
Universidad Nacional de
Educación a Distancia

Escuela Superior de
Ingeniería Informática

Universidad
Complutense de Madrid

Facultad de
Informática

Modeling and evaluation of a
battery balancing library in

Modelica

Iván Arenas Kelbelova
Director: Alfonso Urquía Moraleda
Co-director: José Manuel Díaz Martínez

Trabajo de Fin de Master
Máster Universitario en Ingeniería de Sistemas y Control

Curso 2024/2025, convocatoria ordinaria

Universidad Nacional de Educación a Distancia (UNED)

MÁSTER EN INGENIERÍA DE SISTEMAS Y CONTROL

Modeling and evaluation of a battery balancing library in Modelica.

Autor: Iván Arenas Kelbelova
Director: Alfonso Urquía Moraleda
Co-Director: José Manuel Díaz Martínez

Proyecto de tipo B: Proyecto específico propuesto por el alumno

Autorización

Autorizamos a la Universidad Complutense y a la UNED a difundir y utilizar con fines

académicos, no comerciales y mencionando expresamente a sus autores, tanto la

memoria de este Trabajo Fin de Máster, como el código, la documentación y/o el

prototipo desarrollado.

Firmado: Iván Arenas Kelbelova

 Firma del alumno

Abstract

The increased availability of second-life lithium-ion cells has created new opportunities for
cost-effective stationary energy storage. However, these applications require careful manage-
ment of cell-to-cell variations and aging effects, particularly in balancing and control systems.
This thesis introduces a Modelica-based simulation library, named Battery_Balancing
Library, designed to support the development, integration, and evaluation of battery man-
agement system (BMS) functionalities tailored to second-life scenarios.

The library enables modular implementation of aging cell models, simplified charging/dis-
charging logic, and configurable balancing strategies. Its architecture prioritizes reusability,
transparency, and ease of extension, making it suitable for both academic research and
early-stage control prototyping. A four-cell case study is used to demonstrate the frame-
work’s capabilities, where active and passive balancing modules are applied under realistic
degradation profiles and operational constraints.

The results confirm that the library can reproduce key behaviors associated with balanc-
ing under second-life conditions and serve as a reliable platform for algorithm validation.

Keywords: Second-life batteries, Battery simulation, Modelica, BMS development, Cell
balancing, Aging models

vii

Resumen

La creciente disponibilidad de celdas de ion-litio de segunda vida ha abierto nuevas opor-
tunidades para soluciones de almacenamiento estacionario de energía más rentables. No obs-
tante, estas aplicaciones requieren una gestión cuidadosa de las variaciones entre celdas y de
los efectos del envejecimiento, especialmente en lo que respecta a los sistemas de equilibrado
y control. Esta tesis presenta una biblioteca de simulación basada en Modelica, denominada
Battery_Balancing Library, diseñada para facilitar el desarrollo, integración y evaluación
de funcionalidades del sistema de gestión de baterías (BMS) adaptadas a escenarios de se-
gunda vida.

La biblioteca permite implementar de forma modular modelos de celdas envejecidas,
lógicas simplificadas de carga/descarga y estrategias de equilibrado configurables. Su arqui-
tectura está orientada a la reutilización, la transparencia y la facilidad de extensión, lo que la
hace adecuada tanto para la investigación académica como para la prototipación temprana
de algoritmos de control. Se utiliza un estudio de caso con cuatro celdas para demostrar
la capacidad del entorno, aplicando módulos de equilibrado pasivo y activo bajo perfiles de
degradación realistas y restricciones operativas.

Los resultados confirman que la biblioteca puede reproducir los comportamientos clave
asociados al equilibrado en condiciones de segunda vida y servir como una plataforma fiable
para la validación de algoritmos.

Palabras clave: Baterías de segunda vida, Simulación de baterías, Modelica, Desarrollo de
BMS, Equilibrado de celdas, Modelos de envejecimiento

ix

Acknowledgments

To mom and dad.

Glossary

BMS Battery Management System; the electronic system that manages battery safety,
performance, and balancing.

C-Rate Charge/discharge rate relative to a battery’s nominal capacity; for example, 1C
means charging or discharging in one hour.

C1 Capacitance in ECMs; paired with R1 to form an RC branch representing transient
response.

CC Constant Current; a charging/discharging mode where the current is held constant.

CCCV Constant Current–Constant Voltage; a common charging strategy that applies a
fixed current until a voltage limit is reached, followed by a constant voltage phase.

CtCVs Cell-to-Cell Variations; differences in capacity, resistance, or performance charac-
teristics among individual cells in a pack.

CV Constant Voltage; a charging mode where the voltage is held constant while current
decreases.

DC Direct Current; the unidirectional flow of electric charge used in battery systems.

ECM Equivalent Circuit Model; a simplified electrical representation of a battery used for
modeling and simulation.

EoC End of Charge; the point at which the battery voltage reaches its maximum allowable
value or the current drops below a cutoff threshold.

EoD End of Discharge; the point at which the battery voltage reaches its minimum allowable
value.

EVs Electric Vehicles; vehicles powered by electric motors using energy stored in batteries.

LFP Lithium Iron Phosphate; a lithium-ion battery chemistry known for thermal stability
and long cycle life.

xiii

NMC Nickel Manganese Cobalt; a common lithium-ion battery chemistry with high energy
density.

OCV Open Circuit Voltage; the voltage of a battery cell when it is at rest and no current
is flowing.

R0 Ohmic resistance in ECMs; models the instantaneous voltage drop due to internal re-
sistance.

R1 Polarization resistance in ECMs; part of the RC network modeling the dynamic behavior
of the battery.

SEI Solid Electrolyte Interphase; a passivation layer that forms on the anode during battery
operation, crucial for performance and safety.

SL Second-Life; refers to battery applications after their first use cycle, typically involving
repurposing EV batteries.

SOC State of Charge; represents the current charge level of a battery relative to its maxi-
mum capacity.

SoH State of Health; indicates the overall condition of a battery, typically as a percentage
of its original capacity or performance.

SoP State of Power; represents the ability of a battery to deliver power under given oper-
ating conditions.

Contents

Abstract vii

Resumen ix

Glossary xiii

Table of Contents xiv

List of Figures xix

List of Tables xxi

1. Introduction, Goals and Structure 1
1.1. Motivation . 1
1.2. Proposition and Goals . 2
1.3. Document Structure . 3

2. Literature Review 5
2.1. Introduction . 5
2.2. Modelica . 5
2.3. Batteries . 6

2.3.1. Lithium-Ion Batteries . 6
2.3.2. Cell behavior . 8
2.3.3. Functions of a BMS . 10
2.3.4. Second-life Applications . 13
2.3.5. Aging . 15

2.4. Modeling of Lithium-Ion Batteries . 16
2.4.1. ECM Components . 17
2.4.2. Typical ECM Structure . 18
2.4.3. Aging in ECM Models . 19
2.4.4. Unbalance in ECMs . 20
2.4.5. Parameter Identification . 20

xv

2.5. Battery Balancing . 21
2.5.1. Balancing Methodologies . 22
2.5.2. Balancing Topologies . 24
2.5.3. Control Strategies . 26

2.6. Conclusion . 26

3. Modeling Hypotheses 29
3.1. Introduction . 29
3.2. ECM Modeling . 29

3.2.1. Open Circuit Voltage . 29
3.2.2. Parameter Loader . 30
3.2.3. ECM Structure . 31
3.2.4. Cell packs structure . 32

3.3. Balancing Modeling . 33
3.3.1. Shunt Resistor Modeling . 33
3.3.2. Switched Resistor Modeling . 33
3.3.3. Single Capacitor Modeling . 34
3.3.4. Single Inductor Modeling . 35
3.3.5. CC Charging model . 35
3.3.6. Control Unit model . 36

3.4. Conclusion . 40

4. Implementation Details 43
4.1. Introduction . 43
4.2. Parametrization of ECM . 43

4.2.1. Base Parameters . 43
4.2.2. Aging and Unbalance . 45

4.3. Balancing Module Parameters . 46
4.4. Charge/Load module . 50
4.5. Balancing Algorithm . 50
4.6. Conclusion . 52

5. Battery_Balancing Library Architecture 53
5.1. Introduction . 53
5.2. Package Interfaces . 54
5.3. Package Components . 55
5.4. Package Functions . 56
5.5. Package ECM_structures . 57
5.6. Package Cell_Packs . 57
5.7. Package Balancing_Structures . 58

5.8. Package Control_Structures . 58
5.9. Package Examples . 59
5.10. Conclusion . 60

6. Model Validation and Results 61
6.1. Introduction . 61
6.2. Single Cell Validation . 61
6.3. Cell Pack Derated Validation . 63
6.4. Passive Balancing Methods . 63
6.5. Active Balancing Methods . 65
6.6. Conclusions . 68

7. Conclusions 69
7.1. Conclusions . 69
7.2. Future Work . 70

Bibliography 72

A. Battery_Balancing Library Code 77
A.1. Code Package Interfaces . 77
A.2. Code Package Components . 80
A.3. Code Package Functions . 83
A.4. Code Package ECM_Structures . 86
A.5. Code Package Cell_Packs . 90
A.6. Code Package Balancing_Structures . 96
A.7. Code Package Control_Structures . 102
A.8. Code Package Examples . 114

B. User Documentation of Battery_Balancing Library 123

List of Figures

2.1. Energy density vs Power density for different types of battery technologies.
Image inspired by (Olabi et al., 2023). 6

2.2. OCV depending on SOC of the cell for three different Li-Ion technologies.
Image inspired by (Plett, 2015). 8

2.3. Charge curves for two different charge rates, for a cell of NiMH. Image inspired
by (Pistoia, 2005) . 9

2.4. Discharge curves for two different discharge rates, for a cell of NiMH. Image
inspired by (Pistoia, 2005). 9

2.5. Discharge pulse test on Li-Ion cell - Discharge period 15 minutes. Image
inspired by (Plett, 2015). 9

2.6. Basic BMS logic schematics, showing basic inputs and outputs as well as
interactions between internal function blocks. Image inspired by (Liu et al.,
2022). 11

2.7. Typical lifecycle representation of a lithium-ion battery showing the transition
from first-life to second-life based on SoH degradation. Image inspired by
(Pérez et al., 2024). 14

2.8. ECM with one RC branch. 18
2.9. ECM with two RC branches. 18
2.10. Classification of most common balancing topologies. Image inspired by (Ashraf

et al., 2024). 23
2.11. Schematic of shunt resistor balancing method. 24
2.12. Schematic of switched resistor balancing method. 24
2.13. Schematic of single capacitor balancing method. 25

3.1. Graphic view of the internal structure of a single Thevenin ECM 32
3.2. Graphic view of the diagram of model Battery4Cell_Bal. 33
3.3. Graphic view of the diagram of the shunt resistor balancing module. 34
3.4. Graphic view of the diagram of the single capacitor balancing module. 34
3.5. Graphic view of the diagram of single capacitor balancing example. 36

4.1. Voltage response under pulse discharge test. 44
4.2. OCV and ECM parameters as functions of SOC. 45

xix

5.1. Diagram of library architecture, including packages and classes. 54

6.1. Voltage evolution of one cell under charge/discharge cycle. 62
6.2. SOC-OCV curve obtained from MATLAB reference data. 62
6.3. SOC-OCV response from Modelica single cell simulation. 62
6.4. Voltage profiles of four derated cells during charge/discharge cycle. 63
6.5. Voltage profiles of four-cell charge/discharge cycle with Shunt (Left) and

Switched (Right) balancing. 64
6.6. Balancing currents and voltage profiles under full charge with Shunt (Left)

and Switched (Right) balancing. 64
6.7. Voltage profile of the balancing capacitor during a transfer cycle. 65
6.8. Voltage (Left) and current profile (Right) of the balancing capacitor. 66
6.9. Voltage (Left) and current profile (Right) of the balancing inductor. 66
6.10. Switch patterns and physical behavior. 67

List of Tables

2.1. Summary of identification procedure for ECM parameters using time-domain
analysis of pulse tests. 21

4.1. ECM derating parameters . 45
4.2. Unbalance parameters applied to each cell 46
4.3. Balancing Topologies and Assigned Parameters. 49

xxi

Chapter 1

Introduction, Goals and Structure

This document serves as the research report for the project Balancing topologies for
a Second-Life battery cell pack. The study begins with a comprehensive literature
review on LiIon batteries, aging, second-life battery applications, challenges, and existing
balancing methodologies. Following this, a battery cell model is developed in Modelica, and
base parameters and parameters after the effect of aging are derived. Two passive and two
active balancing modules are implemented. These balancing models are tested under a given
4-cell aged cell pack. The final step involves validating the simulation results by running
and analyzing the models designed, ensuring consistency between circuit simulation and the
physical behavior expected.

1.1. Motivation

Energy has been a driving force behind societal progress, shaping the way civilizations
grow and operate. Historically, the focus has been on increasing energy production while
optimizing its distribution and consumption. With the rise of renewable energy sources, en-
ergy storage has become a critical element in ensuring stability, efficiency, and sustainability
in modern power grids.

Batteries, particularly lithium-ion (Li-ion) batteries, have emerged as a key technology
in the energy landscape due to their high energy density, efficiency, and scalability. They
have been widely adopted in electric vehicles (EVs), consumer electronics, and grid-scale
storage systems. Among these, electric vehicle batteries present a unique opportunity for
applications in second life once they degrade below the performance requirements of the
automotive industry (Astudillo et al., 2025).

The end-of-life of EV batteries does not necessarily mean the end of their usefulness.
Many batteries retain up to 70–90% of their original capacity even after being removed from
vehicles, making them suitable for second-life applications. These applications include:

Stationary energy storage for renewable integration.

1

2 Introduction, Goals and Structure

Microgrid and backup power systems.

Grid frequency regulation.

However, second-life batteries come with significant challenges. Aging-induced degrada-
tion, leading to capacity mismatch among cells; increased internal resistance, causing im-
balance during charge/discharge cycles; and safety concerns due to uneven heat generation
and overcharging risks. To address these challenges, Battery Management Systems (BMS)
incorporate cell-balancing techniques to equalize charge levels and extend the lifespan of
repurposed battery cells.

Already from the production line, deviations between cell characteristics appear (Beck
et al., 2021). Due to many factors (see more Section 2.3.5), these inhomogeneities between
cells are increased even further during their lifetime. This leads to less efficient use of the
cells and a reduction of their total lifetime. Thus, cell balancing is crucial during the cell’s
lifetime, especially during the second life of the cell, where the characteristics are already
diminished.

Balancing can be achieved through passive, active, or hybrid methods. Although active
balancing techniques use energy transfer between cells to reduce losses, they often require
complex power electronics, added costs, and efficiency trade-offs. However, passive balancing
is a simpler and cost-effective alternative that dissipates excess energy as heat through
resistors. With the drawback of energy loss under operation and the bigger need for a
cooling system to dissipate this heat, (Khan et al., 2024). Finding the correct solution is
necessary for both economic and operational reasons.

1.2. Proposition and Goals

The proposition of this project to address the situation above is to develop and validate a
Modelica-based library for balancing systems that allows for modular and adaptable testing
of different balancing methods. The developed models will be organized within a library
named Battery_Balancing, which is designed following the principles of object-oriented
modeling. This library will constitute the principal outcome of the thesis work. This includes:

Modeling second-life battery cells using an equivalent circuit model.

Implementing balancing modules for the different kinds of balancing methods selected.

Creating and adapting a control algorithm for each of the cases.

Evaluating and validating models.

The main objective is the development of a Modelica library that allows simulations of
second-life lithium-ion batteries and their balancing. This main objective includes a set of
smaller milestones to achieve:

Introduction, Goals and Structure 3

Conduct a literature review on Li-ion batteries, second-life battery applications and
challenges, existing balancing methods (passive, active, and hybrid), and Modelica-
based approaches to battery modeling.

Develop battery models based on the electrical equivalent model, which captures the
electrical behavior of battery cells. This includes incorporating state-of-charge (SOC),
state-of-health (SOH), and aging effects to accurately represent the characteristics of
second-life cells.

Implement and simulate different balancing strategies on a 4-cell series-connected pack:

• Shunt resistor balancing.

• Switched resistor balancing.

• Single inductor balancing.

• Single capacitor balancing.

Analyze the behavior of the models and validate the performance and modularity of
the developed library.

1.3. Document Structure

The document is structured as follows:

Chapter 1: Introduction

• The project goals and motivation are defined and the general outline of the doc-
ument is presented.

Chapter 2: Literature Review

• Introduction of basic concepts of batteries and battery management systems.

• In-depth review of second-life batteries and balancing strategies

• Key battery modeling approaches, including ECM and electrochemical models.

Chapter 3: Modeling Hypothesis

• Modeling strategies followed for the main components.

• Assumptions and simplifications used in the Modelica simulations.

Chapter 4: Implementation Details

• Modelica library development and particularities surrounding its implementation.

4 Introduction, Goals and Structure

Chapter 5: Library Architecture

• The structure and organization of the Modelica library created for this project.

Chapter 6: Results and discussion

• Validation of Modelica models based on examples where models are applied.

• Discussion and analysis of simulation results.

• Discussion of the methods used and the validity of the results.

Chapter 7: Conclusions and Future Work

• Key findings, possible improvements and future work.

Appendix A: Modelica Library Code

• Complete library code for Battery_Balancing Modelica library.

Appendix B: Library User’s Documentation

• User’s documentation for the Battery_Balancing Library.

Chapter 2

Literature Review

2.1. Introduction

In this chapter, a general theoretical background is presented on the technologies involved
in the project. First, the modeling language Modelica is introduced, followed by an overview
of battery technologies, with special attention to lithium-ion cells. Their operation, aging
behavior, and the role of the Battery Management System (BMS) are also discussed.

The chapter continues with a review of lithium-ion battery modeling approaches, focusing
on equivalent circuit models (ECMs) and outlines their typical components, parameteriza-
tion, and how aging and cell imbalance can be included. Finally, battery balancing strategies
are explored, comparing passive and active topologies, and introducing the control strategies
relevant to this work.

2.2. Modelica

Modelica is a free-to-use, object-oriented modeling language that is focused on the mod-
eling of complex physical systems. It allows the modeling and simulation of systems in multi-
ple domains, including electrical, mechanical, thermal, hydraulic, control, chemical process,
electronic, or electric power; allowing the interconnection between them. Components are
modeled by their mathematical behavior and can be grouped forming libraries that can be
used by other users to model more complex systems. This is one of the main advantages
of the creation of libraries with Modelica; Once a model is created, it can be reused and
modified by the end-user without the need to know the details of the mathematical modeling
behind it. That, together with the interconnection between different domains, allows the
end to be used to develop complex models in a fast way, (Urquía and Martín-Villalba, 2018),
(Tiller), (Modelon).

OpenModelica and Dymola are simulation environments based on the Modelica language.
They serve as an interface for modeling, compilation, and simulation of models in the Mod-

5

6 Literature Review

elica language.

2.3. Batteries

An electrochemical device is a device that can transform chemical energy stored in com-
ponents inside the cell directly into electrical energy.

The history of batteries has its start with the discovery of electrostatic effects, but it was
in the 1800s when Alessandro Volta invented the first electrochemical battery. During the
19th century batteries were the main source of electrical power to general grids, but once the
large-scale AC grids were implemented, batteries were relegated to back up electrical power
systems and a few portable applications. It wasn’t until the late twentieth century, with
the appearance of mass-produced portable devices, that interest in batteries arose again.
With that, a rapid development of new battery technologies was born, developing between
them: metal hydride batteries, nickel-cadmium batteries, lithium ion batteries and sodium
ion batteries, (Wulandari et al., 2023).

2.3.1. Lithium-Ion Batteries

Figure 2.1 gives a visual representation of the relationship between specific power and
specific energy for the different technologies. Representation that is useful for illustrating
one of the main advantages of Li-Ion technologies, which makes them a preferred option in
many industry applications. They offer the best relationship-specific energy/power, leading
to smaller and less weight solutions, which in many fields, such as in mobility applications,
as a noticeable impact.

Figure 2.1: Energy density vs Power density for different types of battery technologies. Image
inspired by (Olabi et al., 2023).

Literature Review 7

For more references on the differences between battery technologies, please refer to tech-
nical data available online, such as (Epec, 2023a). In general, these are the main advantages
for the use of Li-ion batteries (Lu, 2016):

High specific energy. Li-ion batteries present higher specific energy, ranging from
100–300 Wh/kg in most industry models (Waseem et al., 2023). For comparison, the
second-best are NiMH batteries, which present performances slightly over 100 Wh/kg.
High specific energy leads to smaller batteries for the same energy stored, which is of
high value in most industries, including EVs.

High voltage. One of the main characteristics achieved after Goodenough’s research
(see Section 2.3.1). Li-ion cells present noticeably higher voltage than competitors,
reaching 4 V in modern applications (Manthiram, 2020). This means that fewer cells
in parallel are needed to reach the required application voltage, making the BMS
implementation easier for this type of cell.

Low self-discharge rate. Modern Li-ion cells present a self-discharge rate even lower,
between 1.5%–2% per month (Lu, 2016), considerably outperforming the alternatives.

Fast charging time. The structural stability and high conductivity in lithium oxide
cathodes allow for noticeably faster charge times than any other technology. This is fur-
ther explained in Section 2.3.1. It is a highly important characteristic in most portable
applications, especially in EVs, where one of the main limitations is the typically slow
charging time.

Low maintenance. No scheduled cycling is required to prevent battery life degrada-
tion. NiCd and NiMH solutions require periodic discharge to reset the memory effect,
while some lead-acid batteries need to be topped up (Lu, 2016).

These are the main characteristics that explain why the Li-ion battery market has grown
to be the largest and is expected to continue along that path; see (Waseem et al., 2023).
Since they are the market leaders, the focus of the project will be based on this technology,
although the work performed in this thesis is easily applicable to other battery technologies.

Within lithium-ion technologies, there are also different types based on the type of cath-
ode material used. The cathode material in today’s market is what limits the energy density
of the cell and constitutes the largest portion of the cost. Regarding the composition of the
anode, graphite appears to be the most appropriate candidate; at the moment, it is used in
the majority of Li-ion industrial solutions. For more information on the topic please refer to
(Epec, 2023b).

8 Literature Review

2.3.2. Cell behavior

Since one of the bases of the project is obtaining a good model for a Li-ion cell, it is
important to present the main behaviors of this kind of cell. Therefore, some of the common
responses of cells are presented here. The behavior of a cell can be separated into two parts:
static behavior and dynamic behavior.

Static behavior refers to how the cell behaves when it is at rest, which means that no
charge is applied and internal variables are in equilibrium. The main parameter that shows
the state of a cell under static conditions is the OCV. The OCV is mainly dependent on two
factors under normal operation. Figure 2.2 shows graphically how the OCV relates SOC.

Figure 2.2: OCV depending on SOC of the cell for three different Li-Ion technologies. Image
inspired by (Plett, 2015).

As a norm, when cells are fully charged, the OCV is at its maximum value, and it
goes down as the cell discharges, reaching its minimum value when the cell is completely
discharged. This is shown in Figure 2.2 for three different Li-ion cells. Although the relation-
ship between SOC and OCV differs for different types of technologies, the higher the SOC,
the higher the OCV of the cell. Another relevant dependency is the relationship between
OCV and temperature. This behavior varies among different types of LIB technologies and
should be modeled for each particular application, (Zhang and Xia, 2018).

However, dynamic behavior affects how the cell reacts under charge or discharge, or in
the instant after it. These dynamic behaviors explain the difference between the OCV of a
cell at a particular SOC and the voltage of the cell during charge or discharge. The influence
of charge and discharge rates on cell voltage can be seen in Figures 2.3 and 2.4.

Figure 2.3 shows that the higher the charge rate, the higher the voltage at the cell
terminals. For the cell to be charged, the terminal voltage always needs to be higher than
the OCV. On the other hand, Figure 2.4 shows that the higher the discharge rate, the lower
the voltage of the cell. These differences between charge/discharge voltages and OCV can be

Literature Review 9

Figure 2.3: Charge curves for two differ-
ent charge rates, for a cell of NiMH. Image
inspired by (Pistoia, 2005)

Figure 2.4: Discharge curves for two dif-
ferent discharge rates, for a cell of NiMH.
Image inspired by (Pistoia, 2005).

explained based on two phenomena: ohmic losses and polarization of the cell. The voltage
for charging and discharging a cell can be expressed as follows (Pistoia, 2005):

Vd = OCV − η+ − η− − I ·R (2.1)

Vc = OCV + η+ + η− + I ·R (2.2)

This ohmic behavior is due to the resistance encountered in the different media during the
transport of electrons through the electrodes and current collectors. The η+ and η− are the
polarization on each electrode. And each polarization is composed of two main components:
activation polarization, which is an intrinsic property of the electrodes, and concentration
polarization, which is related to the accumulation or depletion of ions near the electrodes
(Pistoia, 2005). On this topic, see Figure 2.5.

Figure 2.5: Discharge pulse test on Li-Ion cell - Discharge period 15 minutes. Image inspired
by (Plett, 2015).

10 Literature Review

Figure 2.5 shows the voltage response to a pulse test on a Li-ion cell. The test starts with
the cell in rest mode, then a load is connected for a total of 15 minutes and subsequently
disconnected, making the cell return to a rest state (Plett, 2015). This experiment clearly
shows the main behaviors during the discharge of a cell. The voltages at times 0 min and 60
min represent the OCV before and after the discharge, once the cell has stabilized. During
discharge, two behaviors can be observed: first, an instant voltage drop that corresponds to
the ohmic behavior of the cell (IR); second, the polarization of the cell, which takes place
between minutes 5–10. From 10 to 20 minutes, the voltage continues to decrease due to the
reduction in SOC.

The same can be observed when the load is disconnected. First, an immediate recovery
of the cell voltage occurs at 20 minutes. Afterward, the voltage gradually returns to the
OCV as the polarization energy dissipates—this phenomenon is known as diffusion voltage.

There is one last dynamic behavior of Li-ion cells: hysteresis. As explained with the
discharge pulse test, after charging a cell, the voltage undergoes a transition period before
stabilizing at the new OCV. However, real cells exhibit hysteresis both after charge and
discharge. To explain it simply: when we charge a cell to a certain amount, say X% of SOC,
and let it return to a stationary state, the cell will present a voltage higher than the OCV
for that SOC (SOC + hysteresis). The opposite occurs after a discharge. When a cell is
discharged to an X% SOC, after stabilization, the resulting voltage will be lower than the
OCV at that SOC. Refer to Chapter 2 of (Plett, 2015) and (He, 2020) for a more detailed
explanation of this.

Aside from the normal behaviors of Li-ion cells, other types of changes influence cell
performance during its lifetime. The main causes for this change in performance are further
discussed in Section 2.3.5. Some of the expected changes linked to cell aging include:

Increased internal impedance.

Reduced capacity of the cell.

Increased self-discharge.

The influence of all these variables on the final operation of the cell makes accurate
modeling of such systems complex. Physical models offer greater precision and can better
simulate the influence of temperature or aging on the cell. ECM models are more limited, but
with appropriate considerations, good performance can still be achieved; these are presented
in Section 3.2.

2.3.3. Functions of a BMS

The Battery Management System (BMS) constitutes the supervisory unit in any lithium-
ion battery-powered application, ensuring not only the safe and efficient operation of the

Literature Review 11

battery pack but also the prolongation of its working life. As lithium-ion cells are particularly
sensitive to operating conditions such as temperature, voltage, and current, the BMS is
tasked with the constant monitoring and control of these variables to prevent unwanted
events such as thermal runaway, overcharging, and deep discharging (Liu et al., 2022).

At a basic level, a BMS is responsible for four primary functions: data acquisition,
protection, state estimation, and control. Data acquisition involves continuous sensing of
parameters including cell voltage, pack current, and temperature. These measurements pro-
vide the necessary basis for safety functions and diagnostics (Uzair et al., 2021). Protection
circuits are employed to disconnect the battery from the load or charger under critical con-
ditions such as overvoltage, undervoltage, overcurrent, or excessive temperatures. To give a
better idea of the concept of a BMS, a basic BMS block diagram is included in Figure 2.6.

Figure 2.6: Basic BMS logic schematics, showing basic inputs and outputs as well as inter-
actions between internal function blocks. Image inspired by (Liu et al., 2022).

Another essential task of the BMS is to estimate key battery states, notably the State of
Charge (SoC), State of Health (SoH), and State of Power (SoP). These estimates are essential
for optimizing energy usage, enabling predictive maintenance, and supporting system-level
diagnostics. SoC estimation is typically derived from open-circuit voltage (OCV), Coulomb
counting, or model-based observers, while SoH is inferred from indicators such as capacity
fade and internal resistance growth over time (Uzair et al., 2021).

Cell balancing is a further critical function, particularly in multi-cell configurations. Due
to manufacturing variances and aging, individual cells may exhibit different capacities or

12 Literature Review

impedance characteristics, leading to voltage divergence during charge and discharge cycles.
The BMS addresses this issue using either passive or active balancing strategies to equalize
cell voltages, thereby avoiding premature cutoffs and ensuring uniform utilization of cell
capacity (Khan et al., 2024), (Uzair et al., 2021). Passive methods dissipate excess energy as
heat through resistive elements, while active methods redistribute energy among cells using
converters or switched capacitor/inductor networks. This topic will be further explored in
Section 2.3.

Beyond these core functions, modern BMS architectures may incorporate thermal man-
agement controls, fault diagnostics, communication interfaces, and data logging capabilities.
These enhancements are particularly relevant in second-life applications, where cells have
been subject to prior degradation and may present non-uniform aging profiles. Advanced
algorithms, such as those based on artificial intelligence or digital twin concepts, are increas-
ingly being integrated into BMS frameworks to improve their adaptability and predictive
accuracy in such scenarios (Pérez et al., 2024), (Reiter et al., 2023).

Charging and Discharging Control

One of the fundamental functions of a Battery Management System is to supervise and
regulate the charging and discharging processes, ensuring that all cells operate within their
safe operating area. Lithium-ion cells, while offering high energy density and efficiency, are
susceptible to degradation and safety risks if operated outside their range, normally between
2.5 V to 4.2 V (Samaddar et al., 2020). The BMS continuously monitors cell voltage and
pack current, interrupting the process in cases of overvoltage, undervoltage, or excessive
current output (Uzair et al., 2021).

Charging and discharging strategies can be categorized as follows:

Constant Current / Constant Voltage (CCCV): This is the most used charging
protocol for lithium-ion batteries. Initially, a constant current—typically around 0.5C
to 1C—is applied until the cell voltage reaches the upper limit (e.g., 4.2 V for standard
Li-ion cells). Then, a constant voltage is applied, and the current goes down exponen-
tially until it falls below a cutoff threshold. This method balances speed and safety,
reducing stress on the battery while ensuring full capacity utilization (Samaddar et al.,
2020).

Multistage Constant Current–Constant Voltage (CC–CV): An improvement
of CCCV, this approach applies varying current stages, optimizing the balance between
charging speed and thermal/electrochemical stability (Samaddar et al., 2020).

Pulse Charging: In this technique, the charge is delivered in pulses rather than
as a continuous current. Between pulses, the system can monitor voltage recovery,
which provides insights into internal resistance and thermal behavior. While beneficial

Literature Review 13

for reducing charge time and thermal issues, the control is complex and less widely
implemented in automotive applications.

Taper Charging: Mostly used in cells with specific chemistry or aged battery sce-
narios, this method gradually reduces the current as the terminal voltage approaches
the upper threshold, minimizing cell stress near full charge.

Typical current rates for both charging and discharging are expressed as C-rate. In
automotive applications, discharge currents can exceed 1C during high-power acceleration,
while charging currents for fast-charging applications may reach up to 2C, although thermal
limitations may arise in this case.

The BMS also manages the end-of-charge (EOC) and end-of-discharge (EOD) events,
halting current flow when the voltage of the most charged or discharged cell crosses the lim-
its. These limits are essential for maintaining long-term capacity and avoiding irreversible
damage caused by lithium plating during overcharge or copper dissolution during deep dis-
charge.

In general, by enforcing charge and discharge limits, selecting optimal charging strategies,
and actively monitoring cell behavior during these phases, the BMS improves and protects
battery longevity, operational safety, and performance.

2.3.4. Second-life Applications

Lithium-ion cells are typically considered suitable for second-life (SL) use when their State
of Health (SoH) drops below a threshold, often around 70–80% of their nominal capacity,
and the cell is no longer viable for its original high-performance application, such as in
electric vehicles. While not yet fully degraded, the cell’s reduced capacity and increased
internal resistance limit its power delivery and energy throughput, and power/energy density
is consequently diminished. However, its residual capacity and lowered characteristics can
still be utilized in less demanding applications, marking the transition into its second life
(Waseem et al., 2023).

Second-life applications aim to find a new use for these cells to extend their overall
lifespan, reduce environmental impact, and increase resource efficiency. Common use cases
include stationary energy storage systems (ESS) for residential or commercial solar instal-
lations, grid peak shaving, backup power systems, and low-power mobility platforms such
as electric bicycles or forklifts (Liu et al., 2022), (Waseem et al., 2023). These applications
demand lower power and energy density, are commonly dedicated to static solutions, and
are well-suited for cells with decreased performance.

From a performance perspective, second-life batteries can still offer useful life. Depending
on their chemistry, operating conditions, and usage history, lithium-ion cells can undergo up
to 1000–2000 full equivalent cycles or accumulate 3000–6000 operating hours before reach-
ing end-of-first-life thresholds. Their second-life duration depends heavily on further aging

14 Literature Review

behavior, but additional usage of 3–7 years is commonly achievable when proper control is
implemented (Uzair et al., 2021).

Despite their economic and environmental advantages, second-life battery systems present
numerous technical challenges. Heterogeneity of cell conditions is the most concerning issue,
arising from different aging rates due to temperature gradients, cycling history, and cell-to-
cell manufacturing variations. This inhomogeneity complicates cell grouping, SoH estima-
tion, and safety validation. Moreover, second-life applications often require re-parameterization
of BMS algorithms, thermal management adaptations, and additional circuitry for safety
(Beck et al., 2021), (Reiter et al., 2023).

Another important consideration is the difficulty of characterization and classification.
Cells recovered from electric vehicles or other systems present wide variability in capac-
ity, internal resistance, and degradation. Accurate screening—often involving impedance
spectroscopy, capacity testing, or data-driven estimation methods—is essential to ensure
reliability and extend the effective second-life duration.

The general degradation profile of a lithium-ion battery is depicted in Figure 2.7, which
shows how capacity declines over time and defines the transition from first-life to second-life
operation.

Figure 2.7: Typical lifecycle representation of a lithium-ion battery showing the transition
from first-life to second-life based on SoH degradation. Image inspired by (Pérez et al.,
2024).

The adoption of second-life batteries is increasing but is still limited by regulatory, eco-
nomic, and technical uncertainties. Market studies indicate growing interest, especially in
grid applications and renewable energy integration, but large-scale deployment has been
limited and remains in the early phases (Waseem et al., 2023).

Understanding and managing second-life battery systems requires an understanding of
the aging mechanisms that lead to capacity degradation and performance decline. The
transition from first-life to second-life use is defined by these aging processes. The following

Literature Review 15

section explores the principal aging phenomena in relation to lithium-ion batteries, their
underlying causes, and their implications for modeling and system design.

2.3.5. Aging

As mentioned above, aging is a key factor that determines the performance, safety, and
usable life of lithium-ion batteries. Over time, batteries lose capacity and internal resistance
increases, which directly influences how much energy they can store and deliver. This aging
process occurs both when the battery is in use and at rest. Battery aging is typically classified
into two categories:

Calendar aging, which occurs when the battery is at rest, especially at high State of
Charge (SoC) and elevated temperatures. It can be seen as the aging of the cell over
time.

Cycle aging, which results from repeated charging and discharging cycles—especially
under high current rates, deep depth-of-discharge (DoD), or extreme temperatures. In
general, conditions near the operational limits.

Both types of aging are caused by physical and chemical changes inside the cell. Among
the most common degradation mechanisms are solid electrolyte interphase (SEI) growth,
lithium plating, electrode cracking, and electrolyte decomposition. These mechanisms vary
depending on battery chemistry and usage. A more detailed analysis of these degradation
modes is beyond the scope of this work but can be found in dedicated literature such as
(Beck et al., 2021).

The effects of aging include a gradual loss of capacity, known as capacity fade; a rise in
internal resistance, known as power fade; and increased heat generation during operation.
These changes reduce efficiency and available energy, and in extreme cases, can affect cell
safety. Aging is influenced by several factors, including temperature, average SoC, C-rate
(charge/discharge current), and depth of discharge. High temperatures and high SoC levels
tend to accelerate calendar aging, while large current loads and deep cycles increase the
rate of cycle aging. These effects can be mitigated by avoiding high SoC storage, limiting
exposure to high temperatures, using moderate C-rates, and applying thermal management
strategies.

In any battery pack, individual cells differ slightly in properties due to variations in-
troduced during the manufacturing process. These cell-to-cell variations (CtCVs) include
differences in capacity, internal resistance, and self-discharge rate. Even in new cells, the
variability in capacity can range between 1–3%, and internal resistance can vary by up to
5% (Reiter et al., 2023).

As the battery ages, these differences tend to increase. Cells degrade at different rates
due to localized conditions such as temperature gradients, uneven current distribution, or

16 Literature Review

minor defects. For example, a cell placed closer to a heat source may experience faster SEI
growth, leading to accelerated capacity fade. This results in diverse SoC levels within the
pack and makes balancing more challenging over time (Beck et al., 2021), (He and Chen,
2023).

This phenomenon is especially relevant for second-life battery packs, where cells come
with a history of use under different conditions. The BMS must take these variations into
account to ensure safe operation and energy distribution. In this context, aging and cell-
to-cell inhomogeneities are directly connected to the goal of this work, which focuses on
evaluating balancing methods for reused cells with non-uniform degradation profiles.

2.4. Modeling of Lithium-Ion Batteries

The idea of a model is to represent the behaviors of a given system under certain circum-
stances. In that sense, G.L. Plett presents in his book a distinction in the way models can
be classified: "One is based on understanding the underlying physics that govern the cell’s
operation and building a model of the cell dynamics from the inside out." He continues, "...
the second, simpler approach to modeling cell operation, which uses electrical-circuit analogs
to define a behavioral or phenomenological approximation to how a cell’s voltage responds
to different input-current stimuli" (Plett, 2015). When he made this distinction, he was
attempting to separate the two most common types of cell modeling used in the industry.

The first approach refers to the physical modeling of the cell. The basis of this approach
is to simulate the physical phenomena occurring inside the cell—mostly electrochemical and
thermal phenomena. By modeling the reactions inside the cell, the model should respond
similarly to general conditions as a real cell would. This is a more complex type of modeling
since the reaction behaviors are influenced by many factors. These models are usually more
accurate and also allow us to understand what is happening in reality, rather than treating
the model as a black box. Nonetheless, due to their complexity, these models tend to be
associated with high computational costs.

The goal of the second approach is not to simulate the physicochemical behavior occurring
inside the cell, but rather to mimic how the cell behaves under certain conditions. When
describing this type of model, he refers to ECM models, which characterize cell behavior
using a more or less simple equivalent circuit. The equivalent circuit has no direct relation
to the internal reactions, but by tuning the ECM parameters, it is possible to replicate the
cell’s external behavior. The biggest advantage of this type of model is fast computational
time. Even though the model is not as precise as physical models, the ECM remains a
preferred option in many applications. This is the type of model this project is focused on,
and more about ECMs is presented in Section 2.4.1.

Another modeling approach that has been gaining relevance in recent years is data-driven
methods. This approach uses input data about the cell to predict the battery’s state during

Literature Review 17

operation. This can be done in stand-alone mode—where the entire model is simulated
based on data—or combined with other models to assist in estimating complex parameters
such as aging. These methods can be implemented using various learning strategies: neural
networks, support vector machines, or other machine learning techniques. This topic lies
outside the scope of this project and will not be explored further.

2.4.1. ECM Components

As mentioned, ECMs are a behavioral type of modeling that aim to represent the behavior
of a battery cell using a simple equivalent circuit. The majority of BMS implementations in
today’s EVs use some kind of ECM to predict or estimate the internal state of the battery.
That is why, despite their simplicity, ECMs are highly important in the industry. In this
chapter, the different components used in ECMs are presented and linked to the behaviors
discussed in Section 2.3.2. In Section 2.4.2, these components will be used to introduce the
most common ECM structures. This section is primarily based on the description provided
in (Plett, 2015); please refer to it for further detail on the topic.

The first and most common component of most ECMs is a voltage source. In the case
of ECMs, the voltage source represents the OCV of the cell. As introduced in Section 2.3.2,
the OCV of a cell is highly dependent on the SOC and the operating temperature. In that
sense, OCV functions are typically obtained experimentally from tests on the particular cell,
and they can be implemented either as look-up tables (with linear interpolation) or as fitted
polynomials derived using regression techniques.

Associated with the OCV voltage source is a tracker of the SOC. Since the OCV-SOC
dependence is highly relevant to the cell’s functioning, this must be implemented in the
model. The modeling of the voltage source may thus include the following equations:

z = SOC (2.3)

OCV (t) = f(z(t), T (t)) (2.4)

ż(t) = −η · i(t)
Q

(2.5)

Here, ż(t) = d(SOC)
dt

, i(t) is the current in amperes (positive during discharge), Q is the
total capacity in ampere-seconds, and η is the Coulombic efficiency. The OCV is expressed
as a function of SOC and operating temperature. If temperature dependence is not required
or data is unavailable, this function can be simplified.

The next component typically found in ECMs is a series resistance, which represents
the ohmic effect of the cell as introduced in Section 2.3.2. It affects the cell voltage and is
modeled as:

v(t) = OCV (t)− i(t) ·R0 (2.6)

18 Literature Review

As mentioned, the ohmic resistance is also dependent on the operating temperature, and
including this dependency can improve model fidelity.

To model the dynamic behavior of the cell, polarization is commonly represented using
one or more RC groups. Including one RC group alongside the ohmic resistance adds two
new equations and modifies Equation 2.6:

v(t) = OCV (t)− i(t) ·R0 − iR1(t) ·R1 (2.7)

i(t) = iR1(t) + iC1(t) (2.8)

iC1(t) = C1 · v̇C1(t) (2.9)

The modification to Equation 2.6 adds the voltage drop across the RC group expressed in
terms of the current through the resistance. R1 and C1 are known as the transient resistance
and transient capacitance, which model the dynamic polarization effect and the time it takes
for the voltage to stabilize after a step input (Tekin and Karamangil, 2024). The two new
equations represent current balance at the node and the capacitor’s characteristic behavior.
Like ohmic resistance, the polarization response also depends on SOC and temperature, and
including this dependence improves accuracy.

With these components, all the main external behaviors of a cell can be modeled. Other
components may be added in more complex ECMs, particularly if frequency-dependent be-
havior is of interest. For example, Warburg impedance elements can be used for such mod-
eling. However, for the scope of this project, the components presented here are sufficient
for the development of a fairly accurate ECM.

2.4.2. Typical ECM Structure

Depending on the battery and the desired model accuracy, ECMs of varying complexity
can be employed. If more detailed dynamic behavior is to be captured, the use of Thevenin-
based structures is a better approach. Below, two basic ECMs are introduced, shown in
Figures 2.8 and 2.9.

Figure 2.8: ECM with one RC branch.
Figure 2.9: ECM with two RC branches.

Figure 2.8 and Figure 2.9 present the so-called first-order and second-order Thevenin

Literature Review 19

ECMs, respectively. In these models, R1, R2, C1, and C2 represent the polarization behavior
of the cell, as discussed in Section 2.3.2. Although higher-order Thevenin ECMs can be found
in the literature to increase modeling accuracy, their complexity significantly complicates
parameter identification.

The selection of a particular ECM structure depends primarily on the level of precision
required by the application. In many cases, overly complex structures increase parameter-
ization difficulty and computational cost without providing significant benefits. In electric
vehicles, more complex ECMs are often justified, as higher modeling precision can notice-
ably enhance BMS performance. However, since no specific cell is targeted in this project, a
first-order Thevenin model is deemed sufficient. It reduces computational effort, simplifies
parameter identification, and provides an adequate representation of generic cell behavior.
Employing a more complex ECM would not yield additional benefits and, in combination
with the approximate aging model, would result in unnecessary effort; see Section 2.4.3.

2.4.3. Aging in ECM Models

Aging modeling in cells is generally highly dependent on experimental data. The same
holds for ECMs, where aging is often introduced via derating functions applied to the model
parameters. These functions typically depend on variables such as cycle count, calendar
time, or depth of discharge (DoD). In practice, a series of experimental tests is conducted,
and the parameters of the derating functions are fitted to match the observed degradation
behavior.

Since this project does not focus on modeling a specific cell, implementing complex
empirical models with parameter fitting is unnecessary. Therefore, a static aging approach
has been adopted. In this method, the main parameters of interest—cell capacity and series
resistance—are derated at the beginning of the simulation and remain constant throughout.
While derating formulas for the RC parameters are also included, their effect on cell behavior
is secondary. The static aging derating is described by the following formulas:

Qaged = Qinitial · (1− capacity loss percentage) (2.10)

Rs,aged = Rs,initial · (1 + resistance increase percentage) (2.11)

R1,aged = R1,initial · (1 + polarization resistance increase percentage) (2.12)

C1,aged = C1,initial · (1− transient capacitance loss percentage) (2.13)

In these expressions, Qinitial and Rs,initial are the nominal cell capacity and initial series
resistance before aging, while Qaged and Rs,aged are their aged values after accounting for
capacity fade and resistance growth. Similarly, R1,initial and C1,initial represent the initial
polarization resistance and transient capacitance of the cell, with R1,aged and C1,aged being

20 Literature Review

the corresponding values after degradation.
Reasonable values for these derating parameters, according to literature, suggest that

second-life lithium-ion cells typically exhibit a capacity reduction of 10–30% and a series
resistance increase of 30–100%, see (Pérez et al., 2024), (He and Chen, 2023). Additionally,
aging effects on the transient elements, such as polarization resistance and capacitance, have
been observed, with typical increases in polarization resistance of 20–80% and decreases in
transient capacitance of 5–30%, see (Ecker et al., 2014), (Keil and Jossen, 2016).

When modeling a specific cell where detailed conclusions are required, a dedicated aging
model with time-dependent behavior becomes necessary. Modeling aging accurately is par-
ticularly important when the objective is to track the evolution of ECM characteristics over
the full life of the cell. In this project, however, the primary focus is not on the aging process
itself, but rather on establishing a realistic model of an aged cell suitable for evaluating the
efficiency of different balancing methods. Therefore, a set of static aged parameters has been
assumed and applied unequally across the different cells to introduce inhomogeneity typical
of real-world second-life battery systems.

2.4.4. Unbalance in ECMs

In addition to aging effects, cell packs typically exhibit inherent unbalance, originating
from manufacturing tolerances, different operational histories, or early-stage degradation (as
introduced in Section 2.3.5) (Reiter et al., 2023). To represent this phenomenon, an unbal-
ance parameter is introduced into the model, independently of the global aging parameters.
The unbalance is modeled as a deviation applied to the capacity and series resistance of each
cell:

Qi = Qaged · (1 + δQi) (2.14)

Rs,i = Rs,aged · (1 + δRs,i) (2.15)

Here, δQi and δRs,i are the relative deviations of the cell’s capacity and resistance,
respectively, with respect to the aged nominal values. As mentioned in Section 2.3.5, the
variability in capacity can range between 1–3%, and internal resistance can vary by up to
5% (Reiter et al., 2023).

2.4.5. Parameter Identification

Parameter identification is the process of obtaining the values of the components of the
equivalent circuit model (ECM), including the internal resistance, transient resistances, and
capacitances. These parameters cannot be obtained directly from manufacturer datasheets;
they must be extracted from experimental cell voltage responses under controlled current
excitations. This means that each particular cell will have an associated set of parameters

Literature Review 21

that approximate the electrical behavior of the cell at the time of the experiment.
Among the available techniques, time-domain identification based on current pulse tests

offers a practical balance between accuracy and implementation cost. In this method, a
known current pulse is applied to the cell, and the voltage response is recorded. The imme-
diate voltage drop is attributed to the ohmic resistance R0, while the subsequent relaxation
behavior is fitted to exponential decay functions, from which the polarization resistances and
capacitances can be obtained (Tekin and Karamangil, 2024). An outline of the procedure is
summarized in Table 2.1.

Table 2.1: Summary of identification procedure for ECM parameters using time-domain
analysis of pulse tests.

Step Procedure Extracted Pa-
rameters

Notes

1 Apply a constant cur-
rent pulse (discharge or
charge)

– Typically a step current
of known amplitude and
duration

2 Measure instantaneous
voltage drop at pulse
onset

R0 = ∆V/I Reflects internal ohmic
resistance

3 Analyze voltage relax-
ation during the pulse

R1, C1 (or R2, C2) Fit exponential decay us-
ing time constant τ =
RC

4 Fit terminal voltage re-
sponse using nonlinear
least-squares

All parameters Optional refinement over
visual inspection

5 Validate model against
pulse and rest periods

– Confirm transient match
under dynamic current

For the purposes of this work, the ECM parameters R0, R1, C1, and Em are implemented
as SOC-dependent parameters, obtained by using pulse tests at different SOC levels. This
approach reflects the dynamic cell behavior under realistic operating conditions. To main-
tain computational feasibility in Modelica, interpolation tables are used, and the aging and
unbalance effects are applied as multiplicative derating factors on top of the SOC-dependent
curves.

2.5. Battery Balancing

As discussed in Section 2.3.5, inhomogeneities between battery cells result from both
manufacturing deviations and aging. These deviations lead to uneven capacity usage, ther-
mal stress, and premature cutoffs during charge or discharge. The origin of imbalances may
lie in variations in internal resistance, capacity, or purely in SOC. While SOC imbalance
typically manifests as voltage spread during operation, resistive and capacitive imbalances

22 Literature Review

affect heat generation, dynamic response, and usable energy range. To mitigate these effects
and ensure safe and efficient utilization of the entire battery pack, balancing strategies are
implemented.

2.5.1. Balancing Methodologies

Battery balancing methods are generally classified into passive, active, and hybrid ap-
proaches. Each aims to reduce SoC imbalances by redistributing or dissipating energy, with
trade-offs in complexity, efficiency, and cost (Khan et al., 2024), (Uzair et al., 2021).

In passive balancing, excess energy from higher-voltage cells is dissipated as heat using
resistive elements. Common implementations of this type include:

Shunt resistor balancing, where fixed resistors are used to continuously discharge cells,
both with higher and lower voltages. The theory behind this is that cells with higher
voltage will discharge faster than those with lower voltage, balancing the energy be-
tween cells.

Switched resistor balancing, which introduces MOSFETs to selectively control energy
dissipation.

Passive balancing is normally selected in low-cost or low-complexity systems, although it
inherently results in energy loss and longer balancing times (Perişoară et al., 2018), (Uzair
et al., 2021).

Active balancing redistributes energy among cells using transfer components. This in-
cludes:

Switched capacitor networks, for voltage equalization between cells.

Inductive or transformer-based circuits, enabling charge transfer of different types de-
pending on the desired result.

Active balancing improves energy efficiency and balancing speed but requires more com-
plex circuitry and control logic. It is better suited for high-energy systems or applications
where efficiency is critical (Khan et al., 2024).

Hybrid strategies combine both approaches, for instance using passive balancing at the
end of charge and active methods during dynamic operation. Some hybrid systems include
auxiliary DC-DC converters with resistive paths to optimize performance across varying
conditions (Uzair et al., 2021). To illustrate and show the wide range of balancing methods
available in the market, Figure 2.10 has been added.

As shown in Figure 2.10, within the different categories mentioned above, multiple types
of solutions can be implemented. This allows for adaptation of the technology to the specific
requirements. Beyond circuitry, balancing can also be classified by energy transfer direction-
ality:

Literature Review 23

Figure 2.10: Classification of most common balancing topologies. Image inspired by (Ashraf
et al., 2024).

Cell-to-cell: Direct redistribution between adjacent or non-adjacent cells.

Cell-to-pack: Charging a common bus from high-energy cells to the lowest charged
pack.

Pack-to-cell: Recharging low-voltage cells in low-voltage packs from other packs with
higher voltage.

Pack-to-pack: Inter-module balancing, especially in modular or second-life systems.

Some of these configurations provide increasing flexibility but demand more coordination
and system-level communication (Uzair et al., 2021). This study focuses on four balancing
methods, both in passive and active categories:

Passive: Shunt resistor and switched resistor.

Active: Single capacitor and single inductor.

Their schematic structures are summarized in Figures 2.11, 2.12, and 2.13. The methods
will be evaluated in a controlled four-cell pack, offering realistic imbalance scenarios while
remaining computationally manageable.

24 Literature Review

2.5.2. Balancing Topologies

To explore the behavior of these balancing strategies in depth, a four-cell lithium-ion pack
was selected. This configuration allows for meaningful imbalance dynamics while limiting
simulation and hardware complexity. Each method is described below in terms of principle,
schematic, pros and cons, and general control considerations.

Passive Balancing Methods

Regarding passive balancing methods, this project explores two of them, shunt resistors
and switched resistors. A schematic of each topology is included in Figure 2.11 and 2.12.

Figure 2.11: Schematic of shunt resistor
balancing method.

Figure 2.12: Schematic of switched resis-
tor balancing method.

Figure 2.11 shows the schematic of the shunt resistor balancing. This method contin-
uously or periodically discharges cells through fixed resistors to match the voltage of the
lowest cell. The highest-voltage cell tends to discharge faster than the lower-voltage cells,
equalizing over time to the same voltage. Advantages of this method include low cost, min-
imal complexity, and simple control logic. Disadvantages include low energy efficiency, slow
balancing response, and the need for thermal design under extended operation.

Figure 2.12 shows the schematic of the switched resistor balancing. In this case, MOS-
FETs are used to enable or disable the balancing resistors based on cell voltage differences.
The control strategy can vary depending on the desired results. The most common strategies

Literature Review 25

are either charging the cell up to the maximum and later balancing, or continuous balancing
using the cell with the lowest voltage as reference. The advantages of this method include
controlled dissipation, better energy usage than the shunt resistor method, and integration
into basic BMS platforms. On the other hand, this method is still inherently lossy and
requires more components and switching logic.

Active Balancing Methods

Regarding active balancing methods, this project explores two of them: single capacitor
balancing and single inductor balancing. A schematic of the single capacitor topology is
included in Figure 2.13; the schematic for the single inductor topology is identical but uses
an inductor instead.

Figure 2.13: Schematic of single capacitor balancing method.

In single-capacitor balancing, a capacitor is used per pack of cells. Charge from the most
charged cell is continuously transferred through the capacitor to the cell with the lowest
charge, using switches coordinated by a PWM pulse. This balancing can be performed

26 Literature Review

during charging, discharging, or static operation, contributing to a more effective use and
distribution of energy. The single inductor method is similar in most aspects.

Advantages of these methods include higher energy efficiency and the ability to balance
during both charge and discharge, improving the utilization range of all cells. Disadvantages
include limitations to packs with a small number of cells and timing-critical control for
effective operation (Khan et al., 2024).

2.5.3. Control Strategies

Balancing topologies are defined not only by their circuit design but also by the control
strategy applied. The control algorithm determines when and how balancing is activated
and has a direct impact on efficiency, response time, and safety. Depending on the control
variable selected, the following strategies can be distinguished:

Voltage-Based Control. This method monitors cell voltages and initiates balancing
when deviations exceed a defined threshold. It is the simplest to implement and widely
used in passive BMS designs. However, it may be inaccurate during dynamic load
conditions, where terminal voltage does not directly reflect SoC (Khan et al., 2024).

SoC-Based Control. This approach estimates the SoC of each cell through current
integration or lookup tables. It provides better long-term balancing accuracy but
depends on accurate SoC estimation, which itself can be subject to drift and calibration
issues (Khan et al., 2024).

Model-Based Control. The most advanced strategy uses internal cell models—equivalent
circuit or electrochemical—to estimate SoC, internal resistance, and even aging states.
These systems can optimize energy transfer under varying conditions and are well-
suited to complex or second-life applications, though they demand significantly more
computation and parameter knowledge (Khan et al., 2024), (Uzair et al., 2021).

This study adopts voltage-based control to prioritize simplicity, robustness, and compa-
rability across passive and active implementations. The effects of aging introduce differences
between the OCV of different cells for the same SoC, making control through SoC more
complex. Extensions to SoC-based or model-based strategies are identified as future work.
For each of the topologies presented in Section 2.5.2, different strategies can be selected for
the control of each structure. The selections for this project will be presented and justified
in Sections 4.3 and 4.5.

2.6. Conclusion

This chapter introduced the key concepts and technologies used throughout the project.
Modelica was presented as the chosen modeling tool for its flexibility and reuse capabilities.

Literature Review 27

A general review of lithium-ion battery behavior was provided, including static and dynamic
characteristics, aging effects, and second-life considerations.

The main modeling approaches were discussed, with the focus placed on ECMs due to
their simplicity and suitability for fast simulations. The different components of ECMs and
their parameterization were explained in detail, along with how aging and imbalance can be
represented.

Balancing methods were classified and compared, with four specific topologies selected
for implementation and testing. Voltage-based control was chosen as the base strategy for
this project due to its simplicity and suitability for second-life applications. Together, these
topics form the theoretical foundation for the modeling and testing work developed in the
next chapters.

28 Literature Review

Chapter 3

Modeling Hypotheses

3.1. Introduction

This chapter explains the modeling approach used to build the battery system library.
The main goal is to describe how each part of the model was designed, including the electrical
cell models, the balancing methods, and the control logic.

The chapter is divided into two parts. First, Section 3.2 focuses on the ECM (Equivalent
Circuit Model), including how the cell voltage, resistances, and capacitance are modeled
based on SOC data. It also explains how cells are grouped into packs. Then, Section 3.3
introduces the balancing systems used in this work, along with the charge/discharge module
and control unit. The structure and logic of each balancing method are shown with diagrams
and code examples.

3.2. ECM Modeling

This section shows how the different parts needed for the ECM have been modeled.
Starting from the basic components, specifying the data structure required for them and the
final result forming a complete ECM model cell. Only structures with certain particularities
are described; the complete code for the library with annotations can be found in Appendix
A for reference. Details about the implementation of these models are presented in Chapter4.

3.2.1. Open Circuit Voltage

As mentioned, the open-circuit voltage is commonly modeled as a function of the SOC
and the temperature, see 2.4.1. For the given model, only the SOC will be considered. With
that being said, the formulas used to model the SOC are Formulas 3.1 and 3.2; and the main
equations that model this behavior are shown in Listing 3.1.

29

30 Modeling Hypotheses

OCV (t) = f(z(t)) (3.1)

ż(t) = −ηi(t)/Q (3.2)

model OCV_source "OCV source"
extends Interfaces.UnPuerto(activo=true);

input Real OCV;
parameter SI.ElectricCharge Q;
parameter Real eta(min=0, max=1)=1;

Real z(start=1, max=1, min=0);

equation
u = OCV;
der(z) = -eta * i / Q;

end OCV_source;

Listing 3.1: Modelica code for OCV component

Where, in Figure 3.1 OCV will be the function of the SOC as given by laboratory tests and
the internal estimation of SOC is done by Coulomb counting. The value of the Coulombic
efficiency will be given a preset value of 1, which is the most normal approximation if
unknown. And the OCV is loaded as a dataset and interpolated linearly between points
depending on the OCV. To avoid stiffness in the interpolation the use of the native Modelica
"CombiTable1Ds" class is used, this is introduced in the following Section 3.2.2.

3.2.2. Parameter Loader

This project will focus on parameterizing one RC branch ECM from experimental data,
as well as the ohmic resistance R0, polarization resistance R1, and transient capacitance
C1 are implemented as SOC-dependent quantities. The parametrization done from a set of
data of impulse tests on a real cell is presented in Section 4.2. Once the parametrization is
done a curve representing each parameter in relation to the SOC of the cell is obtained, see
Figure 4.2. These curves arise from a set of points, in order to use it in the simulation the
missing data in between points will be linearly interpolated. The code in Listing 3.2 shows
the loading and interpolation for one of the parameters as a function of the SOC.

Modeling Hypotheses 31

model ECM_ParameterLoader_1Thv "ECM Parameter loader from .mat"
input Real SOC; // External input

CombiTable1Ds table_OCV(
tableName="ECMdata",
fileName="dataECM.mat",
columns={2},
tableOnFile=true,
table = [0, 0],
smoothness=Smoothness.LinearSegments) ;

output Real OCV;
... //Needs to be repeated for each variable

equation
// Connect SOC input to table inputs
table_OCV.u = SOC;

// Read interpolated outputs
OCV = table_OCV.y[1];
...

end ECM_ParameterLoader_1Thv;

Listing 3.2: Paramter loading and interpolation with CombiTable1Ds

Note that all the parameters and the OCV curve are given in the form of a vector,
containing a value for every SOC stored. To obtain data between data points smoothened
in-built interpolation fuctions are used. Avoiding this way possible problems with stiffness
and non-linearities. For more information on this function refer to (Association, 2024a).

3.2.3. ECM Structure

In this section, the structure used for creating ECM is presented. More than one ECM
structure has been created for different applications. In this section the model for the second
life single Thevenin ECM is presented. Variations of the model mentioned can be found in
A. Figure 3.1 shows the Diagram view of the model.

As seen in Figure 3.1 the internal structure of the cell is mainly created from previous
components from the diagram view. It is worth noticing that the parameters for the OCV
curve, and the resistances and capacitance will be derated when introducing them in the
model. There are two main types of deratings, by age and by unbalance. Part of the

32 Modeling Hypotheses

Figure 3.1: Graphic view of the internal structure of a single Thevenin ECM

structure used to derate this values is shown in Listing 3.3.

model ECM_Thevenin_SL
...
//Derating factors
parameter Real alpha_R0(min = 0, max = 1) = 1.0 "R0 aging derating factor";
parameter Real beta_R0(min = 0.5, max = 1.5) = 1.0 "R0 unbalance derating factor";
//Effective parameters after derating
SI.Resistance R0_eff "Effective series resistance";
...

equation
// Derating equations for parameters
R0_eff = R0 * alpha_R0 * beta_R0;
...

end ECM_Thevenin_SL;

Listing 3.3: Derating factors for 1 cell single Thevenin ECM

The idea, as expressed in Section 2.4.3, is to adjust each parameter by two factors, alpha
and beta, to simulate the aging conditions of the cell. The specific parameters used for the
test examples are presented in Section 4.2.

3.2.4. Cell packs structure

As in the previous chapter, several models of cell packs are available in the library for
different uses. They offer a similar set up and to ilustrate the main characteristics of them
the model for Battery4Cell_Ball is further explained. The diagram set-up is shown in the
following Figure 3.2:

As shown in Figure 3.2, the set up consists of four ECM cell models in series with a
dedicated pin between each cell to allow for balancing if needed. Regarding the particularities
of the code, two matrixes of derating values are needed to fill every cell and the model expects

Modeling Hypotheses 33

Figure 3.2: Graphic view of the diagram of model Battery4Cell_Bal.

the parameter-SOC curves to be loaded from a higher level. No voltage feedback or control is
added to this standard module, these functions will be introduced in the Balancing module
instead as explain in the following Section 3.3.

3.3. Balancing Modeling

This section shows how the different parts of the balancing systems have been modeled. It
introduces the balancing models of the four selected structures, together with the charge/load
module and the respective control units. Specifics about the later implementation of the
models for the tests are commented in Sections 4.3, 4.5.

3.3.1. Shunt Resistor Modeling

The structure for the shunt resistor module has been modeled as shown in Figure 3.3.
Figure 3.3 shows the graphic diagram of the model. It has one resistance and one MOS-

FET per cell, and the MOSFETs are activated by a step in voltage on the gate. The
activation signal comes through the connector, which sends one signal for all the voltages.
And the second connector sends the voltage feedback data for each cell.

3.3.2. Switched Resistor Modeling

The structure for the switched resistor module has been modeled with an almost identical
structure to the one shown for the Shunt balancing module in Figure 3.3. The main difference
comes in the connector. Instead of having only one signal coming from the control module
that controls every switch, each switch presents an individual switching signal, allowing every
swicht to act independently.

34 Modeling Hypotheses

Figure 3.3: Graphic view of the diagram of the shunt resistor balancing module.

3.3.3. Single Capacitor Modeling

The structure for the single capacitor module has been modeled as shown in Figure 3.4.

Figure 3.4: Graphic view of the diagram of the single capacitor balancing module.

The module consists of five controlled switches and two controlled commutators. The
layout allows for connecting any cell to the balancing capacitor with a set of input signals
controlling the commutators and switches. Then this set of signals is periodically switched
to transfer charge from one cell to the capacitor and from the capacitor to the subsequent
cell. Similarly to the switched balancing the module has two connectors; one with seven
signals (one for each switching component), and a second connector to retrieve the voltage
feedback of each cell. More details on the control structure are given in Section 3.3.6.

Modeling Hypotheses 35

3.3.4. Single Inductor Modeling

The balancing structure for the single inductor balancing module is almost identical to the
one presented in 3.4. The main difference in the balancing module is that a inductor is used
instead of a capacitor. Due to it’s physical nature some changes need to be also implemented
in the switching structure. And the bleed resistance is in series with the inductor, since
having a parallel resistance would create an RL group with unwanted discharging dynamics.

3.3.5. CC Charging model

With the purpose of running the tests, a module that consistently handles the charging
and discharging of the cell has been created. For charging, as it was mentioned in Section
2.3.3, there are different methods, being the Constant current, constant voltage the most
common one, reffer to the given section for more details. Nonetheless the simple constant
charging with safety margin is considered to be sufficient for out application, thus constant
voltage charging has not been implemented. In the other hand, for discharging, there is no
preferred method in the industry. In this case, constant current discharge has been selected.

The model for the charge/discharge block is simple from the component side. It includes
a variable current source and a load in series. To be able to select the operating mode a
connector that communicates with the control unit is included. Particularities about the
model are presented in Listing 3.4.

model ChargeDischarge
// Parameter declaration
...

equation
if controlInput.mode == 1 then

currentSource.i_discharge = +I_charge;
elseif controlInput.mode == -1 then

currentSource.i_discharge = -I_discharge;
else

currentSource.i_discharge = 0;
end if;
...

end ChargeDischarge;

Listing 3.4: Charge/Discharge model code.

As it can be seen in Listing 3.4, the functionality of the Charge/Discharge module is
easily defined by an if statement. Depending on the signal from the control unit "mode",
the source current imposes a certain current through the module.The particular parameters

36 Modeling Hypotheses

and limits for charging/discharging are assessed from the control module and will be stated
in the implementation details, see Section 4.4.

3.3.6. Control Unit model

The control unit module is responsible of processing all the information from the state
of the cells and executing both the charging/discharging and the adequate balancing. A
general view of how the Control Unit interacts with the other modules is shown in Figure
3.5.

Figure 3.5: Graphic view of the diagram of single capacitor balancing example.

As presented in Figure 3.5, the control unit is normally connected by two connectors
to the balancing system; one connection for the voltageFeedback and a second one for the
balancing control signals; and with one connector to the Charge/Discharge module to allow
for mode selection. The necessary control sequence is case-specific, which means that the
control unit module for each case is different. For this sequence control the native Modelica
library StateGraph2 has been used. This library allows for the creation of Grafcet diagrams
integrated with code. For more information about the library, refer to (Association, 2024b).
The modeling details for each of the main cases are described below, and a schematic version
for the 4 cases can be found in Appendix A for clarification.

Modeling Hypotheses 37

Control Unit - Shunt Balancing

The control logic for shunt resistor balancing follows a simple logic loop that operates
only during the charging phase. The internal control loop logic is defined by the following
steps:

Initial Idle

Discharge until min(Vcell) < Vmin +margin

Idle to bring back cell to stationary state.

Charge until max(Vcell) > Vmax −margin

Go back to initial step.

In the code section the necessary control signals are processed and sent to the respective
modules. Listing 3.5 shows the main parts of this model code.

model Controller_ShuntResistor_SG
// Parameter declaration
...

equation
...
//Charge/discharge mode sequence
controlLoad.mode = if Discharge.active then -1

elseif Charge.active then 1
else 0;

//Balancing signal
controlBalancing.OnOff = Charge.active;
...

end Controller_ShuntResistor_SG;

Listing 3.5: Charge/Discharge model code.

As introduced in Section 2.5.2, the shunt effect of the module will be only and always
activated while charging. This can be seen in Listing above 3.5, the control balancing signal
is active while the Charge step in the grafcet is active. In the same Listing, the charge
discharge control signal equations are set. Depending on which step of the sequence is
active, it activates either charge, discharge or idle on the charge/discharge module. This is
a structure that remains the same for all the control structures. Being, the main changes
about how the balancing is performed and not on the charge/discharge cycle.

38 Modeling Hypotheses

Control Unit - Switched Resistor

The control unit for the switched resistor module extends the logic of the shunt resistor
with individual and selective cell balancing. Unlike the simple shunt where all dissipation
happens simultaneously in all the cells at the same time and during the whole chargin cycle,
the switched resistor approach allows per-cell decision making with individual control over
each dissipative path.

The control steps regarding charging discharging are similar. It being a circular sequence
idle, discharge, idle, charge, idle. The main difference has to do with the balancing while
charging functionality. For that two new states are created, "CheckBalancing" and "Ex-
ecuteBalancing". Where the need of balancing is checked and stored, and later executed.
Please see Appendix A and the library in Modelica for more details on the control sequence.
Listing 3.6 shows the particularities of the shunt control module.

model Controller_SwitchedResistor_SG
//parameter declaration
...

equation
...
// Per-cell balancing state machine with hysteresis
for i in 1:4 loop

OnOffMem[i] =
if CheckBalancing.active then

if voltageFeedback.V_cell[i] > min(voltageFeedback.V_cell) + dV_off then
true

elseif voltageFeedback.V_cell[i] < min(voltageFeedback.V_cell) + dV_off -
eps then

false
else

pre(OnOffMem[i])
elseif ExecuteBalancing.active then

pre(OnOffMem[i])
else

false;
end for;
...
//Assign balancing signal
controlSignalBalancing_Switched.OnOff = OnOffMem;

end Controller_SwitchedResistor_SG;

Listing 3.6: Control unit for switched balancing.

The main condition deciding to go from Charge step to CheckBalancing is whether

Modeling Hypotheses 39

min(Vcell) < max(Vmin)− dVon. In Listing 3.6 the conditions for updating the control signal
memory and the actual control signal are presented. Once in balancing states this code is
executed to see what cells need to be kept the same or switched to a different state. The use
of dV_off and eps ensures avoiding chattering (instant multiple switching) in the simulation.

Control Unit - Single Capacitor

The single capacitor control unit logic manages energy redistribution between adjacent
cells using a flying capacitor topology. This method operates via rapid switching sequences,
transferring charge from the highest to the lowest voltage cell through controlled capacitor
charging and discharging cycles. This compensation is done during the whole operating
time, which means that it is always active during charge, discharge and idle. This makes it
convenient to use a parallel cycle structure, both for this topology as well as for the single
inductor topology. The first cycle is identical to the one explained in the shunt capacitor
control, Section 3.3.6. And it controls solely the charge and discharge of the module. While
the second cycle is only focused in balancing. This second internal control loop logic is
defined by the following steps:

Precharge. To initialize the voltage on the capacitor.

Check voltage. Non-action state until balancing is needed. Balancing condition:
max(Vcell)−min(Vcell) > dVon.

Execute balance. Updates the cells that need to be compensated and update the control
signal to the balancing module. After a given t_Balance returns to CheckVoltage.

Besides the parallel control sequences, this control module presents other particularities.
As mentioned in Section 3.3.3, there is a particular set of switches/commutators to correctly
engage each cell during balancing. These are represented by the switch and com matrices in
Listing 3.7.

Listing 3.7 gives the combination of switches necessary to engage this cell. These ad-
dresses are used in the equation section to select the correct switching addresses depending
on the index of the cells to engage and execute periodic flipping of these addresses, see Listing
3.8.

Listing 3.8 shows the logic behind the flipping of switch patterns between the highest an
lowest voltage cells. First identification of addresses of the above-mentioned cells, second the
storing of the switching patterns for such addresses; and third, switching execution between
maximum and minimum voltage switching patterns every period.

Control Unit - Single Inductor

This single inductor control unit has a similar logic to the single capacitor one. It has
identical parallel control sequences but the approach for assigning, updating, and flipping

40 Modeling Hypotheses

model Controller_SingleCapacitor_SG
...
constant Boolean switchPattern[4, 5] =
[true, true, false, false, false;

false, true, true, false, false;
false, false, true, true, false;
false, false, false, true, true];

constant Integer comPattern[4, 2] =
[0, 1;

1, 0;
0, 1;
1, 0];

equation
...

end Controller_SingleCapacitor_SG;

Listing 3.7: Control unit for single capacitor balancing, switching patterns.

switching patterns is slightly different. In this case to ensure that the balancing inductance
has a net-zero voltage/current curve, the cells to balance need to be connected with opposite
polarity each cycle. See Listing 3.9 for the main differences.

As presented in Listing 3.9 there is no "fixed" switching pattern for the commutators. In
this case, the decision is whether or not the commutator pattern needs to be flipped every
cycle or not. Depending on the index of the cells to balance, this is evaluated, and a flip
condition is added to the actual commutator flipping during the balancing step.

3.4. Conclusion

In this chapter, the full modeling structure for the battery system was described. The
ECM was built using parameter curves taken from experimental data, and extra features like
aging and cell imbalance were added using derating factors. These models were combined
into cell packs for testing.

Four different balancing systems were modeled, each with its own control unit. The
control logic was built using state diagrams that activate charging, discharging, and balancing
actions. While the models work well for small systems, each balancing method needs its own
custom control, and larger systems may require extra improvements. This chapter provides
the complete setup needed to run simulations and test the results in the next chapters.

Modeling Hypotheses 41

model Controller_SingleCapacitor_SG
...

equation
...
// Argument of min and max voltage cells
when Check_Execute.fire then

idx_max =Functions.argmax(voltageFeedback.V_cell);
idx_min =Functions.argmin(voltageFeedback.V_cell);

// Assing switching patterns for max and min
for i in 1:5 loop

OnOff_max[i] = switchPattern[idx_max, i];
OnOff_min[i] = switchPattern[idx_min, i];

end for;
for j in 1:2 loop

com_max[j] = comPattern[idx_max, j];
com_min[j] = comPattern[idx_min, j];

end for;
end when;
// Periodic commutation switching
when sample(0, T_commute) and ExecuteBalancing.active then

comm_flip = not pre(comm_flip);
end when;

// Activate control signal depending on state and comm_flip
for i in 1:5 loop

controlSignalBalancing_Single.OnOff[i] =
if initial() then (i == 5) else
if Precharge.active then (i == 5) else
if ExecuteBalancing.active then
if comm_flip then OnOff_max[i] else OnOff_min[i]
else false;

end for;
controlSignalBalancing_Single.Com[1] = if ExecuteBalancing.active then

if comm_flip then com_max[1] else com_min[1] else 1;
controlSignalBalancing_Single.Com[2] = if ExecuteBalancing.active then

if comm_flip then com_max[2] else com_min[2] else 0;
end Controller_SingleCapacitor_SG;

Listing 3.8: Control unit for single capacitor balancing, equations.

42 Modeling Hypotheses

model Controller_SingleInductor_SG
...

equation
when Check_Execute.fire then

...
// Assign base commutator pattern
com_max = {1, 0};
com_min = {0, 1};

// Determine whether commutator flipping is needed
flipCommutators = abs(idx_max - idx_min) == 2;
...

end when;
...

for i in 1:5 loop
controlSignalBalancing_Single.OnOff[i] =

if initial() then (i == 5 or i == 4) else
if Precharge.active then (i == 5) else
if ExecuteBalancing.active then
if comm_flip then OnOff_max[i] else OnOff_min[i]
else false;

end for;
controlSignalBalancing_Single.Com[1] =

if initial() then 1
else if ExecuteBalancing.active then

if flipCommutators then
if comm_flip then com_max[1] else com_min[1]

else com_max[1]
else 0;
//Same for Com[2]
...

end Controller_SingleInductor_SG;

Listing 3.9: Control unit for single inductor balancing, equations.

Chapter 4

Implementation Details

4.1. Introduction

In this chapter, the implementation details of the modeling and simulation framework
are presented. Building on the model structures introduced in Chapter 3, the specific pa-
rameter values, component selections, and control configurations used in the simulations are
explained.

The chapter begins with the parametrization of the equivalent circuit model (ECM), in-
cluding aging and unbalance factors to replicate second-life battery behavior. It continues
with the sizing of components for each balancing topology—resistive, capacitive, and in-
ductive—and justifies the design choices based on literature and practical constraints. The
charge and discharge module setup is also described, along with the logic behind the balanc-
ing control algorithms. Altogether, these details define the simulation environment used to
evaluate the performance of the selected balancing methods.

4.2. Parametrization of ECM

As previously introduced, a single Thevenin ECM was selected to represent the behavior
of each lithium-ion cell. As presented in Figure 3.1, the structure includes an ohmic resis-
tance (R0), a parallel RC branch defined by a polarization resistance (R1) and a transient
capacitance (C1), along with a voltage source representing the open-circuit voltage (OCV).
This section explores the parametrization of these variables for an example cell and the
modeling of aging and unbalance within a four-cell pack, all starting from the same nominal
values.

4.2.1. Base Parameters

The parametrization of a cell arises from experimental testing on a physical cell. Typ-
ically, this is performed through a pulse discharge test, in which the battery is subjected

43

44 Implementation Details

to current pulses at various states of charge (SOC), as described in Section 2.4.5. For sim-
plification purposes, the OCV is considered SOC-dependent, while the remaining model
parameters are taken as independent of SOC. Effects such as temperature variation and hys-
teresis—although relevant in high-fidelity modeling—are omitted here to reduce complexity
and focus the analysis on balancing efficiency under defined conditions.

The base data used for parameterization are derived from experimental results available
in the MATLAB battery library, specifically from a pulse discharge test. Figure 4.1 presents
the discharge current, voltage, and SOC over the duration of the test.

Figure 4.1: Voltage response under pulse discharge test.

From the voltage response shown in Figure 4.1, the dynamic characteristics of the cell
can be analyzed. By applying an optimization procedure, the parameterization of the model
can be performed. In this project, the parameters R0, R1, C1, and OCV are all considered
SOC-dependent and are stored as lookup tables. Equation 4.1 models the voltage response
for the single Thevenin configuration.

V = OCV − i ·R0 −
dVC1

dz
· τ1 (4.1)

By running an optimization algorithm on Equation 4.1 to fit the experimental data, pa-
rameter values for each component are extracted. The result is a set of parameters—OCV(SOC),
R0, R1, and C1—as shown in Figure 4.2.

Implementation Details 45

Figure 4.2: OCV and ECM parameters as functions of SOC.

These ECM parameters characterize the tested physical cell. All parameters are imple-
mented as SOC-dependent using linear interpolation between sampled points (by Example).
This strategy enables a more representative modeling of cell behavior while still allowing
aging and unbalance effects to be applied through parameter derating.

4.2.2. Aging and Unbalance

To approximate the behavior of second-life cells, aging is represented by introducing pa-
rameter variation in each of the four cells in the pack. These derated values reflect typical
degradation patterns observed in aged lithium-ion batteries: an increase in internal resis-
tance, a decrease in polarization capacitance, and a reduction in capacity. Refer to Section
2.4.3 for more details. The derating parameters used for implementation are summarized in
Table 4.1.

Table 4.1: ECM derating parameters
Parameter R0 R1 C1 Q [Ah]
Value +50% +50% -20% -20%

In addition to aging effects, unbalance is introduced across the cells to emulate realistic
cell-to-cell variations. The unbalance parameters summarized in Table 4.2 define the relative
percentage deviations applied to each cell with respect to the uniformly aged baseline. The
capacity (Q) and polarization capacitance (C1) are symmetrically varied across the four cells,
while the resistances (R0, R1) are symmetrically increased and decreased. This configuration
enables a controlled and systematic distribution of inhomogeneities.

46 Implementation Details

Table 4.2: Unbalance parameters applied to each cell
Parameter Cell 1 Cell 2 Cell 3 Cell 4
R0 (%) +5% +1.67% -1.67% -5%
R1 (%) +5% +1.67% -1.67% -5%
C1 (%) -3% -1% +1% +3%
Q (%) -3% -1% +1% +3%

This systematic setup ensures a controlled and repeatable evaluation of the selected
balancing strategies. By applying uniform deviations, the performance of each balancing
approach can be analyzed under realistic aging and unbalance conditions. Both aging and
unbalance factors are applied to the SOC-dependent parameter curves shown in Figure 4.2.

4.3. Balancing Module Parameters

In the implementation of the balancing system, four distinct methodologies were incor-
porated, each adapted to allow for control and monitoring of the cells. These configurations
were selected based on their documented use in second-life applications, their suitability for
a four-cell pack, and the feasibility of modeling them in Modelica (Khan et al., 2024), (Uzair
et al., 2021).

As discussed in the modeling section, all switching elements within the balancing modules
are implemented using MOSFET components rather than ideal logical switches. This design
choice serves two main purposes. First, modeling with MOSFETs captures non-ideal effects
such as finite on-resistance, gate delays, and switching losses—factors that are relevant for
estimating both power losses and balancing effectiveness. Second, using component-based
switches avoids the creation of algebraic loops and numerical stiffness, which often pose
challenges to solvers in Modelica environments. These advantages make MOSFET-based
switching a technically appropriate and practical choice for the simulation framework.

Resistor sizing

In passive balancing systems, an important part of the implementation is the resistor
sizing. Modules with lower resistance allow for a higher balancing speed, at the drawback of
more heat generation. According to (Szczepaniak et al., 2022), passive balancing currents for
EVs typically range between 50mA and 300mA. Given that this project targets a second-life
application, a current value in the middle of the range, 150mA, is selected. This avoids fast
balancing with excessive dissipation but ensures a reasonable response time to accommodate
the higher balancing needs characteristic of aged cells.

The value of the balancing resistor can be calculated using the following formula:

Rbal =
Vcell

Ibal
(4.2)

Implementation Details 47

where:

Rbal is the balancing resistor value (Ω),

Vcell is the nominal cell voltage (V),

Ibal is the desired balancing current (A).

Considering the nominal cell voltage of 4.2 V and a target balancing current of 150mA,
the resulting resistor value is approximately 28Ω. A commercially available value of 27Ω
or 30Ω could be selected. Continuing with the conservative approach, a resistor of 30Ω
will be selected and applied for both passive balancing methods. It could be argued that a
switched resistor topology allows for a higher balancing current since dissipation is selective;
however, for consistency and to facilitate a comparative study, the same balancing conditions
are maintained across all methods.

Capacitor sizing

The sizing of the capacitor has an inverse dependence on the maximum voltage difference
expected and the desired balancing current. Additionally, the switching frequency directly
influences the sizing. The formula for the sizing of the balancing capacitor is given by (Cao
et al., 2020):

C =
2 · E

(∆Vcap)2
(4.3)

The energy transferred per switching cycle is:

E =
P

fsw
(4.4)

Balancing power can be approximated as:

P = ∆V · Ibal (4.5)

where:

C is the required capacitance (F),

E is the energy transferred per switching event (J),

∆Vcap is the allowed voltage ripple across the capacitor (V),

P is the balancing power (W),

fsw is the switching frequency (Hz),

∆V is the maximum voltage difference between cells (V),

48 Implementation Details

Ibal is the target balancing current (A).

It is important to note that the energy calculated per cycle assumes ideal instantaneous
charging and discharging phases. In more accurate modeling, considering the current wave-
form as triangular due to the switching behavior, the effective energy transferred per cycle
can be corrected by a factor of one-half. In this case, the energy per cycle is given by:

E =
1

2
· P

fsw
(4.6)

This correction accounts for the fact that energy transfer occurs during two distinct
phases (charging and discharging) within each full switching cycle and that the average
current over each phase is lower than the peak balancing current. For conservative sizing,
the uncorrected formula is typically employed, while the corrected version can be used for
optimized designs (Makowski and Pedram, 2016; Texas Instruments, 2015). Following this
more realistic approach, the average balancing current is considered to be half of the peak
balancing current, according to Formula 4.6.

The switching frequency selected for the balancing circuit is 50 kHz, within the typical
industry range of 30 kHz to 150 kHz (Texas Instruments, 2015). Selecting 50 kHz offers a
good compromise between reducing the size of passive components and minimizing switching
losses. The target balancing current is set at 1A, which falls within the industry standard
range of 0.5A to 2.0A (Szczepaniak et al., 2022; Texas Instruments, 2015). A balancing
current of 1A ensures sufficiently fast redistribution of energy among cells without causing
significant thermal or electrical stress on the system components. As mentioned, the nominal
OCV of the cell is 4.2 V and a maximum voltage ripple between cells of 0.2 V (0.1 V across
the capacitor). Altogether, this gives a result of 800 µF, selecting a 820 µF commercially
available.

Overall, these parameter selections ensure that the balancing module is efficient, reliable,
and aligned with industry best practices. The calculated values for the capacitor and resistor
are summarized in Table 4.3. As will be commented on in Chapter 6, these "industry
standard" values introduce a lot of complications when simulating with Modelica. Ensuring
that the model is physically realistic will be the priority of this project even if that means
having to reduce the switching characteristics to make the simulation possible. Solutions to
this issue are also explored in Chapters 6 and 7.

Inductor sizing

Similar to the single capacitor topology, the single inductor configuration operates based
on charging and discharging cycles at a determined switching frequency. The sizing of the
inductor is directly dependent on the duty cycle, the switching frequency, the maximum
expected voltage difference between cells, and the maximum balancing current allowed. As
shown in (Tudorache et al., 2017), the required inductance can be calculated according to:

Implementation Details 49

Table 4.3: Balancing Topologies and Assigned Parameters.
Balancing Topology Assigned Parameters
Shunt (resistor only) R = 30Ω
Switched resistor R = 30Ω, controlled by MOSFET
Switched capacitor C = 820 µF, switching at 50 kHz
Inductor-based transfer L = 2.7 µH, switching at 50 kHz

L =
∆V ·D · (1−D)

fsw ·∆I
(4.7)

where:

L is the required inductance (H),

∆V is the voltage difference between the two cells (V),

D is the duty cycle (dimensionless, typically around 0.5),

fsw is the switching frequency (Hz),

∆I is the allowed peak-to-peak current ripple (A).

The same assumptions as for the capacitor sizing are taken: a fixed duty cycle of 0.5

and a switching frequency of 50 kHz have been selected. These values fall within the typical
industry range of 30 kHz to 150 kHz (Texas Instruments, 2015). By selecting the same
values as in Section 4.3, it will be possible to draw more conclusions on the results with each
technology. For the same reason, a balancing current of 1A has been selected, consistent
with the values defined in the capacitor sizing section and within the standard range for
industrial active balancing applications (Szczepaniak et al., 2022). As with the capacitor,
a voltage ripple of 0.2 V and a current ripple of 0.4 A (40% of the balancing current) are
allowed. Knowing that the OCV of the cell is 4.2 V, the inductance required is around
2.5 µH, selecting a commercially available inductor of 2.7 µH.

Overall, the inductor sizing methodology ensures consistency across the active balancing
strategies developed in this work, and the selected parameters fall within realistic values for
industry standards. The same reflection made for the capacitor balancing applies here: the
industry-standard switching times and inductance values are hard to handle in Modelica in
a straightforward way. Thus, the "correct" physical behavior will be prioritized even if the
switching frequencies and inductance levels need to be set higher.

Sizing results

With the assumptions and formulas introduced in the sections above, the assigned pa-
rameters for each topology are calculated and listed in Table 4.3.

50 Implementation Details

All balancing modules interact with a control module that evaluates cell state parameters
(voltage, SoC) and activates the balancing logic based on predefined conditions. In Section
4.5, the signal generation and control methodology are addressed in detail.

4.4. Charge/Load module

The charging and discharging cycles of the second-life lithium-ion cell pack are gov-
erned through a dedicated control unit utilizing a constant current (CC) strategy. As pre-
sented in Section 3.3.5, this simplified approach derives from the conventional Constant Cur-
rent–Constant Voltage (CCCV) method, reflecting a deliberate choice to reduce modeling
complexity. This implementation is justified by the relatively moderate energy throughput
and absence of high-precision SoC calibration requirements typical in second-life evaluations.

In the charging phase, a 2 C rate—equivalent to 2 A, given the nominal pre-derated
capacity of 3600 C—is applied across the cell pack. This elevated rate enables rapid energy
replenishment while remaining within the safe operating limits of the cell. To mitigate risks
associated with overvoltage and reduce the likelihood of accelerated degradation phenomena
such as lithium plating, the charging process is terminated once any individual cell reaches 4.2
V. To enhance robustness, a safety margin below this limit is introduced, creating a voltage
guard band that ensures operational safety (Perişoară et al., 2018; Khan et al., 2024).

Discharging is carried out at a constant current of 0.8 A, corresponding to approximately
0.8 C. This conservative discharge rate is suitable for second-life evaluations (He and Chen,
2023). The discharging process is interrupted when the terminal voltage of the lowest cell
reaches 3.5 V. This voltage threshold incorporates a protective margin, as with the maximum
voltage, protecting the cells against over-discharge.

The Modelica-based implementation of this logic integrates the CC-only charge and
discharge operations directly into the simulation framework. Unlike CCCV protocols, no
transition to voltage-hold mode is implemented. Instead, the system operates purely in
current-controlled modes, with transitions governed by cell-level voltage comparisons to the
defined upper and lower bounds. This approach is consistent with the reduced complexity
required for experimental analysis and simulation of passive balancing strategies. The overall
charge/load module interacts dynamically with the control logic outlined in Section 5.8.

4.5. Balancing Algorithm

The balancing algorithm serves as the monitoring system and the direct actuator of the
balancing process on the cell. Its primary objective is to reduce inter-cell voltage deviations,
thereby improving the effective capacity and safety of the pack, particularly in second-life
configurations. The algorithm monitors the instantaneous voltage of each cell and makes
decisions based on predefined threshold conditions.

Implementation Details 51

For passive topologies, the balancing is done during the charging phase, consistent with
standard battery management practices. This approach ensures that excess energy from
higher-voltage cells is redistributed or dissipated without risking deep discharge or additional
degradation during other phases. Discharge and idle periods are excluded from balancing to
avoid thermal or efficiency penalties (Khan et al., 2024), (Uzair et al., 2021).

For active methods, the balancing will be done continuously if needed. That means,
during charge, discharge, and idle. In the case of active balancing systems, efficiency is
not achieved through dissipation, thus balancing during discharge periods can actually im-
prove the effective capacity of the battery by passing charge from less aged cells to more
degraded cells. Since dissipation is almost not present (besides that induced in the MOSFET
logic), balancing in any stage does not impact the efficiency of the balancing itself differently.

The control logic continuously compares the voltage of each cell against the average
pack voltage. A balancing control signal is triggered when the deviation between a cell’s
voltage and the mean exceeds a 20mV threshold, a commonly adopted limit that balances
convergence speed and avoids noise (Chavan et al., 2025). Once triggered, the specific
balancing method (resistive or active) is applied. In the case of passive methods, energy is
dissipated through controlled resistors, while in active approaches, energy is redistributed.
For active methods, the selection of which cells to balance is determined by the highest
deviation in magnitudes (cells with the highest and lowest voltages).

Both for active and passive methods, the algorithm generally follows a cyclic structure:

Read cell values.

Identify the cell with the lowest voltage.

Compare voltages from other cells and evaluate the need for balancing.

Activate balancing in all cells that need it (passive); activate balancing paths sequen-
tially (active).

Wait and start again.

This logic cycle repeats continuously under operation. The control unit continuously
updates the status of all four cells and issues binary activation signals to each balancing
module accordingly. For the active methods, the control module additionally includes a
PWM signal to regulate the switching frequency between charging/discharging, for this
project set to 50 kHz as explained in Section 4.3.

For clarity, it is recommended for the reader to open and review the control unit modules.
These visual representations formalize the operational logic and facilitate validation and
future extensions. The values and thresholds influencing the control can be accessed in the
code or directly from models graphic views.

52 Implementation Details

4.6. Conclusion

This chapter presented the technical implementation of the battery model and its balanc-
ing systems. The parametrization process for the ECM was outlined, including a realistic
setup of aged and unbalanced cells to simulate second-life battery behavior. Component
values for the balancing modules were sized according to standard equations and adjusted
to reflect practical and industry-relevant conditions.

The control logic and operating limits for both passive and active balancing strategies
were also introduced. Special attention was given to maintaining consistent testing conditions
across all methods to allow for a fair comparison in the following validation and results
chapter. The decisions made here—on parameter values, control structure, and operating
modes—establish the foundation for the performance evaluation and model validation that
follow.

Chapter 5

Battery_Balancing Library Architecture

5.1. Introduction

This chapter presents the internal architecture and design methodology of the custom
Modelica library developed for modeling and simulating second-life lithium-ion battery packs
with various balancing strategies. The development follows a modular and hierarchical
approach, characteristic of object-oriented modeling, where components are defined in terms
of reusable classes.

The library is organized into eight primary packages: Interfaces, Components, Functions,
ECM_Structures, Cell_Packs, Balancing_Structures, Control_Structures, and Examples.
Each package encapsulates a specific aspect of the modeling framework, facilitating trans-
parency and scalability.

Figure 5.1 illustrates the structural hierarchy of the library. This visual representation
serves both as a topological map of the library. The architecture supports key modeling
requirements outlined in earlier chapters, including the representation of equivalent circuit
models (ECMs), the modular assembly of cell packs, and the implementation of diverse
balancing topologies.

The library design is grounded in the use of partial classes and connector interfaces to
enforce consistent integration rules and reduce redundancy. For example, all ECM-based
components inherit from a base model that includes standardized positive and negative
electrical pins. This ensures uniformity across models and simplifies replacement or exten-
sion, a critical feature when evaluating the performance of balancing methods under varying
second-life degradation scenarios.

Furthermore, the use of structured test cases in the Examples package provides a repro-
ducible environment. These simulations employ parameter sets and controlled current/volt-
age profiles to compare the behavior of different balancing algorithms in ideal and degraded
cell configurations.

In subsequent sections, each package is presented in detail, highlighting its purpose,

53

54 Battery_Balancing Library Architecture

Figure 5.1: Diagram of library architecture, including packages and classes.

internal organization, and contribution to the overall simulation environment.

5.2. Package Interfaces

This package defines the component structures necessary to describe and connect different
elements within the library. By using a set of well-defined connectors and partial base models,
the architecture supports the modular design approach characteristic of Modelica and ensures
proper connection between elements.

The interfaces included in this package establish the fundamental contract between elec-
trical components, controllers, and auxiliary modules. For example, the use of standardized
Pin_p and Pin_n connectors ensures a uniform definition of current and voltage direction-
ality, which is essential for correctly assembling ECM structures and balancing networks.
The following models are included in this package:

Pin. Standard structure for neutral electrical port.

Pin_p. Standard structure for a positive electrical port.

Pin_n. Standard structure for a negative electrical port.

UnPuerto. Partial model for two-port electrical components using one positive and
one negative pin.

Battery_Balancing Library Architecture 55

UnPuerto_ECM. Partial model specifically structured for ECM models using one pos-
itive and one negative pin.

UnPuertoTresPines. Partial model includes an additional signal pin.

CommutatorInterface. Partial model structured for commutator model.

ControlSignal. Connector to transfer non-physical control signal for communication
between the control and the charge/discharge module.

ControlSignalBalancing_Shunt. Connector to transfer non-physical control signal for
shunt resistor balancing.

ControlSignalBalancing_Switched. Connector to transfer non-physical control signal
in switched resistor topology.

ControlSignalBalancing_Single. Connector to transfer non-physical control signal in
single component (capacitor or inductor) balancing topologies.

VoltageFeedback. Connector to transfer voltage feedback for control purposes.

VoltageFeedback1C. Specialization of VoltageFeedback for one-cell configurations.

The abstract and reusable nature of these interface definitions allows different packages
in the library to inherit common behavior and integrate between them.

5.3. Package Components

This package contains the necessary electrical components used for the modeling of the
ECM structures included in Section 5.5, as well as other standard electrical components used
for building basic models and performing tests.

The models in this package serve as foundational elements in the construction of the rest
of the library. Several components, such as switches and controlled sources, are equipped
with control signal inputs, making them directly compatible with the interface structures
defined in the Interfaces package. The following models are included in this package:

Capacitance. Ideal capacitor model using a constant value.

Inductance. Ideal inductor model.

Ground. Electrical ground reference point.

NMOS. Simplified model of an NMOS transistor used in switching configurations.

56 Battery_Balancing Library Architecture

OCV_Source_SOC. Voltage source dependent on SOC, representing the open circuit
voltage characteristic.

Resistance. Ideal resistor component.

Switch. Controlled switch with internal resistance.

Icontrol. Current source defined by time-varying input profile, used in pulse discharge
simulations.

Vcontrol. Voltage control source defined by external input profile.

Commutator. Switch-matrix or multiplexer structure to route signals between two
entries to base.

These components collectively support the creation of test benches, ECMs, and complete
battery packs with integrated balancing strategies. In its core, this library could have been
substituted by a standard Modelica library. The action of creating this library from scratch
has the intent to have control over the whole library creation process.

5.4. Package Functions

This package contains auxiliary functions used in more complex structures such as balanc-
ing and control modules. These functions encapsulate computational logic and data-handling
operations that are reused across various packages. This approach also facilitates rapid up-
dates to mathematical routines without altering the structural composition of higher-level
models. The following functions are included in this package:

ECM_ParameterLoader_1Thv. Loads pre-calculated ECM parameters from file for
the single Thevenin branch model.

argmax. Returns the index of the maximum element in a vector.

argmin. Returns the index of the minimum element in a vector.

These functions are typically used during model initialization or within control blocks.
The parameter loader, in particular, enables the application of externally charged ECM data
for second-life battery configurations.

Battery_Balancing Library Architecture 57

5.5. Package ECM_structures

This package contains various structures of equivalent circuit models (ECMs). These
models are used to simulate the electrical behavior of lithium-ion cells under different con-
ditions. Each ECM structure has a different purpose and allows for its use in different cases
depending on the needs of the user. Furthermore, the parameterization of resistive and ca-
pacitive elements allows to represent both nominal and degraded second-life behavior. The
following models are included in this package:

ECM_Thevenin. Standard single-branch Thevenin ECM model including resistance
and RC network.

ECM_Thevenin_SL. Extended ECM_Thevenin for second-life applications with in-
dividual parameter loading.

ECM_Thevenin_SL_Vbf. Variant of the second-life Thevenin model including direct
voltage feedback to the control.

Each of these variants supports integration with higher-level cell and pack models, al-
lowing for the possibility to test on different scenarios. This includes: uniform degradation,
cell-to-cell variability, or control feedback for balancing strategies.

5.6. Package Cell_Packs

This package contains configurations of 4-cell series-connected ECM packs. These are
used to evaluate performance in balancing and degradation conditions. These models are
designed to be compatible with the control and balancing modules defined in subsequent
packages, ensuring consistent simulation scenarios across different balancing methods. The
following models are included in this package:

Battery_Module.N-Cell pack connected in series.

Battery4Cell_Bal. 4-Cell pack with intermediate electrical nodes between cells for
balancing.

Battery4Cell_Bal_Vbf.4-Cell pack with intermediate electrical nodes between cells for
balancing and voltage feedback.

BatteryNCell_Bal. N-Cell pack with intermediate electrical nodes between cells for
balancing.

These models serve both as experimental setups for case studies and as reusable struc-
tures. The setups selected are based on the needs observed in scientific literature, where
testing balancing on 4 cells in series is the most common case.

58 Battery_Balancing Library Architecture

5.7. Package Balancing_Structures

This package contains the models of the Balancing model structures described in Section
2.5. As introduced previously, the balancing is going to be performed in packs of 4 cells.
Each structure in this package implements a distinct balancing methodology, including both
passive and active techniques.

All balancing models are built using modular components. The 4-cell configuration en-
ables focused study on cell dynamics while maintaining manageable model complexity for
simulation and analysis. The following models are included in this package:

ChargeDischarge. Core module managing pack-level charge and discharge boundary
conditions.

ShuntResistorBalancing_4Cell. Applies passive resistive balancing by shunting excess
energy under the charging cycle.

SwitchedResistorBalancing_4Cell. Applies switching control to limit losses in individ-
ual resistor-based balancing.

SingleCapacitorBalancing_4Cell. Active balancing using charge redistribution through
a single capacitor.

SingleInductorBalancing_4Cell. Active balancing using charge redistribution through
a single inductor.

5.8. Package Control_Structures

This package includes the controller blocks that regulate charging, discharging, and bal-
ancing decisions. The controllers are designed using a signal-based architecture compatible
with the connector definitions in the Interfaces package. They receive voltage feedback
from the pack and issue control signals to the switching components. Each controller is
parameterized for a specific balancing topology.

Internally, the models apply basic Grafcet logic characterized by steps and transitions.
While the control logic is relatively simple, it enables fast simulation and modular integration
with balancing structures. The following models are included in this package:

Controller_NoBalancing1C_SG. Controller for one-cell pack with no balancing.

Controller_NoBalancing4C_SG. Controller for 4-cell pack with no balancing.

Controller_ShuntResistor_SG. Controller for 4-cell pack with shunt balancing resistor
under charging.

Battery_Balancing Library Architecture 59

Controller_SwitchedResistor_SG. Controller for 4-cell pack with individual switched
resistor balancing.

Controller_SingleCapacitor_SG. Controller for 4-cell pack with active single capacitor
balancing.

Controller_SingleInductor_SG. Controller for 4-cell pack with active single inductor
balancing.

The structure of these controllers is tailored 1-to-1 to each balancing methodology. Al-
though the modularity of the balancing and control modules allows them to be replaced or
extended with more advanced logic, such as PID-based or reinforcement learning controllers,
without altering the core balancing or cell pack models.

5.9. Package Examples

This package contains test examples demonstrating the performance of different bal-
ancing strategies under a defined charge/discharge routine. Each example assembles com-
ponents from the library—ECM cells, balancing structures, control units, and boundary
conditions—into a full simulation system. The following models are included in this pack-
age:

Example_NoBalancing1CSG. One-cell system without balancing, used for model val-
idation.

Example_NoBalancing4CSG. Four-cell system without balancing.

Example_ShuntBalancing4CSG. Four-cell passive shunt balancing test case.

Example_SwitchedBalancing4CSG. Four-cell switched balancing test case.

Example_SingleCapacitor4CSG. Four cell active balancing using a single capacitor
test case.

Example_SingleInductor4CSG. Four cell active balancing using an inductor test case.

These examples are critical for validating the functionality of the library and demon-
strating its applicability to second-life battery analysis.

60 Battery_Balancing Library Architecture

5.10. Conclusion

This chapter presented the structure and contents of the custom Modelica library de-
veloped for the implementation and testing of the proposed battery balancing strategies.
The library is organized in a modular way, with each package addressing a specific aspect of
the modeling task—from defining basic connectors and components to implementing ECM
structures, control units, and full test examples.

This modular approach supports easy reusability, parameter adjustment, and further
extension of the models. The architecture is also designed to ensure clarity and consistency
between simulations, enabling a structured workflow from individual components to system-
level behavior. The library forms the backbone of the simulations and serves as a reusable
toolset for further experimentation or future projects.

Chapter 6

Model Validation and Results

6.1. Introduction

In this section, the validation of the developed battery library is presented based on the
results obtained through a series of simulations. The primary objective is to assess whether
the behavior of the models aligns with expected results, both from a physical and numerical
standpoint. Different test cases are executed to evaluate individual cell behavior, aging
effects, and the performance of various balancing strategies.

Additionally, practical challenges that arose during the simulations are discussed, in-
cluding issues related to computational complexity and switching dynamics. These insights
provide context for the strengths and limitations of the implemented library and inform
suggestions for future improvements.

6.2. Single Cell Validation

The first validation step focuses on the behavior of a single cell, modeled using the
Thevenin equivalent structure described previously. To evaluate the behavior of the model,
the main aspect to analyze is the voltage evolution with regard to the SOC of the cell. Figure
6.1 plots the voltage and SOC of one cell over a charge/discharge cycle.

61

62 Model Validation and Results

Figure 6.1: Voltage evolution of one cell under charge/discharge cycle.

As shown in Figure 6.1, cell voltage follows a reasonable response for the given discharge
current. There is a reduction of the voltage at the terminals that is accentuated close to full
charge and full discharge states, as expected. A clear stabilization effect is observed during
idle periods following charging and discharging cycles, which reflects the influence of the RC
time constant present in the single-cell Thevenin model. This relaxation confirms the suit-
ability of the model in capturing transient behavior. Overall, the single-cell implementation
behaves consistently with the expected electrochemical characteristics and provides a valid
basis for system-level modeling. Figure 6.3 shows that the evolution of parameters with
respect to SOC behaves correctly in relation to the parametrization data shown in Figure
6.2.

Figure 6.2: SOC-OCV curve obtained from
MATLAB reference data.

Figure 6.3: SOC-OCV response from Mod-
elica single cell simulation.

As shown in Figures 6.2 and 6.3, the model behavior with respect to SOC appears correct
and confirms a good basis for the rest of the project. The slight differences between the curves
are due to the safety voltage margins implemented—the curve does not reach 0 or 1 SOC
but stays within a safety margin.

Model Validation and Results 63

6.3. Cell Pack Derated Validation

To evaluate the behavior of a second-life pack, a system of four cells was simulated under
charge and discharge conditions without any balancing mechanism. This allows investigation
of the inherent cell-to-cell variations and their impact on pack behavior.

Figure 6.4: Voltage profiles of four derated cells during charge/discharge cycle.

Figure 6.4 illustrates the voltage evolution of the four cells. Each cell has a different degree
of capacity derating, with Cell 1 being the least and Cell 4 the most affected, as presented
in Table 4.2. As a result, the voltage of Cell 4 rises and falls more rapidly compared to the
others under load, since the cell is more degraded. This is a direct consequence of its lower
effective capacity. The observed behavior validates the capacity scaling implemented in the
model and confirms that the pack representation correctly reflects second-life aging effects.

6.4. Passive Balancing Methods

Building on the previously validated cell pack, passive balancing methods were introduced
to study their effect on mitigating voltage disparities. Two passive balancing topologies were
tested: a simple shunt resistor and a switched resistor configuration.

64 Model Validation and Results

Figure 6.5: Voltage profiles of four-cell charge/discharge cycle with Shunt (Left) and
Switched (Right) balancing.

Figure 6.5 illustrates that both balancing methods effectively reduce the voltage spread
among the cells during the charging phase. A minor difference in charging duration is
observed, with the shunt-balanced system requiring slightly more time to reach full charge.
Moreover, the switched balancing method demonstrates faster and more selective balancing
behavior, although this distinction is not immediately evident from the voltage curves alone.

Notably, after the charging phase during the idle period, the shunt-balancing strategy
appears to achieve a more uniform voltage distribution across the cells. This outcome can
be attributed to the continuous operation of the shunt mechanism throughout the charging
process. In contrast, the switched balancing method stops the balancing sequence once the
voltage difference between cells falls below a predefined threshold. As a result, a residual
voltage disparity may remain, depending on the magnitude of the set threshold.

To gain further insight into the activation dynamics and balancing intensity of both
methods, the individual cell balancing currents were monitored and are presented in Figure
6.6.

Figure 6.6: Balancing currents and voltage profiles under full charge with Shunt (Left) and
Switched (Right) balancing.

Model Validation and Results 65

From Figure 6.6, it is evident that the switched resistor topology results in more selective
and lower amplitude balancing currents, thereby reducing power dissipation. However, this
configuration also demands more complex control logic. During simulation, some issues with
control signal chattering were observed, which led to the implementation of hysteresis or
time delay elements. A further point of interest is the comparison between the expected
theoretical balancing current (based on resistance value) and the actual simulated values,
which match within an acceptable tolerance. This confirms both the physical consistency of
the model and the correctness of its electrical implementation.

6.5. Active Balancing Methods

To address the power losses inherent in passive balancing, active methods were intro-
duced, starting with a single capacitor topology. While the physical behavior aligns with
theoretical expectations, challenges were encountered when operating under high-frequency
switching conditions. Results for both capacitor and inductor balancing have been similar,
and the conclusions are the same for both systems. Thus, for clarity, some figures will show
results for only one of them. Refer to Appendix A to execute and analyze the full results.
Figure 6.7 shows a charge-discharge cycle for the capacitor balancing structure.

Figure 6.7: Voltage profile of the balancing capacitor during a transfer cycle.

Figure 6.7 illustrates the cell voltages under a charge-discharge cycle. Since the simulation
became computationally intensive when attempting to reach realistic industrial switching
frequencies, a capacitance of 10e-3 F and a frequency of 25 Hz have been used to successfully
run the simulations. This limitation led to suboptimal balancing performance due to an
insufficient balancing current. To ensure that the model behavior aligns with physical reality,
Figure 6.8 shows a close-up view with high step resolution of the balancing capacitor voltage
and current when balancing is active.

66 Model Validation and Results

Figure 6.8: Voltage (Left) and current profile (Right) of the balancing capacitor.

The left panel of Figure 6.8 shows the voltage evolution of the capacitor while balanc-
ing. Each period when a switch flip is performed, the capacitor undergoes a clear change
in voltage—charging when connected to the highest-voltage cell and discharging when the
lowest-voltage cell is connected instead. This behavior aligns with physical expectations. On
the other hand, the right panel reveals that due to the high capacitance and relatively low
switching frequency (relative to industry standards), the balancing currents were consider-
ably lower than required for effective cell balancing.

A similar behavior is observed when repeating the exercise with the inductor balancing
example. Figure 6.9 shows a close-up view with high step resolution of the balancing inductor
voltage and current when balancing is active. In this case, an inductance of 0.04 H and a
frequency of 25 Hz were used.

Figure 6.9: Voltage (Left) and current profile (Right) of the balancing inductor.

Figure 6.9 confirms similar behavior to that described for the capacitor case. The left
panel shows a reasonable voltage evolution of the inductor while balancing. The voltage

Model Validation and Results 67

jumps from one cell connection polarity to the opposite every period, aligning with expected
physical behavior. Contrary to the capacitor case, the inductor allows for significant bal-
ancing currents even at lower switching frequencies. Nonetheless, in real applications, the
switching frequency would be considerably higher, and the balancing inductance much lower.

In both cases, this confirms the conceptual validity of the model, even if execution was
constrained by simulation performance. To overcome the computational burden and achieve
results that better reflect industrial operation, several strategies can be implemented:

Divide the total simulation time into smaller time slices using the simulate->continue
function in Modelica.

Reduce the number of stored variables and output parameters to decrease memory
usage.

Introduce simplified switch models or equivalent average models for high-frequency
switching behavior.

Apply fixed-step solvers with coarser granularity for long transients, combined with
high-resolution submodels.

Although the balancing model is physically accurate, a dedicated simulation strategy is
required to validate it under industrial operating frequencies and constraints.

As a final comment, it is relevant to reflect on how the control system executes different
switch pattern flips and how this directly translates into the physical behavior of the system.
Figure 6.10 shows the evolution of the five switch signals and two commutators, together
with the evolution of the capacitor voltage.

Figure 6.10: Switch patterns and physical behavior.

In this case, cells 1 and 4 are engaged in the balancing process. Cell 1 requires switches
1, 2 and commutator 2 to be active for engagement. In contrast, Cell 4 requires switches 4, 5

68 Model Validation and Results

and commutator 1. Figure 6.10 shows how each period alternates the switch pattern between
that for Cell 1 and Cell 4, engaging one at a time. This is directly reflected in the physical
behavior of the capacitor voltage: when the pattern for Cell 1 is active, the capacitor charges
toward the higher voltage; when the pattern for Cell 4 is active, it discharges toward the
lower voltage.

6.6. Conclusions

The simulation results confirm that the developed battery models and control strategies
reflect realistic cell- and pack-level behavior. The single-cell model accurately reproduces
SOC-OCV dynamics, and the derated pack demonstrates correct voltage divergence without
balancing. Passive methods were effective in reducing imbalance, with switched topologies of-
fering better efficiency at the cost of increased control complexity. Active balancing methods
showed correct physical operation but revealed computational limitations when simulating
high-frequency switching events.

Overall, the library is validated as functionally correct. However, further work is required
to address numerical challenges such as chattering and to develop simulation methodologies
that enable high-fidelity execution of active balancing under realistic operational conditions.

Chapter 7

Conclusions

7.1. Conclusions

This section summarizes the results obtained from the development, implementation, and
testing of the battery modeling and balancing library. Overall, the library successfully fulfills
its intended purpose. The base components were correctly implemented and enabled the
graphical construction of more complex battery systems. The use of the graphical Modelica
environment proved advantageous in building and visualizing structures based on reusable
elements.

The implemented ECM models have shown satisfactory performance in validation tests.
The single-cell model reproduces the SOC-OCV characteristics with good accuracy, including
transient effects influenced by RC time constants. These models offer sufficient precision for
simulation tasks and decision-making processes related to cell balancing strategies. Should
a higher-fidelity or chemistry-specific cell model be required in future applications, the mod-
ular structure allows for its incorporation and subsequent reuse within the same balancing
framework.

With regard to the balancing systems and associated control logic, the implemented
methods behaved as expected and supported various configurations of practical and theoret-
ical interest. The flexibility of the structure permits further development and integration of
additional balancing techniques. A few important observations can be highlighted from the
simulation results:

Passive balancing methods: These methods were effective in reducing voltage im-
balances, particularly near full charge, allowing all cells to reach almost full SOC.
However, since balancing occurs only during the charging phase, usable capacity at
low SOC remains unoptimized, with some cells not fully discharged. Furthermore, the
shunt-based approaches suffered from significant energy inefficiency due to resistive
dissipation. The switched resistor method improved selectivity and energy use but in-
troduced control-related issues such as signal chattering, which led to the development

69

70 Conclusions

of a hysteresis-based control strategy.

Active balancing methods: These demonstrated physically reasonable behavior in
transferring energy from high-voltage to low-voltage cells. Nevertheless, complications
arose in achieving industrially relevant performance, notably due to fast switching
requirements and low-valued capacitive or inductive components. Additionally, insuffi-
cient precharging of transfer elements could result in undesired voltage drops, requiring
careful adjustment on a case-by-case basis. Memory and computational load during
simulations increased significantly with higher switching frequencies, hindering exten-
sive performance validation.

Control systems: Control structures were found to be highly case-dependent. The
amount and type of control signals vary for each simulation scenario, limiting the
reusability and generalization of controllers. A more adaptive or self-tuning approach
could potentially reduce development time for new configurations.

Scalability: While the library performed well for the tested 4-cell configuration, its
scalability remains limited. Applying the current structure to larger packs would de-
mand substantial rework in control design, component instancing, and simulation sta-
bility, particularly under real-time constraints.

In summary, the developed library is validated as a sound and functional simulation plat-
form for small-scale second-life battery systems. It permits systematic testing of balancing
methods and their control under realistic operating conditions. However, limitations such
as energy inefficiency, chattering, simulation resource demands, and control adaptability
highlight important topics for further improvement and exploration.

7.2. Future Work

This project opens a wide range of possibilities for continued investigation, both in sim-
ulation and physical experimentation. Several promising directions are outlined below:

Experimental validation: Implement the developed models alongside real lithium-
ion cells and experimentally verify their dynamic response. This would include con-
ducting charge-discharge cycling tests with and without balancing mechanisms and
comparing measured data with simulated behavior. Special focus could be placed on
obtaining SoC-dependent ECM parameters through empirical identification techniques.

Aging analysis: Extend the model to include dynamic aging effects and perform
long-term simulations to evaluate how balancing systems influence capacity retention
and imbalance development. Understanding how passive and active strategies perform
under degradation could guide design choices for second-life applications.

Conclusions 71

Larger-scale modeling: Expand the library to support configurations with a larger
number of cells and/or multiple parallel branches. This would enable simulation of full
battery modules and the study of inter-pack balancing approaches (e.g., cell-to-pack
or pack-to-pack energy redistribution).

Advanced balancing topologies: With larger systems, more sophisticated balanc-
ing architectures become relevant. This includes multi-stage capacitor or inductor
networks, transformer-coupled active systems, or hybrid passive-active configurations.
Implementing and benchmarking these strategies would deepen understanding of their
trade-offs in second-life battery contexts.

Optimization and automation: Develop adaptive control algorithms or machine
learning–based decision strategies that can automatically adjust balancing parameters
based on pack behavior. This would reduce the manual tuning currently required for
each test case and improve the robustness of simulations.

Simulation efficiency: Investigate methods for running high-frequency simulations
more efficiently. This could include simulating shorter time slices with continuation, re-
ducing logged variables, simplifying models for high-frequency switching, or employing
multi-rate or co-simulation approaches.

These are only a subset of the possibilities that emerged during the course of this project.
Both the field of battery balancing and the domain of second-life applications offer fertile
ground for research. The approach taken in this work—focusing on physical modeling with
practical simulation capability—remains a valuable tool not only for design but also for
understanding and predicting the behavior of real battery systems. Whether through further
library development or experimental integration, the insights gained here open a broad field
of future investigations.

72 Conclusions

Bibliography

A. Ashraf, B. Ali, M. S. A. Alsunjury, H. Goren, H. Kilicoglu, F. Hardan, and P. Tricoli. Re-
view of cell-balancing schemes for electric vehicle battery management systems. Energies,
17(6):1271, 2024. doi: 10.3390/en17061271.

Modelica Association. Modelica.blocks.tables.combitable1ds documentation.
https://build.openmodelica.org/Documentation/Modelica.Blocks.Tables.
CombiTable1Ds.html, 2024a. Accessed: 2025-06-03.

Modelica Association. Modelica.stategraph2 documentation. https://build.
openmodelica.org/Documentation/Modelica_StateGraph2.html, 2024b. Accessed:
2025-06-03.

G. D. Astudillo, H. Beiranvand, F. Cecati, C. Werlich, A. Würsig, and M. Liserre. Inte-
grated strategy for optimized charging and balancing of lithium-ion battery packs. IEEE
Transactions on Transportation Electrification, 11(1):4980–4991, 2025.

D. Beck, P. Dechent, D. U. Sauer, and M. Dubarry. Inhomogeneities and cell-to-cell variations
in lithium-ion batteries: A review. Energies, 2021.

Modelica by Example. Interpolation, modelica by example. URL https://mbe.modelica.
university/behavior/functions/interpolation/. Accessed 2025-06-03.

J. Cao, Y. Wang, and S. Zhang. Single lc-series balancer for li-ion packs. Bulletin of Electrical
Engineering and Informatics (BEEI), 9(6):2397–2404, 2020.

S. L. Chavan, M. A. Kanawade, and R. S. Ankushe. An effective passive cell balancing
technique for lithium-ion battery. Next Energy, 8, 2025. ISSN 2949-821X.

M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, and D. U. Sauer.
Calendar and cycle life study of li(nimnco)o2 based 18650 lithium-ion batteries. Journal
of Power Sources, 248:839–851, 2014.

Epec. Battery cell comparison, 2023a. URL https://www.epectec.com/batteries/
cell-comparison.html. Published by Epec Engineered Technologies. Accessed May 2025.

73

https://build.openmodelica.org/Documentation/Modelica.Blocks.Tables.CombiTable1Ds.html
https://build.openmodelica.org/Documentation/Modelica.Blocks.Tables.CombiTable1Ds.html
https://build.openmodelica.org/Documentation/Modelica_StateGraph2.html
https://build.openmodelica.org/Documentation/Modelica_StateGraph2.html
https://mbe.modelica.university/behavior/functions/interpolation/
https://mbe.modelica.university/behavior/functions/interpolation/
https://www.epectec.com/batteries/cell-comparison.html
https://www.epectec.com/batteries/cell-comparison.html

74 BIBLIOGRAPHY

Epec. Lithium battery technologies, 2023b. URL https://www.epectec.com/batteries/
lithium-battery-technologies.html. Published by Epec Engineered Technologies. Ac-
cessed May 2025.

H. He and X. Chen. Analysing unbalanced ageing in ev battery packs using the low-cost
lumped single particle model (lspm): The impact of temperature gradients among parallel-
connected cells. Transportation Research Procedia, 70:406–413, 2023.

Y. He. Modeling of dynamic hysteresis characters for the lithium-ion battery. Journal of
The Electrochemical Society, 167(9), 2020.

P. Keil and A. Jossen. Charging protocols for lithium-ion batteries and their impact on
cycle life—an experimental study with different 18650 high-power cells. Journal of Energy
Storage, 6:125–141, 2016.

N. Khan, C. A. Ooi, A. S. Alturki, M. Amir, and T. Alharbi. A critical review of battery cell
balancing techniques, optimal design, converter topologies, and performance evaluation
for optimizing storage system in electric vehicles. Energy Reports, 11:4999–5032, 2024.
doi: 10.1016/j.egyr.2024.04.041.

W. Liu, T. Placke, and K. T. Chau. Overview of batteries and battery management for
electric vehicles. Energy Reports, 8:4058–4084, 2022.

D. Lu. Identifying Physical Model Parameter Values for Lithium-Ion Cells. PhD thesis,
Colorado State University-Pueblo, 2016.

M. Makowski and M. Pedram. Low-power battery management ic using switched capacitor
circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(5):1996–
2007, 2016.

A. Manthiram. A reflection on lithium-ion battery cathode chemistry. Nature Communica-
tion, 11, 2020.

Modelon. Modelica: What is it and why is it important? URL https://modelon.com/
what-is-modelica/. Accessed 2025-06-03.

A. G. Olabi, Q. Abbas, P. Shinde, and M. A. Abdelkareem. Rechargeable batteries: Tech-
nological advancement, challenges, current and emerging applications. Energy, 266, 2023.

L. A. Perişoară, I. C. Guran, and D. C. Costache. A passive battery management system for
fast balancing of four lifepo4 cells. IEEE 24th International Symposium for Design and
Technology in Electronic Packaging, pages 390–393, 2018.

G. Pistoia. Batteries for Portable Devices, chapter 1. Elsevier Science, 2005.

https://www.epectec.com/batteries/lithium-battery-technologies.html
https://www.epectec.com/batteries/lithium-battery-technologies.html
https://modelon.com/what-is-modelica/
https://modelon.com/what-is-modelica/

BIBLIOGRAPHY 75

G. L. Plett. Battery Management Systems, Volume 1 - Battery Modeling. Artech House,
2015. ISBN 978-1-63081-023-8.

A. Pérez, I. San Martín, P. Sanchis, and A. Ursúa. Lithium-ion second-life batteries: Aging
modeling and experimental validation. In Proceedings of the 2024 International Conference
on Renewable Energies and Smart Technologies (REST), pages 193–197, 2024.

A. Reiter, S. Lehner, O. Bohlen, and D. U. Sauer. Electrical cell-to-cell variations within
large-scale battery systems—a novel characterization and modeling approach. Journal of
Energy Storage, 2023. ISSN 2352-152X.

N. Samaddar, N. S. Kumar, and R. Jayapragash. Passive cell balancing of li-ion batteries
used for automotive applications. Journal of Physics: Conference Series, 2020.

A. Szczepaniak, S. Gajewski, and A. Tomczewski. Characteristics of battery management
systems of electric vehicles with consideration of the active and passive cell balancing
process. Energies, 15(5):1681, 2022.

M. Tekin and M. I. Karamangil. Comparative analysis of equivalent circuit battery models
for electric vehicle battery management systems. Journal of Energy Storage, 86:111327,
2024.

Texas Instruments. Cell balancing design guidelines for the bq769x0 family, 2015.

M. M. Tiller. Modelica by example. URL https://mbe.modelica.university/. Accessed
2025-06-03.

T. Tudorache, A. Bitoleanu, and L. N. Tutelea. Modeling of single inductor based battery
balancing circuit for hybrid electric vehicles. ResearchGate, 2017.

A. Urquía and C. Martín-Villalba. Modelado orientado a objetos y simulación de sistemas
físicos, Segunda edición, 2018.

M. Uzair, G. Abbas, and S. Hosain. Characteristics of battery management systems of
electric vehicles with consideration of the active and passive cell balancing process. World
Electric Vehicle Journal, page 120, 2021. ISSN 2032-6653.

M. Waseem, M. Ahmad, A. Parveen, and M. Suhaib. Battery technologies and function-
ality of battery management system for evs: Current status, key challenges, and future
prospectives. Journal of Power Sources, 580, 2023.

T. Wulandari, D. Fawcett, S. B. Majumder, and G. E. J. Poinern. Lithium-based batteries,
history, current status, challenges, and future perspectives. Battery Energy, 2:834–854,
2023.

https://mbe.modelica.university/

76 BIBLIOGRAPHY

R. Zhang and B. Xia. A study on the open circuit voltage and state of charge characterization
of high capacity lithium-ion battery under different temperature. Energies, 11(9):2408,
2018.

Appendix A

Battery_Balancing Library Code

This appendix provides a comprehensive overview of the source code constituting the
custom Battery_Balancing Modelica library, developed for modeling second-life lithium-
ion battery packs with various balancing strategies. The code is modularly organized into
several packages, each fulfilling a specific functional role. What follows is a section-wise listing
of key components with brief introductions to their content and purpose. The beginning and
end of the main library looks as follows, and the rest of the packages are contained within
it.

package Battery_Balancing
"Electrochemical Model Library for Lithium-Ion Cell and Pack Simulation with
Balancing and Aging Dynamics."
import SI = Modelica.Units.SI;
import Modelica.Constants;
...

end Battery_Balancing;

A.1. Code Package Interfaces

The Interfaces package defines standardized connectors and base models used across
the library to ensure compatibility and modularity in component design.

package Interfaces
"Interface package for external connection between components."
connector Pin "Neutral electrical connector."

SI.Voltage u;
flow SI.Current i;

end Pin;

77

78 Battery_Balancing Library Code

connector Pin_p "Positive electrical connector."
SI.Voltage u;
flow SI.Current i;

end Pin_p;

connector Pin_n "Negative electrical connector."
SI.Voltage u;
flow SI.Current i;

end Pin_n;

partial model UnPuerto
"Two-terminal base model with optional current direction logic."
parameter Boolean activo=false "Active/inactive component";

protected
SI.Voltage u "Voltage between pins (= p.u - n.u)";
SI.Current i "Current through component";

public
Pin_p p "Positive port";
Pin_n n "Negative port";

equation
u = p.u - n.u;
if (activo) then

i = n.i;
else

i = p.i;
end if;
p.i = -n.i;

end UnPuerto;

partial model UnPuerto_ECM
"Two-terminal interface for ECM components."

public
Pin_p p "Positive pin";
Pin_n n "Negative pin";

end UnPuerto_ECM;

partial model UnPuertoTresPines
"Three-terminal interface for gate-controlled devices"
import SI = Modelica.Units.SI;

protected
SI.Voltage u_DS(start=0) "Voltage drain-source";
SI.Voltage u_GS(start=0) "Voltage gate-source";
SI.Current i_D "Drain current";
SI.Current i_G "Gate current";

Battery_Balancing Library Code 79

//Graphic declaration of components
public

Pin g "Gate";
Pin_p p "Drain";
Pin_n n "Source";

equation
// Voltage equations
u_DS = p.u - n.u;
u_GS = g.u - n.u;
//Current equations
i_D = p.i;
i_G = g.i;
// Kirchhoff currents
n.i = -(p.i + g.i);

end UnPuertoTresPines;

partial model CommutatorInterface
"Three-terminal interface for commutator components."
Pin b "Commute pin 1";
Pin c "Commute pin 2";
Pin a "Entry Pin";

protected
SI.Voltage u_ab(start=0) "Voltage A to B";
SI.Voltage u_ac(start=0) "Voltage A to C";
SI.Current i_a "Current into terminal A";
SI.Current i_b "Current into terminal B";
SI.Current i_c "Current into terminal C";

equation
//Voltage definition
u_ab = a.u - b.u;
u_ac = a.u - c.u;
//Current definition
i_a = a.i;
i_b = b.i;
i_c = c.i;
//Kirchoff law for currents
a.i + b.i + c.i = 0;

end CommutatorInterface;

connector ControlSignal
"Connector for mode control signal in charge/discharge modules."
Integer mode "mode: -1/discharge, 0/idle, +1/charge CC";

end ControlSignal;

80 Battery_Balancing Library Code

connector ControlSignalBalancing_Shunt
"Control signal connector for shunt resistor balancing."
Boolean OnOff "Signal On/Off all switches";

end ControlSignalBalancing_Shunt;

connector ControlSignalBalancing_Switched
"Control signal connector for switched resistor balancing."
Boolean OnOff[4] "Control signal for each switch";

end ControlSignalBalancing_Switched;

connector ControlSignalBalancing_Single
"Control signal connector for single capacitor or inductor balancing."

Boolean OnOff[5] "Control signal for each switch";
Integer Com[2] "Control signal for each commutator";

end ControlSignalBalancing_Single;

connector VoltageFeedback
"Voltage feedback connector for 4-cell pack."
Real V_cell[4] "Voltage of each cell (V)";

end VoltageFeedback;

connector VoltageFeedback1C
"Voltage feedback connector for single cell."
Real V_cell "Voltage of cell (V)";

end VoltageFeedback1C;

end Interfaces;

A.2. Code Package Components

The Components package includes basic electrical elements such as resistors, capacitors,
switches, and control sources, which serve as the building blocks for higher-level models.

package Components
"Models of fundamental electrical components for ECM-based battery modeling."
model Capacitance "Ideal linear capacitor."

extends Interfaces.UnPuerto;
input SI.Capacitance C=10^(-6) "Capacitance";

Battery_Balancing Library Code 81

SI.Voltage V_cap;
equation

//Capacitance equations
C*der(u) = i;
V_cap = u;

end Capacitance;

model Inductance "Ideal inductor."
extends Interfaces.UnPuerto;
input SI.Inductance L=10^(-3) "Inductance";
SI.Voltage V_ind;

initial equation
i = 0;

equation
//Inductance equations
L*der(i) = u;
V_ind = u;

end Inductance;

model Ground "Electrical ground"
Interfaces.Pin_n p "Ground pin";

equation
//Voltage reference
p.u = 0;

end Ground;

model NMOS "Non-ideal NMOS transistor with finite on-resistance"
extends Interfaces.UnPuertoTresPines;
parameter Real Kn=0.1 "Transconductance parameter";
parameter Real Lambda=0.02 "Channel length modulation factor";
parameter SI.Voltage Vth=2.0 "Threshold voltage";
parameter SI.Resistance Rds_on=0.1 "Drain-source on resistance";

protected
SI.Voltage u_channel "Effective channel voltage (V)";

equation
// Gate displacement current
i_G = 0;
// Effective voltage
u_channel = u_DS - i_D*Rds_on;
// Drain current definition
if u_GS < Vth then

// Cut-off
i_D = 0;

else
if u_channel <= (u_GS - Vth) then

82 Battery_Balancing Library Code

// Linear region
i_D = Kn*(2*(u_GS - Vth)*u_channel - u_channel^2);

else
// Saturation region
i_D = Kn*(u_GS - Vth)^2*(1 - Lambda*u_channel);

end if;
end if;

end NMOS;

model OCV_source
"Open-circuit voltage (OCV) source with SOC tracking."
extends Interfaces.UnPuerto(activo=true);
input Real OCV "OCV Voltage";
parameter SI.ElectricCharge Q "Cell capacity";
parameter Real eta(

min=0,
max=1) = 1 "Coulomb counting efficiency";

Real z(
start=1,
max=1,
min=0) "State of charge (SOC)";

//Initially charged
equation

u = OCV;
//From parameter loader
der(z) = -eta*i/Q;
// Coulomb counting equation

end OCV_source;

model Resistance "Ideal linear resistor."
extends Interfaces.UnPuerto;
input SI.Resistance R "Resistance";

equation
// Resistance equations
u = R*i;

end Resistance;

model Switch "Idealized controlled switch with on-resistance."
extends Interfaces.UnPuerto;
input Boolean OnOff "Control signal, true when conducting";
parameter SI.Resistance R_on=1e-3 "Resistance (Ohm)";

equation
if OnOff then

u = R_on*i;
// When conducting, resistance

Battery_Balancing Library Code 83

else
i = 0;
// When open, no current

end if;
end Switch;

model Icontrol "Externally controlled current source."
extends Interfaces.UnPuerto(activo=false);
input SI.Current i_discharge(start=0) "Discharge current";

equation
i = -i_discharge;

end Icontrol;
model Vcontrol "Externally controlled voltage source."

extends Interfaces.UnPuerto(activo=true);
input SI.Voltage V_set "Controlled voltage";

equation
u = V_set;

end Vcontrol;

model Commutator "Two-way controlled commutator switch"
extends Interfaces.CommutatorInterface;
input Integer select "If 0, a to b; if 1, a to c";
parameter SI.Resistance R_on=1e-3 "On-state resistance";

equation
if select == 0 then

u_ab = R_on*i_a;
// a to b
i_c = 0;

else
u_ac = R_on*i_a;
// a to c
i_b = 0;

end if;
end Commutator;

end Components;

A.3. Code Package Functions

This package provides auxiliary functions and interpolation tools, including look-up tables
for ECM parameter estimation and custom utility functions like argmax and argmin.

84 Battery_Balancing Library Code

package Functions
"Auxiliary function blocks for parameter interpolation and control logic"
import Modelica.Blocks.Tables.CombiTable1Ds;
import Modelica.Blocks.Types.Smoothness;

model ECM_ParameterLoader_1Thv
"Lookup model for loading SOC-dependent ECM parameters from external data
file."
input Real SOC;
// External input
CombiTable1Ds table_OCV(

tableName="ECMdata",
fileName="dataECM.mat",
columns={2},
tableOnFile=true,
table=[0, 0],
smoothness=Smoothness.LinearSegments) "Table smooth interpolator, OCV";

CombiTable1Ds table_R0(
tableName="ECMdata",
fileName="dataECM.mat",
columns={3},
tableOnFile=true,
table=[0, 0],
smoothness=Smoothness.LinearSegments) "Table smooth interpolator, R0";

CombiTable1Ds table_R1(
tableName="ECMdata",
fileName="dataECM.mat",
columns={4},
tableOnFile=true,
table=[0, 0],
smoothness=Smoothness.LinearSegments) "Table smooth interpolator, R1";

CombiTable1Ds table_C1(
tableName="ECMdata",
fileName="dataECM.mat",
columns={5},
tableOnFile=true,
table=[0, 0],
smoothness=Smoothness.LinearSegments) "Table smooth interpolator, C1";

output Real OCV "Output OCV voltage /SOC";
output Real R0 "Output R0 /SOC";
output Real R1 "Output V0 /SOC";
output Real C1 "Output C1/SOC";

equation
// Connect SOC input to table inputs

Battery_Balancing Library Code 85

table_OCV.u = SOC;
table_R0.u = SOC;
table_R1.u = SOC;
table_C1.u = SOC;
// Read interpolated outputs
OCV = table_OCV.y[1];
R0 = table_R0.y[1];
R1 = table_R1.y[1];
C1 = table_C1.y[1];

end ECM_ParameterLoader_1Thv;

function argmax
"Returns the index of the maximum value in a real-valued vector."
input Real vec[:] "Vector of given size";
output Integer index "Highest value index in vector";

protected
Real maxVal=vec[1] "Maximum value in vector";

algorithm
index := 1;
//Loop and check which is highest index
for i in 2:size(vec, 1) loop

if vec[i] > maxVal then
maxVal := vec[i];
index := i;

end if;
end for;

end argmax;

function argmin
"Returns the index of the minimum value in a real-valued vector."
input Real vec[:] "Vector of given size";
output Integer index "Lowest value index in vector";

protected
Real minVal=vec[1] "Minimum value in vector";

algorithm
index := 1;
//Loop and check which is lowest index
for i in 2:size(vec, 1) loop

if vec[i] < minVal then
minVal := vec[i];
index := i;

end if;
end for;

end argmin;

86 Battery_Balancing Library Code

end Functions;

A.4. Code Package ECM_Structures

Contains various equivalent circuit model (ECM) architectures for lithium-ion cells, in-
corporating parameterization, aging effects, and feedback mechanisms.

package ECM_Structures
"Package of ECM structures for lithium-ion cell modeling."
model ECM_Thevenin

"Basic Thevenin model with SOC-based input parameters."
extends Interfaces.UnPuerto_ECM;
parameter SI.ElectricCharge Q=3600 "Cell Capacity";
parameter Real eta(

min=0,
max=1) = 1 "Coulomb counting efficiency";

input SI.Voltage OCV "Cell OCV";
input SI.Resistance R0 "Series Resistance";
input SI.Resistance R1 "Parallel Resistance";
input SI.Capacitance C1 "Parallel Capacitance";
Components.Resistance R_0(R=R0);
Components.Resistance R_1(R=R1);
Components.Capacitance C_1(C=C1);
Components.OCV_source ocv(

Q=Q,
eta=eta,
OCV=OCV);

equation
connect(R_0.n, R_1.p);
connect(R_0.n, C_1.p);
connect(R_1.n, p);
connect(C_1.n, p);
connect(ocv.p, R_0.p);
connect(ocv.n, n);

end ECM_Thevenin;

model ECM_Thevenin_SL
"Extended model with aging and unbalance derating factors."
extends Interfaces.UnPuerto_ECM;

parameter SI.ElectricCharge Q=3600 "Cell Capacity";
parameter Real eta(

Battery_Balancing Library Code 87

min=0,
max=1) = 1 "Coulomb counting efficiency";

input SI.Voltage OCV "Cell OCV";
input SI.Resistance R0 "Series Resistance";
input SI.Resistance R1 "Parallel Resistance";
input SI.Capacitance C1 "Parallel Capacitance";

// Derating factors with extended ranges
parameter Real alpha_Q(

min=1,
max=5) = 1.0 "Q aging derating factor";

parameter Real alpha_R0(
min=0,
max=1) = 1.0 "R0 aging derating factor";

parameter Real alpha_R1(
min=0,
max=1) = 1.0 "R1 aging derating factor";

parameter Real alpha_C1(
min=1,
max=5) = 1.0 "C1 aging derating factor";

parameter Real beta_Q(
min=0.5,
max=1.5) = 1.0 "Q unbalance derating factor";

parameter Real beta_R0(
min=0.5,
max=1.5) = 1.0 "R0 unbalance derating factor";

parameter Real beta_R1(
min=0.5,
max=1.5) = 1.0 "R1 unbalance derating factor";

parameter Real beta_C1(
min=0.5,
max=1.5) = 1.0 "C1 unbalance derating factor";

// Effective parameters after derating
final parameter SI.ElectricCharge Q_eff=Q*alpha_Q*beta_Q

"Effective cell capacity";
SI.Resistance R0_eff "Effective series resistance";
SI.Resistance R1_eff "Effective parallel resistance";
SI.Capacitance C1_eff "Effective parallel capacitor";
Components.Resistance R_0(R=R0_eff);
Components.Resistance R_1(R=R1_eff);
Components.Capacitance C_1(C=C1_eff);
Components.OCV_source ocv(

Q=Q_eff,

88 Battery_Balancing Library Code

eta=eta,
OCV=OCV);

equation
// Derating equations for parameters
R0_eff = R0*alpha_R0*beta_R0;
R1_eff = R1*alpha_R1*beta_R1;
C1_eff = C1*alpha_C1*beta_C1;

connect(R_0.n, R_1.p);
connect(R_0.n, C_1.p);
connect(R_1.n, p);
connect(C_1.n, p);
connect(ocv.p, R_0.p);
connect(ocv.n, n);

end ECM_Thevenin_SL;

model ECM_Thevenin_SL_Vbf
"Same as ECM_Thevenin_SL with an added voltage feedback connector."
extends Interfaces.UnPuerto_ECM;

parameter SI.ElectricCharge Q=3600 "Cell Capacity";
parameter Real eta(

min=0,
max=1) = 1 "Coulomb counting efficiency";

input SI.Voltage OCV "Cell OCV";
input SI.Resistance R0 "Series Resistance";
input SI.Resistance R1 "Parallel Resistance";
input SI.Capacitance C1 "Parallel Capacitance";

// Derating factors with extended ranges
parameter Real alpha_Q(

min=1,
max=5) = 1.0 "Q aging derating factor";

parameter Real alpha_R0(
min=0,
max=1) = 1.0 "R0 aging derating factor";

parameter Real alpha_R1(
min=0,
max=1) = 1.0 "R1 aging derating factor";

parameter Real alpha_C1(
min=1,
max=5) = 1.0 "C1 aging derating factor";

parameter Real beta_Q(

Battery_Balancing Library Code 89

min=0.5,
max=1.5) = 1.0 "Q unbalance derating factor";

parameter Real beta_R0(
min=0.5,
max=1.5) = 1.0 "R0 unbalance derating factor";

parameter Real beta_R1(
min=0.5,
max=1.5) = 1.0 "R1 unbalance derating factor";

parameter Real beta_C1(
min=0.5,
max=1.5) = 1.0 "C1 unbalance derating factor";

// Effective parameters after derating
final parameter SI.ElectricCharge Q_eff=Q*alpha_Q*beta_Q

"Effective cell capacity";
SI.Resistance R0_eff "Effective parallel resistance";
SI.Resistance R1_eff "Effective series resistance";
SI.Capacitance C1_eff "Effective series capacitance";

Components.Resistance R_0(R=R0_eff);
Components.Resistance R_1(R=R1_eff);
Components.Capacitance C_1(C=C1_eff);
Components.OCV_source ocv(

Q=Q_eff,
eta=eta,
OCV=OCV);

Interfaces.VoltageFeedback1C voltageFeedback
"Pin for voltage feedback 1 Cell";

equation
// Derating equations
R0_eff = R0*alpha_R0*beta_R0;
R1_eff = R1*alpha_R1*beta_R1;
C1_eff = C1*alpha_C1*beta_C1;

//Feedback to connector
voltageFeedback.V_cell = p.u - n.u;

connect(R_0.n, R_1.p);
connect(R_0.n, C_1.p);
connect(R_1.n, p);
connect(C_1.n, p);
connect(ocv.p, R_0.p);
connect(ocv.n, n);

end ECM_Thevenin_SL_Vbf;

90 Battery_Balancing Library Code

end ECM_Structures;

A.5. Code Package Cell_Packs

Provides configurations of multiple ECM-modeled cells into modules and packs, including
internal node access and scaling capabilities.

package Cell_Packs "Create packs of ECM modeled cells"

model Battery_Module
"Battery module formed by N ideal cells in series."
extends Interfaces.UnPuerto_ECM;
parameter Integer N(

min=2,
max=100) = 4 "Cells in series";

// Constant parameters for all cells
parameter SI.ElectricCharge Q=3600 "Capacity of each cell";
parameter Real eta(

min=0,
max=1) = 1 "Coulomb counting efficiency";

// SOC-dependent inputs (must be provided from top level)
input SI.Voltage OCV[N] "OCV Voltage for each cell";
input SI.Resistance R0[N] "Series resistance for each cell";
input SI.Resistance R1[N] "Parallel resistance for each cell";
input SI.Capacitance C1[N] "Parallel capacitor for each cell";

// Cells array
replaceable ECM_Structures.ECM_Thevenin Cell[N](each Q=Q, each eta=eta)

"Cell";

equation
//Connections between different elements
connect(n, Cell[1].n);
for i in 1:N - 1 loop

connect(Cell[i].n, Cell[i + 1].p);
end for;

connect(Cell[N].p, p);

// Provide SOC-dependent inputs to each cell
for i in 1:N loop

Battery_Balancing Library Code 91

Cell[i].OCV = OCV[i];
Cell[i].R0 = R0[i];
Cell[i].R1 = R1[i];
Cell[i].C1 = C1[i];

end for;

end Battery_Module;

model Battery4Cell_Bal
"4-cell battery module with second-life ECMs and exposed balancing nodes."
extends Interfaces.UnPuerto_ECM;

parameter SI.ElectricCharge Q[4]=fill(3600, 4) "Capacity of each cell";
parameter Real eta[4](

each min=0,
max=1) = fill(1, 4) "Coulomb counting efficiency";

input SI.Voltage OCV[4] "OCV Voltage of each cell";
input SI.Resistance R0[4] "Series resistance of each cell";
input SI.Resistance R1[4] "Parallel resistance of each cell";
input SI.Capacitance C1[4] "Parallel capacitance of each cell";

parameter Real alpha[4, 4]=fill(1.0, 4, 4)
"Aging derating matrix: [Q, R0, R1, C1]";

parameter Real beta[4, 4]=fill(1.0, 4, 4)
"Unbalance derating matrix: [Q, R0, R1, C1]";

ECM_Structures.ECM_Thevenin_SL Cell1(
Q=Q[1],
eta=eta[1],
alpha_Q=alpha[1, 1],
alpha_R0=alpha[1, 2],
alpha_R1=alpha[1, 3],
alpha_C1=alpha[1, 4],
beta_Q=beta[1, 1],
beta_R0=beta[1, 2],
beta_R1=beta[1, 3],
beta_C1=beta[1, 4]);

ECM_Structures.ECM_Thevenin_SL Cell2(
Q=Q[2],
eta=eta[2],
alpha_Q=alpha[2, 1],
alpha_R0=alpha[2, 2],
alpha_R1=alpha[2, 3],
alpha_C1=alpha[2, 4],

92 Battery_Balancing Library Code

beta_Q=beta[2, 1],
beta_R0=beta[2, 2],
beta_R1=beta[2, 3],
beta_C1=beta[2, 4]);

ECM_Structures.ECM_Thevenin_SL Cell3(
Q=Q[3],
eta=eta[3],
alpha_Q=alpha[3, 1],
alpha_R0=alpha[3, 2],
alpha_R1=alpha[3, 3],
alpha_C1=alpha[3, 4],
beta_Q=beta[3, 1],
beta_R0=beta[3, 2],
beta_R1=beta[3, 3],
beta_C1=beta[3, 4]);

ECM_Structures.ECM_Thevenin_SL Cell4(
Q=Q[4],
eta=eta[4],
alpha_Q=alpha[4, 1],
alpha_R0=alpha[4, 2],
alpha_R1=alpha[4, 3],
alpha_C1=alpha[4, 4],
beta_Q=beta[4, 1],
beta_R0=beta[4, 2],
beta_R1=beta[4, 3],
beta_C1=beta[4, 4]);

Interfaces.Pin node_3_4;
Interfaces.Pin node_2_3;
Interfaces.Pin node_1_2;

equation
// Set each cell OCV/R0/R1/C1 done cell by cell since it was preffered
to declare them graphically
Cell1.OCV = OCV[1];
Cell1.R0 = R0[1];
Cell1.R1 = R1[1];
Cell1.C1 = C1[1];
Cell2.OCV = OCV[2];
Cell2.R0 = R0[2];
Cell2.R1 = R1[2];
Cell2.C1 = C1[2];
Cell3.OCV = OCV[3];
Cell3.R0 = R0[3];
Cell3.R1 = R1[3];
Cell3.C1 = C1[3];
Cell4.OCV = OCV[4];

Battery_Balancing Library Code 93

Cell4.R0 = R0[4];
Cell4.R1 = R1[4];
Cell4.C1 = C1[4];
connect(n, Cell4.n);
connect(Cell4.p, node_3_4);
connect(node_3_4, Cell3.n);
connect(node_2_3, Cell3.p);
connect(node_2_3, Cell2.n);
connect(node_1_2, Cell2.p);
connect(node_1_2, Cell1.n);
connect(Cell1.p, p);

end Battery4Cell_Bal;

model Battery4Cell_Bal_Vfb
"4-cell battery module with voltage feedback connector."
extends Interfaces.UnPuerto_ECM;
parameter SI.ElectricCharge Q[4]=fill(3600, 4) "Capacity of each cell";
parameter Real eta[4](

each min=0,
max=1) = fill(1, 4) "Coulomb counting efficiency";

input SI.Voltage OCV[4] "OCV Voltage of each cell";
input SI.Resistance R0[4] "Series resistance of each cell";
input SI.Resistance R1[4] "Parallel resistance of each cell";
input SI.Capacitance C1[4] "Parallel capacitance of each cell";
parameter Real alpha[4, 4]=fill(1.0, 4, 4)

"Aging derating matrix: [Q, R0, R1, C1]";
parameter Real beta[4, 4]=fill(1.0, 4, 4)

"Unbalance derating matrix: [Q, R0, R1, C1]";
ECM_Structures.ECM_Thevenin_SL Cell1(

Q=Q[1],
eta=eta[1],
alpha_Q=alpha[1, 1],
alpha_R0=alpha[1, 2],
alpha_R1=alpha[1, 3],
alpha_C1=alpha[1, 4],
beta_Q=beta[1, 1],
beta_R0=beta[1, 2],
beta_R1=beta[1, 3],
beta_C1=beta[1, 4]);

ECM_Structures.ECM_Thevenin_SL Cell2(
Q=Q[2],
eta=eta[2],
alpha_Q=alpha[2, 1],
alpha_R0=alpha[2, 2],
alpha_R1=alpha[2, 3],

94 Battery_Balancing Library Code

alpha_C1=alpha[2, 4],
beta_Q=beta[2, 1],
beta_R0=beta[2, 2],
beta_R1=beta[2, 3],
beta_C1=beta[2, 4]);

ECM_Structures.ECM_Thevenin_SL Cell3(
Q=Q[3],
eta=eta[3],
alpha_Q=alpha[3, 1],
alpha_R0=alpha[3, 2],
alpha_R1=alpha[3, 3],
alpha_C1=alpha[3, 4],
beta_Q=beta[3, 1],
beta_R0=beta[3, 2],
beta_R1=beta[3, 3],
beta_C1=beta[3, 4]);

ECM_Structures.ECM_Thevenin_SL Cell4(
Q=Q[4],
eta=eta[4],
alpha_Q=alpha[4, 1],
alpha_R0=alpha[4, 2],
alpha_R1=alpha[4, 3],
alpha_C1=alpha[4, 4],
beta_Q=beta[4, 1],
beta_R0=beta[4, 2],
beta_R1=beta[4, 3],
beta_C1=beta[4, 4]);

Interfaces.Pin node_3_4;
Interfaces.Pin node_2_3;
Interfaces.Pin node_1_2;
Interfaces.VoltageFeedback voltageFeedback;

equation
// Set each cell OCV/R0/R1/C1 done cell by cell since it was preffered
to declare them graphically
Cell1.OCV = OCV[1];
Cell1.R0 = R0[1];
Cell1.R1 = R1[1];
Cell1.C1 = C1[1];
Cell2.OCV = OCV[2];
Cell2.R0 = R0[2];
Cell2.R1 = R1[2];
Cell2.C1 = C1[2];
Cell3.OCV = OCV[3];
Cell3.R0 = R0[3];
Cell3.R1 = R1[3];

Battery_Balancing Library Code 95

Cell3.C1 = C1[3];
Cell4.OCV = OCV[4];
Cell4.R0 = R0[4];
Cell4.R1 = R1[4];
Cell4.C1 = C1[4];
//Voltage feedback equation for each cell
voltageFeedback.V_cell[1] = p.u - node_1_2.u;
voltageFeedback.V_cell[2] = node_1_2.u - node_2_3.u;
voltageFeedback.V_cell[3] = node_2_3.u - node_3_4.u;
voltageFeedback.V_cell[4] = node_3_4.u - n.u;
connect(n, Cell4.n);
connect(Cell4.p, node_3_4);
connect(node_3_4, Cell3.n);
connect(node_2_3, Cell3.p);
connect(node_2_3, Cell2.n);
connect(node_1_2, Cell2.p);
connect(node_1_2, Cell1.n);
connect(Cell1.p, p);

end Battery4Cell_Bal_Vfb;

model BatteryNCell_Bal
"Configurable N-cell battery module with intermediate balancing nodes."
extends Interfaces.UnPuerto_ECM;
parameter Integer N(min=2) = 4 "Number of cells in series";
parameter SI.ElectricCharge Q[N]=fill(3600, N) "Capacity of each cell";
parameter Real eta[N](

each min=0,
max=1) = fill(3600, N) "Coulomb counting efficiency";

input SI.Voltage OCV[4] "OCV Voltage of each cell";
input SI.Resistance R0[4] "Series resistance of each cell";
input SI.Resistance R1[4] "Parallel resistance of each cell";
input SI.Capacitance C1[4] "Parallel capacitance of each cell";
parameter Real alpha[N, 4]=fill(1.0, N, 4)

"Aging derating matrix: [Q, R0, R1, C1]";
parameter Real beta[N, 4]=fill(1.0, N, 4)

"Unbalance derating matrix: [Q, R0, R1, C1]";
ECM_Structures.ECM_Thevenin_SL Cell[N](

Q=Q,
eta=eta,
alpha_Q=alpha[:, 1],
alpha_R0=alpha[:, 2],
alpha_R1=alpha[:, 3],
alpha_C1=alpha[:, 4],
beta_Q=beta[:, 1],
beta_R0=beta[:, 2],

96 Battery_Balancing Library Code

beta_R1=beta[:, 3],
beta_C1=beta[:, 4]) "Cell";

Interfaces.Pin node[N - 1] "Intermediate nodes between cells";
equation

// Connect first terminal
connect(n, Cell[1].n);
// Connect series cells and expose nodes
for i in 1:N - 1 loop

connect(Cell[i].p, node[i]);
connect(node[i], Cell[i + 1].n);

end for;
// Connect last terminal
connect(Cell[N].p, p);
// Provide SOC-dependent inputs
for i in 1:N loop

Cell[i].OCV = OCV[i];
Cell[i].R0 = R0[i];
Cell[i].R1 = R1[i];
Cell[i].C1 = C1[i];

end for;
end BatteryNCell_Bal;

end Cell_Packs;

A.6. Code Package Balancing_Structures

This package introduces models of passive and active cell balancing methods implemented
on a 4-cell module, including charge/discharge infrastructure.

package Balancing_Structures
"Balancing structures for 4-cell modules and Charge/Discharge behavior."

model ChargeDischarge
"Charge and discharge module for battery cell stacks."
parameter SI.Current I_charge=2.0 "Charge current";
parameter SI.Current I_discharge=0.8 "Discharge current";
parameter SI.Resistance R_load=0.1 "Series load";

Interfaces.ControlSignal controlInput "Control Input charge/discharge";
Components.Icontrol currentSource;
Components.Resistance loadResistor(R=R_load);
Interfaces.Pin_p p "Positive pin";
Interfaces.Pin_n n "Negative pin";

Battery_Balancing Library Code 97

equation
connect(currentSource.n, loadResistor.p);
connect(currentSource.p, p);
connect(loadResistor.n, n);

// Depending on mode charge/discharge or nothing
if controlInput.mode == 1 then

currentSource.i_discharge = +I_charge;
elseif controlInput.mode == -1 then

currentSource.i_discharge = -I_discharge;
else

currentSource.i_discharge = 0;
end if;

end ChargeDischarge;

model ShuntResistorBalancing_4Cell
"Shunt resistor balancing topology for 4-cell battery packs"

parameter SI.Resistance R_shunt=10 "Shunt resistor value (Ohm)";
parameter SI.Resistance Rds_on=0.05 "MOSFET on-resistance (Ohm)";
parameter SI.Voltage Vth=2.0 "MOSFET threshold voltage (V)";
parameter SI.Voltage V_gate=10 "Gate voltage when ON (V)";

Interfaces.Pin pin3;
Interfaces.Pin pin1;
Interfaces.Pin pin5;
Interfaces.Pin pin4;
Interfaces.Pin pin2;
Interfaces.ControlSignalBalancing_Shunt controlInput;

Components.NMOS nMOS4(Vth=Vth, Rds_on=Rds_on);
Components.NMOS nMOS3(Vth=Vth, Rds_on=Rds_on);
Components.NMOS nMOS2(Vth=Vth, Rds_on=Rds_on);
Components.NMOS nMOS1(Vth=Vth, Rds_on=Rds_on);

Components.Resistance shuntResistor4(R=R_shunt);
Components.Resistance shuntResistor3(R=R_shunt);
Components.Resistance shuntResistor2(R=R_shunt);
Components.Resistance shuntResistor1(R=R_shunt);

Components.Vcontrol vcontrol4;

Interfaces.VoltageFeedback voltageFeedback;
Components.Vcontrol vcontrol3;

98 Battery_Balancing Library Code

Components.Vcontrol vcontrol2;
Components.Vcontrol vcontrol1;

equation
connect(shuntResistor4.n, pin4);
connect(shuntResistor3.n, pin3);
connect(shuntResistor2.n, pin2);
connect(shuntResistor1.n, pin1);

// Control of MOSFETs by activating gate voltage
vcontrol1.V_set = if controlInput.OnOff then V_gate else 0;
vcontrol2.V_set = if controlInput.OnOff then V_gate else 0;
vcontrol3.V_set = if controlInput.OnOff then V_gate else 0;
vcontrol4.V_set = if controlInput.OnOff then V_gate else 0;

//Voltage feedback equations
voltageFeedback.V_cell[1] = pin1.u - pin2.u;
voltageFeedback.V_cell[2] = pin2.u - pin3.u;
voltageFeedback.V_cell[3] = pin3.u - pin4.u;
voltageFeedback.V_cell[4] = pin4.u - pin5.u;
connect(nMOS4.n, shuntResistor4.p);
connect(nMOS3.p, pin4);
connect(nMOS3.n, shuntResistor3.p);
connect(nMOS2.n, shuntResistor2.p);
connect(nMOS2.p, pin3);
connect(nMOS1.p, pin2);
connect(nMOS1.n, shuntResistor1.p);
connect(pin5, vcontrol4.n);
connect(vcontrol4.p, nMOS4.g);
connect(vcontrol3.p, nMOS3.g);
connect(vcontrol3.n, pin4);
connect(vcontrol2.p, nMOS2.g);
connect(vcontrol2.n, pin3);
connect(vcontrol1.p, nMOS1.g);
connect(vcontrol1.n, pin2);
connect(pin5, nMOS4.p);

end ShuntResistorBalancing_4Cell;

model SwitchedResistorBalancing_4Cell
"Switched Resistor Balancing model for 4 cell battery pack."
parameter SI.Resistance R_shunt=10 "Shunt resistor value (Ohm)";
parameter SI.Resistance Rds_on=0.05 "MOSFET on-resistance (Ohm)";
parameter SI.Voltage Vth=2.0 "MOSFET threshold voltage (V)";
parameter SI.Voltage V_gate=10 "Gate voltage when ON (V)";
Interfaces.ControlSignalBalancing_Switched controlInput;
Interfaces.VoltageFeedback voltageFeedback;

Battery_Balancing Library Code 99

Components.NMOS nMOS4(Vth=Vth, Rds_on=Rds_on);
Components.NMOS nMOS3(Vth=Vth, Rds_on=Rds_on);
Components.NMOS nMOS2(Vth=Vth, Rds_on=Rds_on);
Components.NMOS nMOS1(Vth=Vth, Rds_on=Rds_on);
Components.Resistance shuntResistor4(R=R_shunt);
Components.Resistance shuntResistor3(R=R_shunt);
Components.Resistance shuntResistor2(R=R_shunt);
Components.Resistance shuntResistor1(R=R_shunt);
Components.Vcontrol vcontrol4;
Components.Vcontrol vcontrol3;
Components.Vcontrol vcontrol2;
Components.Vcontrol vcontrol1;
Interfaces.Pin pin3;
Interfaces.Pin pin1;
Interfaces.Pin pin5;
Interfaces.Pin pin4;
Interfaces.Pin pin2;

equation
// Control of MOSFETs by activating gate voltage
vcontrol1.V_set = if controlInput.OnOff[1] then V_gate else 0;
vcontrol2.V_set = if controlInput.OnOff[2] then V_gate else 0;
vcontrol3.V_set = if controlInput.OnOff[3] then V_gate else 0;
vcontrol4.V_set = if controlInput.OnOff[4] then V_gate else 0;
// Voltage feedback equations
voltageFeedback.V_cell[1] = pin1.u - pin2.u;
voltageFeedback.V_cell[2] = pin2.u - pin3.u;
voltageFeedback.V_cell[3] = pin3.u - pin4.u;
voltageFeedback.V_cell[4] = pin4.u - pin5.u;
connect(shuntResistor4.n, pin4);
connect(shuntResistor3.n, pin3);
connect(shuntResistor2.n, pin2);
connect(shuntResistor1.n, pin1);
connect(nMOS4.n, shuntResistor4.p);
connect(nMOS3.p, pin4);
connect(nMOS3.n, shuntResistor3.p);
connect(nMOS2.n, shuntResistor2.p);
connect(nMOS2.p, pin3);
connect(nMOS1.p, pin2);
connect(nMOS1.n, shuntResistor1.p);
connect(pin5, vcontrol4.n);
connect(vcontrol4.p, nMOS4.g);
connect(vcontrol3.p, nMOS3.g);
connect(vcontrol3.n, pin4);
connect(vcontrol2.p, nMOS2.g);
connect(vcontrol2.n, pin3);

100 Battery_Balancing Library Code

connect(vcontrol1.p, nMOS1.g);
connect(vcontrol1.n, pin2);
connect(pin5, nMOS4.p);

end SwitchedResistorBalancing_4Cell;

model SingleCapacitorBalancing_4Cell
"Single Capacitor Balancing model for 4 cell battery pack."
parameter SI.Capacitance C=1e-3 "Inductance for energy transfer";
parameter SI.Resistance R_on=0.5 "On-state resistance for switches";
parameter SI.Resistance R_bleed=1e3 "Bleed resistance";
parameter SI.Voltage V_start=3.8 "Start Voltage capacitor";
Interfaces.Pin pin3;
Interfaces.Pin pin1;
Interfaces.Pin pin5;
Interfaces.Pin pin4;
Interfaces.Pin pin2;
Components.Switch switch1(R_on=R_on);
Components.Switch switch2(R_on=R_on);
Components.Switch switch3(R_on=R_on);
Components.Switch switch4(R_on=R_on);
Components.Switch switch5(R_on=R_on);
Components.Commutator com2;
Components.Commutator com1;
Interfaces.VoltageFeedback voltageFeedback;
Interfaces.ControlSignalBalancing_Single controlSignal;
Components.Capacitance capacitance(C=C, V_cap(start=V_start, fixed=true));
Components.Resistance Resistance_bleed(R=R_bleed);

equation

// Control assignments
switch1.OnOff = controlSignal.OnOff[1];
switch2.OnOff = controlSignal.OnOff[2];
switch3.OnOff = controlSignal.OnOff[3];
switch4.OnOff = controlSignal.OnOff[4];
switch5.OnOff = controlSignal.OnOff[5];
com1.select = controlSignal.Com[1];
com2.select = controlSignal.Com[2];

// Control of MOSFETs by activating gate voltage
voltageFeedback.V_cell[1] = pin1.u - pin2.u;
voltageFeedback.V_cell[2] = pin2.u - pin3.u;
voltageFeedback.V_cell[3] = pin3.u - pin4.u;
voltageFeedback.V_cell[4] = pin4.u - pin5.u;

connect(switch1.n, com1.b);

Battery_Balancing Library Code 101

connect(switch3.n, com1.b);
connect(switch5.n, com1.b);
connect(com2.b, com1.b);
connect(switch4.n, com1.c);
connect(switch2.n, com1.c);
connect(com2.c, com1.c);
connect(switch5.p, pin5);
connect(switch4.p, pin4);
connect(switch3.p, pin3);
connect(switch2.p, pin2);
connect(switch1.p, pin1);
connect(com1.a, capacitance.p);
connect(capacitance.n, com2.a);
connect(Resistance_bleed.n, com2.a);
connect(Resistance_bleed.p, com1.a);

end SingleCapacitorBalancing_4Cell;

model SingleInductorBalancing_4Cell
"Single Inductor Balancing model for 4 cell battery pack."

parameter SI.Inductance L=2e-3 "Inductance for energy transfer";
parameter SI.Resistance R_on=0.2 "On-state resistance for switches";
parameter SI.Resistance R_bleed=1e-2 "Bleed resistance";
parameter SI.Time t_precharge=1 "Precharge duration";
Interfaces.Pin pin3;
Interfaces.Pin pin1;
Interfaces.Pin pin5;
Interfaces.Pin pin4;
Interfaces.Pin pin2;
Components.Switch switch1(R_on=R_on);
Components.Switch switch2(R_on=R_on);
Components.Switch switch3(R_on=R_on);
Components.Switch switch4(R_on=R_on);
Components.Switch switch5(R_on=R_on);
Components.Commutator com2;
Components.Commutator com1;
Components.Inductance inductance(L=L);
Interfaces.VoltageFeedback voltageFeedback;
Interfaces.ControlSignalBalancing_Single controlSignal;
Components.Resistance resistance_Bleed(R=R_bleed);
Components.Vcontrol dummy_voltage(V_set=0);
Components.Switch dummy_switch;

equation
switch1.OnOff = controlSignal.OnOff[1];
switch2.OnOff = controlSignal.OnOff[2];

102 Battery_Balancing Library Code

switch3.OnOff = controlSignal.OnOff[3];
switch4.OnOff = controlSignal.OnOff[4];
switch5.OnOff = controlSignal.OnOff[5];
com1.select = controlSignal.Com[1];
com2.select = controlSignal.Com[2];
voltageFeedback.V_cell[1] = pin1.u - pin2.u;
voltageFeedback.V_cell[2] = pin2.u - pin3.u;
voltageFeedback.V_cell[3] = pin3.u - pin4.u;
voltageFeedback.V_cell[4] = pin4.u - pin5.u;
dummy_switch.OnOff = time < t_precharge;
connect(switch1.n, com1.b);
connect(switch3.n, com1.b);
connect(switch5.n, com1.b);
connect(com2.b, com1.b);
connect(switch4.n, com1.c);
connect(switch2.n, com1.c);
connect(com2.c, com1.c);
connect(switch5.p, pin5);
connect(switch4.p, pin4);
connect(switch3.p, pin3);
connect(switch2.p, pin2);
connect(switch1.p, pin1);
connect(resistance_Bleed.n, com2.a);
connect(inductance.p, com1.a);
connect(inductance.n, resistance_Bleed.p);
connect(dummy_voltage.n, inductance.n);
connect(dummy_switch.n, dummy_voltage.p);
connect(dummy_switch.p, inductance.p);

end SingleInductorBalancing_4Cell;

end Balancing_Structures;

A.7. Code Package Control_Structures

Contains state-graph-based controllers for managing charge/discharge and activating ap-
propriate balancing strategies under given operating conditions.

package Control_Structures "Package containing charge/discharge infrastructure
and cell balancing architectures for a 4-cell lithium-ion battery module."

model Controller_NoBalancing1C_SG
"No balancing 1 cell controller State graph based."

Battery_Balancing Library Code 103

Interfaces.VoltageFeedback1C voltageFeedback "Voltage feedback from cell.";
Interfaces.ControlSignal controlLoad

"Control signal to Charge Discharge module.";

parameter SI.Time t_Start=100 "Idle time between phases";
parameter SI.Time t_Idle=500 "Idle time between phases";
parameter SI.Voltage Vmin=3.2 "Minimum allowed voltage";
parameter SI.Voltage Vmax=4.2 "Maximum allowed voltage";
parameter SI.Voltage margin=0.05 "Voltage marging for Vmax/Vmin";

Modelica_StateGraph2.Step Init(initialStep=true, nOut=1);
Modelica_StateGraph2.Step Discharge(nIn=2, nOut=1);
Modelica_StateGraph2.Step Idle1(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Init_Discharge(delayedTransition=true,

waitTime=t_Start);
Modelica_StateGraph2.Transition
Discharge_Idle(condition=voltageFeedback.V_cell

<= Vmin + margin);
Modelica_StateGraph2.Transition Idle_Charge(delayedTransition=true,

waitTime=t_Idle);
Modelica_StateGraph2.Step Charge(nIn=1, nOut=1);
Modelica_StateGraph2.Transition
Charge_CBalancing(condition=voltageFeedback.V_cell

>= Vmax - margin);
Modelica_StateGraph2.Step idle2(nOut=1, nIn=1);
Modelica_StateGraph2.Transition Idle_Discharge(delayedTransition=true,

waitTime=t_Idle);
equation

// Charge discharge mode sequence
controlLoad.mode = if Discharge.active then -1 elseif Charge.active then 1

else 0;

connect(Init.outPort[1], Init_Discharge.inPort);
connect(Init_Discharge.outPort, Discharge.inPort[1]);
connect(Discharge.outPort[1], Discharge_Idle.inPort);
connect(Discharge_Idle.outPort, Idle1.inPort[1]);
connect(Idle1.outPort[1], Idle_Charge.inPort);
connect(Idle_Charge.outPort, Charge.inPort[1]);
connect(Charge_CBalancing.inPort, Charge.outPort[1]);
connect(idle2.outPort[1], Idle_Discharge.inPort);
connect(Idle_Discharge.outPort, Discharge.inPort[2]);

connect(Charge_CBalancing.outPort, idle2.inPort[1]);
end Controller_NoBalancing1C_SG;

104 Battery_Balancing Library Code

model Controller_NoBalancing4C_SG
"No Balancing 4 cell pack controller State graph based."

Interfaces.VoltageFeedback voltageFeedback
"Voltage feedback from cell pack.";

Interfaces.ControlSignal controlLoad
"Control signal to charge/discharge module.";

parameter SI.Time t_Start=100 "Idle time between phases";
parameter SI.Time t_Idle=500 "Idle time between phases";
parameter SI.Voltage Vmin=3.2 "Minimum allowed voltage";
parameter SI.Voltage Vmax=4.2 "Maximum allowed voltage";
parameter SI.Voltage margin=0.05 "Voltage marging for Vmax/Vmin";

Modelica_StateGraph2.Step Init(initialStep=true, nOut=1);
Modelica_StateGraph2.Step Discharge(nIn=2, nOut=1);
Modelica_StateGraph2.Step Idle1(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Init_Discharge(delayedTransition=true,

waitTime=t_Start);
Modelica_StateGraph2.Transition Discharge_Idle(condition=min(

voltageFeedback.V_cell) <= Vmin + margin);
Modelica_StateGraph2.Transition Idle_Charge(delayedTransition=true,

waitTime=t_Idle);
Modelica_StateGraph2.Step Charge(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Charge_CBalancing(condition=max(

voltageFeedback.V_cell) >= Vmax - margin);
Modelica_StateGraph2.Step idle2(nOut=1, nIn=1);
Modelica_StateGraph2.Transition Idle_Discharge(delayedTransition=true,

waitTime=t_Idle);
equation

//Charge/discharge mode sequence
controlLoad.mode = if Discharge.active then -1 elseif Charge.active then 1

else 0;

connect(Init.outPort[1], Init_Discharge.inPort);
connect(Init_Discharge.outPort, Discharge.inPort[1]);
connect(Discharge.outPort[1], Discharge_Idle.inPort);
connect(Discharge_Idle.outPort, Idle1.inPort[1]);
connect(Idle1.outPort[1], Idle_Charge.inPort);
connect(Idle_Charge.outPort, Charge.inPort[1]);
connect(Charge_CBalancing.inPort, Charge.outPort[1]);
connect(idle2.outPort[1], Idle_Discharge.inPort);
connect(Idle_Discharge.outPort, Discharge.inPort[2]);

Battery_Balancing Library Code 105

connect(Charge_CBalancing.outPort, idle2.inPort[1]);
end Controller_NoBalancing4C_SG;

model Controller_ShuntResistor_SG
"Shunt Resistor Balancing controller State graph based."

Interfaces.VoltageFeedback voltageFeedback
"Voltage feedback from balancing module.";

Interfaces.ControlSignalBalancing_Shunt controlBalancing
"Control signal to balancing module.";

Interfaces.ControlSignal controlLoad
"Control signal to charge/discharge module.";

parameter SI.Time t_Start=100 "Idle time between phases";
parameter SI.Time t_Idle=500 "Idle time between phases";
parameter SI.Voltage Vmin=3.2 "Minimum allowed voltage";
parameter SI.Voltage Vmax=4.2 "Maximum allowed voltage";
parameter SI.Voltage margin=0.05 "Voltage marging for Vmax/Vmin";

Modelica_StateGraph2.Step Init(initialStep=true, nOut=1);
Modelica_StateGraph2.Step Discharge(nIn=2, nOut=1);
Modelica_StateGraph2.Step Idle1(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Init_Discharge(delayedTransition=true,

waitTime=t_Start);
Modelica_StateGraph2.Transition Discharge_Idle(condition=min(

voltageFeedback.V_cell) <= Vmin + margin);
Modelica_StateGraph2.Transition Idle_Charge(delayedTransition=true,

waitTime=t_Idle);
Modelica_StateGraph2.Step Charge(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Charge_CBalancing(condition=max(

voltageFeedback.V_cell) >= Vmax - margin);
Modelica_StateGraph2.Step idle2(nOut=1, nIn=1);
Modelica_StateGraph2.Transition Idle_Discharge(delayedTransition=true,

waitTime=t_Idle);
equation

//Charge/discharge mode sequence
controlLoad.mode = if Discharge.active then -1 elseif Charge.active then 1

else 0;

//Balancing signal
controlBalancing.OnOff = Charge.active;

connect(Init.outPort[1], Init_Discharge.inPort);
connect(Init_Discharge.outPort, Discharge.inPort[1]);
connect(Discharge.outPort[1], Discharge_Idle.inPort);

106 Battery_Balancing Library Code

connect(Discharge_Idle.outPort, Idle1.inPort[1]);
connect(Idle1.outPort[1], Idle_Charge.inPort);
connect(Idle_Charge.outPort, Charge.inPort[1]);
connect(Charge_CBalancing.inPort, Charge.outPort[1]);
connect(idle2.outPort[1], Idle_Discharge.inPort);
connect(Idle_Discharge.outPort, Discharge.inPort[2]);

connect(Charge_CBalancing.outPort, idle2.inPort[1]);
end Controller_ShuntResistor_SG;

model Controller_SwitchedResistor_SG
"Switched Resistor Balancing controller State graph based."

Interfaces.VoltageFeedback voltageFeedback
"Voltage feedback from balancing module.";

Interfaces.ControlSignal controlLoad
"Control signal to charge/discharge module.";

parameter SI.Time t_Start=100 "Idle time between phases";
parameter SI.Time t_Idle=500 "Idle time between phases";
parameter SI.Voltage Vmin=3.2 "Minimum allowed voltage";
parameter SI.Voltage Vmax=4.2 "Maximum allowed voltage";
parameter SI.Voltage margin=0.05 "Voltage marging for Vmax/Vmin";
parameter SI.Voltage dV_on=0.1 "Start balancing when cell exceeds min+X";
parameter SI.Voltage dV_off=0.05 "Stop balancing when all within min+Y";
parameter SI.Voltage eps=0.04 "Hysteresis buffer to avoid chattering";
parameter SI.Time t_Bal=10 "Duration to hold balancing state";

discrete Boolean OnOffMem[4](start={false,false,false,false});

Modelica_StateGraph2.Step Init(initialStep=true, nOut=1);
Modelica_StateGraph2.Step Discharge(nIn=2, nOut=1);
Modelica_StateGraph2.Step Idle1(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Init_Discharge(delayedTransition=true,

waitTime=t_Start);
Modelica_StateGraph2.Transition Discharge_Idle(condition=min(

voltageFeedback.V_cell) <= Vmin + margin);
Modelica_StateGraph2.Transition Idle_Charge(delayedTransition=true,

waitTime=t_Idle);
Modelica_StateGraph2.Step Charge(nIn=2, nOut=2);
Modelica_StateGraph2.Transition Charge_CBalancing(condition=max(

voltageFeedback.V_cell) - min(voltageFeedback.V_cell) >= dV_on);
Modelica_StateGraph2.Step idle2(nOut=1, nIn=2);
Modelica_StateGraph2.Transition Idle_Discharge(delayedTransition=true,

waitTime=t_Idle);

Battery_Balancing Library Code 107

Modelica_StateGraph2.Step CheckBalancing(nIn=2, nOut=1);
Modelica_StateGraph2.Transition CBalancing_Charge(

condition=(max(voltageFeedback.V_cell) - min(voltageFeedback.V_cell) <=
dV_off) and max(voltageFeedback.V_cell) < Vmax - margin,

delayedTransition=true,
waitTime=1);

Interfaces.ControlSignalBalancing_Switched controlSignalBalancing_Switched
"Control signal to balancing module";

Modelica_StateGraph2.Transition Charge_Idle(condition=
max(voltageFeedback.V_cell)

>= Vmax - margin);
Modelica_StateGraph2.Step ExecuteBalancing(nOut=3, nIn=1);
Modelica_StateGraph2.Transition T1(delayedTransition=true, waitTime=1);
Modelica_StateGraph2.Transition Execute_Check(delayedTransition=true,

waitTime=t_Bal);
Modelica_StateGraph2.Transition Execute_Idle(condition=
max(voltageFeedback.V_cell)

>= Vmax - margin);
equation

// Charge/discharge mode sequence
controlLoad.mode = if Discharge.active then -1 elseif Charge.active or

CheckBalancing.active or ExecuteBalancing.active then 1 else 0;

// Per-cell balancing state machine with hysteresis
for i in 1:4 loop

OnOffMem[i] = if CheckBalancing.active then if voltageFeedback.V_cell[i] >
min(voltageFeedback.V_cell) + dV_off then true elseif
voltageFeedback.V_cell[
i] < min(voltageFeedback.V_cell) + dV_off - eps then false else pre(
OnOffMem[i]) elseif ExecuteBalancing.active then pre(OnOffMem[i])
else false;

// Only update state during CheckBalancing, hold previous value during
balancing, disable outside balancing modes

end for;

// Assign balancing signal
controlSignalBalancing_Switched.OnOff = OnOffMem;

connect(Init.outPort[1], Init_Discharge.inPort);
connect(Init_Discharge.outPort, Discharge.inPort[1]);
connect(Discharge.outPort[1], Discharge_Idle.inPort);
connect(Discharge_Idle.outPort, Idle1.inPort[1]);
connect(Idle1.outPort[1], Idle_Charge.inPort);
connect(Idle_Charge.outPort, Charge.inPort[1]);

108 Battery_Balancing Library Code

connect(Charge_CBalancing.inPort, Charge.outPort[1]);
connect(idle2.outPort[1], Idle_Discharge.inPort);
connect(Idle_Discharge.outPort, Discharge.inPort[2]);
connect(Charge_CBalancing.outPort, CheckBalancing.inPort[1]);
connect(CBalancing_Charge.outPort, Charge.inPort[2]);
connect(Charge.outPort[2], Charge_Idle.inPort);
connect(Charge_Idle.outPort, idle2.inPort[1]);
connect(ExecuteBalancing.outPort[1], Execute_Check.inPort);
connect(ExecuteBalancing.outPort[2], Execute_Idle.inPort);
connect(ExecuteBalancing.outPort[3], CBalancing_Charge.inPort);
connect(Execute_Check.outPort, CheckBalancing.inPort[2]);
connect(Execute_Idle.outPort, idle2.inPort[2]);
connect(T1.outPort, ExecuteBalancing.inPort[1]);
connect(CheckBalancing.outPort[1], T1.inPort);

end Controller_SwitchedResistor_SG;

model Controller_SingleCapacitor_SG
"State-graph controller for single-capacitor balancing."

parameter SI.Time t_Start=100 "Idle time between phases";
parameter SI.Time t_Idle=500 "Idle time between phases";
parameter SI.Voltage Vmin=3.2 "Minimum allowed voltage";
parameter SI.Voltage Vmax=4.2 "Maximum allowed voltage";
parameter SI.Voltage margin=0.05 "Voltage marging for Vmax/Vmin";
parameter SI.Voltage dV_on=0.01 "Start balancing when cell exceeds min+X";
parameter SI.Time t_Balance=100 "Idle time between phases";
discrete Boolean comm_flip(start=true);
discrete Integer idx_max "Maximum value index", idx_min

"Minimum value index";
parameter SI.Time T_commute=0.2 "Commuter switching interval";
discrete Boolean OnOff_max[5] "Switch pattern of high voltage cell",

OnOff_min[5] "Switch pattern of low voltage cell";
discrete Integer com_max[2] "Commutator pattern of high voltage cell",

com_min[2] "Commutator pattern of low voltage cell";

constant Boolean switchPattern[4, 5]=[true, true, false, false, false; false,
true, true, false, false; false, false, true, true, false; false, false,
false, true, true] "Switch pattern per cell index";

constant Integer comPattern[4, 2]=[0, 1; 1, 0; 0, 1; 1, 0]
"Commutator pattern per cell index";

Modelica_StateGraph2.Step Discharge(nIn=2, nOut=1);
Modelica_StateGraph2.Step Idle1(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Discharge_Idle(condition=min(

Battery_Balancing Library Code 109

voltageFeedback.V_cell) <= Vmin + margin);
Modelica_StateGraph2.Transition Idle_Charge(delayedTransition=true,

waitTime=t_Idle);
Modelica_StateGraph2.Step Charge(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Charge_CBalancing(condition=max(

voltageFeedback.V_cell) >= Vmax - margin);
Modelica_StateGraph2.Step idle2(nOut=1, nIn=1);
Modelica_StateGraph2.Transition Idle_Discharge(delayedTransition=true,

waitTime=t_Idle);
Interfaces.VoltageFeedback voltageFeedback

"Voltage feedback from balancing module.";
Interfaces.ControlSignal controlLoad

"Control signal to charge/discharge module.";
Interfaces.ControlSignalBalancing_Single controlSignalBalancing_Single

"Control signal to balancing module.";
Modelica_StateGraph2.Step CheckVoltage(nOut=1, nIn=3);
Modelica_StateGraph2.Transition Check_Execute(condition=(max(

voltageFeedback.V_cell) - min(voltageFeedback.V_cell) >= dV_on) and (
max(voltageFeedback.V_cell) < Vmax - margin));

Modelica_StateGraph2.Step ExecuteBalancing(nIn=1, nOut=2);
Modelica_StateGraph2.Transition Idle_Balance(delayedTransition=true,

waitTime=t_Balance);
Modelica_StateGraph2.Parallel step1(

initialStep=true,
use_inPort=false,
nEntry=2);

Modelica_StateGraph2.Step Precharge(
initialStep=false,
nIn=1,
nOut=1);

Modelica_StateGraph2.Transition T1(delayedTransition=true, waitTime=1000);
Modelica_StateGraph2.Transition T2(

condition=max(voltageFeedback.V_cell) >= Vmax - margin,
delayedTransition=true,
waitTime=0.1);

equation
// Control to charge/discharge
controlLoad.mode = if Discharge.active then -1 elseif Charge.active or

ExecuteBalancing.active then 1 else 0;

// Update max/min logic and assign patterns before balancing state
when Check_Execute.fire then

idx_max = Functions.argmax(voltageFeedback.V_cell);
idx_min = Functions.argmin(voltageFeedback.V_cell);

110 Battery_Balancing Library Code

// Assing switching patterns for max and min
for i in 1:5 loop

OnOff_max[i] = switchPattern[idx_max, i];
OnOff_min[i] = switchPattern[idx_min, i];

end for;

for j in 1:2 loop
com_max[j] = comPattern[idx_max, j];
com_min[j] = comPattern[idx_min, j];

end for;
end when;

// Enable switch 5 during Precharge and assign control signal when balancing
for i in 1:5 loop

controlSignalBalancing_Single.OnOff[i] = if initial() then (i == 5) else
if Precharge.active then (i == 5) else if ExecuteBalancing.active then
if comm_flip then OnOff_max[i] else OnOff_min[i] else false;

end for;

//Switch commuter with given period
controlSignalBalancing_Single.Com[1] = if ExecuteBalancing.active then if

comm_flip then com_max[1] else com_min[1] else 1;
controlSignalBalancing_Single.Com[2] = if ExecuteBalancing.active then if

comm_flip then com_max[2] else com_min[2] else 0;
// Periodic commutation switching
when sample(0, T_commute) and ExecuteBalancing.active then

comm_flip = not pre(comm_flip);
end when;

connect(Discharge.outPort[1], Discharge_Idle.inPort);
connect(Discharge_Idle.outPort, Idle1.inPort[1]);
connect(Idle1.outPort[1], Idle_Charge.inPort);
connect(Idle_Charge.outPort, Charge.inPort[1]);
connect(Charge_CBalancing.inPort, Charge.outPort[1]);
connect(idle2.outPort[1], Idle_Discharge.inPort);
connect(Idle_Discharge.outPort, Discharge.inPort[1]);
connect(Charge_CBalancing.outPort, idle2.inPort[1]);
connect(CheckVoltage.outPort[1], Check_Execute.inPort);
connect(Check_Execute.outPort, ExecuteBalancing.inPort[1]);
connect(ExecuteBalancing.outPort[1], Idle_Balance.inPort);
connect(Idle_Balance.outPort, CheckVoltage.inPort[1]);

connect(step1.entry[1], Discharge.inPort[2]);
connect(step1.entry[2], Precharge.inPort[1]);
connect(T1.outPort, CheckVoltage.inPort[2]);

Battery_Balancing Library Code 111

connect(Precharge.outPort[1], T1.inPort);
connect(ExecuteBalancing.outPort[2], T2.inPort);
connect(T2.outPort, CheckVoltage.inPort[3]);

end Controller_SingleCapacitor_SG;

model Controller_SingleInductor_SG
"State-graph controller for single-inductor balancing."

parameter SI.Time t_Start=100 "Idle time between phases";
parameter SI.Time t_Idle=500 "Idle time between phases";
parameter SI.Voltage Vmin=3.2 "Minimum allowed voltage";
parameter SI.Voltage Vmax=4.2 "Maximum allowed voltage";
parameter SI.Voltage margin=0.05 "Voltage marging for Vmax/Vmin";
parameter SI.Voltage dV_on=0.01 "Start balancing when cell exceeds min+X";
parameter SI.Time t_Balance=100 "Idle time between phases";
discrete Boolean comm_flip(start=true);
discrete Boolean flipCommutators

"True if commutation pattern needs to alternate.";
discrete Integer idx_max "Maximum value index", idx_min

"Minimum value index";
parameter SI.Time T_commute=0.2 "Commuter switching interval";
discrete Boolean OnOff_max[5] "Switch pattern of high voltage cell",

OnOff_min[5] "Switch pattern of low voltage cell";
discrete Integer com_max[2] "Commutator pattern of high voltage cell",

com_min[2] "Commutator pattern of low voltage cell";

constant Boolean switchPattern[4, 5]=[true, true, false, false, false; false,
true, true, false, false; false, false, true, true, false; false, false,
false, true, true] "Switch pattern per cell index";

constant Integer comPattern[4, 2]=[1, 0; 1, 0; 1, 0; 1, 0]
"Commutator pattern per cell index";

Modelica_StateGraph2.Step Discharge(nIn=2, nOut=1);
Modelica_StateGraph2.Step Idle1(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Discharge_Idle(condition=min(

voltageFeedback.V_cell) <= Vmin + margin);
Modelica_StateGraph2.Transition Idle_Charge(delayedTransition=true,

waitTime=t_Idle);
Modelica_StateGraph2.Step Charge(nIn=1, nOut=1);
Modelica_StateGraph2.Transition Charge_CBalancing(condition=max(

voltageFeedback.V_cell) >= Vmax - margin);
Modelica_StateGraph2.Step idle2(nOut=1, nIn=1);
Modelica_StateGraph2.Transition Idle_Discharge(delayedTransition=true,

waitTime=t_Idle);

112 Battery_Balancing Library Code

Interfaces.VoltageFeedback voltageFeedback
"Voltage feedback from balancing module.";

Interfaces.ControlSignal controlLoad
"Control signal to charge/discharge module.";

Interfaces.ControlSignalBalancing_Single controlSignalBalancing_Single
"Control signal to balancing module.";

Modelica_StateGraph2.Step CheckVoltage(nOut=1, nIn=3);
Modelica_StateGraph2.Transition Check_Execute(condition=(max(

voltageFeedback.V_cell) - min(voltageFeedback.V_cell) >= dV_on) and (
max(voltageFeedback.V_cell) < Vmax - margin));

Modelica_StateGraph2.Step ExecuteBalancing(nIn=1, nOut=2);
Modelica_StateGraph2.Transition Idle_Balance(delayedTransition=true,

waitTime=t_Balance);
Modelica_StateGraph2.Parallel step1(

initialStep=true,
use_inPort=false,
nEntry=2);

Modelica_StateGraph2.Step Precharge(
initialStep=false,
nIn=1,
nOut=1);

Modelica_StateGraph2.Transition T1(delayedTransition=true, waitTime=1000);
Modelica_StateGraph2.Transition T2(

condition=max(voltageFeedback.V_cell) >= Vmax - margin,
delayedTransition=true,
waitTime=0.1);

equation
// Control to charge/discharge
controlLoad.mode = if Discharge.active then -1 elseif Charge.active or

ExecuteBalancing.active then 1 else 0;

// Update max/min logic and assign patterns before balancing state
when Check_Execute.fire then

idx_max = Functions.argmax(voltageFeedback.V_cell);
idx_min = Functions.argmin(voltageFeedback.V_cell);

// Assing switching patterns for max and min
for i in 1:5 loop

OnOff_max[i] = switchPattern[idx_max, i];
OnOff_min[i] = switchPattern[idx_min, i];

end for;

// Assign base commutator pattern
com_max = {1,0};
com_min = {0,1};

Battery_Balancing Library Code 113

// Determine whether commutator flipping is needed
flipCommutators = abs(idx_max - idx_min) == 2;

end when;

// Enable switch 5 during Precharge and assign control signal when balancing
for i in 1:5 loop

controlSignalBalancing_Single.OnOff[i] = if initial() then (i == 5 or i ==
4) else if Precharge.active then (i == 5) else if ExecuteBalancing.active
then if comm_flip then OnOff_max[i] else OnOff_min[i] else false;

end for;

//Switch commuter with given period
controlSignalBalancing_Single.Com[1] = if initial() then 1 else if

ExecuteBalancing.active then if flipCommutators then if comm_flip then
com_max[1] else com_min[1] else com_max[1] else 0;

controlSignalBalancing_Single.Com[2] = if initial() then 0 else if
ExecuteBalancing.active then if flipCommutators then if comm_flip then
com_max[2] else com_min[2] else com_max[2] else 0;

// Periodic commutation switching
when sample(0, T_commute) and ExecuteBalancing.active then

comm_flip = not pre(comm_flip);
end when;

connect(Discharge.outPort[1], Discharge_Idle.inPort);
connect(Discharge_Idle.outPort, Idle1.inPort[1]);
connect(Idle1.outPort[1], Idle_Charge.inPort);
connect(Idle_Charge.outPort, Charge.inPort[1]);
connect(Charge_CBalancing.inPort, Charge.outPort[1]);
connect(idle2.outPort[1], Idle_Discharge.inPort);
connect(Idle_Discharge.outPort, Discharge.inPort[1]);
connect(Charge_CBalancing.outPort, idle2.inPort[1]);
connect(CheckVoltage.outPort[1], Check_Execute.inPort);
connect(Check_Execute.outPort, ExecuteBalancing.inPort[1]);
connect(ExecuteBalancing.outPort[1], Idle_Balance.inPort);
connect(Idle_Balance.outPort, CheckVoltage.inPort[1]);
connect(step1.entry[1], Discharge.inPort[2]);
connect(step1.entry[2], Precharge.inPort[1]);
connect(T1.outPort, CheckVoltage.inPort[2]);
connect(Precharge.outPort[1], T1.inPort);
connect(T2.outPort, CheckVoltage.inPort[3]);
connect(ExecuteBalancing.outPort[2], T2.inPort);

end Controller_SingleInductor_SG;
end Control_Structures;

114 Battery_Balancing Library Code

A.8. Code Package Examples

Demonstrates the use of the library via testbenches that simulate real-world operation
of second-life battery packs under different control and balancing scenarios.

package Examples "Collection of simulation testbenches demonstrating the behavior
and performance of various battery management and balancing strategies
for a 4-cell lithium-ion pack."

model Example_NoBalancing1CSG
"Simulation of a single-cell system with no cell balancing mechanism."

// Add parameter loaders for each cell
Functions.ECM_ParameterLoader_1Thv paramLoader1;

parameter Real alpha[4]={1,1,1,1} "Derating aging values";
parameter Real beta[4]={1,1,1,1} "Derating unbalance values";

Components.Ground ground;
ECM_Structures.ECM_Thevenin_SL_Vbf battery(

Q=3600,
eta=1,
alpha_Q=alpha[1],
alpha_R0=alpha[2],
alpha_R1=alpha[3],
alpha_C1=alpha[4],
beta_Q=beta[1],
beta_R0=beta[2],
beta_R1=beta[3],
beta_C1=beta[4]);

Control_Structures.Controller_NoBalancing1C_SG controller_NoBalancing1C_SG;

Balancing_Structures.ChargeDischarge chargeDischarge;

equation

// Connect SOC feedback to param loaders
paramLoader1.SOC = battery.ocv.z;

// Connect outputs to battery inputs
battery.OCV = paramLoader1.OCV;
battery.R0 = paramLoader1.R0;
battery.R1 = paramLoader1.R1;
battery.C1 = paramLoader1.C1;

Battery_Balancing Library Code 115

connect(chargeDischarge.n, ground.p);
connect(battery.n, ground.p);
connect(battery.p, chargeDischarge.p);
connect(controller_NoBalancing1C_SG.controlLoad, chargeDischarge.controlInput);
connect(controller_NoBalancing1C_SG.voltageFeedback, battery.voltageFeedback);

end Example_NoBalancing1CSG;

model Example_NoBalancing4CSG
"Simulation of a 4-cell battery pack without any balancing strategy."

// Add parameter loaders for each cell
Functions.ECM_ParameterLoader_1Thv paramLoader1;
Functions.ECM_ParameterLoader_1Thv paramLoader2;
Functions.ECM_ParameterLoader_1Thv paramLoader3;
Functions.ECM_ParameterLoader_1Thv paramLoader4;

parameter Real alpha[4, 4]=[1.5, 1.5, 0.8, 0.8; 1.5, 1.5, 0.8, 0.8; 1.5, 1.5,
0.8, 0.8; 1.5, 1.5, 0.8, 0.8] "Derating aging values";

parameter Real beta[4, 4]=[1.05, 1.05, 0.97, 0.97; 1.0167, 1.0167, 0.99, 0.99;
0.9833, 0.9833, 1.01, 1.01; 0.95, 0.95, 1.03, 1.03]

"Derating unbalance values";

Components.Ground ground;
Cell_Packs.Battery4Cell_Bal_Vfb battery(

Q={3600,3600,3600,3600},
eta={1,1,1,1},
alpha=alpha,
beta=beta);

Control_Structures.Controller_NoBalancing4C_SG controller_NoBalancing4C_SG;

Balancing_Structures.ChargeDischarge chargeDischarge;

equation

// Connect SOC feedback to param loaders
paramLoader1.SOC = battery.Cell1.ocv.z;
paramLoader2.SOC = battery.Cell2.ocv.z;
paramLoader3.SOC = battery.Cell3.ocv.z;
paramLoader4.SOC = battery.Cell4.ocv.z;

// Connect outputs to battery inputs

116 Battery_Balancing Library Code

battery.OCV = {paramLoader1.OCV,paramLoader2.OCV,paramLoader3.OCV,
paramLoader4.OCV};

battery.R0 = {paramLoader1.R0,paramLoader2.R0,paramLoader3.R0,
paramLoader4.R0};
battery.R1 = {paramLoader1.R1,paramLoader2.R1,paramLoader3.R1,
paramLoader4.R1};
battery.C1 = {paramLoader1.C1,paramLoader2.C1,paramLoader3.C1,
paramLoader4.C1};

connect(controller_NoBalancing4C_SG.voltageFeedback, battery.voltageFeedback);
connect(controller_NoBalancing4C_SG.controlLoad, chargeDischarge.controlInput);
connect(chargeDischarge.n, ground.p);
connect(chargeDischarge.n, battery.n);
connect(battery.p, chargeDischarge.p);

end Example_NoBalancing4CSG;

model Example_ShuntBalancing4CSG
"Simulation of a 4-cell battery pack using passive shunt resistor balancing."

parameter Real alpha[4, 4]=[1.5, 1.5, 0.8, 0.8; 1.5, 1.5, 0.8, 0.8; 1.5, 1.5,
0.8, 0.8; 1.5, 1.5, 0.8, 0.8] "Derating aging values";

parameter Real beta[4, 4]=[1.05, 1.05, 0.97, 0.97; 1.0167, 1.0167, 0.99, 0.99;
0.9833, 0.9833, 1.01, 1.01; 0.95, 0.95, 1.03, 1.03]

"Derating unbalance values";

// Add parameter loaders for each cell
Functions.ECM_ParameterLoader_1Thv paramLoader1;
Functions.ECM_ParameterLoader_1Thv paramLoader2;
Functions.ECM_ParameterLoader_1Thv paramLoader3;
Functions.ECM_ParameterLoader_1Thv paramLoader4;

Components.Ground ground;
Control_Structures.Controller_ShuntResistor_SG controller_ShuntResistor_SG(

t_Idle=500);
Balancing_Structures.ChargeDischarge chargeDischarge;
Cell_Packs.Battery4Cell_Bal battery(

Q={3600,3600,3600,3600},
eta={1,1,1,1},
alpha=alpha,
beta=beta);

Balancing_Structures.ShuntResistorBalancing_4Cell balancingBlock(R_shunt=100);

equation
// Connect SOC feedback to param loaders

Battery_Balancing Library Code 117

paramLoader1.SOC = battery.Cell1.ocv.z;
paramLoader2.SOC = battery.Cell2.ocv.z;
paramLoader3.SOC = battery.Cell3.ocv.z;
paramLoader4.SOC = battery.Cell4.ocv.z;

// Connect outputs to battery inputs
battery.OCV = {paramLoader1.OCV,paramLoader2.OCV,paramLoader3.OCV,

paramLoader4.OCV};
battery.R0 = {paramLoader1.R0,paramLoader2.R0,paramLoader3.R0,
paramLoader4.R0};
battery.R1 = {paramLoader1.R1,paramLoader2.R1,paramLoader3.R1,
paramLoader4.R1};
battery.C1 = {paramLoader1.C1,paramLoader2.C1,paramLoader3.C1,
paramLoader4.C1};
connect(controller_ShuntResistor_SG.voltageFeedback,
balancingBlock.voltageFeedback);
connect(controller_ShuntResistor_SG.controlBalancing,
balancingBlock.controlInput);
connect(controller_ShuntResistor_SG.controlLoad,
chargeDischarge.controlInput);
connect(battery.p, chargeDischarge.p);
connect(battery.n, chargeDischarge.n);
connect(ground.p, battery.n);
connect(balancingBlock.pin2, battery.node_1_2);
connect(balancingBlock.pin4, battery.node_3_4);

connect(battery.n, balancingBlock.pin5);
connect(battery.p, balancingBlock.pin1);
connect(battery.node_2_3, balancingBlock.pin3);

end Example_ShuntBalancing4CSG;

model Example_SwitchedBalancing4CSG
"Simulation of a 4-cell battery pack employing switched resistor balancing."

// Add parameter loaders for each cell
Functions.ECM_ParameterLoader_1Thv paramLoader1;
Functions.ECM_ParameterLoader_1Thv paramLoader2;
Functions.ECM_ParameterLoader_1Thv paramLoader3;
Functions.ECM_ParameterLoader_1Thv paramLoader4;

parameter Real alpha[4, 4]=[1.5, 1.5, 0.8, 0.8; 1.5, 1.5, 0.8, 0.8; 1.5, 1.5,
0.8, 0.8; 1.5, 1.5, 0.8, 0.8] "Derating aging values";

parameter Real beta[4, 4]=[1.05, 1.05, 0.97, 0.97; 1.0167, 1.0167, 0.99, 0.99;
0.9833, 0.9833, 1.01, 1.01; 0.95, 0.95, 1.03, 1.03]

118 Battery_Balancing Library Code

"Derating unbalance values";

Components.Ground ground;
Balancing_Structures.SwitchedResistorBalancing_4Cell

switchedResistorBalancing_4Cell;
Control_Structures.Controller_SwitchedResistor_SG

controller_SwitchedResistor_SG;

Balancing_Structures.ChargeDischarge chargeDischarge;
Cell_Packs.Battery4Cell_Bal battery(

Q={3600,3600,3600,3600},
eta={1,1,1,1},
alpha=alpha,
beta=beta);

equation
// Connect SOC feedback to param loaders
paramLoader1.SOC = battery.Cell1.ocv.z;
paramLoader2.SOC = battery.Cell2.ocv.z;
paramLoader3.SOC = battery.Cell3.ocv.z;
paramLoader4.SOC = battery.Cell4.ocv.z;

// Connect outputs to battery inputs
battery.OCV = {paramLoader1.OCV,paramLoader2.OCV,paramLoader3.OCV,

paramLoader4.OCV};
battery.R0 = {paramLoader1.R0,paramLoader2.R0,paramLoader3.R0,
paramLoader4.R0};
battery.R1 = {paramLoader1.R1,paramLoader2.R1,paramLoader3.R1,
paramLoader4.R1};
battery.C1 = {paramLoader1.C1,paramLoader2.C1,paramLoader3.C1,
paramLoader4.C1};

connect(battery.p, chargeDischarge.p);
connect(battery.n, chargeDischarge.n);
connect(ground.p, battery.n);
connect(battery.node_1_2, switchedResistorBalancing_4Cell.pin2);
connect(battery.node_2_3, switchedResistorBalancing_4Cell.pin3);
connect(battery.node_3_4, switchedResistorBalancing_4Cell.pin4);
connect(switchedResistorBalancing_4Cell.pin5, battery.n);
connect(switchedResistorBalancing_4Cell.pin1, battery.p);
connect(controller_SwitchedResistor_SG.voltageFeedback,

switchedResistorBalancing_4Cell.voltageFeedback);
connect(controller_SwitchedResistor_SG.controlSignalBalancing_Switched,

switchedResistorBalancing_4Cell.controlInput);
connect(controller_SwitchedResistor_SG.controlLoad,
chargeDischarge.controlInput);

Battery_Balancing Library Code 119

end Example_SwitchedBalancing4CSG;

model Example_SingleCapacitor4CSG
"Simulation of a 4-cell battery pack with single-capacitor active balancing."

// Relevant Parameters
parameter Real alpha[4, 4]=[1.5, 1.5, 0.8, 0.8; 1.5, 1.5, 0.8, 0.8; 1.5, 1.5,

0.8, 0.8; 1.5, 1.5, 0.8, 0.8] "Derating aging values";
parameter Real beta[4, 4]=[1.05, 1.05, 0.97, 0.97; 1.0167, 1.0167, 0.99, 0.99;

0.9833, 0.9833, 1.01, 1.01; 0.95, 0.95, 1.03, 1.03]
"Derating unbalance values";

parameter SI.Capacitance C=1e-3 "Capacitance for energy transfer";
parameter SI.Resistance R_on=0.1 "On resistance";
parameter SI.Resistance R_bleed=1e9;
parameter SI.Time t_Balance=10 "Idle time between phases (s)";
parameter SI.Time T_commute=0.02 "Commuter switching interval";

// Add parameter loaders for each cell
Functions.ECM_ParameterLoader_1Thv paramLoader1;
Functions.ECM_ParameterLoader_1Thv paramLoader2;
Functions.ECM_ParameterLoader_1Thv paramLoader3;
Functions.ECM_ParameterLoader_1Thv paramLoader4;

Balancing_Structures.ChargeDischarge chargeDischarge;
Cell_Packs.Battery4Cell_Bal battery(

Q={3600,3600,3600,3600},
eta={1,1,1,1},
alpha=alpha,
beta=beta);

Components.Ground ground;
Balancing_Structures.SingleCapacitorBalancing_4Cell

singleCapacitorBalancing_4Cell(
C=C,
R_on=R_on,
R_bleed=R_bleed);

Control_Structures.Controller_SingleCapacitor_SG
controller_SingleCapacitor_SG(t_Balance=t_Balance, T_commute=T_commute);

equation

// Connect SOC feedback to param loaders
paramLoader1.SOC = battery.Cell1.ocv.z;
paramLoader2.SOC = battery.Cell2.ocv.z;
paramLoader3.SOC = battery.Cell3.ocv.z;
paramLoader4.SOC = battery.Cell4.ocv.z;

120 Battery_Balancing Library Code

// Connect outputs to battery inputs
battery.OCV = {paramLoader1.OCV,paramLoader2.OCV,paramLoader3.OCV,

paramLoader4.OCV};
battery.R0 = {paramLoader1.R0,paramLoader2.R0,paramLoader3.R0,
paramLoader4.R0};
battery.R1 = {paramLoader1.R1,paramLoader2.R1,paramLoader3.R1,
paramLoader4.R1};
battery.C1 = {paramLoader1.C1,paramLoader2.C1,paramLoader3.C1,
paramLoader4.C1};
connect(battery.p, chargeDischarge.p);
connect(battery.n, chargeDischarge.n);
connect(ground.p, battery.n);
connect(singleCapacitorBalancing_4Cell.pin2, battery.node_1_2);
connect(singleCapacitorBalancing_4Cell.pin3, battery.node_2_3);
connect(singleCapacitorBalancing_4Cell.pin4, battery.node_3_4);
connect(singleCapacitorBalancing_4Cell.pin5, battery.n);
connect(singleCapacitorBalancing_4Cell.pin1, battery.p);
connect(controller_SingleCapacitor_SG.controlLoad,
chargeDischarge.controlInput);
connect(controller_SingleCapacitor_SG.controlSignalBalancing_Single,

singleCapacitorBalancing_4Cell.controlSignal);
connect(controller_SingleCapacitor_SG.voltageFeedback,

singleCapacitorBalancing_4Cell.voltageFeedback);
end Example_SingleCapacitor4CSG;

model Example_SingleInductor4CSG
"Simulation of a 4-cell battery pack using single-inductor balancing."

// Relevant Parameters
parameter Real alpha[4, 4]=[1.5, 1.5, 0.8, 0.8; 1.5, 1.5, 0.8, 0.8; 1.5, 1.5,

0.8, 0.8; 1.5, 1.5, 0.8, 0.8] "Derating aging values";
parameter Real beta[4, 4]=[1.05, 1.05, 0.97, 0.97; 1.0167, 1.0167, 0.99, 0.99;

0.9833, 0.9833, 1.01, 1.01; 0.95, 0.95, 1.03, 1.03]
"Derating unbalance values";

parameter SI.Inductance L=0.04 "Inductance for energy transfer";
parameter SI.Resistance R_on=0.2 "On resistance";
parameter SI.Resistance R_bleed=0.01;
parameter SI.Time t_Balance=10 "Idle time between phases (s)";
parameter SI.Time T_commute=0.04 "Commuter switching interval";

// Add parameter loaders for each cell
Functions.ECM_ParameterLoader_1Thv paramLoader1;
Functions.ECM_ParameterLoader_1Thv paramLoader2;
Functions.ECM_ParameterLoader_1Thv paramLoader3;
Functions.ECM_ParameterLoader_1Thv paramLoader4;

Battery_Balancing Library Code 121

Balancing_Structures.ChargeDischarge chargeDischarge;
Cell_Packs.Battery4Cell_Bal battery(

Q={3600,3600,3600,3600},
eta={1,1,1,1},
alpha=alpha,
beta=beta);

Components.Ground ground;
Balancing_Structures.SingleInductorBalancing_4Cell

singleInductorBalancing_4Cell(
L=L,
R_on=R_on,
R_bleed=R_bleed);

Control_Structures.Controller_SingleInductor_SG
controller_SingleInductor_SG(t_Balance=t_Balance, T_commute=T_commute);

equation

// Connect SOC feedback to param loaders
paramLoader1.SOC = battery.Cell1.ocv.z;
paramLoader2.SOC = battery.Cell2.ocv.z;
paramLoader3.SOC = battery.Cell3.ocv.z;
paramLoader4.SOC = battery.Cell4.ocv.z;

// Connect outputs to battery inputs
battery.OCV = {paramLoader1.OCV,paramLoader2.OCV,paramLoader3.OCV,

paramLoader4.OCV};
battery.R0 = {paramLoader1.R0,paramLoader2.R0,paramLoader3.R0,
paramLoader4.R0};
battery.R1 = {paramLoader1.R1,paramLoader2.R1,paramLoader3.R1,
paramLoader4.R1};
battery.C1 = {paramLoader1.C1,paramLoader2.C1,paramLoader3.C1,
paramLoader4.C1};
connect(battery.p, chargeDischarge.p);
connect(battery.n, chargeDischarge.n);
connect(ground.p, battery.n);
connect(controller_SingleInductor_SG.voltageFeedback,

singleInductorBalancing_4Cell.voltageFeedback);
connect(controller_SingleInductor_SG.controlLoad, chargeDischarge.controlInput);
connect(singleInductorBalancing_4Cell.pin5, battery.n);
connect(battery.node_3_4, singleInductorBalancing_4Cell.pin4);
connect(battery.node_2_3, singleInductorBalancing_4Cell.pin3);
connect(battery.node_1_2, singleInductorBalancing_4Cell.pin2);
connect(singleInductorBalancing_4Cell.pin1, battery.p);
connect(controller_SingleInductor_SG.controlSignalBalancing_Single,
singleInductorBalancing_4Cell.controlSignal);

122 Battery_Balancing Library Code

end Example_SingleInductor4CSG;

end Examples;

Appendix B

User Documentation of
Battery_Balancing Library

The following appendix contains the auto-generated documentation of the Battery_Balancing
library developed as part of this thesis. The documentation includes graphical representa-
tions, structural hierarchy, and brief descriptions of components, extracted using the Dymola
export functionality.

123

	Abstract
	Resumen
	Glossary
	Table of Contents
	List of Figures
	List of Tables
	Introduction, Goals and Structure
	Motivation
	Proposition and Goals
	Document Structure

	Literature Review
	Introduction
	Modelica
	Batteries
	Lithium-Ion Batteries
	Cell behavior
	Functions of a BMS
	Second-life Applications
	Aging

	Modeling of Lithium-Ion Batteries
	ECM Components
	Typical ECM Structure
	Aging in ECM Models
	Unbalance in ECMs
	Parameter Identification

	Battery Balancing
	Balancing Methodologies
	Balancing Topologies
	Control Strategies

	Conclusion

	Modeling Hypotheses
	Introduction
	ECM Modeling
	Open Circuit Voltage
	Parameter Loader
	ECM Structure
	Cell packs structure

	Balancing Modeling
	Shunt Resistor Modeling
	Switched Resistor Modeling
	Single Capacitor Modeling
	Single Inductor Modeling
	CC Charging model
	Control Unit model

	Conclusion

	Implementation Details
	Introduction
	Parametrization of ECM
	Base Parameters
	Aging and Unbalance

	Balancing Module Parameters
	Charge/Load module
	Balancing Algorithm
	Conclusion

	Battery_Balancing Library Architecture
	Introduction
	Package Interfaces
	Package Components
	Package Functions
	Package ECM_structures
	Package Cell_Packs
	Package Balancing_Structures
	Package Control_Structures
	Package Examples
	Conclusion

	Model Validation and Results
	Introduction
	Single Cell Validation
	Cell Pack Derated Validation
	Passive Balancing Methods
	Active Balancing Methods
	Conclusions

	Conclusions
	Conclusions
	Future Work

	Bibliography
	Battery_Balancing Library Code
	Code Package Interfaces
	Code Package Components
	Code Package Functions
	Code Package ECM_Structures
	Code Package Cell_Packs
	Code Package Balancing_Structures
	Code Package Control_Structures
	Code Package Examples

	User Documentation of Battery_Balancing Library

