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Existing object-oriented modeling environments o

ol

nly support the simulation of a limited type of hybrid

dynamic models of variable structure: those with exactly the same state variables and the same
algebraic variables in all modes. The most general hybrid dynamic model of variable structure is one
in which the number of state variables and algebraic variables is not necessarily equal in all modes.
A new algorithm, which transforms such a general variable-structure model into a model suitable for
simulation by means of existing object-oriented modeling languages of hybrid systems, is proposed.
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1. Introduction

The object-oriented design methodology has demonstra
to be a success when it is adapted to the modeling of d
namic systems, increasing the programmer’s productivi
and the software quality [1-3]. The practice of the objec

hybrid models, variable-structure models

a better reuse of the model because itis based on equations
instead of assignment statements. The software tools sup-
edporting these modeling languages implement algorithms to
Y- automatically decide which equation to use for calculating
Y each unknown variable.
[- Inaddition, the automatic manipulations that these mod-

oriented modeling of dynamic systems is a reality nowa- gjing environments carry out on the model include the fol-

days, thanks to the development in the 1990s of obje
oriented modeling languages, supported by efficient so|
ware tools (modeling environments). These environmer
work in conjunction with potent differential algebraic
equations (DAE) solver algorithms (e.g., DASSL [4]).
Some examples of general-purpose, object-orient
modeling languages are ABACUSS Il [5], ASCEND [6],
Dymola [7], EcosimPro [8], gPROMS [1], Modelica [9],
and Omola [3]. Dymola (Dynamic Modeling Laboratory
[7, 10] was the first modeling language on the market d
signed to allow the object-oriented description of hybri
models of large and complex systems [11]. The comm
characteristics of these modeling languages are the obje
oriented, noncausal modeling methodology and the ne

for automatic symbolic formula manipulation. The modt

eling knowledge is represented as differential, algebral
and discrete equations that may change by being trigge
by events (i.e., hybrid models). Modeling languages su
port a declarative description of the model, which permi
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- lowing: (1) translation of the object-oriented description
ft- of the model into the so-called flat model (complete set
'S of model equations and functions, with all object-oriented
structure removed) and (2) manipulations intended to
transform the model into an efficiently solvable form. This
20 second type of manipulations includes (1) the efficient for-
mulation of the complete-model equations, eliminating the
redundant variables and the trivial equations resulting from
the submodel connections; (2) the sorting of the equations;
- (3) the symbolic manipulation of those equations in which
0 the unknown variable appears linearly; and (4) the tearing
PN of the nonlinear algebraic loops. In addition, some model-
Cting environments (e.g., Dymola [7]) support the automatic
ed getection of the models with an index greater than 1, as
well as the automatic reduction of the index to 0 or 1 by
€, means of symbolic formula manipulation [12, 13].
ed General-purpose, object-oriented modeling languages
P- support the description and simulation of certain types of
S variable-structure models (e.g., by means of clauses of the
following type [7-9]: <expressios = if <condition> then
<expressiont else<expression2). A model has a vari-
able structure when its mathematical description changes
during the simulation run. This variable-structure model
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consists of the equations describing the behavior of t
system in each mode and the change-of-mode event ¢
ditions. When one of these discrete event conditions is tri
gered, the corresponding change of mode takes place:

system behavior is no longer described by the actual mg
equations but by the new mode equations. This type

model arises not only when intrinsically variable structur
systems are modeled but also as a result of modeling stra
gies (e.g., when different models of a system are availab
and a change is required among the different models d
ing the simulation run). This situation is common whe
different models of a system are developed under a diffe
ent hypothesis (e.g., to get models with a different degr
of detail in the description of the system).

1.1 Restrictions of the Simulation of
Variable-Structure Models

Animportantlimitation of the existing modeling language
is that they only support the modeling and simulation of
limited type of variable-structure models. The restriction

the following: the model must have the same algebraic apnd
state variables in all the modes. In other words, the number
of state variables and algebraic variables must be equal in
all modes, and the computational type (i.e., state variable

or algebraic variable) of each variable must be the sal
in all modes. The equation used to evaluate each varia

he ing languages (e.g., using if-then-else clauses [7-9]). How-

bn-ever, it is impossible to obtain a combined formulation of

0- the model valid for its three modes, as explained in detalil

thebelow.

de The model has one state varialdfe and three algebraic

of variables,Q, m,;,,, andm,,,, while it is in thelig_phaseor

e vap_phasenode. While it is in theequilibrium mode, it

ite-has one state variables,,,, and four algebraic variables,

le, F;, Q, my,, andT. The variable§” andm,,, act as state

ur- variables or as algebraic variables, depending on the mode.

N The variableF,, is defined only in theequilibrium mode.

2r- As aconsequence, the complete model cannot be simulated

e using the existing modeling environments: it needs to be
adequately reformulated.

1.2 Contribution of This Study

The automated processing of hybrid dynamic systems
of variable structure, in which the number of state vari-
ables and algebraic variables is not necessarily equal in
all modes, is considered. A novel algorithm [16], which
transforms such a model into a model suitable for descrip-
- _tion and simulation by means of existing object-oriented
modeling languages of hybrid systems, is proposed in this
tudy.

5
a
S
n
e
[

ne S
Dle

can vary from one mode to another [14, 15]. To illustrate 2. Description of the Algorithm

this point, we next show a very simple model of variabl
structure, which needs to be reformulated to be simulat;
using the modeling environments of hybrid systems.

Example 1. The model of a closed recipient, contain
ing a known massi{,, constant) of a pure component, ig
shown in Figure 1. The recipient exchanges heat with t
environment. The heat flow®, is a known function of time.
The boiling and condensation temperature of the comp
nent,7,,, and its heat of vaporization (positive) per unit o
mass,\, are also known. The heat capacity per mass u
of the liquid (vapor).C;;, (C..,), are considered constant
F,; represents the mass flow, due to the phase change,
tween the liquid and the vapor. The variaBlleepresents
the component temperature.

The system can be in one of the three following mode
(1) lig_phase while the component is in the liquid phase

(2) vap_phasgwhile the component is in the vapor phase;

and (3)equilibrium while the componentis in liquid-vapor
equilibrium. Two Boolean variablesiquid and equilib,
are required to specify the system mode. The relationsk
between the value of these Boolean variables and the m
is as follows:lig_phasemode = {iquid = True, equilib
= False}, equilibrium mode = {iquid = False,equilib =
True), andvap_phasenode = {iquid = False,equilib =
False}.

The mathematical descriptions of tlig_phaseand
vap_phasanodes have the same algebraic variables al
the same state variables. Therefore, they can be app

e

e Premise. It is assumed that the model index [4] is not

greater than 1 in any mode. This requirement does not
impose any practical limitation. Prior to the algorithm ap-
plication, the index of each mode formulation should be
calculated and, when required, reduced to 0 or 1. Some
he modeling environments (e.g., Dymola [7]) support auto-
matic index calculation and index reduction by means of
0- symbolic formula manipulation [12, 13].
Eit Model Formulation Prior tothe Algorithm Applica-
tion. Consider the following representation of a hybrid dy-
penamic model of variable structure with two modes, mode_0
and mode_1. As stated previously, it is assumed that the
index model is not greater than 1 in any of the two modes.
When the model is in mode_0, it is described by the
" following dim(f,) equations:

1]

fo (yo, Yoi, Xo, X0, Xg» Xg» Xo1, Xot, XI) =0, (1a)

where dim(fo) = dim(yo) + dim(ye) + dim(X,) +

ip dim (x5) + dim (Xop) + dim (x7).

yde When the model is in mode_1, it is described by the
following dim (f,) equations:

fl (y].? yOlv Xla le X:’ ).(:7 XOls XOlv XS) = 07 (1b)
where dim(f;) dim(y1) + dim(ye) + dim(xy) +
dim (x;) + dim (Xoy) + dim (x5).
nd Asthe discrete part of the model describing both modes
ro-may be formulated very easily from the separate descrip-

priately described and simulated using the existing modé
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1ig_phase mode equilibrium mode vap_phase mode
mliq = ’nO mvap = F;f ml,‘q = 0
nlmp = O mvap +’nliq = mO mvap = mO
C,iq-mo-T'=Q r=1, C.:ap'mo'T.=Q
Q = f (time) 29 Q = f (time)
cf A,
Q= f (time)
not T <T not T >T
ﬂ .
////—/—\\ /;‘// ‘// T /ﬂ\\\
< lig_phase } [ equilibrium > vap_phase |
\ /
- ) N < \ )
ey
not m,,, >0 not my, >0

Figure 1. Model of variable structure with three modes

does not consider the discrete part of the model. Cong
quently, for the sake of clarity, the discrete part of the mod
has been omitted from the notation.

The following notation is introduced for the model vari-
ables (see Fig. 2):

* Xp : State variables in mode_0 and not defined in mode |

. x(’; : state variables in mode_0 and algebraic variables
mode_1

* X; : state variables in mode_1 and not defined in mode |

. xj : state variables in mode_1 and algebraic variables
mode_0

* Xgy : State variables in mode_0 and in mode_1

* Yo : algebraic variables in mode_0 and not defined i
mode_1

* y1 : algebraic variables in mode_1 and not defined i
mode_0

* Yo1 : algebraic variables in mode_0 and in mode_1

First Step of the Algorithm. Variablesx, andy, are
defined in mode_1 and undefined in mode_0. Variakjes
andy, are defined in mode_0 and undefined in mode_|
The purpose of this first step of the algorithm is to exten
the vector of variables in every mode, in such a way th
the extended vector of variables is the same in both mog

e- To obtain the same variables vector in both modes, the
el undefined variables of each mode are (arbitrarily) defined,
setting them equal to zero. The resulting model has

dim (yo) + dim (y;) + dim (yo) + dim (xo) + dim (x5)
1 + dim (Xo1) + dim (x) + dim (x})

n equations per mode. The model equations after the first

step of the algorithm are the following:

0
n .
Equations of mode_0:
fo (YO, You, Xo, Xos Xg» X5 Xo1, Xo1, XI) =0
n X, =0 (2a)

y; =0

=

Equations of mode_1.:

fl (yla yOl’ le )’(1, X;, X;, XOla X01, Xé) == 0
Xo =0 (2b)
Yo=0
1.
d Second Step of the Algorithm. The variables¢, and
at x} are state variables of mode_0 and algebraic variables
esof mode_1. The variables, andx; are state variables of

(i.e.,{Yo. Y1. Yor, Xo, X5, Xo1, X1, X;})-

mode_1 and algebraic variables of mode_0. The purpose

Volume 79, Number 9 SIMULATION 487
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Figure 2. Variables classification of a model with two modes. Two
ellipse: algebraic variables.

of this and the following steps of the algorithm is to exten
the vector of state variables and the vector of algebra
variables in each mode, in such a way that the vectors
extended state variables and extended algebraic varial
are the same for both modes.

To achieve this goal, we define-2V new variables
in each mode{ao, o}, a1, o}, Bo. By, 1, B}, WhereN =
dim (Xo) + dim (x3) 4 dim (x,) + dim (x;). These vectors
of variables have the following number of elements:

dim (ag) = dim (Bo) = dim (Xo)
dim (a) = dim (B) = dim (x)
dim (a;) = dim (B,) = dim (x,)
dim (a}) = dim (B}) = dim (x)

These new 2 N variables are defined by means of &
equations per mode as follows:

Equations of mode_0:

fo (YO, Yot Xo, Xo, X§, X5, Xo1, Xo1, XI) =0
=0 , y;=0

a=PB, , 0p=Xo
Gy . o=, ¢
W=b o 4=h
w=p . X=p]

Equations of mode_1:

f1 (YL You, X1, X1, X5, X}, Xo1, Xot, XS) =0
Xo= 0 N y0= 0

=By ., Xo=0B 3b
b=y . X=f; (30)
a=p, , a=X;
a=p; , w=Xx;

Third Step of the Algorithm. As a consequence of the
model extension made in the second step of the algorith

concentric ellipses per mode. Inner ellipse: state variables. Outer

d This third step of the algorithm consists of reducing the
lic index to 0 or 1 [12, 13] of the two modes separately. In
of both modes, the variablefst,, aj, a1, a;} should be se-

legected as state variables, and the varialesxs, Xy, X; }
should be selected as algebraic variables (i.e., their deriva-
tives are substituted by auxiliary variables [13]). Model-
ing environments supporting index reduction by means of
symbolic formula manipulation (e.g., Dymola [7]) can be
used to carry out these index reductions.

Fourth Step of the Algorithm. The index reductions of
the third step can introduce new algebraic variables. Each
of these new variables may be defined either in both modes
or only in one of them. This fourth step of the algorithm
consists of extending the definition of those new variables
defined only in one of the modes to the mode where they are
undefined. As it was done in the first step of the algorithm,
the variables are defined by setting them (arbitrarily) equal
to zero.

Fifth Step of the Algorithm. The following are some
comments about the change of the state variable values
(i.e.,{ao, &, a1, a;}) whenthe mode transitions take place:

* The definition of those variables that acted as state vari-
ables in one of the modes and were not defined in the other
mode (i.e.xg andxy) has been extended in the third step
of the algorithm. The variableg, anda, constitute these
extended definitions (see equations (3a) and (3b)): (1) the
state variablet; equalsxq in mode_1, and; equals zero
in mode_0; in addition, (2) the state variablgequalsxg
in mode_0, andg equals zero in mode_1. In other words,
while the system is in the mode whegavas undefinedy;
is equal to the value that had just before the transition to
this modea; maintains this constant value until the next
change of mode.

¢ In the original formulation of the model, the variables
{x§, x;} act as state variables in one of the mode (
in mode_0 andj in mode_1) and as algebraic variables
inthe other modex in mode_1 ana} inmode_0). When
m, the mode transition takes place and one variable changes

the index [4] of each mode formulation is greater than

488 SIMULATION Volume 79, Number 9
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lig_phase or vap_phase

equilibrium

Figure 3. Variables classification

variable, the transition of the variable value is continuous.

The third step of the algorithm consists of reducing the

On the contrary, when the mode transition takes place and index of each mode separately. In this case, the index re-

one variable changes from acting as a state variable
acting as an algebraic variable, the transition of the vaii
able value is, in general, discontinuous. The variau@s
andaj do not reflect (as they should) this discontinuous
transition: they are equal bq*) andxi while these act as
state variables, and they change in time liggandxj

while these act as algebraic variables. The fifth step ¢
the algorithm consists of adding to the model the instanta
neous equations needed to modify the valuegpando]
whenxg andxj change from state variables to algebraic
variables.

=

when (transition from mode_0 to mode_1) then
oy < Xg

end when 4
when (transition from mode_1 to mode_0) then( )
a; < Xj

end when

A Final Comment. To transform a variable-structure
model with M modes, the proposed algorithm has to be
applied M — 1 times. First, it is applied to two modes.
Next, it is applied to the obtained two-modes model, to|a
third mode, and so forth.

3. An Application Example

D

The algorithm is applied to the variable-structure mod
discussed in example 1. The model formulation prior to th
algorithm application is shown in Table 1, and a classif
cation of the model variables, following the same criterio
as in Figure 2, is shown in Figure 3. The definition of th
variable F; is extended in the first step of the algorith

lUj.m

0 ductions are done using the Dymola modeling environment

[7]. The model and the commands to reduce the index are
shown in Table 2. The equations added to the model by
Dymola, to reduce the index, are shown in Table 3. The
variablesy; anda, are chosen as state variables.

The derivatives of those variables that do not behave as
state variables are substituted by auxiliary variables [13]:
T — derT andm,,, — derm,,,. The model, valid in
its three modes and written according to the modeling lan-
guage rules, is shown in Table 4. The last step of the al-
gorithm consists of adding to the model the instantaneous
equationstoinitialize the value of the variablesndo, af-
ter the change-of-mode transitions. The two instantaneous
equations are shown in Table 5.

The code of the complete model written in Dymola [7]
is shown in Table 6. Arbitrary values have been assigned
to the parameters. In this example, the state variable val-
ues (temperature and vapor mass) change in a continuous
way when the mode transitions take place. However, to
illustrate the state variables initialization at the change-of-
mode events, discontinuous changes in the state variable
values are forced. Initially, the system is in figg_ phase
mode. AtTime = 10, the system changes to theuilib-
rium mode. AtTime = 20, it changes to theap phase
mode and returns to the equilibrium modefdine = 30
(see Fig. 4). The evolution in time of the liquid mass, vapor
mass, and temperature is shown in Figure 4.

4. Conclusions

Specific limitations of the existing modeling languages for
describing and simulating hybrid dynamic systems of vari-
able structure have been identified. In this article, a novel
algorithm has been proposed to transform any variable-

(see Table 1). The second step of the algorithm consists Structure model into a formulation suitable for description

of defining as many couples of auxiliary variables, f,}
as there are noncommon state variables contained in

and simulation by means of existing object- oriented mod-

the€ling languages of hybrid systems. Finally, the application

model. In this example, there are two noncommon stdte ©f the proposed algorithm has been illustrated by means of

variables:T andm,,, (see Table 1).

an example.
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Table 1. Initial model formulation. Algorithm application: first and second steps

lig_phase or vap_phase mode equilibrium mode
. ey = F.
my, =if liquid then m, else O Mhap = Fr
. +m. =
m,,, =if liquid then O else m, Thap ™ Mg = Mo
Initial 9 T=1,
fa T =if liguid then clse 0
my-Cy, my-C,, Fy==
Q= f (time) 0= f (time)
my, =if liquid then m, else 0 e = Fiy
m,, =if liquid then 0 else m, M, + 10y, =,
After the T =if liquid then clse —2 =1,
first step my-Cy, m,-C,, 0= f (time)
Q= f (time) F_Q
F,= 0 T
my, =if liquid then m, clse 0 ,, =F,
m,,, =if liquid then 0 else m, m,,, +my, = g
T =if liquid then Y else Y =Ty
After the Mo Ciy Mo Cup F -2
second step Q = f (time) EE§
F, =0 Q0 = f (time)
o =P, o =T a=p, T=4
a,=5,, mvap =p, =5, a, =m,,

Table 2. Model description (above) and index reduction commands (below) [7]

2 .7 .
lig_phase or vap_phase mode equilibrium mode
model lig vap_phase model equilibrium
local T, Q, mvap, mlig, Fcf, ligquido local T, Q, mvap, mlig, Fcf
local alfal, alfa2, betal, beta2 local alfal, alfa2, betal, beta2
parameter m0O, lam, Clig, Cvap parameter mO, lam, Clig, Cvap, Tcf
mlig = if liguid then m0 else 0 der (mvap)=Fcf
mvap = if liquid then 0 else m0 mvap + mlig = m0
der (T) = if liquid -> T = Tcf
then Q / ( m0O * Cliq ) -> Fef = Q / lam
else QO / ( m0O * Cvap ) der(alfal) = betal
Fcf =0 der(alfaz) = beta2
der (alfal) = betal der(T) = betal
der (alfaz) = beta2 alfaz = mvap
alfal = T Q = f(Time)
der (mvap) = beta2 end
Q = f(Time)
new(liquid) = g(Time)
end
set eliminate on set eliminate on
set LogDeriv on set LogDeriv on
enter model enter model
@./estado_liqg vap.dym @./estado_eq.dym
differentiate differentiate
variable known alfal variable known alfal
variable known alfa2 variable known alfa2
variable unknown T variakle unknown T
variable unknown mvap variable unknown mvap
partition partition
output solved equations output solved equations

490 SIMULATION Volume 79, Number 9
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Table 3. Equations added to the model by Dymola [7]

lig_phase or vap_phase mode

equilibrium mode

Table 4. Model equations describing the three modes

lig_phase or vap_phase or equilibrium mode

0=if equilib then derm,,, — F, elseil liquid thenm, - m, else my,

0=if equilib then m,,, +m,, —m, elseif liquid then m,, else m,, —m,

0=if equilib then T —T,_ elseil liquid then derT —

0=if equilib then F, —% else F,

do,

it

0 =il equilib then derT — 5, else o, —T
da,

5 P

0=if equilib then o, —m,,, clse derm,,, — 3,

d;xz —derm,,, else derT —
t

0=if equilib then derT else derm,,,

0=if equilib then

doy
dt

else derT — Q

mO lig mO vap

Table 5. Instantaneous equations

lig_phase or vap_phase or equilibrium mode

when equilib then
init(er, ) =T

endwhen

when not equilib then
init(er, )= m,,,,

endwhen

Volume 79, Number 9 SIMULATION 491
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Table 6. Model written in Dymola [7]. Commands to set the simulation initial conditions (below)

model lig vap_eq
local T, Q, mvap, mlig, Fcf, liguid, equilib
local dermvap, derT
local alfal,alfaZ,betal,betaz
parameter m0=100, lam=5, Clig=0.2, Cvap=0.08, Tcf=373

0 = if equilib >
then dermvap-Fcf >
else if liquid then mlig—m0 else mlig
0 = if equilib ->
then mvap + mlig — m0 ->
else if licguid then mvap else mvap-m0
0 = if equilib ->
then T - Tcf ->
else if liquid then derT-Q/(m0*Clig) else derT-Q/ (mO*Cvap)
0 = if equilib ->
then Fcf - Q / lam —>
else Fcf
der (alfal) = betal
der (alfa2) = betalZ
0 = if equilib ->
then derT - betal ->
else alfal - T
0 = if equilib ->
then alfa2 - mvap —>
else dermvap - beta2
0 = if equilib ->
then der(alfa2) - dermvap —>
else der(alfal) - derT
0 = if equilib ->
then derT —>

else dermvap
Q = if Time < 28 then 20 else -20

new(liquid) = Time < 10
new(equilib) = Time >10 and Time < 20 or Time>30
when equilib then
init(alfal) = T
endwhen
when not egquilib then
init(alfa2) = mvap
endwhen
end

enter model

@./ligq _vap_eg.dym
partition
output solved equations
initial alfal = 300
initial alfa2 = 0

initial liguid = True
initial equilib alse
experiment stopTime = 40
simulate

12 figuid 1 p-foul ib A
1 20
0.8+ 08+ ]
1 ] ol
0.4+ 0.4+
0+ 0 -2
T T T T T T T T
] 10 20 30 40 ] 10 20 30 40 0 10 20
170 R 170 willy a0 T
4 ‘f’/
3604
,f/I
/f/
T T T T . T v T T T T T T T 280 T T T T .
0 1o 20 0 40 0 10 20 0 40 0 10 20

Figure 4. Simulation results
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