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Existing object-oriented modeling environments only support the simulation of a limited type of hybrid
dynamic models of variable structure: those with exactly the same state variables and the same
algebraic variables in all modes. The most general hybrid dynamic model of variable structure is one
in which the number of state variables and algebraic variables is not necessarily equal in all modes.
A new algorithm, which transforms such a general variable-structure model into a model suitable for
simulation by means of existing object-oriented modeling languages of hybrid systems, is proposed.
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1. Introduction

The object-oriented design methodology has demonstrated
to be a success when it is adapted to the modeling of dy-
namic systems, increasing the programmer’s productivity
and the software quality [1-3]. The practice of the object-
oriented modeling of dynamic systems is a reality nowa-
days, thanks to the development in the 1990s of object-
oriented modeling languages, supported by efficient soft-
ware tools (modeling environments). These environments
work in conjunction with potent differential algebraic
equations (DAE) solver algorithms (e.g., DASSL [4]).

Some examples of general-purpose, object-oriented
modeling languages are ABACUSS II [5], ASCEND [6],
Dymola [7], EcosimPro [8], gPROMS [1], Modelica [9],
and Omola [3]. Dymola (Dynamic Modeling Laboratory)
[7, 10] was the first modeling language on the market de-
signed to allow the object-oriented description of hybrid
models of large and complex systems [11]. The common
characteristics of these modeling languages are the object-
oriented, noncausal modeling methodology and the need
for automatic symbolic formula manipulation. The mod-
eling knowledge is represented as differential, algebraic,
and discrete equations that may change by being triggered
by events (i.e., hybrid models). Modeling languages sup-
port a declarative description of the model, which permits
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a better reuse of the model because it is based on equations
instead of assignment statements. The software tools sup-
porting these modeling languages implement algorithms to
automatically decide which equation to use for calculating
each unknown variable.

In addition, the automatic manipulations that these mod-
eling environments carry out on the model include the fol-
lowing: (1) translation of the object-oriented description
of the model into the so-called flat model (complete set
of model equations and functions, with all object-oriented
structure removed) and (2) manipulations intended to
transform the model into an efficiently solvable form. This
second type of manipulations includes (1) the efficient for-
mulation of the complete-model equations, eliminating the
redundant variables and the trivial equations resulting from
the submodel connections; (2) the sorting of the equations;
(3) the symbolic manipulation of those equations in which
the unknown variable appears linearly; and (4) the tearing
of the nonlinear algebraic loops. In addition, some model-
ing environments (e.g., Dymola [7]) support the automatic
detection of the models with an index greater than 1, as
well as the automatic reduction of the index to 0 or 1 by
means of symbolic formula manipulation [12, 13].

General-purpose, object-oriented modeling languages
support the description and simulation of certain types of
variable-structure models (e.g., by means of clauses of the
following type [7-9]:<expression> = if <condition> then
<expression1> else<expression2>). A model has a vari-
able structure when its mathematical description changes
during the simulation run. This variable-structure model
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consists of the equations describing the behavior of the
system in each mode and the change-of-mode event con-
ditions. When one of these discrete event conditions is trig-
gered, the corresponding change of mode takes place: the
system behavior is no longer described by the actual mode
equations but by the new mode equations. This type of
model arises not only when intrinsically variable structure
systems are modeled but also as a result of modeling strate-
gies (e.g., when different models of a system are available,
and a change is required among the different models dur-
ing the simulation run). This situation is common when
different models of a system are developed under a differ-
ent hypothesis (e.g., to get models with a different degree
of detail in the description of the system).

1.1 Restrictions of the Simulation of
Variable-Structure Models

An important limitation of the existing modeling languages
is that they only support the modeling and simulation of a
limited type of variable-structure models. The restriction is
the following: the model must have the same algebraic and
state variables in all the modes. In other words, the number
of state variables and algebraic variables must be equal in
all modes, and the computational type (i.e., state variable
or algebraic variable) of each variable must be the same
in all modes. The equation used to evaluate each variable
can vary from one mode to another [14, 15]. To illustrate
this point, we next show a very simple model of variable
structure, which needs to be reformulated to be simulated
using the modeling environments of hybrid systems.

Example 1. The model of a closed recipient, contain-
ing a known mass (m0, constant) of a pure component, is
shown in Figure 1. The recipient exchanges heat with the
environment. The heat flow,Q, is a known function of time.
The boiling and condensation temperature of the compo-
nent,Tcf , and its heat of vaporization (positive) per unit of
mass,λ, are also known. The heat capacity per mass unit
of the liquid (vapor),Cliq (Cvap), are considered constant.
Fcf represents the mass flow, due to the phase change, be-
tween the liquid and the vapor. The variableT represents
the component temperature.

The system can be in one of the three following modes:
(1) liq_phase, while the component is in the liquid phase;
(2) vap_phase, while the component is in the vapor phase;
and (3)equilibrium, while the component is in liquid-vapor
equilibrium. Two Boolean variables,liquid and equilib,
are required to specify the system mode. The relationship
between the value of these Boolean variables and the mode
is as follows:liq_phasemode = {liquid = True, equilib
= False},equilibrium mode = {liquid = False,equilib =
True), andvap_phasemode = {liquid = False,equilib =
False}.

The mathematical descriptions of theliq_phaseand
vap_phasemodes have the same algebraic variables and
the same state variables. Therefore, they can be appro-
priately described and simulated using the existing model-

ing languages (e.g., using if-then-else clauses [7-9]). How-
ever, it is impossible to obtain a combined formulation of
the model valid for its three modes, as explained in detail
below.

The model has one state variable,T , and three algebraic
variables,Q, mliq , andmvap, while it is in theliq_phaseor
vap_phasemode. While it is in theequilibrium mode, it
has one state variable,mvap, and four algebraic variables,
Fcf , Q, mliq , andT . The variablesT andmvap act as state
variables or as algebraic variables, depending on the mode.
The variableFcf is defined only in theequilibriummode.
As a consequence, the complete model cannot be simulated
using the existing modeling environments: it needs to be
adequately reformulated.

1.2 Contribution of This Study

The automated processing of hybrid dynamic systems
of variable structure, in which the number of state vari-
ables and algebraic variables is not necessarily equal in
all modes, is considered. A novel algorithm [16], which
transforms such a model into a model suitable for descrip-
tion and simulation by means of existing object-oriented
modeling languages of hybrid systems, is proposed in this
study.

2. Description of the Algorithm

Premise. It is assumed that the model index [4] is not
greater than 1 in any mode. This requirement does not
impose any practical limitation. Prior to the algorithm ap-
plication, the index of each mode formulation should be
calculated and, when required, reduced to 0 or 1. Some
modeling environments (e.g., Dymola [7]) support auto-
matic index calculation and index reduction by means of
symbolic formula manipulation [12, 13].

Model Formulation Prior to the Algorithm Applica-
tion. Consider the following representation of a hybrid dy-
namic model of variable structure with two modes, mode_0
and mode_1. As stated previously, it is assumed that the
index model is not greater than 1 in any of the two modes.

When the model is in mode_0, it is described by the
following dim(f0) equations:

f0

(
y0, y01, x0, ẋ0, x∗0, ẋ∗0, x01, ẋ01, x∗1

) = 0, (1a)

where dim(f0) = dim (y0) + dim (y01) + dim (x0) +
dim

(
x∗0

)+ dim (x01)+ dim
(
x∗1

)
.

When the model is in mode_1, it is described by the
following dim (f1) equations:

f1

(
y1, y01, x1, ẋ1, x∗1, ẋ∗1, x01, ẋ01, x∗0

) = 0, (1b)

where dim(f1) = dim (y1) + dim (y01) + dim (x1) +
dim

(
x∗1

)+ dim (x01)+ dim
(
x∗0

)
.

As the discrete part of the model describing both modes
may be formulated very easily from the separate descrip-
tion of the discrete part of the two modes, the algorithm
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Figure 1. Model of variable structure with three modes

does not consider the discrete part of the model. Conse-
quently, for the sake of clarity, the discrete part of the model
has been omitted from the notation.

The following notation is introduced for the model vari-
ables (see Fig. 2):

• x0 : state variables in mode_0 and not defined in mode_1

• x∗0 : state variables in mode_0 and algebraic variables in
mode_1

• x1 : state variables in mode_1 and not defined in mode_0

• x∗1 : state variables in mode_1 and algebraic variables in
mode_0

• x01 : state variables in mode_0 and in mode_1

• y0 : algebraic variables in mode_0 and not defined in
mode_1

• y1 : algebraic variables in mode_1 and not defined in
mode_0

• y01 : algebraic variables in mode_0 and in mode_1

First Step of the Algorithm. Variablesx1 andy1 are
defined in mode_1 and undefined in mode_0. Variablesx0

andy0 are defined in mode_0 and undefined in mode_1.
The purpose of this first step of the algorithm is to extend
the vector of variables in every mode, in such a way that
the extended vector of variables is the same in both modes
(i.e.,

{
y0, y1, y01, x0, x∗0, x01, x1, x∗1

}
).

To obtain the same variables vector in both modes, the
undefined variables of each mode are (arbitrarily) defined,
setting them equal to zero. The resulting model has

dim (y0)+ dim (y1)+ dim (y01)+ dim (x0)+ dim
(
x∗0

)

+ dim (x01)+ dim (x1)+ dim
(
x∗1

)

equations per mode. The model equations after the first
step of the algorithm are the following:

Equations of mode_0:



f0

(
y0, y01, x0, ẋ0, x∗0, ẋ∗0, x01, ẋ01, x∗1

) = 0
x1 = 0
y1 = 0

(2a)

Equations of mode_1:



f1

(
y1, y01, x1, ẋ1, x∗1, ẋ∗1, x01, ẋ01, x∗0

) = 0
x0 = 0
y0 = 0

(2b)

Second Step of the Algorithm. The variablesx0 and
x∗0 are state variables of mode_0 and algebraic variables
of mode_1. The variablesx1 andx∗1 are state variables of
mode_1 and algebraic variables of mode_0. The purpose

Volume 79, Number 9 SIMULATION 487



Urquia and Dormido

Figure 2. Variables classification of a model with two modes. Two concentric ellipses per mode. Inner ellipse: state variables. Outer
ellipse: algebraic variables.

of this and the following steps of the algorithm is to extend
the vector of state variables and the vector of algebraic
variables in each mode, in such a way that the vectors of
extended state variables and extended algebraic variables
are the same for both modes.

To achieve this goal, we define 2· N new variables
in each mode:

{
ααα0,ααα

∗
0,ααα1,ααα

∗
1,βββ0,βββ

∗
0,βββ1,βββ

∗
1

}
, whereN =

dim (x0)+ dim
(
x∗0

)+ dim (x1)+ dim
(
x∗1

)
. These vectors

of variables have the following number of elements:

dim (ααα0) = dim (βββ0) = dim (x0)

dim
(
ααα∗0

) = dim
(
βββ∗0

) = dim
(
x∗0

)
dim (ααα1) = dim (βββ1) = dim (x1)

dim
(
ααα∗1

) = dim
(
βββ∗1

) = dim
(
x∗1

)

These new 2· N variables are defined by means of 2· N
equations per mode as follows:

Equations of mode_0:



f0

(
y0, y01, x0, ẋ0, x∗0, ẋ∗0, x01, ẋ01, x∗1

) = 0
x1 = 0 , y1 = 0
α̇̇α̇α0=== β0 , ααα0= x0

α̇̇α̇α
∗
0=== β

∗
0 , ααα∗0= x∗0

α̇̇α̇α1=== β1 , ẋ1=== β1

α̇̇α̇α
∗
1=== β

∗
1 , ẋ∗1=== β

∗
1

(3a)

Equations of mode_1:



f1

(
y1, y01, x1, ẋ1, x∗1, ẋ∗1, x01, ẋ01, x∗0

) = 0
x0= 0 , y0= 0
α̇̇α̇α0=== β0 , ẋ0=== β0

α̇̇α̇α
∗
0=== β

∗
0 , ẋ∗0=== β

∗
0

α̇̇α̇α1=== β1 , ααα1= x1

α̇̇α̇α
∗
1=== β

∗
1 , ααα∗1= x∗1

(3b)

Third Step of the Algorithm. As a consequence of the
model extension made in the second step of the algorithm,
the index [4] of each mode formulation is greater than 1.

This third step of the algorithm consists of reducing the
index to 0 or 1 [12, 13] of the two modes separately. In
both modes, the variables

{
ααα0,ααα

∗
0,ααα1,ααα

∗
1

}
should be se-

lected as state variables, and the variables
{
x0, x∗0, x1, x∗1

}
should be selected as algebraic variables (i.e., their deriva-
tives are substituted by auxiliary variables [13]). Model-
ing environments supporting index reduction by means of
symbolic formula manipulation (e.g., Dymola [7]) can be
used to carry out these index reductions.

Fourth Step of the Algorithm. The index reductions of
the third step can introduce new algebraic variables. Each
of these new variables may be defined either in both modes
or only in one of them. This fourth step of the algorithm
consists of extending the definition of those new variables
defined only in one of the modes to the mode where they are
undefined. As it was done in the first step of the algorithm,
the variables are defined by setting them (arbitrarily) equal
to zero.

Fifth Step of the Algorithm. The following are some
comments about the change of the state variable values
(i.e.,

{
ααα0, α

∗
0,ααα1, α

∗
1

}
)when the mode transitions take place:

• The definition of those variables that acted as state vari-
ables in one of the modes and were not defined in the other
mode (i.e.,x0 andx1) has been extended in the third step
of the algorithm. The variablesααα0 andααα1 constitute these
extended definitions (see equations (3a) and (3b)): (1) the
state variableααα1 equalsx1 in mode_1, anḋα̇α̇α1 equals zero
in mode_0; in addition, (2) the state variableααα0 equalsx0
in mode_0, anḋα̇α̇α0 equals zero in mode_1. In other words,
while the system is in the mode wherexi was undefined,αααi
is equal to the value thatxi had just before the transition to
this mode.αααi maintains this constant value until the next
change of mode.

• In the original formulation of the model, the variables{
x∗0, x∗1

}
act as state variables in one of the modes (x∗0

in mode_0 andx∗1 in mode_1) and as algebraic variables
in the other mode (x∗0 in mode_1 andx∗1 in mode_0). When
the mode transition takes place and one variable changes
from acting as an algebraic variable to acting as a state
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Figure 3. Variables classification

variable, the transition of the variable value is continuous.
On the contrary, when the mode transition takes place and
one variable changes from acting as a state variable to
acting as an algebraic variable, the transition of the vari-
able value is, in general, discontinuous. The variablesααα∗0
andααα∗1 do not reflect (as they should) this discontinuous
transition: they are equal tox∗0 andx∗1 while these act as
state variables, and they change in time likex∗0 and x∗1
while these act as algebraic variables. The fifth step of
the algorithm consists of adding to the model the instanta-
neous equations needed to modify the value ofααα∗0 andααα∗1
whenx∗0 andx∗1 change from state variables to algebraic
variables.

when (transition from mode_0 to mode_1) then
ααα∗0 ← x∗0
end when
when (transition from mode_1 to mode_0) then
ααα∗1 ← x∗1
end when

(4)

A Final Comment. To transform a variable-structure
model withM modes, the proposed algorithm has to be
appliedM − 1 times. First, it is applied to two modes.
Next, it is applied to the obtained two-modes model, to a
third mode, and so forth.

3. An Application Example

The algorithm is applied to the variable-structure model
discussed in example 1. The model formulation prior to the
algorithm application is shown in Table 1, and a classifi-
cation of the model variables, following the same criterion
as in Figure 2, is shown in Figure 3. The definition of the
variableFcf is extended in the first step of the algorithm
(see Table 1). The second step of the algorithm consists
of defining as many couples of auxiliary variables{αi , βi}
as there are noncommon state variables contained in the
model. In this example, there are two noncommon state
variables:T andmvap (see Table 1).

The third step of the algorithm consists of reducing the
index of each mode separately. In this case, the index re-
ductions are done using the Dymola modeling environment
[7]. The model and the commands to reduce the index are
shown in Table 2. The equations added to the model by
Dymola, to reduce the index, are shown in Table 3. The
variablesα1 andα2 are chosen as state variables.

The derivatives of those variables that do not behave as
state variables are substituted by auxiliary variables [13]:
Ṫ → derT and ṁvap → dermvap. The model, valid in
its three modes and written according to the modeling lan-
guage rules, is shown in Table 4. The last step of the al-
gorithm consists of adding to the model the instantaneous
equations to initialize the value of the variablesα1 andα2 af-
ter the change-of-mode transitions. The two instantaneous
equations are shown in Table 5.

The code of the complete model written in Dymola [7]
is shown in Table 6. Arbitrary values have been assigned
to the parameters. In this example, the state variable val-
ues (temperature and vapor mass) change in a continuous
way when the mode transitions take place. However, to
illustrate the state variables initialization at the change-of-
mode events, discontinuous changes in the state variable
values are forced. Initially, the system is in theliq_phase
mode. AtT ime = 10, the system changes to theequilib-
rium mode. AtT ime = 20, it changes to thevap_phase
mode and returns to the equilibrium mode atT ime = 30
(see Fig. 4). The evolution in time of the liquid mass, vapor
mass, and temperature is shown in Figure 4.

4. Conclusions

Specific limitations of the existing modeling languages for
describing and simulating hybrid dynamic systems of vari-
able structure have been identified. In this article, a novel
algorithm has been proposed to transform any variable-
structure model into a formulation suitable for description
and simulation by means of existing object- oriented mod-
eling languages of hybrid systems. Finally, the application
of the proposed algorithm has been illustrated by means of
an example.

Volume 79, Number 9 SIMULATION 489



Urquia and Dormido

Table 1. Initial model formulation. Algorithm application: first and second steps

Table 2. Model description (above) and index reduction commands (below) [7]
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Table 3. Equations added to the model by Dymola [7]

Table 4. Model equations describing the three modes

Table 5. Instantaneous equations

Volume 79, Number 9 SIMULATION 491
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Table 6. Model written in Dymola [7]. Commands to set the simulation initial conditions (below)

Figure 4. Simulation results
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