix B – EPowertrain Library Documentation

156

Appendix B – EPowertrain Library Documentation

157

Appendix B – EPowertrain Library Documentation

158

Appendix B – EPowertrain Library Documentation

159

Appendix B – EPowertrain Library Documentation

160

Appendix B – EPowertrain Library Documentation

161

Appendix B – EPowertrain Library Documentation

162

Appendix B – EPowertrain Library Documentation

163

Appendix B – EPowertrain Library Documentation

164

Appendix B – EPowertrain Library Documentation

165

Appendix B – EPowertrain Library Documentation

166

Appendix B – EPowertrain Library Documentation

167

Appendix B – EPowertrain Library Documentation

168

Appendix B – EPowertrain Library Documentation

169

Appendix B – EPowertrain Library Documentation

170

Appendix B – EPowertrain Library Documentation

171

Appendix B – EPowertrain Library Documentation

172

Appendix B – EPowertrain Library Documentation

173

Appendix B – EPowertrain Library Documentation

174

Appendix B – EPowertrain Library Documentation

175

Appendix B – EPowertrain Library Documentation

176

Appendix B – EPowertrain Library Documentation

177

Appendix B – EPowertrain Library Documentation

178

Appendix B – EPowertrain Library Documentation

179

Appendix B – EPowertrain Library Documentation

180

Appendix B – EPowertrain Library Documentation

181

Appendix B – EPowertrain Library Documentation

182

Appendix B – EPowertrain Library Documentation

183

Appendix B – EPowertrain Library Documentation

184

Appendix B – EPowertrain Library Documentation

185

