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Libraries of Hybrid Dynamic Systems –
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ABSTRACT

An object-oriented methodology for the design of reusable model libraries, dedicated to the composition of

hybrid simulation models, is proposed. It takes into consideration all the phases of the library life cycle:

design, programming, maintenance, modifications, extension, etc. The methodology distinguishes between

the role of the library designers and the role of the library users. One of its main goals is guaranteeing that

the users are able to use the libraries without having to know their internal details. In particular, users should

not be confronted with numerical problems. The library designers should guarantee the numerical efficiency

of the models based on the library predefined-models. In this respect, some of the numerical aspects of the

model library design are discussed. The concept of library design rules is introduced as the cornerstone of

the proposed methodology.

Keywords: Object-oriented modeling languages, first principles modeling, hybrid models,
chemical engineering models, mathematical models.

1. INTRODUCTION

The use of general-purpose, object-oriented modeling languages has been growing

gradually during the last decade. The first commercial versions of the modeling

languages emerged in the early 90s, in order to support the physical modeling. The

development of efficient and well-tested versions of these software tools has made of

this modeling paradigm (i.e., the physical modeling) an attractive alternative to the

block diagram modeling.

The block diagram modeling can be considered as an evolution from the analog-

computing paradigm [1]. It requires of explicit state models (ordinary differential

equations) and the blocks have a unidirectional data flow from input to outputs. These

restrictions strongly condition the modeling task. For instance, dummy dynamics
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need to be introduced in the model to avoid the establishment of systems of

simultaneous equations. The model programmer has to manipulate the model to

transform its equations to the form of ordinary differential equations (ODEs). As a

consequence, a considerable modeling effort is required. However, the main

advantage of this paradigm is demonstrated during the numerical integration of the

model (i.e., the simulation run): numerical integration of ODEs is a mature, well-

developed and yet very active research field. ACSL Graphics Modeller, EASY5 and

SIMULINK are some examples of general-purpose simulation languages supporting

the graphical block diagram modeling.

The physical modeling paradigm is based on the modular modeling methodology.

Typically, the basic stages of the physical modeling are [1, 2]: (1) definition of the

system structure and partition of the system into subsystems; (2) definition of the

interaction among the subsystems; and (3) description of the internal behavior of each

subsystem, independently of each other, in terms of mass, energy and momentum

balances and of material equations. The modeling knowledge is represented as

differential, algebraic and discrete equations that may change by being triggered by

events (i.e., hybrid models). A model is considered as a constraint between system

variables [1].

Some examples of object-oriented modeling languages are ABACUSS II [3],

ASCEND [4], Dymola [5, 6], EcosimPro [7], gPROMS [8], MODE.LA [9, 10],

Modelica [11] and Omola [12]. Dymola (Dynamic Modeling Laboratory) was the first

modeling language in the market [13]. The Modelica language [11, 14] has been

designed by the developers of the object-oriented modeling languages Allan, Dymola,

NMF, ObjectMath, Omola, SIDOPSþ, Smile and a number of modeling practitioners

in different fields. It is intended to serve as a standard format for the external model

representation, so that models arising in different engineering fields can be exchanged

between tools and users.

The common characteristics of these modeling languages are the object-oriented,

non-causal modeling methodology and the need for automatic symbolic formula

manipulation. They support a declarative description of the model, based on equations

(i.e., equation-oriented modeling) instead of assignment statements. The information

of what variable to solve for in each equation is not included in the model (i.e., non-

causal modeling). This permits better reuse of models since equations do not specify a

certain data flow direction. Thus a model can adapt to more than one data flow context.

The software tools supporting these modeling languages implement algorithms to

automatically decide which equation to use for calculating each unknown variable.

The symbolic manipulations that these software tools carry out on the model can be

classified into two types according to their purpose. First, manipulations intended to

translate the object-oriented description of the model into the so-called flat model [14].

The flat model contains the complete set of model equations and functions, with all the

object-oriented structure removed. Second, manipulations intended to transform the
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flat model into an efficiently solvable form. This second type of manipulations

includes:

1. The efficient formulation of the complete-model equations, eliminating the redun-

dant variables and the trivial equations resulting from the submodels connections.

2. The sorting of the equations.

3. The symbolic manipulation of those equations in which the unknown variable

appears linearly.

4. The reduction of the system index to zero or one [15–17].

The modeling environments needs, for simulating hybrid models (i.e., a set of

synchronous differential, algebraic and discrete equations), the following:

1. A simulation algorithm appropriate for hybrid systems (for instance, the Omola

simulation algorithm is described in [12]).

2. An adequate treatment of the discrete events [18]: the detection, the accurate

determination of the trigger time [18–21] and the re-start problem solution.

3. Algorithms to carry out the symbolic manipulation of the linear systems of si-

multaneous equations and to tear the nonlinear ones [22].

In addition, the modeling environment needs to include at least one DAE-solver

algorithm (e.g., DASSL [15]). The simulation efficiency is notably increased with the

use of inline integration algorithms [23].

1.1. Some Fundamental Concepts of the Object-Oriented

Modeling Methodology

The physical modeling practice using object-oriented modeling languages consider-

ably reduces the modeling effort. Object-oriented modeling methodology facilitates

the design, the programming, the reuse and the maintenance of the models. As a

consequence, it reduces the modeling costs [2, 24]. This design methodology

incorporates the concepts from the modular and hierarchical modeling.

The basic stages of the modular modeling methodology are [2]: (1) definition of the

system structure and partition of the system into subsystems; (2) definition of the

interaction among the subsystems; and (3) description of the internal behavior of each

subsystem independently of each other. In order to support the modularization,

the modeling language must allow: (1) the description of each submodel inde-

pendently of the others; (2) the connection of the submodels; and (3) the abstraction

(i.e., the capability of using a submodel without knowing its internal details). Away of

improving the abstraction consists in distinguishing between its interface and its

internal description in the submodel description. The interface describes the inter-

action between the model and its environment. The internal description contains the

information about the model structure and behavior. Abstraction and modularization
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are closely related to the information encapsulation: only the interface variables of the

model are accessible by other models. Information encapsulation facilitates the

modification, the test and the maintenance of the model [12, 25].

In the same way, the hierarchical description of the model facilitates its design,

programming, maintenance and reuse. It consists in describing the model progressing

from lower to higher level of detail: the model is split into submodels and these are

split into sub-submodels and so on. The modular and hierarchical description of the

model leads to the classification of the models into primitive and composed. Primitive

(or atomic) models are those not composed of other submodels: they contain the

equations describing the behavior of the system. Composed (or molecular) models are

those formed by the connection of a number of primitive or composed submodels.

The object-oriented modeling methodology is based in the three conceptual

elements described previously: abstraction, information encapsulation and modular-

ization. Other important concepts are class and class instantiation [12, 24]. A class is

the description of a set of objects with similar properties. Models are represented as

classes instead of as class instantiations, because usually a model is the description of

a kind of system instead of the description of a particular system. The simulation is

carried out on an instantiation of the model.

Composition and specialization are the two fundamental ways of reusing the

model. Composition is the capability of defining new models as the connection

between the previously defined models. Specialization is the capability of defining a

new model by the specialization of other previously defined models. Inheritance is a

way of information sharing by specialization: the subclass inherits all the attributes of

its superclass (or superclasses in case of multiple inheritance). Therefore, the subclass

can be considered as a refinement or specialization of the general concept defined in

the superclass, to which new components or equations are added.

Parametrization is a key concept related to reusing the models. A parameter of a

model is any of its properties that can be modified in order to adapt the model to its

different applications. In a broader sense, a parameter may be as simple as a variable

or as complex as a submodel structure [11]. Another related concept to reusing

models is polymorphism. Two models are polymorphic when their interfaces have the

same structure and they have an equal number of freedom degrees (that are defined as

the difference between the total number of variables and the number of equations).

Polymorphism is a first condition to be satisfied by models that can be used in the

same context and that can be exchanged without modifying the rest of the system [8].

Frequently, polymorphic models have a superclass in common: their interface.

1.2. Contributions of this Paper

The use of an appropriate design methodology is a key element to guarantee the

success of any modeling task. In particular, the design of model libraries dedicated to
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the composition of simulation models based on predefined model elements. In this

context, a distinction can be made between the library designers/programmers and the

library users, who use the library to compose models to fulfill their necessities.

Therefore, the library design methodology should define: (1) the relationship between

the designers/programmers and the users; and (2) the role of the library designers/

programmers.

The design methodology should take into consideration all the phases of the libraries

life cycle: design, programming, maintenance, modifications, extension, etcetera.

Modeling languages provide the resources to apply the object-oriented modeling

principles. However, the application of these principles to achieve the best possible

results depends on the library design methodology adopted by the design group.

In addition, the library design methodology should take into consideration the

numerical aspects of the model simulation. The current modeling environments

capabilities could erroneously suggest that the library designer can depend totally on

the modeling environment, without considering the numerical aspects of the model. In

other words, it could be erroneously assumed that the model designer can focus on

carrying out a declarative description of the different system submodels and the

modeling environment is in charge of the rest. However, frequently this is not so. A

model library could be useless if the models obtained from their composition and

specialization have poor numerical properties. In practice, these considerations may

decisively condition the model library design.

A possible object-oriented design methodology that attempts to cover all the

previously mentioned aspects is proposed in this paper. A distinction is made between

library designers/programmers and library users. One of the main goals of the

proposed methodology is to guarantee that the users are able to use the model libraries

without having to know their internal details. In particular, the users should not be

confronted with numerical problems. In order to have a well posed and efficient model

description for simulation, the model library code needs to be designed in the ‘‘correct

way’’ from the start [26]. To achieve these objectives, non-declarative techniques are

recommended in the library design phase: causality analysis, explicit selection of

tearing variables, decoupling via dummy dynamics, etc. This proposed approach

implies considerable modeling effort compared with a declarative description of the

models.

This aspect of the proposed design methodology contradicts the thinking of a part

of the object-oriented modeling and simulation community. These researchers

support the declarative modeling of physical systems, that is, not taking causalities,

tearing or index problems into account. Their approach assumes that the existing

modeling environments allow facing the numerical problems purely by numerical

means, that is, symbolic manipulation of the set of equations and dedicated numerical

algorithms. According to this point of view, the design methodology proposed in this

paper could be considered ‘‘a step backward’’.
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The library design methodology presented in this manuscript is mainly based on

the modeling experience of the authors in the physical-chemical field, an application

domain where the numerical problems can become critical. This fact has undoubtedly

conditioned the development of the methodology. Hopefully, some of the ideas

presented in this manuscript will help the reader who has particular modeling and

simulation problems, to find an adequate design methodology.

2. NUMERICAL ASPECTS OF THE MODEL LIBRARIES DESIGN

The numerical aspects of the class library design are discussed: (1) the problems

related to the numerical solution of nonlinear systems of simultaneous equations

(abbreviated: nonlinear SSE); (2) the problems related to the establishment of high-

index problems (i.e., models with index greater than one); (3) the appropriate

selection of the state variables; (4) the intensive variables definition in order to avoid

numerical errors during the simulation; (5) the problem of small oscillations crossing

an event condition; (6) the need of extending the definition of the functions with

several branches; (7) the need to express the model equations so that they have good

numerical properties for all the computational causalities required for their interface;

and (8) the infinite chains of events without any termination stage.

2.1. Numerical Solution of Nonlinear Systems of Simultaneous Equations

The intrinsic problem with the numerical solution of nonlinear SSE is that depending

on how we iterate the system of equations, we may end up with one solution, or

another, or none at all. Unfortunately, no general applicable method can be found that

would deal with this problem once and for all [27].

Tearing is a technique to facilitate the numerical solution of certain type of

nonlinear SSE. It is applicable to nonlinear SSE in which at least one of the unknown

variables appears linearly in one equation. The purpose of the technique is, taking

advantage of the previous fact, to reduce the number of variables to iterate for solving

the SSE [22, 23]. The tearing of the nonlinear SSE G(y)¼ 0 can be viewed in the

following way: G1ðy1;y2Þ¼0
G2ðy1;y2Þ¼0

n
, so that the next two conditions are satisfied:

1. The Jacobian matrix @G1

@y1
is lower triangular or lower triangular by blocks. All the

diagonal blocks represent equations (scalar block) or SSE (non scalar block) in

which the unknown variables to be evaluated from them appear linearly.

2. The dimension of y2 is as small as possible.

Once the SSE is written in this way, then only y2 is calculated by iteration. Having a

known initial value of y2 then y1 can be calculated, solving G1(y1, y2)¼ 0 by means of

techniques for linear SSE. With this value of y1, a new value of y2 is obtained iterating
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G2(y1, y2)¼ 0, and so on. The unknown variables y2 are called the tearing variables.

The equations G2(y1, y2)¼ 0, used to evaluate the tearing variables, are called residue

equations. Some modeling environments support a more restrictive concept of tearing

[22, 23]: the Jacobian matrix @G1

@y1
is lower triangular (i.e., all the diagonal elements are

scalar).

Commonly, there is more than one possible selection of residue equations and

tearing variables in a nonlinear SSE. Actually there is not an efficient algorithm to

carry out automatically the optimal selection of the tearing variables and the residue

equations [22]. Nevertheless, most object-oriented modeling environments incorpo-

rate algorithms to automatically propose one way (of the several possible ways) of

tearing the nonlinear SSE. In recognition to the fact that other (possibly more

efficient) tearing strategies could be feasible, some modeling environments allow the

user to modify this tearing default option. A factor to consider when choosing the

tearing variables is the relative ease to assign them accurate initial values. The residue

equations selection is based on their good numerical properties, in order to facilitate

the iterative algorithm convergence.

Two types of nonlinear SSE can be distinguished from the design methodology

point of view: those internal to the class description and those established when

connecting the classes. The library designer can study the numerical properties of the

nonlinear SSE internal to the class description, in order to find an efficient tearing

strategy or maybe to conclude in the need of reformulating the model. Some modeling

languages (e.g., Dymola [28]) support the inclusion in the model class definition of

tearing information. In contrast, the Modelica 2.0 language does not support this

capability [11]. However, the tearing information capability is very useful in the

author’s opinion because it supports the consideration of information that is possibly

critical for the numerical solution.

The numerical properties analysis of the SSE established when connecting the

classes is problematic from the design methodology point of view. The library

designers should be able to develop each part of the model (i.e., each class of the

model library) without knowing the internal details of the other parts of the model. In

case of SSE established when connecting the classes, including tearing information in

the classes implies knowledge of the internal description of the other classes, which is

clearly contrary to the abstraction principle. Therefore, the library designer should not

be in charge of this type of analysis (and even less the user). In consequence, the

numerical solution of these SSE is left completely in hands of the modeling

environment. If any of these nonlinear SSE (that nobody has previously analyzed) has

poor numerical properties, then the simulation run will be inefficient or even

impossible. Reached this point, the user (ignorant of the internal details of the model

and unable to understand the numerical problem diagnosis shown by the modeling

environment) has not the resources to solve this problem. In consequence, this

problem should be faced at the library design phase. This is one of the reasons because
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the proposed design methodology avoids the establishment of SSE when connecting

the classes. A second reason is discussed next: the convergence problems during the

re-start problem solution.

One important difficulty of the hybrid models simulation is the numerical solution of

the nonlinear SSE. It is especially critical at the model initialization and at the restart

problem solution (i.e., when solving the model after the discrete-time events execution).

Some modeling languages and environments (for instance, Modelica 2.0/Dymola 5.0

[11, 29–31]) provide effective support to the user in order to face the initialization

problem. At the end, the success in solving the initialization problem depends on the

user ability to provide initial values ‘‘close enough’’ to the true values. The re-start

problem is similar to the initialization problem, but in this case a trial-and-error method

is not applied to determine the appropriate initial values. After the discrete-time event

execution, the initial values for iterating the nonlinear SSE are the variable values just

before the event execution. When these initial values are not appropriate, the iteration

does not converge and the simulation is aborted. The solution to fix this numerical

problem (faced by the library user) requires the model reformulation (an attribution of

the library designer). In consequence, the library design methodology should prevent the

user from being confronted with this type of numerical difficulties.

In order to avoid the establishment of (potentially nonlinear) SSE when connecting

the classes, the proposed design methodology states that:

1. The library designer should guarantee that the computational causality of the class

interface variables does not change during the simulation run. A sufficient

condition (it is not necessary) for the establishment of a SSE when connecting a

class is that the computational causality of some of its interface variables changes

during the simulation run (i.e., they change from acting as computational inputs to

outputs or vice versa). When the variable to evaluate in a given equation changes

during the simulation run, then the equation is part of a SSE [32, 33].

2. The library designer has to break the computational causality loops for each of the

allowed computational causalities of the class interface. Integrators and time-

dependent variables are used to complete this task. This point is explained below.

The SSE frequently represent modeling approximations arising when considering

‘‘instantaneous’’ the dynamics which are much faster than those relevant for the

simulation purpose [22]. The designer always can opt for describing the dynamic,

instead of considering it instantaneous, avoiding the establishment of the SSE. The

dynamic can be arbitrarily modeled, but it should satisfy the following two conditions:

1. It should be fast enough, in comparison with the simulation relevant dynamics, to

be irrelevant for consideration.

2. It should not be faster than strictly necessary, so that it does not introduce

unnecessarily large eigenvalues. This avoids the system becoming too stiff.
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Example Consider the macroscopic linear momentum balance at steady state

applied to a liquid mixture in a pipe. P represents the liquid linear momentum and

ftotal is the sum of the forces acting on the mixture (pressure, friction, gravity, etc.) in

the motion direction. The steady-state balance formula, 0¼ ftotal, means that the fluid

motion follows instantaneously the applied force, so it generally leads to the

establishment of a SSE [34]. An alternative approach is to consider that the fluid

inertia is very small, negligible for the simulation purpose: "P � dP
dt
¼ ftotal, where

"P � 1. Therefore, the fluid linear momentum acts as a state variable, breaking the

computational causality loop. The user of the model has to assign a value to "P in

correlation with the model application [34].

2.2. High-Index Problems

There are no reliable general-purpose numerical DAE solvers for high-index prob-

lems (i.e., with index greater than one) [15, 30]. As a consequence, the model index

must be reduced to zero or one in order to simulate more efficiently the model. The

index reduction procedure [16, 17] introduces some changes in the model for-

mulation: certain model equations are symbolically differentiated and these new

equations are included in the model. The library designer should study the numerical

properties of the model obtained after the index reduction, in order to either verify its

appropriate numerical properties or reformulate the model.

To this respect, two types of high-index problems can be distinguished: those

internal to the class description and those established when connecting the classes.

The library designer can study (with the help of the modeling environment) the high-

index problems internal to the class. As a consequence, this type of high-index

problems is useful from the design methodology point of view. On the contrary, the

high-index problems established when connecting the library classes cannot be

studied by the library designers during the design phase (according to the abstraction

principle) and, consequently, they should be avoided.

Class connections lead to high-index problems when any of the connection equations

only contain: (1) variables that appear differentiated in the internal description of the

classes; and, possibly, (2) variables that must be evaluated from other equations (because

they are the only unknown variables in these equations). This type of connection

equations introduces constraints on variables that appear differentiated. As a conse-

quence, the number of state variables is smaller than the number of differentiated

variables. This kind of constraint arises due to a class connection only if all the variables

intervening in the connection equation are evaluated in their respective classes (i.e., all

the variables are computational outputs in their respective classes). This fact can be

avoided proposing rules about the classes’ connection, keeping in mind the com-

putational causality of the interface variables. The proposal of the interface-connection

rules is one of the design phases established by the proposed design methodology.
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Although this topic will be discussed in detail later, it is necessary to indicate that

frequently the connection rules condition the modeling. One technique to formulate the

model so that it fulfills the constraints imposed by its interface is the constraint

relaxation technique [34]. Instead of forcing the system to evolve instantaneously in the

desired way (introducing constraints on their state variables), it is possible to model an

arbitrary dynamic in order to make the system evolve ‘‘almost instantaneously’’ toward

the desired trajectory. The following example tries to illustrate this point.

Example Consider two control volumes, A and B, each one containing an ideal

mixture of semiperfect gases. At any time, a gas-flow between both control volumes is

established equaling their pressures instantaneously (for simulation purposes). The

system is modeled by means of the following two classes:

1. A class models the molar balance, the energy balance and the state equation of the

semiperfect gases in the control volume. The temperature and the number of moles

of each component appear differentiated in the balances. The mixture pressure

only intervenes in the state equation. Both control volumes are modeled by means

of two instantiations of this class.

2. Another class models the gas-flow between the control volumes. It can be modeled

by imposing the pressure equality: pA¼ pB.

As the pressure intervenes in the gas state equation, together with the temperature and

the number of moles, and these appear differentiated in the balances, then the problem

has an index greater than one. When carrying out the index reduction, a nonlinear SSE

is established. The number of equations of this SSE increases with the number of

components of the gas mixture and with the number of control volumes.

As the gas-flow dynamic is very fast compared with the relevant dynamics of the

model, an alternative approach consists in modeling arbitrarily the dynamic (instead of

considering it instantaneous), but satisfying the condition of being fast enough to be

considered ‘‘almost instantaneous’’ for the simulation purpose. The dynamic must not

be faster than strictly needed, in order to avoid the system to be unnecessarily stiff. For

instance, a solution [34] consists in modeling the gas-flow between the control volumes

A and B,F̂FA!B, as: F̂FA!B ¼ kprop � ðpA � pBÞ. In other words, the molar flow is defined

(arbitrarily) proportional to the pressure difference. The library user has to assign the

smallest possible value to the parameter kprop from the range of the dynamic which is

considered instantaneous. In order to assist the user in this selection, a variable is defined

with value
jpA�pBj

0:5�ðpAþpBþ"Þ. It measures the relative error made when considering that the

pressure difference is zero. The purpose of the parameter " is explained in Section 2.4.

2.3. State Variables Selection

Different choices of the state variables may lead to drastically different numerical

behavior [30, 31]. The library designer should take into account this fact when
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selecting the state variables. Another important criterion is the relative ease in finding

appropriate initial values. A model with state variables whose initial values are

unknown could be useless. However, in some situations the designer does not know

ahead of time which the optimal selection of the state variables is. In these cases, the

designer should offer the user the possibility of choosing the state variables of the

model: the user makes his selection among a given set of variables selected previously

by the designer. This selection is not a model characteristic: it is a characteristic of the

experiment, and it can change from one simulation run to another.

Some modeling languages (e.g., Modelica 2.0 [29, 31]) support language

constructions in order to include in the model information about the state variables

selection. The modeling environments supporting these languages (e.g. Dymola [30]

supporting Modelica) allow the user to select the state variables in accordance with

the criteria described in the model. These capabilities are useful for model designers

and users. When the modeling environment does not support this type of capability,

but support index reduction, the designer can use certain techniques to allow the state

variables selection. One of these techniques is discussed below [35].

The designer has to add to the original model as many dummy equations and

dummy variables as algebraic variables he wants to transform into state variables.

Each dummy equation contains the derivative of one of these variables (i.e., the new

state variables) and a dummy variable. These equations do not modify the solution of

the system: they define the dummy variables. However, these dummy equations

make the index of the model to be greater than one. The next step is to reduce the

index of the system to one or zero (using the modeling environment). Once the

modeling environment has added to the system the derivative of certain equations

[16, 17], then the designer or the user may specify which of the differentiated

variables have to be considered as state variables and which not. If the designer knows

the optimal selection of the state variables, then he can substitute the derivative of the

old state variables by algebraic variables (substitutions of the type: _xx by derx).

Otherwise, he may add the dummy equations to the model and let the user make the

index reduction (using the modeling environment) and choose the state variables.

Next, an example of the application of this technique is discussed.

Example Consider the following model:

_xx ¼ u1ðtÞ � u2ðtÞ � ðy1 � u3ðtÞÞ ð1Þ

x ¼ y1 � y2 ð2Þ

y2 ¼ f ðy1Þ ð3Þ

The time-dependent functions u1(t), u2(t) and u3(t) are known. The unknown variables

are x, y1 and y2. As x appears differentiated, the partition algorithm considers that it

acts as a state variable [5]. Consequently, its derivative, _xx, is replaced by an auxiliary
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variable, derx, and x is considered to be calculated by integration of derx. The result of

the computational causality assignation is:

1. The variables y1 and y2 are calculated from the nonlinear SSE that form the

Equations (2) and (3).

2. derx is calculated from the Equation (1).

However, lets suppose that it is preferable y1 to be the state variable of the system

instead of x. In order to get it, a dummy equation must be added to the system. It has to

contain the derivative of y1 (i.e., _yy1) and it should not modify the system solution. A

possible selection is, for instance, _yy1 ¼ � [35]. The dummy variable � only appears in

this dummy equation, so the equation is used to evaluate �. The system, extended with

the dummy equation, has an index greater than one: it contains one degree of freedom

and two differentiated variables, x and y1. Once the index reduction has been carried

out [16, 17], the modeling environment allows the user to choose which variable

(x or y1) must be considered as state variable. Choosing y1 as state variable, the

following formulation of the system is obtained:

derx ¼ u1ðtÞ � u2ðtÞ � ðy1 � u3ðtÞÞ ð4Þ
x ¼ y1 � y2 ð5Þ
y2 ¼ f ðy1Þ ð6Þ
_yy1 ¼ � ð7Þ

derx ¼ _yy1 � y2 þ y1 � dery2 ð8Þ

dery2 ¼ @f

@y1

� _yy1 ð9Þ

2.4. Extension of the Intensive Variables Definition

Mass, energy and linear momentum balances can be proposed in terms either of the

extensive properties (mass, moles, internal energy and linear momentum) or the in-

tensive properties (density, temperature and velocity). There is one intrinsic difficulty

associated with the intensive formulation: the intensive variables have no meaning

when the amount of matter is zero. This is a potential source of run-time numerical

problems.

Away of avoiding this problem is extending the intensive variables definition to the

‘‘zero-mass’’ case. The usual relationship between the intensive (y) and the extensive

(Y) variables, y ¼ Y
m

, should be substituted by y ¼ Y
mþ", where " is a positive constant

with a very small value. As a consequence, the 0
0

singularity is transformed into 0
0þ" ¼ 0.

As the mass is a non-negative magnitude, there is not risk of dividing by zero. The

value chosen for " should be small enough to modify the intensive variable definition
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only for values close to zero. However, the chosen value of " should not be smaller

than strictly needed. The very small values of " do not avoid the numerical errors. This

method is applicable whenever the variable in the denominator takes only either non-

negative or non-positive values.

2.5. Small Oscillations Around an Event Activation Condition

Depending on its trigger condition, events can be classified into time-events and state-

events. The procedure to detect the event trigger instant depends on its type. In the case

of the time-events, the detection procedure is trivial. Once the simulation algorithm

detects that the closest time-event is produced in the next integration step, the step size

is reduced so that the evaluation instant and the time-event are the same [19].

State-events are triggered when the system satisfies certain conditions. Their

trigger instants are unknown in advance and they have to be calculated by iteration

(the problems associated with their calculation by step size reduction are discussed in

[18–20]). In order to understand how the integration algorithm calculates the state-

event trigger instant, consider a function defined by means of different branches. Each

branch is valid within a given domain of the state space. State-events indicate the end

of the validity domain of a branch and the start of the validity domain of another

branch. Boolean invariant functions are defined to detect the events, signaling the

state trajectory crossing from one domain to another. These invariant functions split

the state space into two parts: the set of admissible states, where all are true, and the

remaining states, where at least one of them is false. When the system crosses the

boundary defined by these invariant functions, going out of the admissible state

domain, an event is triggered.

Event conditions are defined as the Boolean complements of the invariant

functions [12]. Event conditions that depend on at least one continuous variable are

called continuous conditions. Those that only depend on discrete variables are called

discrete conditions. Discrete variables are those that only change their value in certain

instants of time. Crossing functions are used for detecting state events of continuous

conditions. The event condition is formulated in the following way: z> 0. For

example, the procedure employed by Dymola [18] consist in defining a small interval

(�"ps, "ps) around zero (the value of "ps is typically 10�10). The event trigger

condition is: either z crosses �"ps with a negative slope or it crosses "ps with a

positive slope. When, due to the initial conditions, the crossing function remains

within the interval (�"ps, "ps), the crossing function value is considered zero and the

corresponding branch of the if-then-else expression is used.

Modeling languages provide clauses of the kind hexpressioni¼ if hconditioni then

hexpression1i else hexpression2i in order to describe functions with several branches

[6, 7, 11, 12, 27]. The modeling environment uses invariant functions to represent the

Boolean conditions of such clauses, so that a discrete event is triggered when the
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Boolean value of a condition changes. If it is a state-event of continuous condition,

when the trigger condition is detected (by means of its crossing function), the

integration is suspended and the iteration to find the event instant starts.

However, sometimes the exact determination of the trigger instant is not crucial for

the purpose of the simulation. In these cases, it may be preferable to sacrifice the

precision in the trigger instant determination in order to increase the simulation speed.

In particular, this may be the case when the system describes small oscillations across

the event condition. An option is to consider that the event instant coincides

(approximately) with the instant in which the invariant function change is detected.

Some modeling languages (e.g., Modelica [11]) allow distinguishing between those

if-then-else functions in which it is necessary to iterate in order to find the event

instant and those in which it is preferable not to do so.

If the modeling language does not allow making this distinction and if the designer

does not want to make an event-based treatment of certain functions with several

branches, then the designer has to formulate the model to such an end. This situation

can arise in the case of state events of continuous conditions. A general procedure is

described below in order to represent a function with two branches without using

if-then-else clauses. Applying the proposed formulation, the transition between the

branches takes place when the value of the associated invariant function would have

changed if an if-then-else clause has been used.

Consider the following general function of two branches:

y ¼ if z > 0 then x1 else x2 ð10Þ

An equivalent definition, except for the method used for the event-instant detection, is:

c ¼ z

absðzÞ ð11Þ

y ¼ 1

2
� ð1 þ cÞ � x1 þ

1

2
� ð1 � cÞ � x2 ð12Þ

In order to avoid an indetermination 0
0

when z is zero, the technique described in

Section 2.4 can be applied. It is obtained:

c ¼ z

absðzÞ þ "
ð13Þ

y ¼ 1

2
� ð1 þ cÞ � x1 þ

1

2
� ð1 � cÞ � x2 ð14Þ

The extension of the method to functions with more than two branches is trivial. Any

function of several branches can be written as a set of functions with two branches.

For example, the following function of three branches:

y1 ¼ if z1 > 0 then x1 else if z2 > 0 then x2 else x3 ð15Þ
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It can be written as follows:

y1 ¼ if z1 > 0 then x1 else y2 ð16Þ
y2 ¼ if z2 > 0 then x2 else x3 ð17Þ

2.6. Branches Extension

The iterative method used to find the event instant requests the function branches to be

extended beyond their validity domain. This point is discussed by means of the

following example.

Example Consider the steady-state macroscopic balance of linear momentum

applied to the flow of liquid into a straight pipe. The liquid velocity satisfies that the

friction force plus the pressure force plus the gravity force equals zero. f represents the

sum of the components in the movement direction of the pressure and gravity forces.

F represents the flow of liquid. A way of writing the balance model consists in

defining a Boolean variable that represents the flow direction, f> 0, and expressing

the liquid flow as a function with two branches as follows:

F ¼ if f > 0 then k �
ffiffiffi
f

p
else � k �

ffiffiffiffiffiffi
�f

p
ð18Þ

Expressing the momentum balance in this way produces a numeric run-time error

when the sign of f changes. The simulation algorithm detects the event trigger (in this

case, the change of f> 0 from true to false or vice versa) once all the algebraic

variables have been calculated in the evaluation instant. In other words, once the

calculation attempt of the square root of a negative number has been made (producing

the consequent error). For this expression to work, the simulation algorithm should

check if the event f> 0 has been triggered after calculating f and before calculating F.

Obviously, the simulation algorithm does not work in this way. It is advisable, in order

to avoid this kind of problem, to allow the function branches to be evaluated beyond

their definition domain. In this example, this can be achieved by means of the absolute

value function, abs( ), provided by the modeling language:

F ¼ if f > 0 then k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
absð f Þ

p
else � k �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
absð f Þ

p
ð19Þ

Writing the balance in this way indicates to the modeling environment that every time

f sign changes, the integration must be suspended and it must start the iterative process

to find the event instant. The iterative process uses the ‘‘old’’ branch of the function.

Once the event instant is found (with the required precision), the model variables are

recalculated using the ‘‘new’’ branch of the function. Next, the integration algorithm

is restarted (in case no more events are triggered).

This approach is time-consuming if the value of f describes small oscillations

around zero. If the accurate knowledge of event instants is not relevant for the
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simulation purpose, this is not an adequate formulation of the momentum balance. A

more adequate formulation is obtained rewriting the expression as indicated in the

previous section:

c ¼ f

absð f Þ þ "
ð20Þ

F ¼ c � k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
absð f Þ

p
ð21Þ

2.7. Computational Causality of the Interface

According to the proposed design methodology, the design of an interface does not

only consist on the definition of: (1) the variables of which it is composed; and (2) the

type of their connection equations. In addition, the allowed computational causalities

of the interface should be specified. In order to clarify the meaning of ‘‘allowed

computational causalities of the interface variables,’’ consider the following example.

Example An interface is composed of three variables: x, y and z. It has 23¼ 8 pos-

sible computational causalities. However, the design-specifications of the interface

dictate that it is going to be used in contexts that require one of the two following

situations: (1) x and y inputs, z output; and (2) x and z inputs, y output. As a

consequence, the interface has two allowed computational causalities. Any other

interface causality is not allowed.

The library designer should formulate the system internal description so that it has

appropriate numerical properties for all the allowed computational causalities of its

interface. Therefore, the allowed causalities of its interface decisively condition the

formulation of the model internal description. For instance, when any of the interface

computational causalities leads to the establishment of a SSE internal to class, the

designer should include the tearing information in the class code. Responding to this

necessity, some modeling languages (e.g., EcosimPro [7]) allow different formulations

for each expression of the continuous part of the model, depending on the variable to be

evaluated. The formulation used by the modeling environment in each instantiation of

the class depends on the variable to be evaluated of the expression in each case.

In addition, the designer should propose rules in order to guarantee that the models

are not used in contexts requiring non-allowed computational causalities of their inter-

faces. This can be achieved by means of the interface connection rules. The following

example tries to illustrate how the interface conditions the internal formulation of the

system.

Example Continuing the example posed in Section 2.6, suppose that the linear

momentum balance has to be formulated in a way that it facilitates: (1) the calculation

of f from F; and (2) the calculation of F from f. In this case, the formulation by means

of the Equations (20) and (21) is not appropriate. Since the inverse of the absolute
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value function is not monovaluated, this model has been written implicitly assuming

that f is known and then c is calculated of Equation (20) and F from the Equation (21).

Next, a model modification is shown in order to allow both computational causalities:

(1) F unknown, f known; and (2) f unknown, F known.

c ¼ f

absf þ "
ð22Þ

F ¼ c � k �
ffiffiffiffiffiffiffiffiffi
absf

p
ð23Þ

absf ¼ absð f Þ ð24Þ

The calculus sequence of the two possible causalities is the following:

1. F is unknown and f is known. absf is computed using Equation (24). c is calculated

from Equation (22). F is derived from Equation (23).

2. f is unknown and F is known. The Equations (22)–(24) form a system of three

simultaneous equations with three unknown variables. The purpose of introducing

the variable absf is to limit the appearance of the absolute value function to only

one equation. This makes the tearing of the SSE easier. The tearing has to satisfy

that the loop iteration does not require the evaluation of the inverse of the absolute

value function. In the Equation (24), the variable absf is monovaluated, while the

variable f is bivaluated. So, the loop has to be iterated in a way that the Equation

(24) is used to evaluate absf. Two possible ways of making the tearing satisfy this

condition are: (1) tearing variable: f, residue equation: Equation (22); and (2)

tearing variable: absf, residue equation: Equation (24).

2.8. Infinite Propagation of the Events

A problem the designer has to face when modeling hybrid systems is the infinite

propagation of events. This effect occurs when every execution of event actions

triggers one or more new events, so that the event iteration does not terminate. There

is not a general systematic procedure to detect this kind of problem during the design

phase. Consequently, its detection is completely based in the designer’s knowledge of

the model. Next, an example of infinite events propagation is discussed.

Example A simple model of the macroscopic momentum balance applied to a pipe

completely full of liquid is shown in Table 1. The linear momentum acts as a state

variable. The fluid density, �, and its viscosity, �, are considered constants. The force

due to the pressure difference between the pipe ends, fp, is a known function of time.

The variable to calculate for each equation (assuming that P acts as state variable) is

signaled between brackets.

The Fanning friction factor is formulated as a function with two branches of the

Reynolds number. The condition Re < 2100 determines the end of the validity
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domain of a branch and the start of the validity domain of another. The problem

generated by this formulation of the Fanning friction factor is that finding a restart

state after the branch commutation event may be impossible. Suppose the flow is

laminar and the velocity increases, in such a way that the Reynolds number becomes

larger than its critical value, Rec¼ 2100. The Fanning factor value at Rec is bigger for

turbulent flow, 0:0791
21001=4, than for laminar one, 16

2100
. Consequently, the friction force is

stronger for the turbulent flow than for the laminar. The friction increment, due to the

transition from laminar to turbulent regime, produces a reduction of the Reynolds

number. If the inertia of the fluid in the pipe is small, this reduction may be large

Table 1. Macroscopic linear momentum balance applied to a pipe completely full of liquid.

P ¼ S � � � ½v
 � L Relationship among the fluid linear momen-

tum, the pipe section, the fluid density, its

velocity and the pipe length.

½Re
 ¼ D�v��
� Reynolds adimensional number for a circu-

lar-section pipe.

½�Fanning
 ¼
16
Re
; if Re < 2100 ðlaminarÞ

0:0791
Re1=4 ; if 2100 < Re < 105 ðturbulentÞ

(
Fanning friction factor for laminar and

turbulent flow in a long, smooth and

circular pipe (Blasius formula).

½ fF 
 ¼
�Sw � 1

2
� � � v2 � �Fanning; if P � 0

Sw � 1
2
� � � v2 � �Fanning; if P < 0

�
Friction force exerted by the pipe wall. Sw

represents the internal surface of the pipe

wetted by the liquid.

"P �
�

dP
dt

�
¼ fF þ fp Steady-state momentum balance. The value

of "P has to be small enough in order to

produce a fast enough dynamic to be

considered ‘‘instantaneous’’ for the simu-

lation purpose.

        

        

Fig. 1. Cycle established at regime change.

82 A. URQUIA AND S. DORMIDO



enough to make the Reynolds number smaller than its critical value (the system goes

back to the laminar regime). This change to laminar regime makes the friction force

decrease, increasing the fluid velocity and the Reynolds number. This increment in the

Reynolds number makes the system change again to the turbulent regime, and so on.

The cycle previously described is represented in Figure 1. A possible solution to this

problem is modifying the Fanning factor definition. For instance, a transition zone

may be defined between the laminar and the turbulent regime, so that the Fanning

factor is a continuous function of the Reynolds number [34].

3. DESIGN METHODOLOGY

The proposed design methodology is based on the object-oriented modeling

principles. A distinction is made between library designers/programmers and library

users. One of the main goals of the proposed methodology is to guarantee that the

users are able to use the model libraries without having to know their internal details.

In particular, the users should not be confronted with numerical problems. By

applying the proposed design methodology, the following topics are answered:

1. What the full set of requirements for each class is.

2. How a class can be used and what classes are interchangeable.

3. How the libraries can be extended with new classes.

Next, the five steps composing the design methodology are discussed. The key

concept of the methodology is defined: the design rules of the libraries. Finally, the

role of the designers and their relationship with the library users are defined.

3.1. First Step – Phenomena and Hypotheses

The first step of the design of a set of mathematical model libraries consists in:

1. Decide the phenomena to model.

2. Definition of the general modeling hypotheses.

Frequently, the same set of phenomena has to be modeled with different degrees of

detail and using different sets of hypotheses. The designer should document the

different sets of hypotheses as well as stating which corresponds to each model. He

has to decide whether the exchange between the different models of a given

phenomenon has to be made in the simulation run or, on the contrary, the modeling

hypotheses do not change during the simulation run. In this last case, it makes sense to

group different-hypothesis models in different libraries. Once the pairs (phenomenon

to model – modeling hypothesis) have been identified, these should be grouped into

libraries.
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3.2. Second Step – Phenomena Interaction: Causal Connectors

The second step of the design consists of the basic elements definition needed

for describing the interaction between the different phenomena to be modeled

(i.e., the interface basic components). According to the proposed design meth-

odology, these basic elements are the causal connectors. They are an extension of

the connector concept of the modeling languages (also called cut, port, etc.). A

connector is a class type intended to facilitate the description of the model

connections.

Definition A causal connector class is defined by means of the four following

pieces of information:

1. The variables composing the connector. They must be classified into across

variables and through variables (Dymola [28] terminology is adopted). Across

variables must be equaled, at a connection point. Through variables (also called

flow variables) must sum to zero, at the connection point. This interface variables

classification into across and through is not an intrinsic property of the variables,

but it is determined by the modeling strategy [36]. The following example tries to

illustrate this point.

Example When modeling electrical circuits, voltage can be selected as an

across variable and current as a through variable. This selection leads to the

node equations of the circuit: (1) a voltage is assigned to each node; and (2) the

sum of the currents going into each node is zero. The dual model consists

in considering the voltage as a through variable and the current as an across

variable. This approach leads to the net equations of the circuit: (1) a current is

associated with each net; and (2) the sum of the voltage drops around each net is

zero.

2. The allowed computational causalities of the connector class. An allowed

computational causality is defined classifying the causal connector variables into

computational inputs and outputs. The design methodology allows a causal

connector to have multiple allowed computational causalities, but the computa-

tional causality of each causal connector instantiation should not change during the

simulation run. This restriction is imposed in order to avoid the establishment of

SSE when connecting the classes.

3. The way of breaking the computational causality loops. In this context, a variable

is said to break a computational causality loop when it is calculated exclusively as

a function of time and/or state variables.

4. A graphic icon, in order to facilitate its identification by the user.

Modeling languages support the description of the connector variables, their type (i.e.,

across or through), and the graphical icon. The allowed computational causalities of

the causal connector and the information about what connector variables must break
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the computational causality loops are part of the class documentation. Causal

connectors should be grouped into libraries defined only to this purpose.

Example Two causal connector classes are defined for modeling the flow of a

liquid mixture [34]: liquidFlow_R and liquidFlow_C. They have five variables:

(1) Across variables: Mass (vector), Temperature and Pressure; and (2) Through

variables: MassFlow (vector) and EnergyFlow. Each connector class has 5 variables

and consequently it has 32 possible computational causalities. The proposed design

methodology allows a connector class to have several allowed computation-

al causalities. However, in this case, the library designer decides that these con-

nector classes have only one allowed computational causality and the result is the

following:

1. Connector class: liquidFlow_C. The across variables are computational outputs

and they are only a function of state variables and/or time (i.e., they break the

computational causality loops). The through variables are computational inputs.

2. Connector class: liquidFlow_R. The across variables are computational inputs.

The through variables are computational outputs.

This information is included in the documentation of the connector classes. In

addition, the library designer should propose connection rules in order to guarantee

that only the allowed computational causalities are required.

3.3. Third Step – Connection Rules of the Causal Connectors

The third step of the design consists in defining the rules for the causal connectors

connection. The connection rules state the nature and number of the allowed connec-

tions. Based on the casual connectors definition, the connection rules must guarantee

that:

1. The causal connector causality required by the connection is one of its allowed

causalities.

2. The complete system is not overdetermined or underdetermined.

3. Causal connectors connections do not lead to the establishment of SSE.

4. Causal connector connections do not lead to high-index problems.

The formulation of the connection rules is different depending on whether the

connection is made between same-hierarchy causal connectors or between different-

hierarchy causal connectors. In this context, two classes (and, consequently their

causal connectors) are said to be at different hierarchical levels when one is a

composed-class and it contains the other class as a submodel. In order to facilitate the

fulfillment of the connection rules, they should be described in terms of the graphic

attributes of the causal connectors.
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Example Connection rules states the nature and number of the connections among

liquidFlow_R and liquidFlow_C connectors [34]:

* Connection between causal connectors of the same hierarchy:

1. A liquidFlow_C connector can be left unconnected or it can be connected to an

arbitrary number of liquidFlow_R connectors.

2. A liquidFlow_R connector must be connected to one, and only to one,

liquidFlow_C connector.

* Connection between causal connectors of different hierarchy:

1. A liquidFlow_C connector of the molecular class must be connected to one, and

only to one, liquidFlow_C connector of the submodels. It also can be connected

to an arbitrary number (zero is allowed) of liquidFlow_R connectors of the

submodels.

2. A liquidFlow_R connector of the molecular class must be connected to at least

one liquidFlow_R connector of the submodels. It cannot be connected to any

liquidFlow_C connector of the submodels.

3.4. Fourth Step – Definition of the Interfaces

The fourth step of the design consists in defining the interface classes. Interface

classes are gathered in specific interface libraries. The design methodology

establishes how the interface classes must be.

Definition Interface classes must be only composed of (an arbitrary number of)

causal connectors. Interface classes own all the attributes of its causal connectors.

Properties Three important properties arise of the interface classes definition:

1. It allows the library user to define new classes of interface adapted to his particular

necessities.

2. Two models with the same interface can be exchanged in any context.

3. The connection rules define completely the way each class can be used.

Constraints should not be introduced among the causal connector variables at the

interface definition. Otherwise, the applicability of the interface for the modeling of

composed classes could be restricted unnecessarily. The next example tries to

illustrate this point.

Example Consider a plane wall of thickness L, such that one of its surfaces is at

temperature TA and the other one is at temperature TB. The heat flow through the wall

in steady state can be modeled assuming that it is proportional to the temperature

difference, TA � TB ¼ Rth � QA!B. The proportionally factor, Rth, is the thermal
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resistance of the wall. A possible definition of the interface of the thermal resistance

model is shown in Figure 2. It explicitly contains the condition that the heat flow

entering by a connector is equal, at any time, to the heat flow exiting by the other

connector. The connector variables are represented in the following way: (across

variables/through variables).

In order to model in more detail the heat flow through the wall, this can be divided

into N elements of the same thickness, L/N. In this way, the wall is represented by

means of a connection in series of N thermal resistances. These N thermal resistances

are grouped into a class that models the wall (the case N¼ 2 is represented in Fig. 3).

However, if the interface of this molecular class and the interface of the thermal

resistance class are the same (it is the most logical option), then there is a redundant

equation, because the input and output heat flow is supposed to be the same in both.

For this reason, it is advisable not to establish constraints among the interface

variables in the interface definition. It is preferable to establish these constraints in the

interface subclasses (i.e., in the internal description of the phenomena).

3.5. Fifth Step – Internal Description of the Phenomena

The fifth step of the design consists in programming the internal description of the

phenomena. Phenomena classes inherit the interface classes. The interface causal

Fig. 2. Thermal resistance interface.

Fig. 3. Wall modeled as the connection of two thermal resistances.
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connectors impose a set of conditions that the phenomena modeling formulation must

satisfy. The way of facing these conditionings depends on each particular case.

However, some general techniques exist that could be adapted for solving the

particular problems posed [34]. Some of them are discussed in the second part of this

paper, ‘‘A Case Study’’.

3.6. Design Rules of the Libraries

Definition The design rules for the model libraries are composed by:

1. The definition of the causal connector classes.

2. The rules for connecting the causal connectors.

The purpose of the design rules is:

1. Facilitate the efficient modeling and simulation of large systems.

2. Establish the complete set of conditions that each library class must satisfy. This

facilitates the test, debugging and maintenance of the library classes.

3. Define the way of using the classes. Define which classes can be exchanged.

4. Defining how the libraries can be extended with new classes.

3.7. The Role of the Library Designer

The design methodology defines the relationship between the library designers and

users as follows. The only two pieces of information that the library designers have to

provide to the library users are:

1. The modeling hypothesis which each class relies on.

2. The design rules of the libraries.

4. CONCLUSIONS

An object-oriented methodology for the design of reusable model libraries has been

proposed. It takes into consideration all the phases of the library life cycle: design,

programming, maintenance, modifications, extension, etc. The methodology com-

pletely defines the role of the library designers and their relationship with the library

users. The library designers should guarantee the numerical efficiency of the models

based on the library predefined-models. In addition, users should not be confronted

with numerical problems. As a consequence, the numerical problems associated

with the use of the classes should be identified and solved in the design phase.

Some recommendations are given about the numerical aspects of the model libraries

design. The key concept of the proposed methodology is the libraries design rules.
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They constitute the only piece of information needed, from the numerical point of

view, for using, modifying and enlarging the model libraries.
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