Cursos de Formación para el Profesorado de Enseñanza Secundaria

Simulaciones dinámicas interactivas: Un enfoque creativo para la enseñanza de las Ciencias en la ESO

Simulación para la enseñanza de la cinemática Simulación de sistemas mecánicos Sesión de prácticas

> Carla Martín Villalba Alfonso Urquía Moraleda

Dpto. de Informática y Automática E.T.S. de Ingeniería Informática, UNED e-mail: {carla, aurquia}@dia.uned.es

Ávila 11-15 de julio de 2005

Plan de trabajo para hoy

Taller 1: Simulación para la enseñanza de la cinemática

11:30 h Descanso

Taller 2: Simulación de sistemas mecánicos

13:30 h Comida

17 h Prácticas con los talleres 1 y 2

18:30 h↓

Taller 1:

Simulación para la enseñanza de la cinemática

Contenido del Taller 1

- 1 Laboratorio del péndulo simple
 - 1.1 Objetivo
 - 1.2 Modelo matemático
 - 1.3 Algoritmo de la simulación
 - 1.4 Declaración e inicialización de las variables
 - 1.5 Panel Evolución
 - 1.6 Panel Ligaduras
 - 1.7 Programación de la Vista

Contenido del Taller 1

2 Laboratorio del tiro parabólico

- 2.1 Objetivo
- 2.2 Modelo matemático
- 2.3 Algoritmo de la simulación
- 2.4 Declaración e inicialización de las variables
- 2.5 Panel Evolución
- 2.6 Panel Ligaduras
- 2.7 Programación de la Vista

1.1 Objetivo

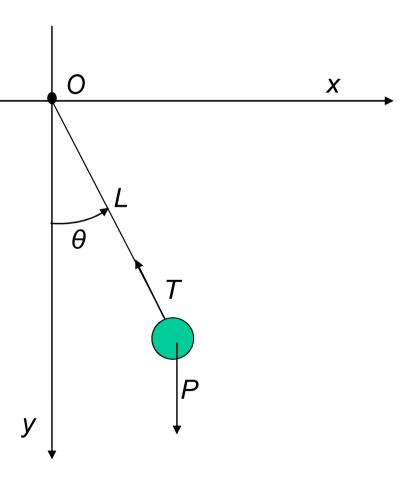
El objetivo final es modelar y programar un laboratorio interactivo del sistema péndulo simple:

 θ : ángulo que forma la cuerda respecto a la vertical.

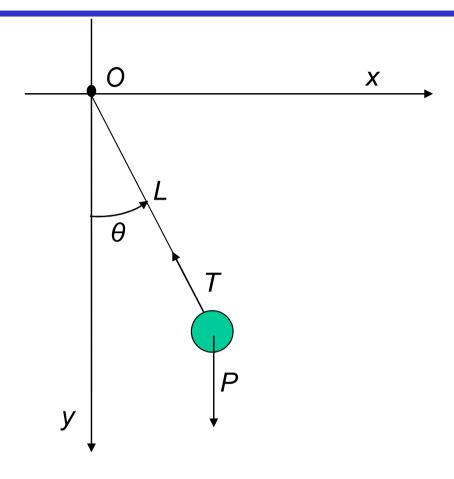
L: longitud de la cuerda.

T: Tensión

P: peso del péndulo.



1.2 Modelo matemático (1/2)



Masa puntual.

Cuerda de masa despreciable.

$$I\frac{d^{2}\theta}{dt^{2}} = -mgLsen(\theta) \xrightarrow{\uparrow} \frac{d^{2}\theta}{dt^{2}} = -\frac{g}{L}sen(\theta) \xrightarrow{} \begin{cases} \frac{d\theta}{dt} = \omega \\ \frac{d\omega}{dt} = -\frac{g}{L}sen(\theta) \end{cases}$$

$$I = mL^{2}$$

1.2 Modelo matemático (2/2)

Ecuaciones:

$$\frac{d\theta}{dt} = \omega$$

$$\frac{d\omega}{dt} = -\frac{g}{L} \operatorname{sen}(\theta)$$

Sistema de EDOs

$$x = Lsen(\theta)$$

$$y = Lcos(\theta)$$

$$v_x = L\omega cos(\theta)$$

$$v_y = L\omega sen(\theta)$$

Ecnes. cálculo posición y velocidad

$$E_{p} = mgL(1 - \cos(\theta))$$

$$E_{c} = \frac{1}{2}mv^{2} = \frac{1}{2}m(L\omega)^{2}$$

$$E = E_{c} + E_{p}$$

Ecnes. cálculo energías

Clasificación de las variables:

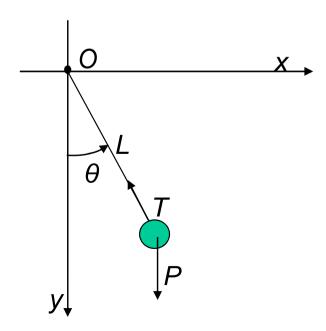
Parámetros

Variables de estado:

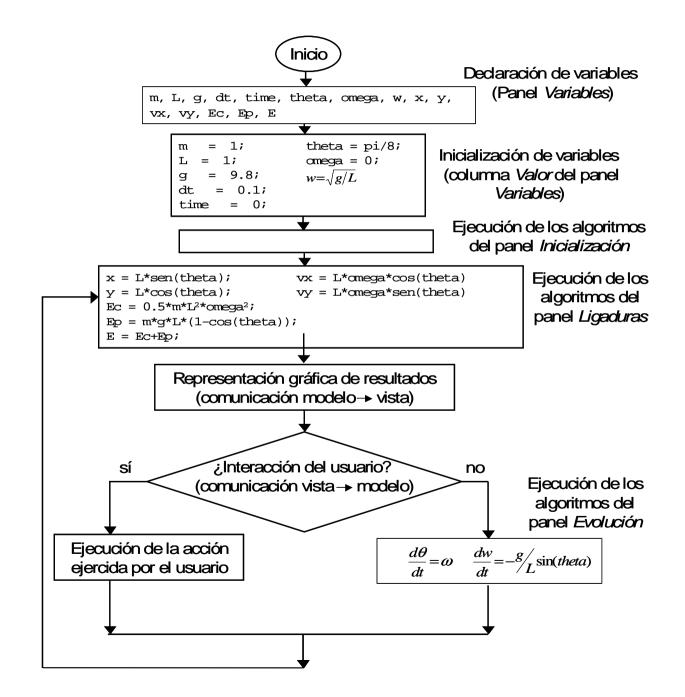
$$\theta$$
, ω

Variables algebraicas:

$$x, y, v_x, v_y, E, E_p, E_c$$



1.3 Algoritmo de la simulación



1.4 Declaración e inicialización de las variables

Columna donde se introduce el valor inicial de la variable

Variables empleadas en la definición de la **Vista**

> Variables del modelo matemático

Parámetros:

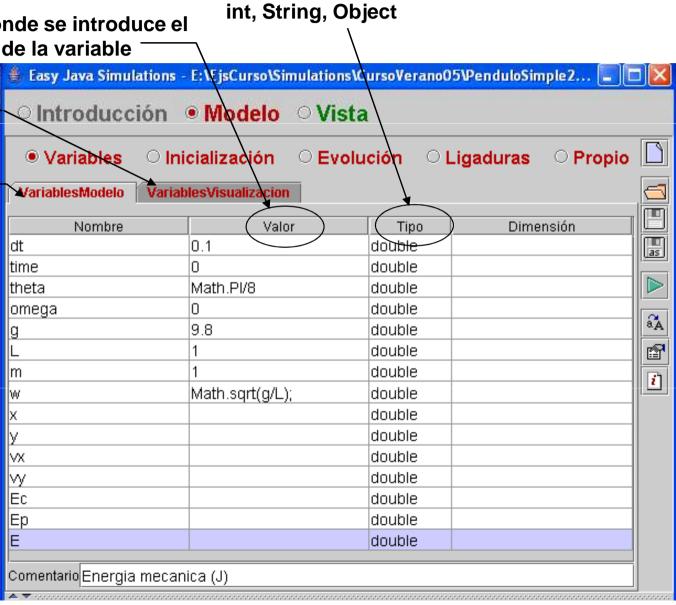
g, L, m, w

Variables de estado:

 θ . ω

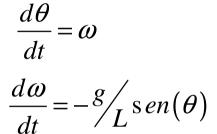
Variables algebraicas:

 $x, y, v_x, v_y, E, E_p, E_c$



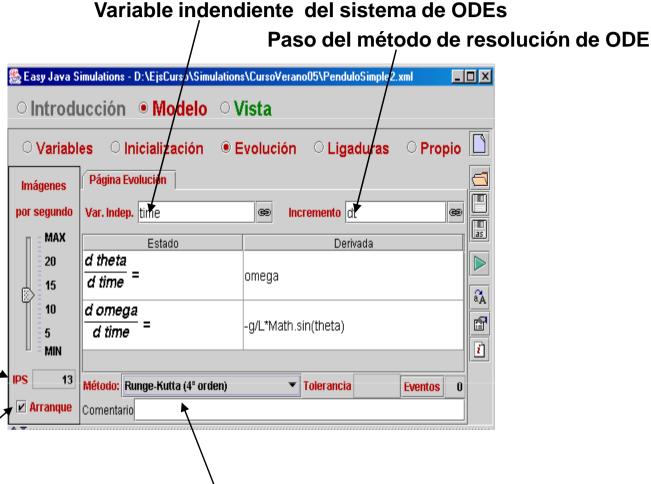
Tipo de variable: boolean, double,

1.5 Panel Evolución



Número de pasos de evolución que la simulación completa en 1 segundo \times

Si está seleccionado, la evolución se ejecuta automáticamente cuando se ejecuta el laboratorio

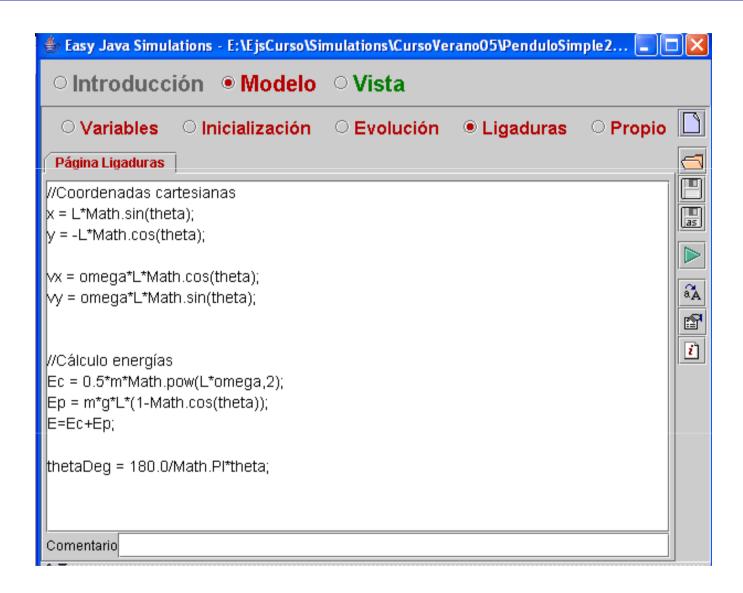


Método de resolución de ODE

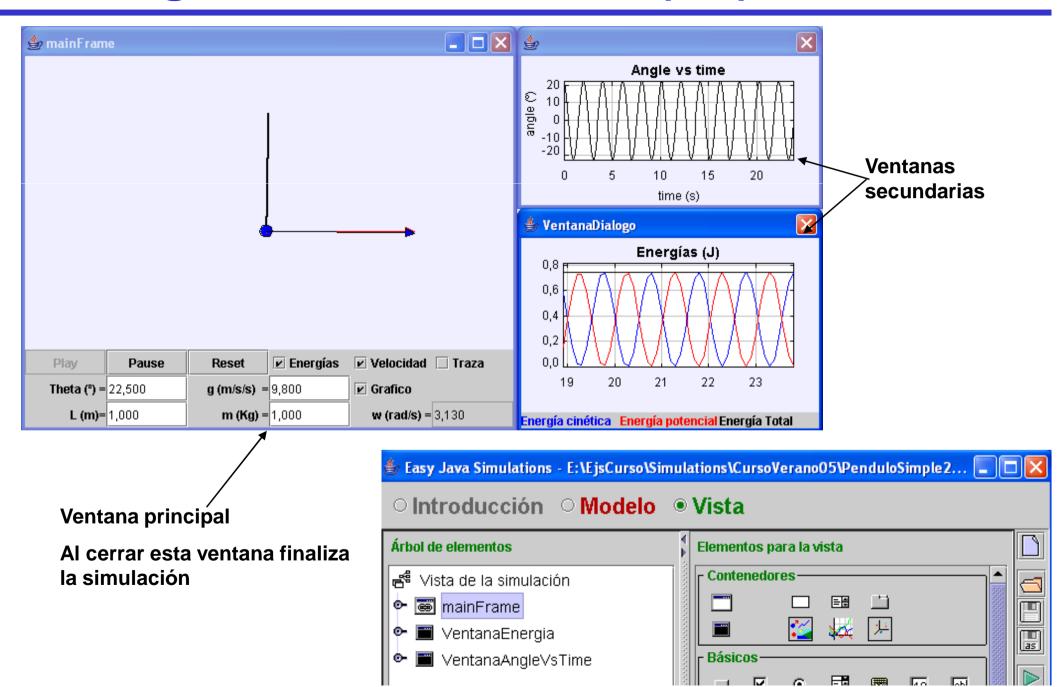
1.6 Panel Ligaduras

Cálculo variables algebraicas

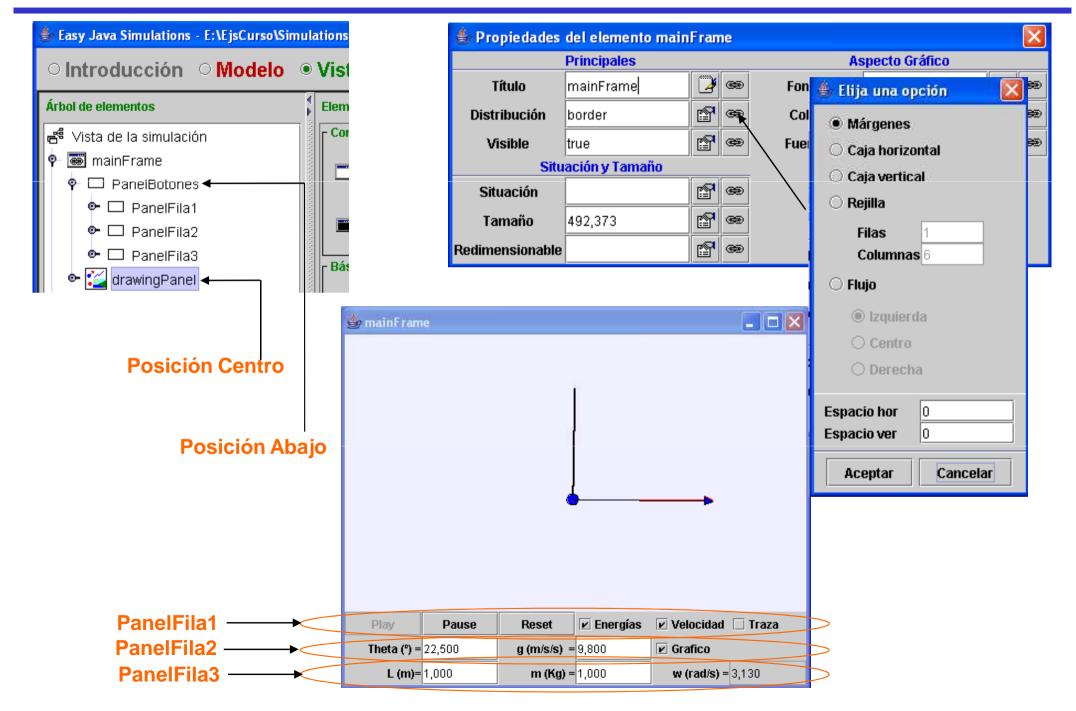
x, y, v_x , v_y , E_c , E_p , E



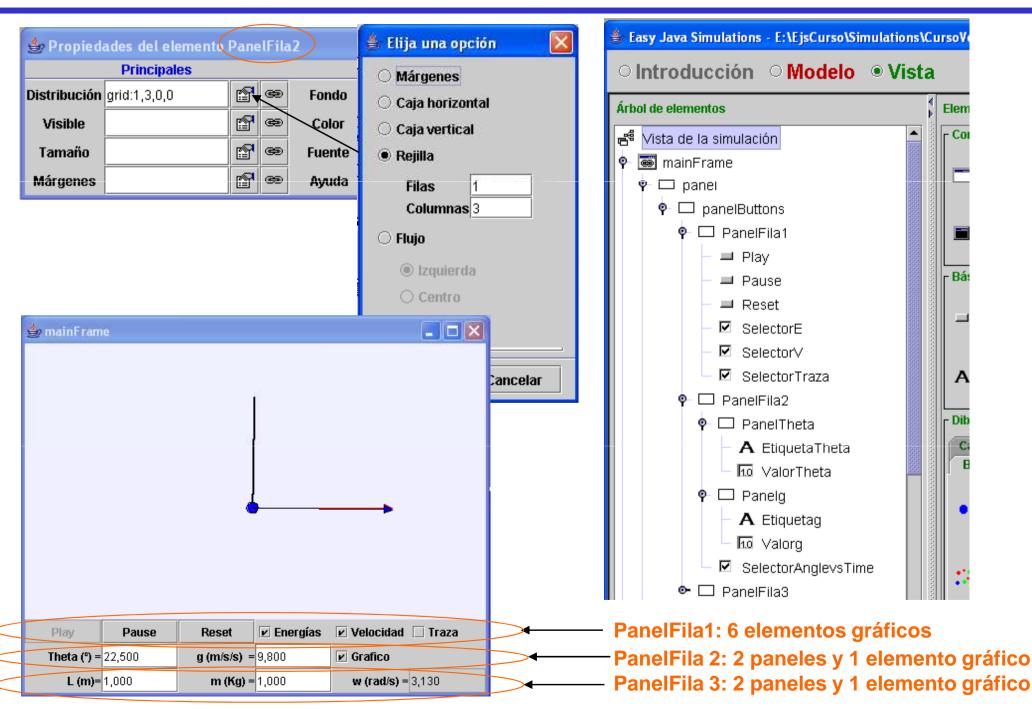
1.7 Programación de la Vista (1/7)



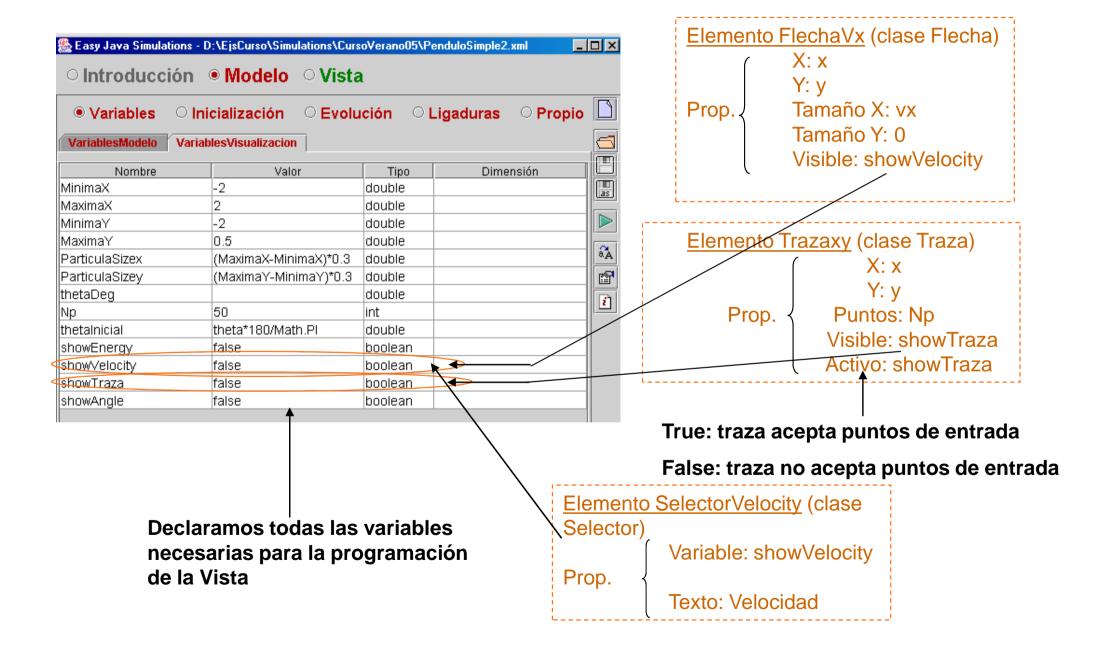
1.7 Programación de la Vista (2/7)



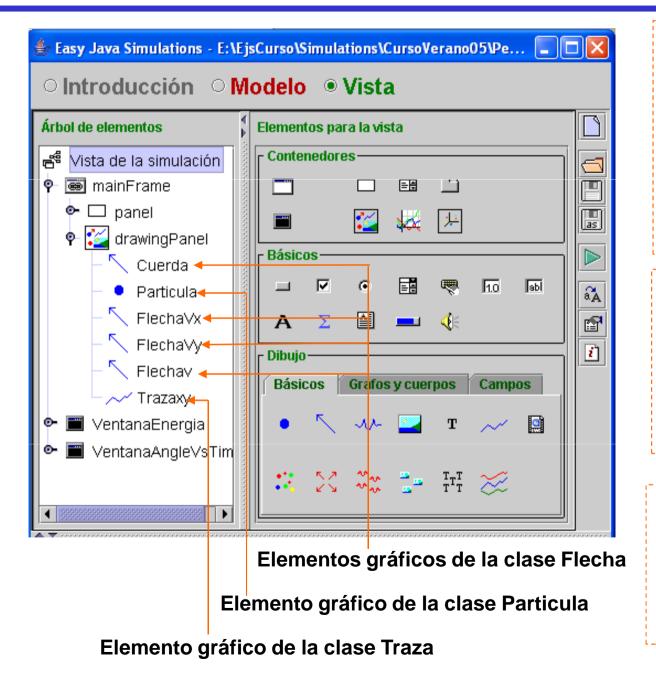
1.7 Programación de la Vista (3/7)



1.7 Programación de la Vista (4/7)



1.7 Programación de la Vista (5/7)



Elemento DrawingPanel (clase
PanelDibujo)

Autoescala X: false
Autoescala Y: false
Minimo X: MinimaX

Prop.

Maximo X: MaximaX
Minimo Y: MinimaY
Maximo Y: MaximaY

Maximo Y: MaximaY

Elemento Particula (clase Particula)

X: x

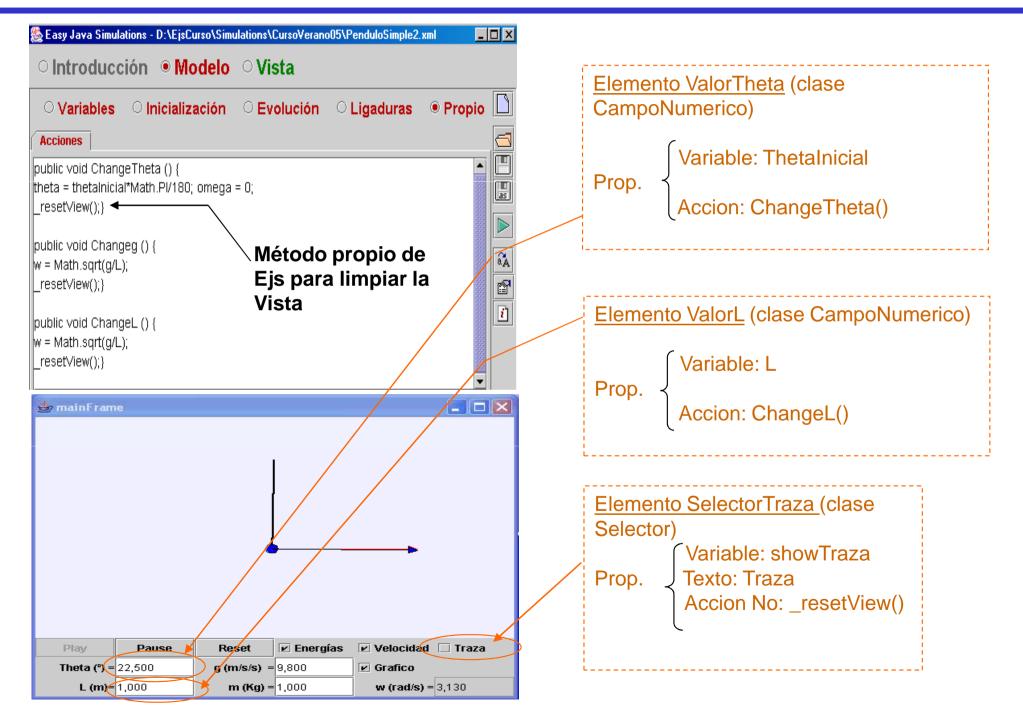
Y: y

Prop. Tamaño X: ParticulaSizex

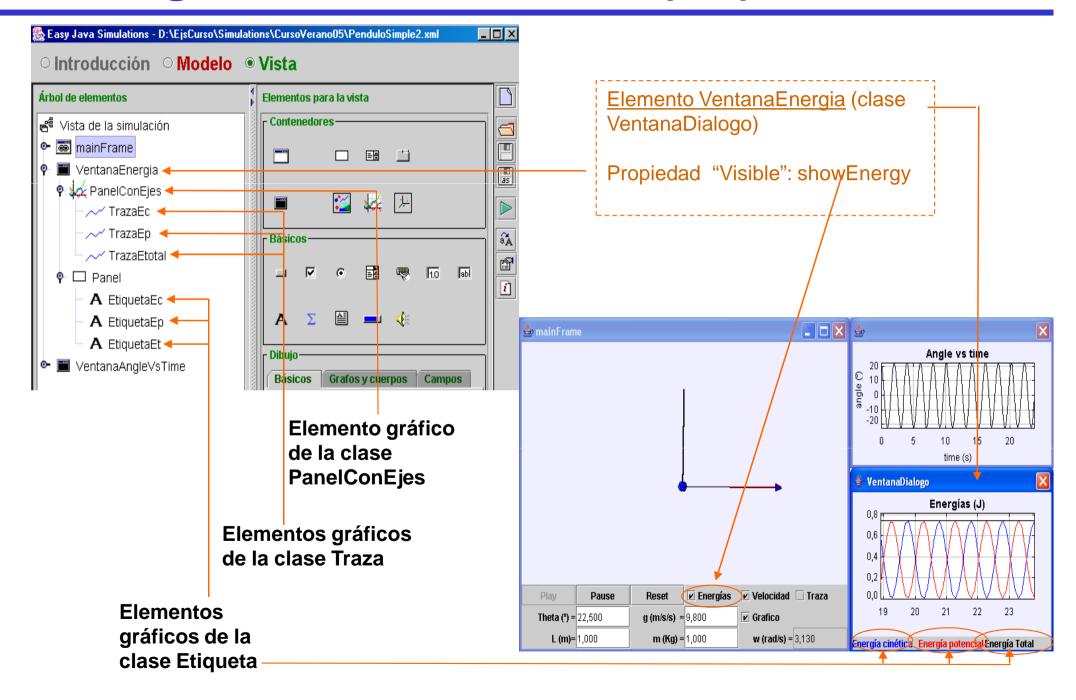
Tamaño Y: ParticulaSizey

Activo: false

1.7 Programación de la Vista (6/7)



1.7 Programación de la Vista (7/7)

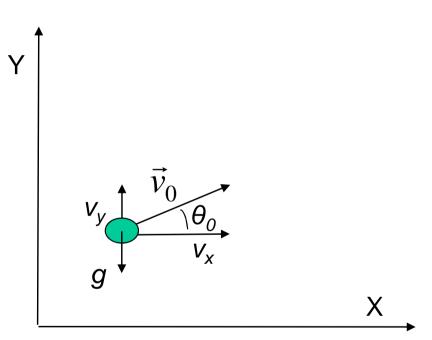


2.1 Objetivo

El objetivo final es modelar y programar un laboratorio interactivo del tiro parabólico:

Composición de 2 movimientos:

- Uniforme a lo largo del eje X.
- Uniformemente acelerado a lo largo del eje vertical Y.



2.2 Modelo matemático

Ecuaciones válidas para y>0:

$$\frac{dx}{dt} = v_{x}$$

$$\frac{dy}{dt} = v_{y}$$

$$\frac{dv_{x}}{dt} = 0$$

$$\frac{dv_{y}}{dt} = -g$$
Sistema de EDOs

Ecuaciones válidas para y<=0:

$$y = 0;$$

 $v_x = 0;$

$$v_{v} = 0;$$

Ecuaciones para el cálculo de v_x e v_y:

$$v_x = v_0 \cos(\theta_0)$$

$$v_y = v_0 sen(\theta_0)$$

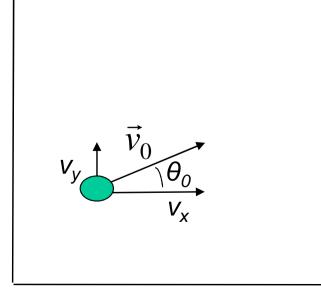
Clasificación de las variables:

Parámetros:

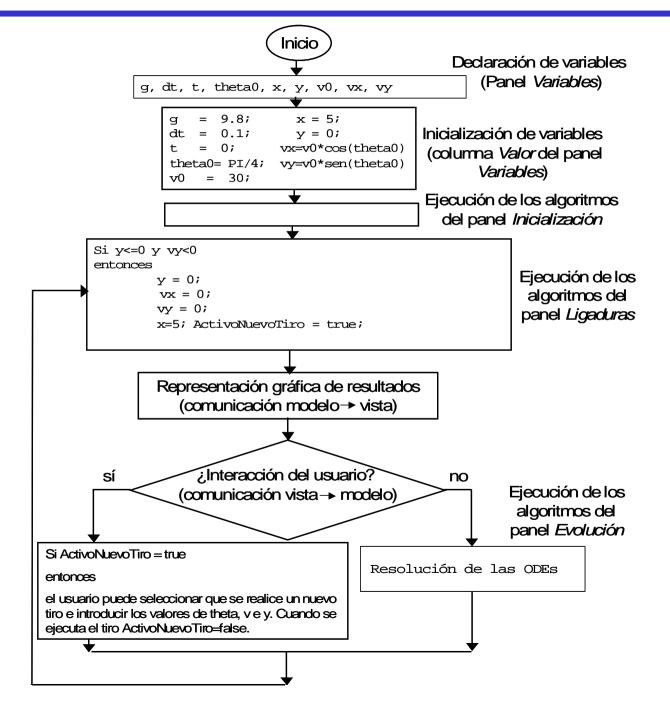
$$g, v_0, \theta_0$$

Variables de estado:

$$\boldsymbol{X},\;\boldsymbol{y},\;\boldsymbol{V}_{\boldsymbol{X}},\;\boldsymbol{V}_{\boldsymbol{y}}$$



2.3 Algoritmo de la simulación



2.4 Declaración e inicialización de las Variables

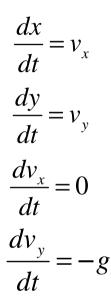
Parámetros:

$$g$$
, θ_{0} , v_0

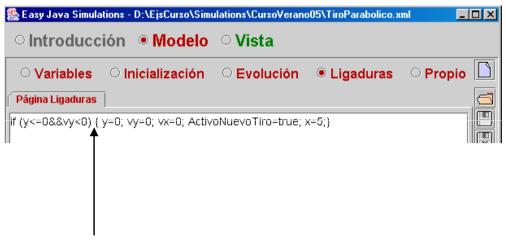
Variables de estado:

2.5 Panel Evolución

Sistema de EDOs



2.6 Panel Ligaduras



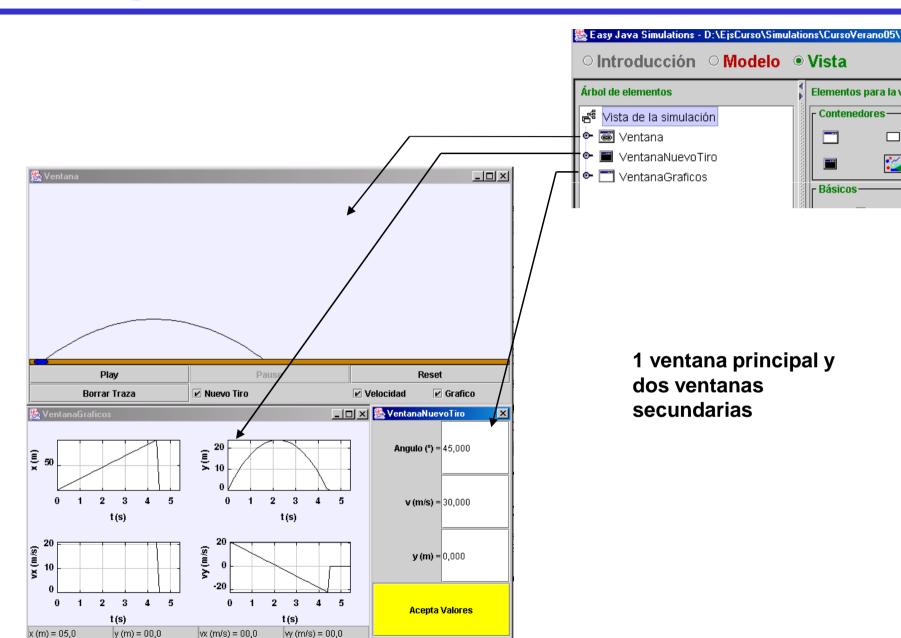
Condición:

Si se cumplen simultáneamente las condiciones (y<=0) y (vy<0)

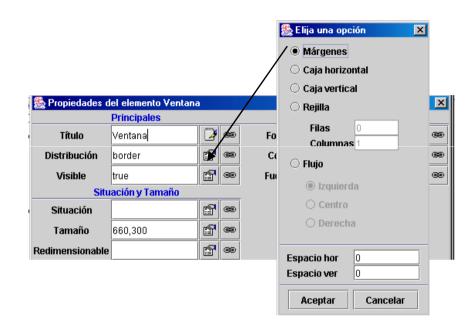
entonces

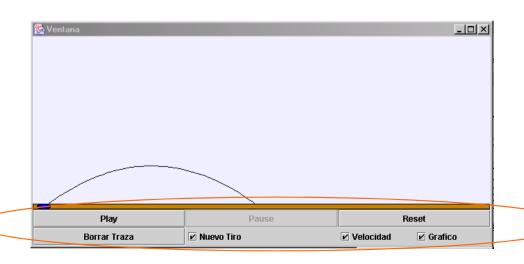
x=5; y=0; vx=0; vy=0; ActivoNuevoTiro = true;

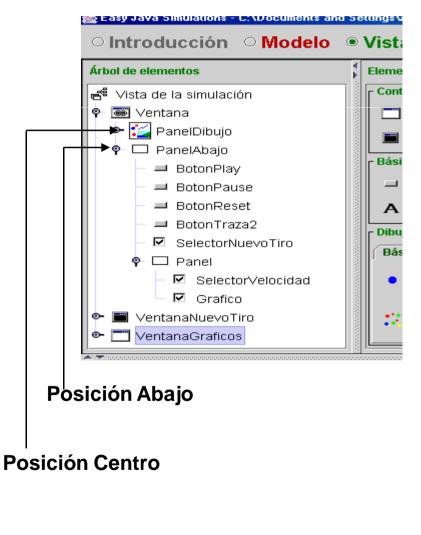
2.7 Programación de la Vista (1/7)



2.7 Programación de la Vista (2/7)

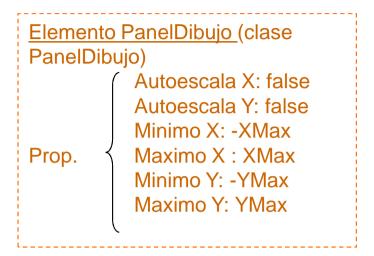


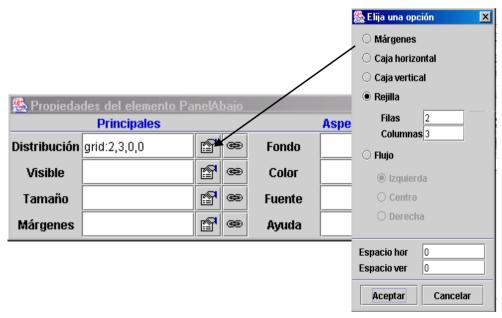


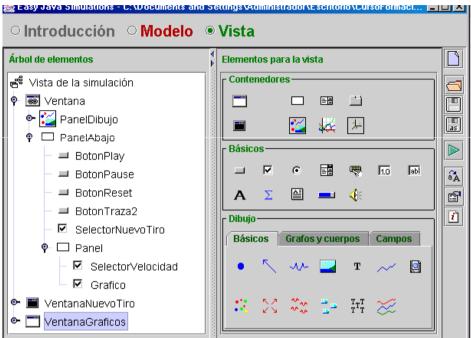


PanelAbajo: Contiene 6 elementos gráficos

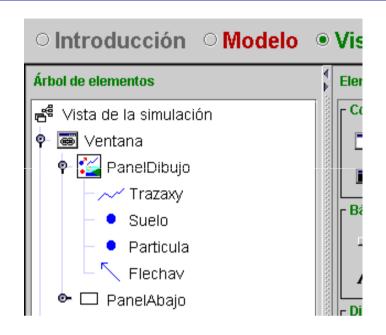
2.7 Programación de la Vista (3/7)

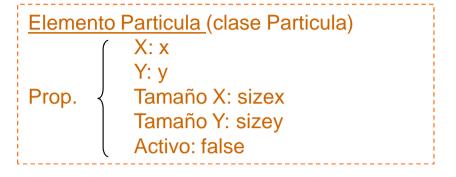






2.7 Programación de la Vista (4/7)





```
Elemento Trazaxy (clase Traza)

X: x

Prop.

Y: y
```

```
Elemento Suelo (clase Particula)

X: Xmax/2

Y:0

Prop. Tamaño X: Xmax

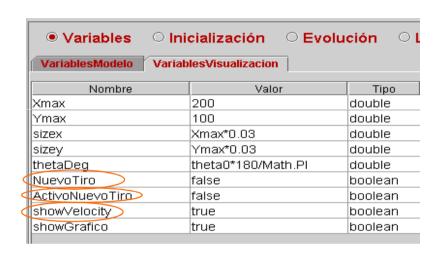
Tamaño Y: 2.5

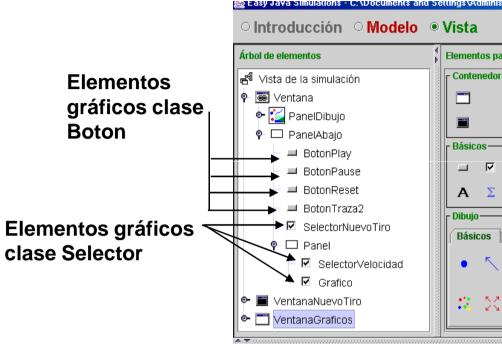
Activo: false
```

```
Elemento Flechav (clase Flecha)

X: x
Y: y
Prop. Tamaño X: vx
Tamaño Y: vy
Visible: showVelocity
```

2.7 Programación de la Vista (5/7)





Elemento BotonTraza2 (clase
Boton)

Texto: Borrar Traza

Prop.

Acción: _resetView()

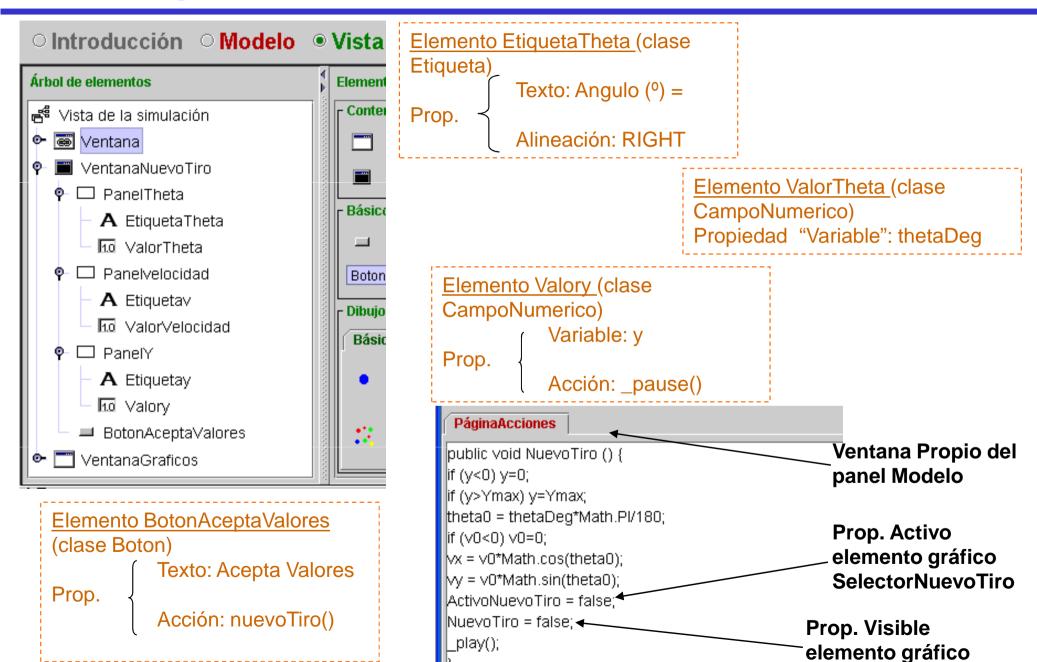
Elemento Selector Velocidad
(clase Selector)

Variable: show Velocity

Prop.

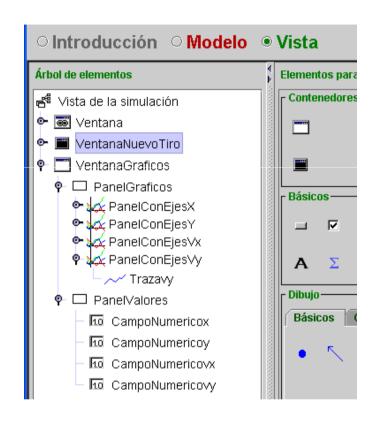
Texto: Velocidad

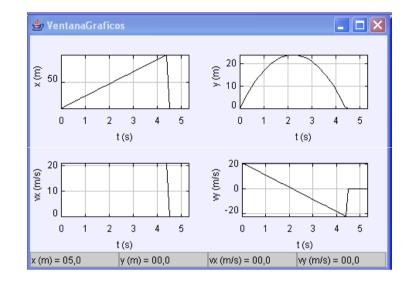
2.7 Programación de la Vista (6/7)



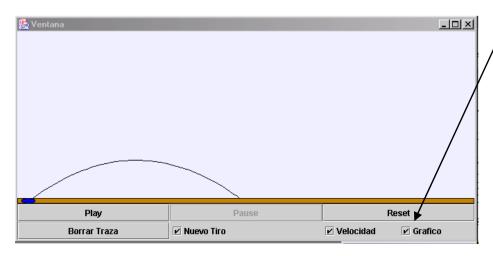
VentanaNuevoTiro

2.7 Programación de la Vista (7/7)





Elemento VentanaGraficos (clase VentanaDialogo)
Prop. "Visible": showGrafico



Elemento CampoNumericovy (clase CampoNumerico)

Variable: vy
Prop. Formato: vy (m/s) =00.0

Editable: false

Taller 2:

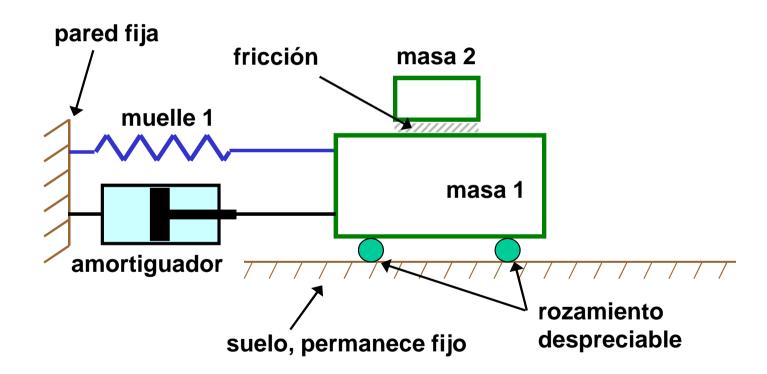
Simulación de sistemas mecánicos

Contenido del Taller 2

- 1 Objetivo
- 2 Modelado físico de los componentes
- 3 Modelo matemático del sistema simplificado
- 4 El algoritmo de la simulación
- 5 Los métodos de integración de Ejs
- ▶ 6 Declaración e inicialización de las variables
- 7 Definición del modelo
- 8 Definición de la Vista
- 9 Modelado de la ligadura en el desplazamiento
- ▶ 10 Modelado de la fricción
- 11 Programación de la Vista

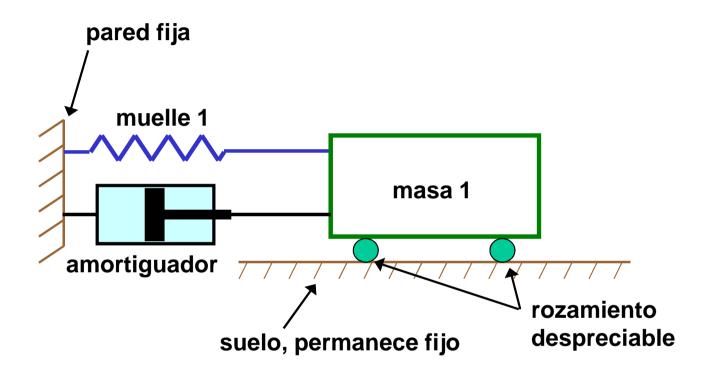
1 Objetivo (1/2)

El objetivo final es modelar y programar un laboratorio interactivo del sistema siguiente:



1 Objetivo (2/2)

Comenzamos modelando y simulando un subsistema:



SistemaMecanicoSimplificado.xml

Posteriormente consideraremos el objeto *masa2*, y la fricción entre *masa1* y *masa2*.

2 Modelado físico de los componentes (1/3)

Modelado del muelle:

Masa despreciable

$$F = k \cdot (x - x_0) \quad \text{(Ley de Hooke)}$$

 \mathcal{X}_0 (elongación natural) $x = x_0$ $x > x_0$ $x < x_0$

La fuerza (*F*) que *ejerce* el muelle sobre cualquiera de sus extremos es igual a una constante de proporcionalidad, *k* (N/m), multiplicada por la diferencia entre su elongación y su elongación natural.

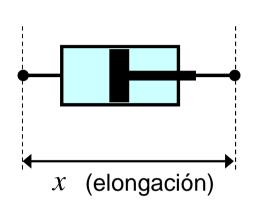
La fuerza que *ejerce* el muelle tiende a restablecer su elongación natural.

El muelle almacena energía:

- Cuando su elongación se aleja de la elongación natural, acumula energía.
- Cuando su elongación tiende a la elongación natural, cede energía.

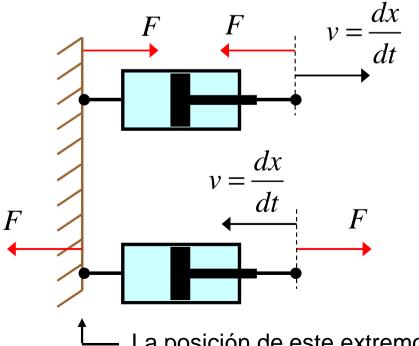
2 Modelado físico de los componentes (2/3)

Modelado del amortiguador:



Masa despreciable

La *magnitud de la fuerza* ejercida por el amortiguador (*F*) en cada uno de sus extremos es proporcional a la velocidad relativa entre los extremos, es decir, a la derivada de su elongación. El *sentido de la fuerza* es aquel que se opone a que se produzca el cambio en la elongación.



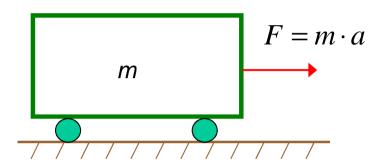
$$F = b \cdot \frac{dx}{dt}$$

El amortiguador disipa energía en forma de calor.

La posición de este extremo del amortiguador está fija

2 Modelado físico de los componentes (3/3)

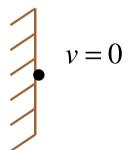
Modelado del objeto *masa1*:



La masa (*m*) del objeto es constante.

La fuerza neta *aplicada* (*F*) sobre el objeto es igual al producto de su masa por la aceleración que adquiere.

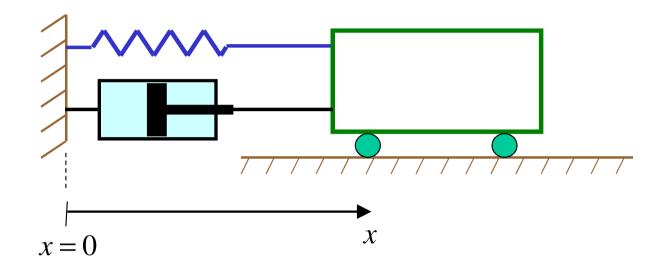
Modelado de la pared:



La fuerza que ejerce la pared sobre el punto de conexión a ella de cualquier componente es la necesaria para que éste permanezca en reposo.

3 Modelo matemático del sistema simplificado (1/2)

Referencia, criterio de signos:



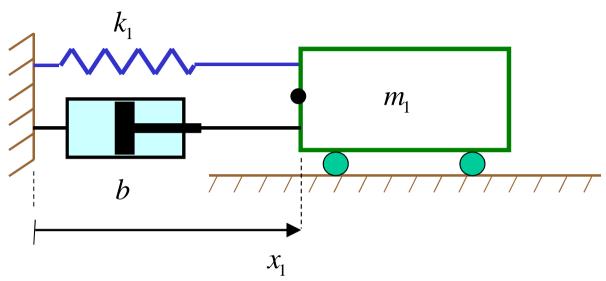
Debe fijarse el sistema de referencia para la coordenada espacial: se considera que el origen de coordenadas se encuentra en la pared.

La coordenada espacial de los puntos situados a la derecha de la pared tiene signo positivo, mientras que los puntos situados a la izquierda de la pared tienen signo negativo.

La velocidad y la fuerza se considerarán positivas cuando lleven el sentido creciente de la coordenada espacial.

3 Modelo matemático del sistema simplificado (2/2)

Modelo matemático:



$$F_{masa1} = F_{muelle1} + F_{amortiguador}$$

$$F_{muelle1} = -k_1 \cdot \left(x_1 - x_{0,muelle1}\right)$$

$$F_{amortiguador} = -b \cdot v_1$$

$$F_{masa1} = m_1 \cdot a_1$$

$$\frac{dx_1}{dt} = v_1$$

$$\frac{dv_1}{dt} = a_1$$

Clasificación de las variables:

Parámetros

$$m_1, k_1, b, x_{0,muelle1}$$

• Variables de estado:

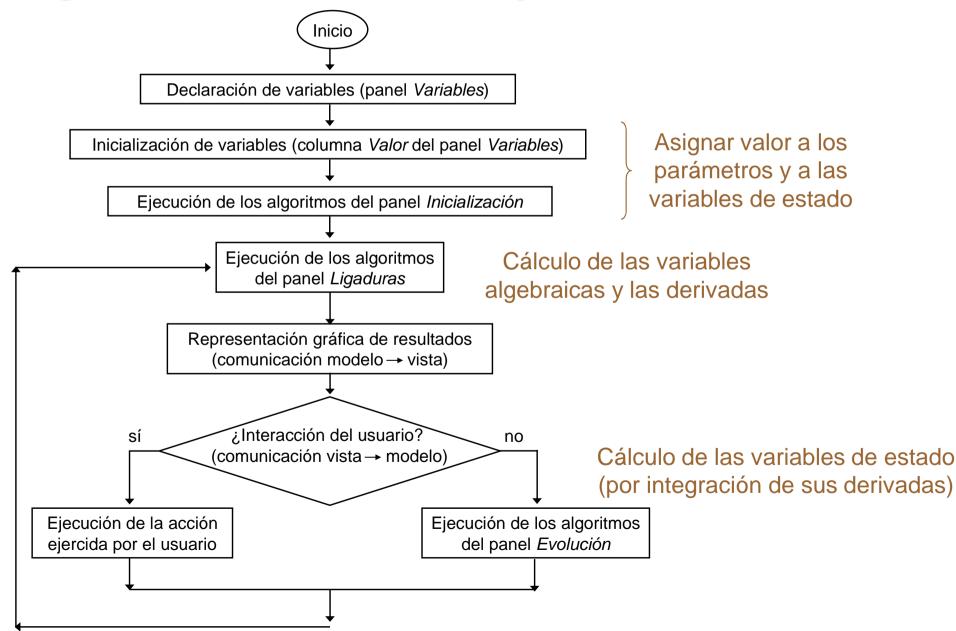
$$X_1, V_1$$

• Variables algebraicas:

$$a_1, F_{masa1}, F_{muelle1}, F_{amortiguador}$$

4 El algoritmo de la simulación (1/5)

El algoritmo de la simulación de Ejs:



4 El algoritmo de la simulación (2/5)

Solución del modelo:

Variables del modelo:

Parámetros

$$m_1, k_1, b, x_{0,muelle1}$$

Variables de estado:

$$x_1, v_1$$

• Variables algebraicas:

$$a_1, F_{masa1}, F_{muelle1}, F_{amortiguador}$$

Variables conocidas:

$$m_1, k_1, b, x_{0,muelle1}$$
 t
 x_1, v_1

Variables desconocidas:

$$a_1, F_{masa1}, F_{muelle1}, F_{amortiguador}$$

 $derx_1, derv_1$

Estas 6 incógnitas deben calcularse del modelo

- ¿Qué incógnita se evalúa de cada ecuación?
- ¿En qué orden se resuelven las ecuaciones?

Asignación de la causalidad computacional

4 El algoritmo de la simulación (3/5)

Asignación de la causalidad computacional:

Regla 1: Si una ecuación posee una única incógnita, debe emplearse para calcularla.

Regla 2: Si una incógnita aparece sólo en una ecuación, debe calcularse de ella.

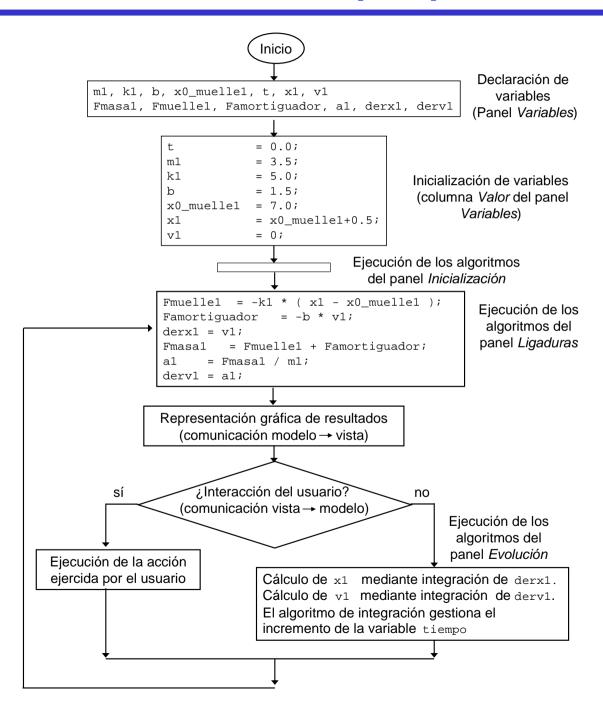
Se llega a una de estas dos posibles situaciones:

- Todas las incógnitas pueden ser resueltas una tras otra, en secuencia.
- Se llega a un punto en que todas las ecuaciones tienen al menos 2 incógnitas, y todas las incógnitas aparecen al menos en dos ecuaciones: lazo algebraico.

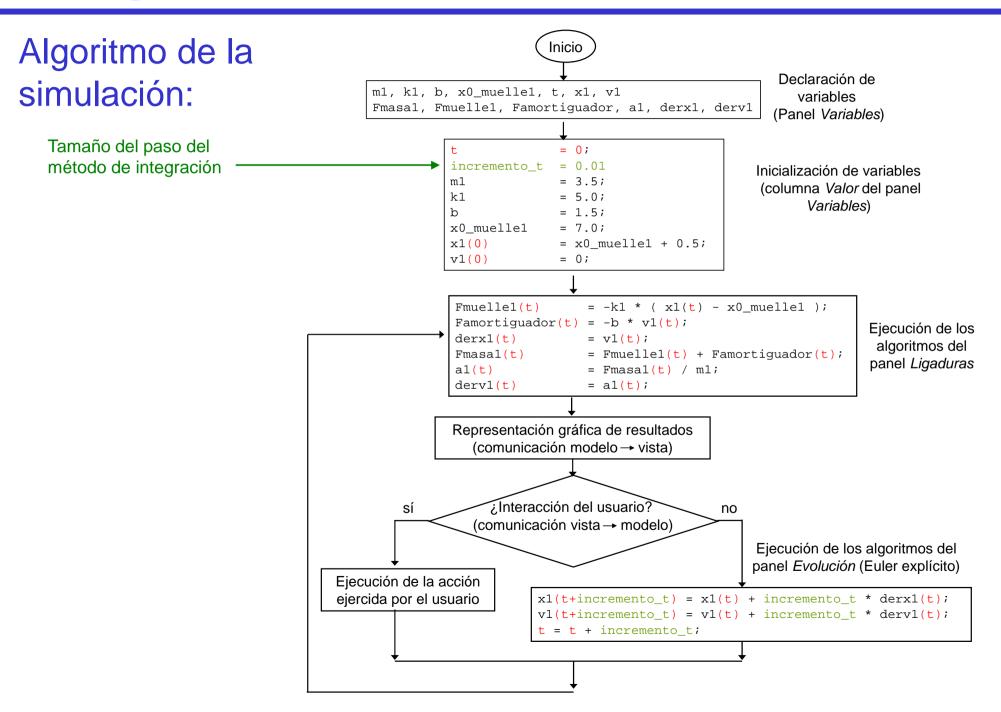
$$\begin{aligned} & \text{Variables desconocidas:} \quad a_1, F_{masa1}, F_{muelle1}, F_{amortiguador} & derx_1, derv_1 \\ & F_{masa1} = F_{muelle1} + F_{amortiguador} \\ & F_{muelle1} = -k_1 \cdot \left(x_1 - x_{0,muelle1}\right) \\ & F_{muelle1} = -b \cdot v_1 \\ & F_{masa1} = m_1 \cdot a_1 \\ & derx_1 = v_1 \\ & derv_1 = a_1 \end{aligned} \qquad \begin{aligned} & \begin{bmatrix} F_{muelle1} \\ -b \cdot v_1 \\ \begin{bmatrix} derx_1 \\ \end{bmatrix} = -b \cdot v_1 \\ & \begin{bmatrix} derx_1 \\ \end{bmatrix} = V_1 \\ & \begin{bmatrix} F_{masa1} \\ \end{bmatrix} = F_{muelle1} + F_{amortiguador} \\ & \begin{bmatrix} a_1 \\ \end{bmatrix} = \frac{F_{masa1}}{m_1} \\ & \begin{bmatrix} derv_1 \\ \end{bmatrix} = a_1 \end{aligned}$$

4 El algoritmo de la simulación (4/5)

Algoritmo de la simulación:



4 El algoritmo de la simulación (5/5)



5 Los métodos de integración de Ejs (1/2)

Ejs soporta 4 métodos de integración:

Euler explícito:

$$x_{i+1} = x_i + f(x_i, t_i) \cdot \Delta t$$

Punto medio (Euler-Richardson):

$$x_{med} = x_i + f(x_i, t_i) \cdot \frac{\Delta t}{2}$$

$$x_{i+1} = x_i + f(x_{med}, t_i + \frac{\Delta t}{2}) \cdot \Delta t$$

Runge-Kutta (4º orden):

$$k_{1} = \Delta t \cdot f(x_{i}, t_{i})$$

$$k_{2} = \Delta t \cdot f(x_{i} + \frac{k_{1}}{2}, t_{i} + \frac{\Delta t}{2})$$

$$k_{3} = \Delta t \cdot f(x_{i} + \frac{k_{2}}{2}, t_{i} + \frac{\Delta t}{2})$$

$$k_{4} = \Delta t \cdot f(x_{i} + k_{3}, t_{i} + \Delta t)$$

$$x_{i+1} = x_{i} + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6}$$

Runge-Kutta-Fehlberg (4°-5° orden)

Funciones de paso para la ecuación diferencial ordinaria:

$$\frac{dx}{dt} = f(x,t)$$

5 Los métodos de integración de Ejs (2/2)

El código que genera Ejs para una página EDO del panel Evolución realiza las dos tareas siguientes:

- 1. Calcula el valor de las variables de estado en el instante t+Δt, a partir de los valores de las variables del modelo calculados en t.
- 2. Incrementa el valor de la variable t en Δt .
 - En un laboratorio no puede haber más de una página EDO.
 - Si el laboratorio no contiene ninguna página EDO, el programador del modelo debe gestionar por sí mismo el incremento de la variable tiempo.

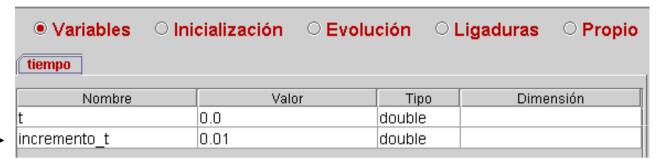
6 Declaración e inicialización de las variables (1/3)

Existen múltiples formas de definir las variables en el panel *Variables*. Una de ellas es definir las páginas de modo que agrupen los diferentes tipos de variables:

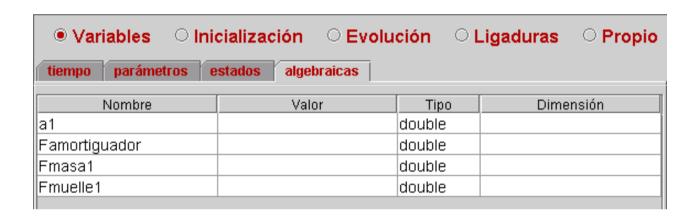
- tiempo
- parámetros
- estados
- variables algebraicas
- derivadas

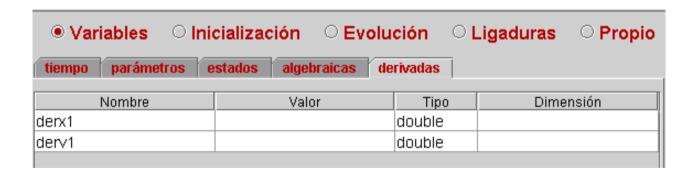
6 Declaración e inicialización de las variables (2/3)

Tamaño del paso de integración



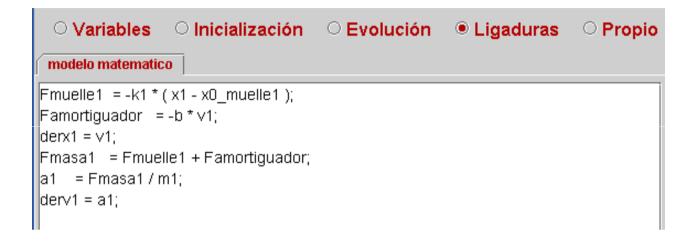
6 Declaración e inicialización de las variables (3/3)





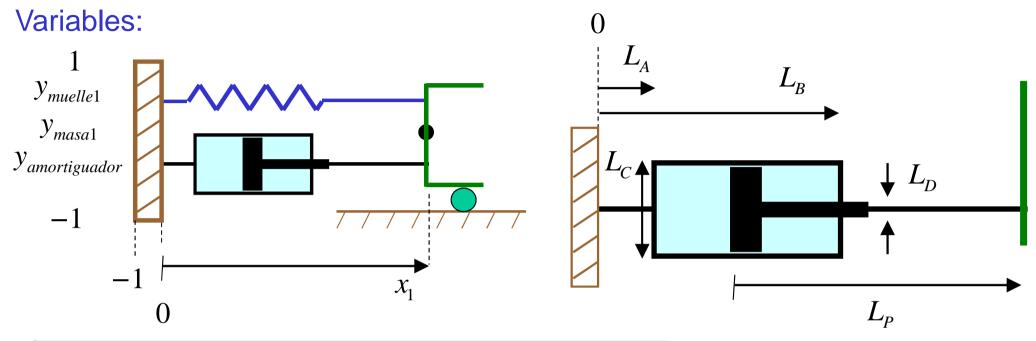
7 Definición del modelo

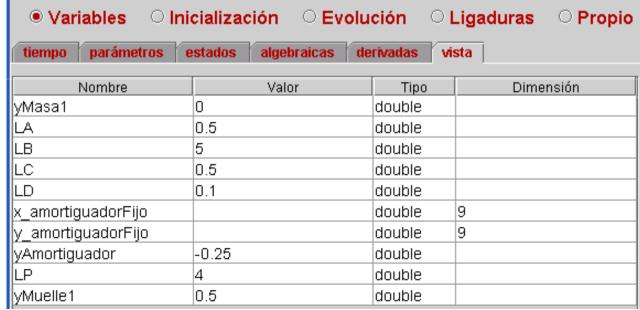
$$\begin{aligned} \left[F_{muelle1}\right] &= -k_1 \cdot \left(x_1 - x_{0,muelle1}\right) \\ \left[F_{amortiguador}\right] &= -b \cdot v_1 \\ \left[derx_1\right] &= v_1 \\ \left[F_{masa1}\right] &= F_{muelle1} + F_{amortiguador} \\ \left[a_1\right] &= \frac{F_{masa1}}{m_1} \\ \left[derv_1\right] &= a_1 \end{aligned}$$



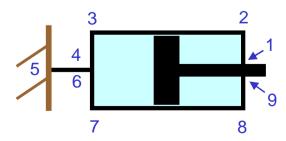
```
\frac{d[x_1]}{dt} = derx_1
\frac{d[v_1]}{dt} = derv_1
```


8 Definición de la Vista (1/12)

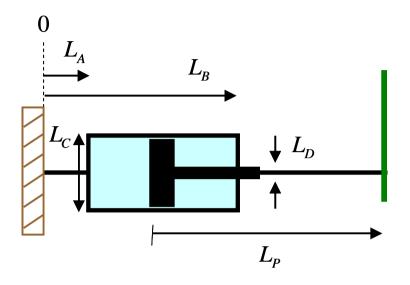




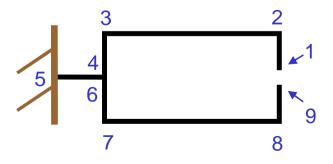
Vectores para la definición de la parte fija del amortiguador (objeto de clase *Poligono*):



8 Definición de la Vista (2/12)



Vectores para la definición de la parte fija del amortiguador (objeto de clase *Poligono*):



```
○ Introducción ● Modelo ○ Vista

    Variables

                  Inicialización

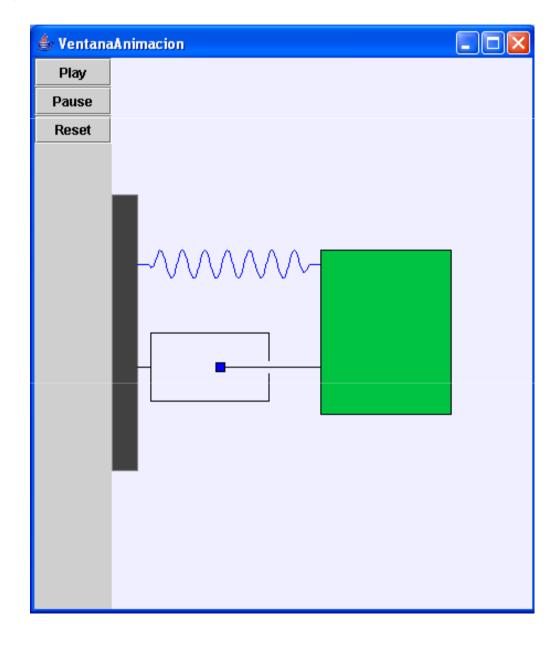
    Evolución

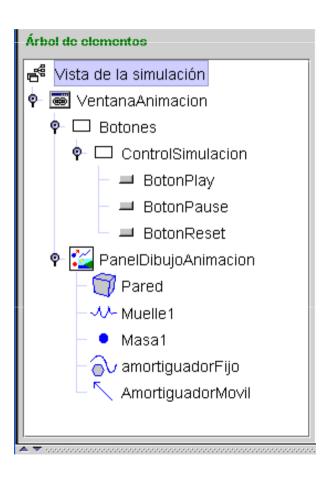
    Ligaduras

                                                                          O Propio
vista amortiguador
x amortiguadorFijo[0] = LB;
x amortiquadorFijo[1] = LB;
x amortiguadorFijo[2] = LA;
x amortiguadorFijo[3] = LA;
x amortiguadorFijo[4] = 0;
x amortiguadorFijo[5] = LA;
x amortiguadorFijo[6] = LA;
x amortiguadorFijo[7] = LB;
x amortiquadorFijo[8] = LB;
y_amortiguadorFijo[0] = yAmortiguador + LD/2;
y_amortiguadorFijo[1] = yAmortiguador + LC/2;
y_amortiguadorFijo[2] = yAmortiguador + LC/2;
y_amortiguadorFijo[3] = yAmortiguador;
|y_amortiguadorFijo[4] = yAmortiguador;
ly_amortiguadorFijo[5] = yAmortiguador;
ly_amortiguadorFijo[6] = yAmortiguador - LC/2;
y_amortiguadorFijo[7] = yAmortiguador - LC/2;
y amortiguadorFijo[8] = yAmortiguador - LD/2 ;
```

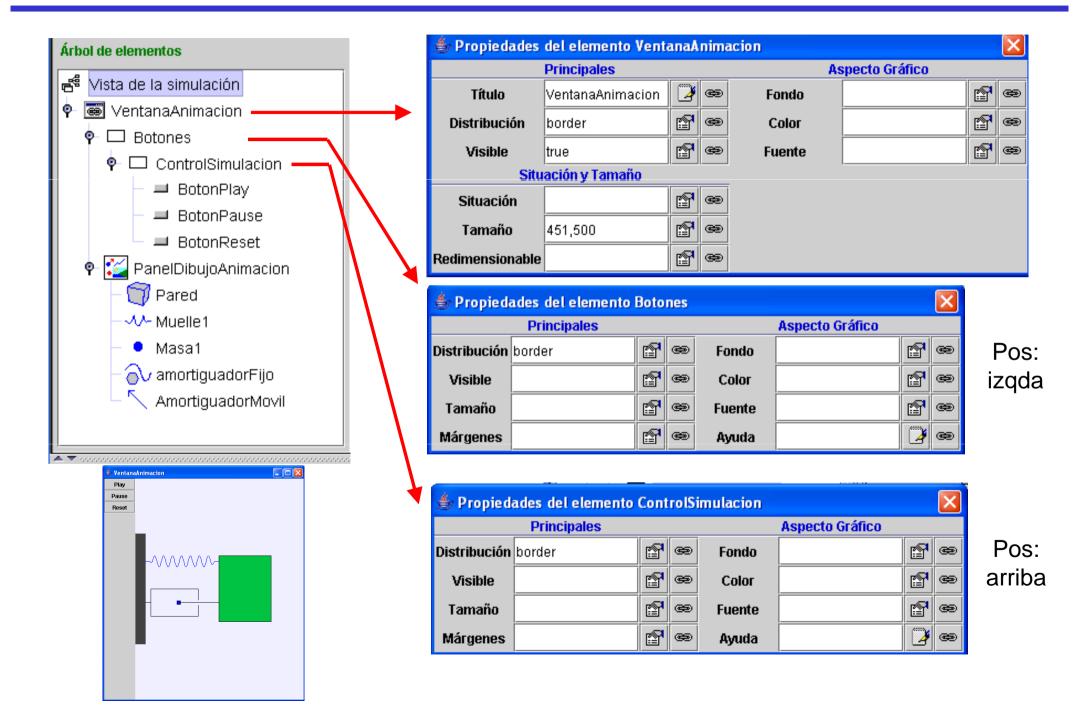
8 Definición de la Vista (3/12)

Aspecto de la Vista:



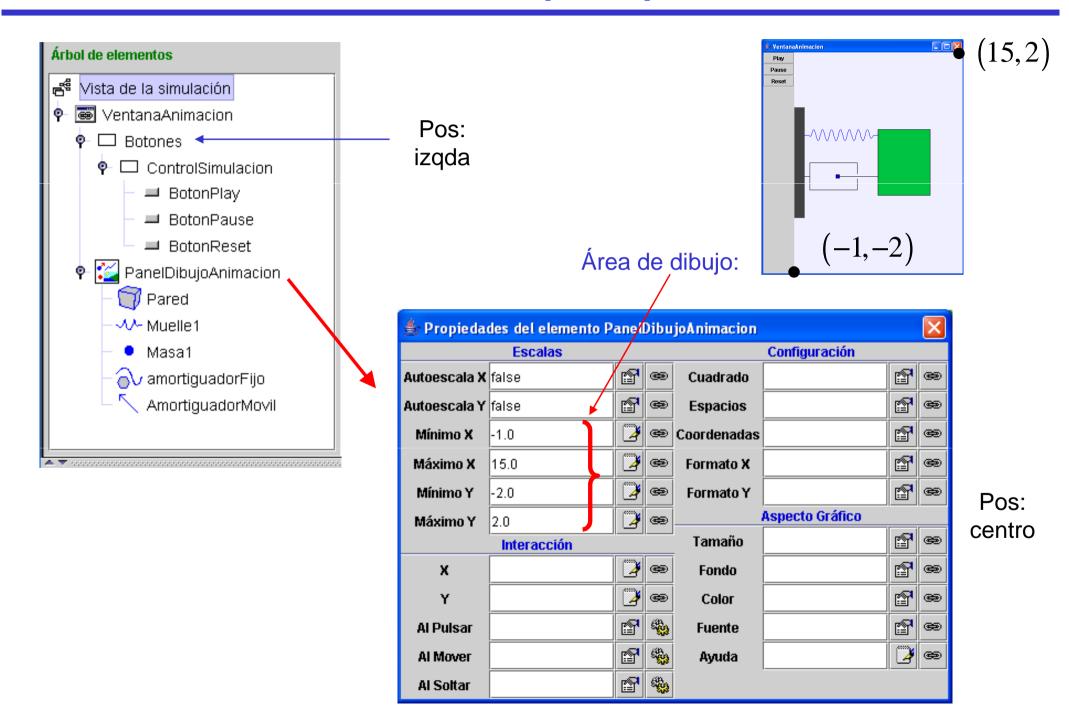


8 Definición de la Vista (4/12)

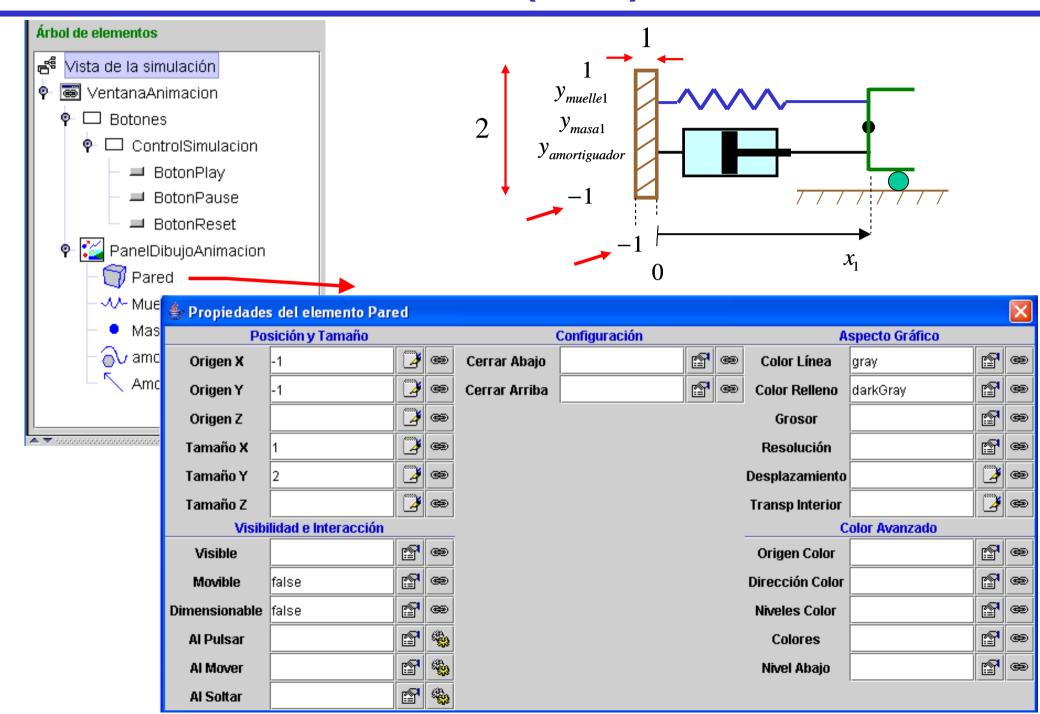


8 Definición de la Vista (5/12)

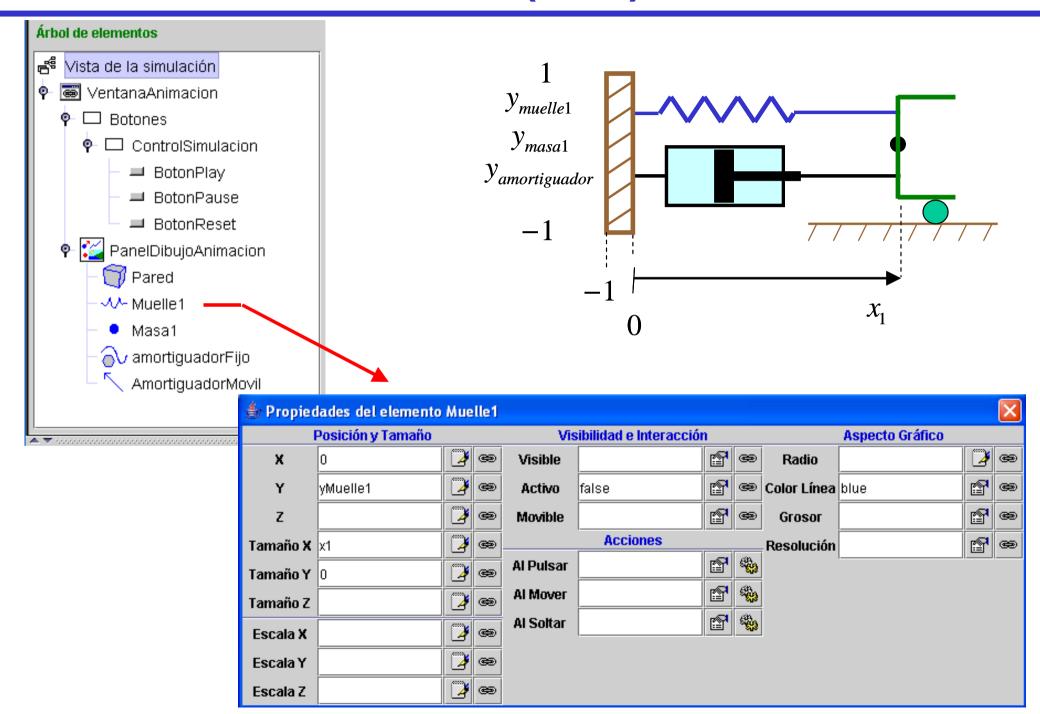
8 Definición de la Vista (6/12)



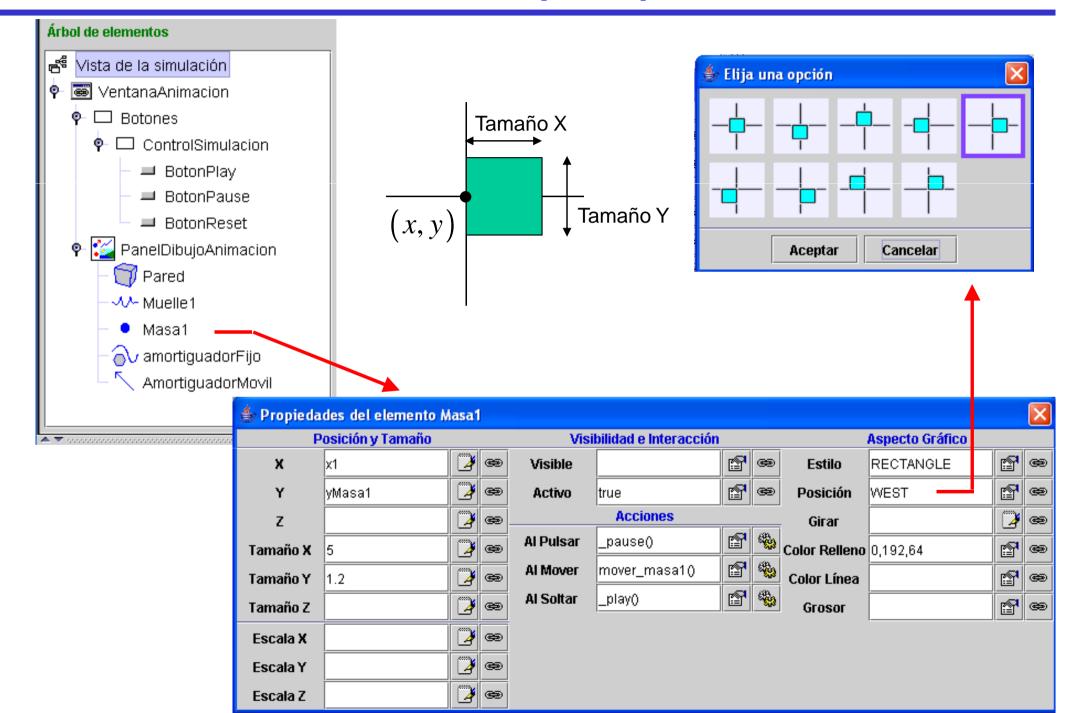
8 Definición de la Vista (7/12)



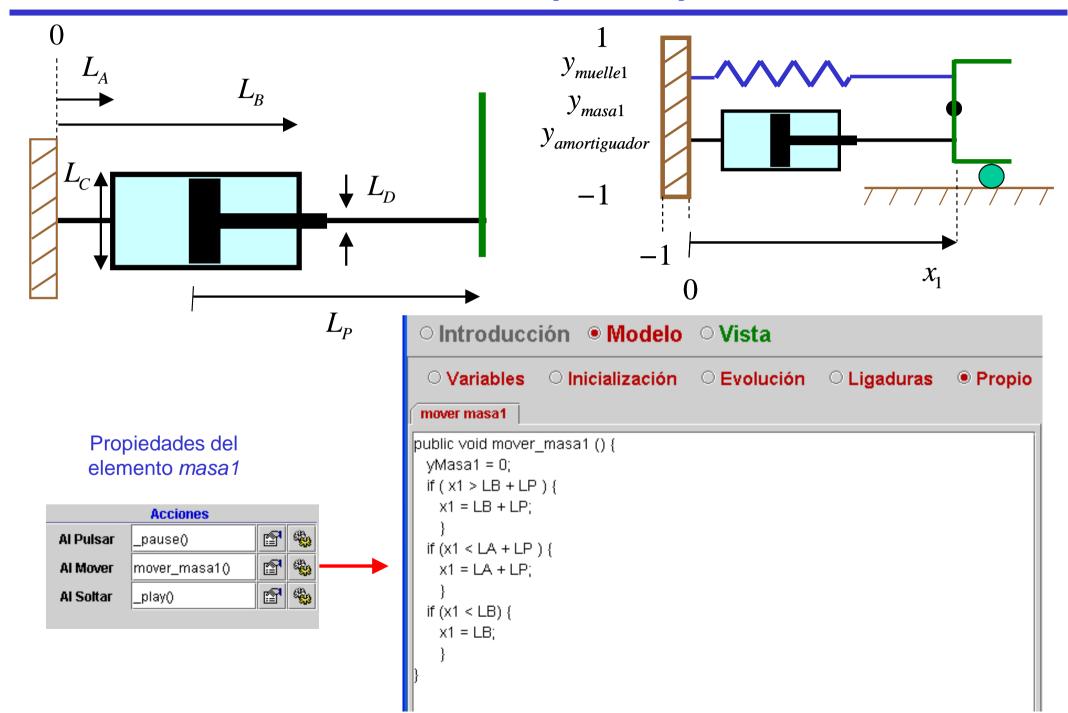
8 Definición de la Vista (8/12)



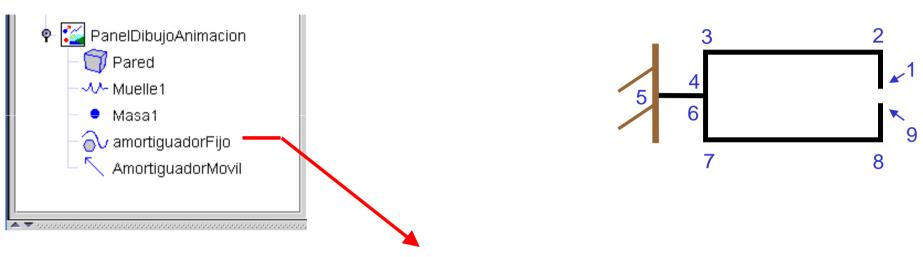
8 Definición de la Vista (9/12)



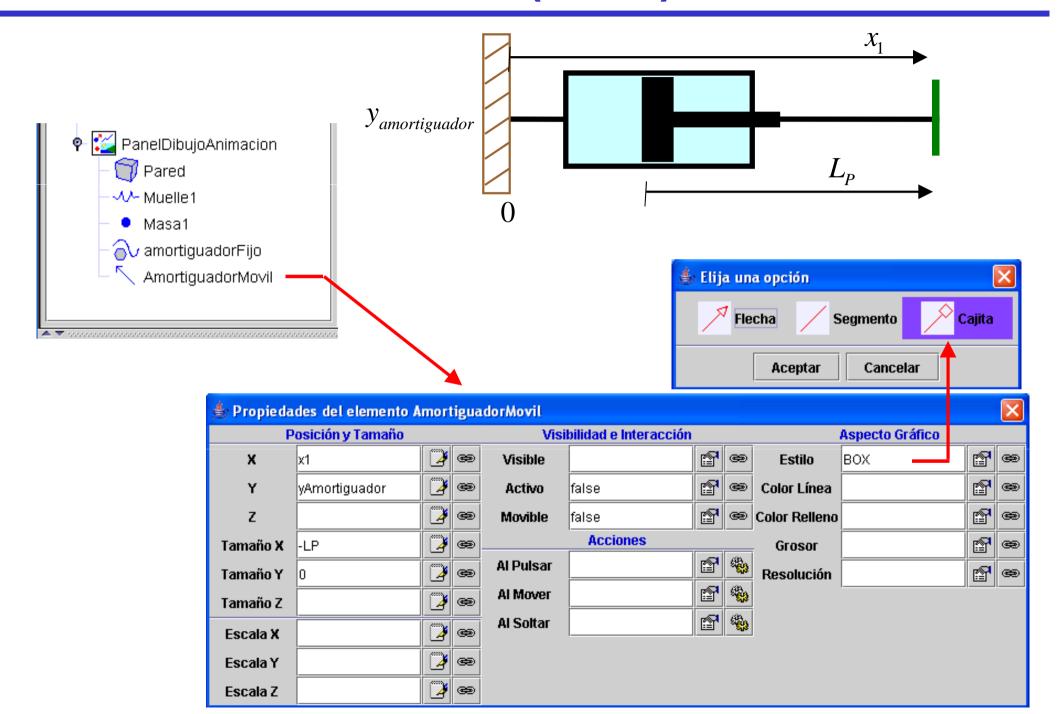
8 Definición de la Vista (10/12)



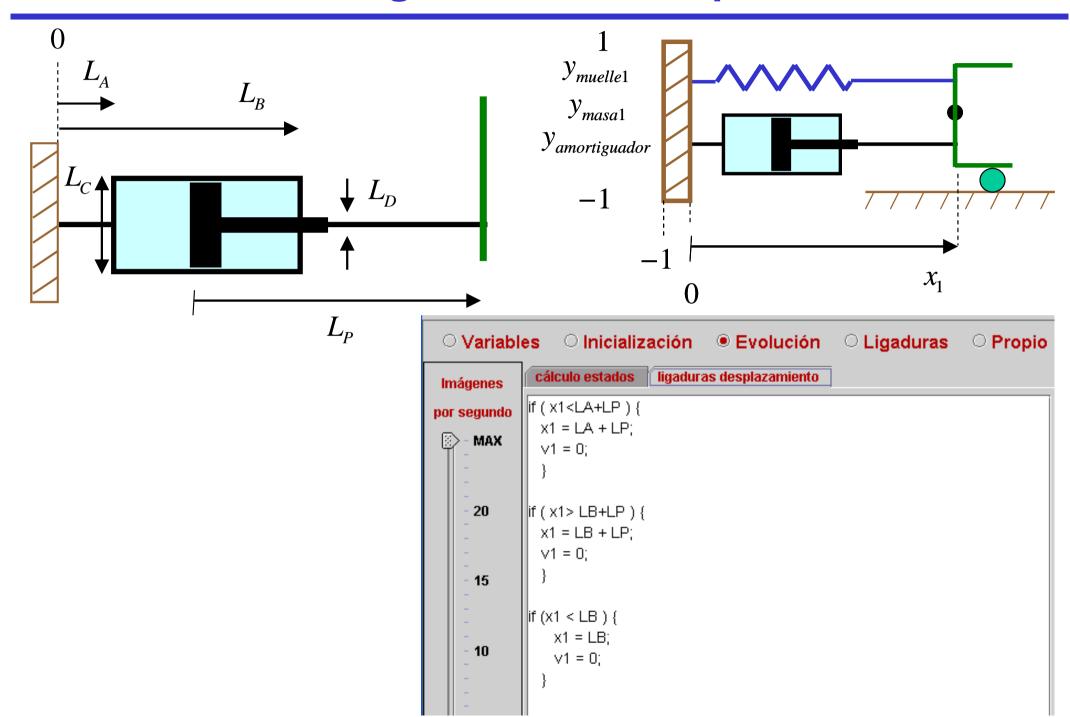
8 Definición de la Vista (11/12)



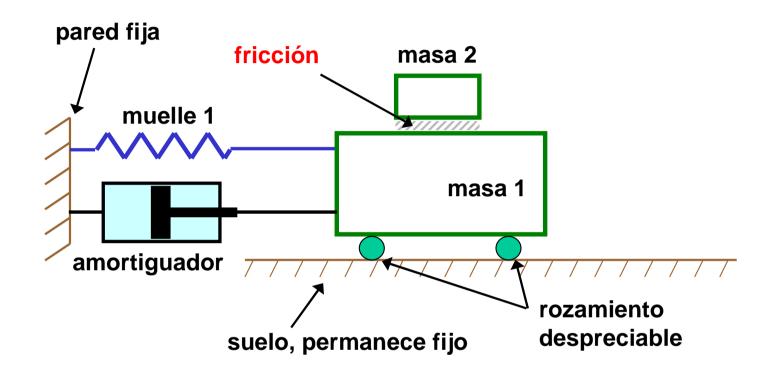
8 Definición de la Vista (12/12)



9 Modelado de la ligadura en el desplazamiento



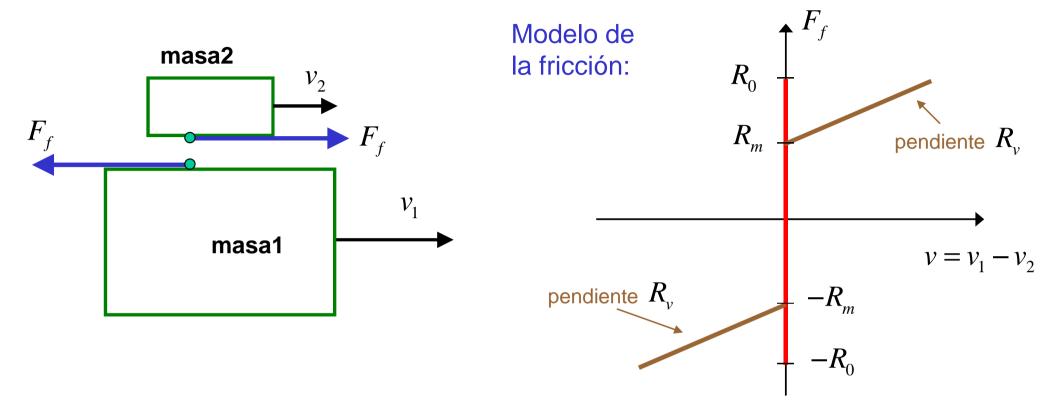
10 Modelado de la fricción (1/12)



SistemaMecanicoCompleto.xml

El objeto *masa2* desliza sobre el objeto *masa1*. Existe una fuerza de fricción entre ambos.

10 Modelado de la fricción (2/12)

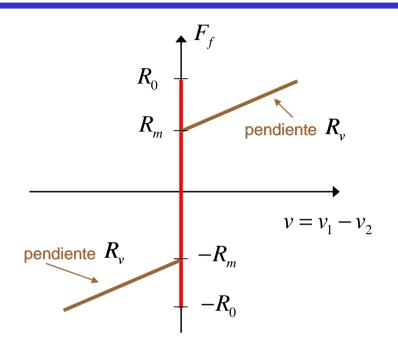


Cuando la velocidad relativa entre ambas superficies es diferente de cero ($v\neq0$), hay una fuerza de fricción dinámica:

$$F_f = \begin{cases} R_v \cdot v + R_m & \text{si } v > 0 \\ R_v \cdot v - R_m & \text{si } v < 0 \end{cases}$$

Cuando la velocidad relativa entre ambas superficies es cero (v=0), la fuerza de fricción estática se opone a que la velocidad se haga diferente de cero, siempre que para ello sea preciso una fuerza de magnitud menor o igual que R_0 .

10 Modelado de la fricción (3/12)



En la conmutación entre fricción estática y dinámica:

$$\left|F_{f}\right| = R_{0} \qquad \longleftarrow \qquad \left|F_{f}\right| = R_{m}$$

Fricción estática en el límite

$$v = a = 0$$

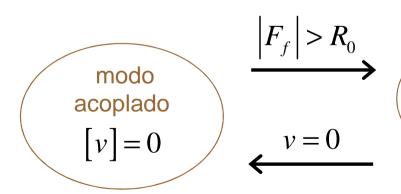
(acoplado)

Inicio de la fricción dinámica

$$v = 0, |a| > 0$$

(comienza el movimiento)

Modelo con estructura variable:



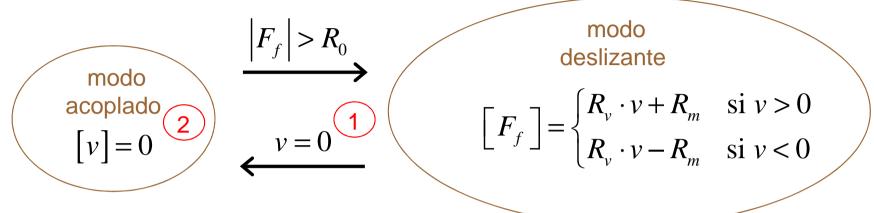
 F_f se calcula de las restantes ecs. del modelo.

modo deslizante

$$F_f = \begin{cases} R_v \cdot v + R_m & \text{si } v > 0 \\ R_v \cdot v - R_m & \text{si } v < 0 \end{cases}$$

 v es función de variables de estado (ley de Newton), luego de la relación constitutiva de la fricción se calcula la fuerza.

10 Modelado de la fricción (4/12)



 F_f se calcula de las restantes ecs. del modelo.

v es función de variables de estado:

$$[v] = v_1 - v_2$$

Esta formulación del modelo de la fricción presenta 2 problemas:

- 1. La condición de conmutación entre el modo deslizante y el modo acoplado es una igualdad: v=0
- 2. La ecuación que describe el modo acoplado es: v = 0.
 - Esta ligadura reduce en 1 el número de grados de libertad del modelo, ya que impone que las velocidades de los dos objetos (que son variables de estado) sean iguales.
 - Veamos esto más detenidamente ...

10 Modelado de la fricción (5/12)

$$F_{masa1} = F_{muelle1} + F_{amortiguador} - F_{f}$$

$$F_{masa1} = m_1 \cdot a_1$$

$$\frac{dv_1}{dt} = a_1$$

$$\frac{dx_1}{dt} = v_1$$

$$F_{masa2} = F_f$$

$$F_{masa2} = m_2 \cdot a_2$$

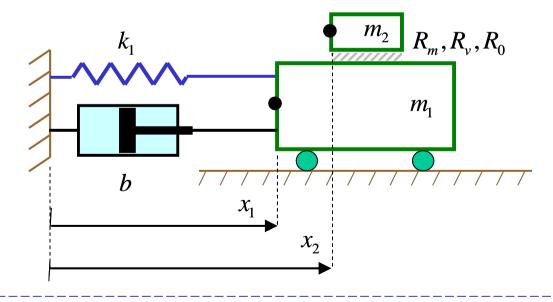
$$\frac{dv_2}{dt} = a_2$$

$$\frac{dx_2}{dt} = v_2$$

$$F_{muelle1} = -k_1 \cdot \left(x_1 - x_{0,muelle1}\right)$$

$$F_{amortiguador} = -b \cdot v_1$$

$$v = v_1 - v_2$$



Modo deslizante

$$F_f = \begin{cases} R_v \cdot v + R_m & \text{si } v > 0 \\ R_v \cdot v - R_m & \text{si } v < 0 \end{cases}$$

Modo acoplado

$$v = 0$$

Incógnitas: $F_{muelle1}, F_{masa2}, F_{amortiguador}, F_{muelle1}, F_f, a_1, a_2, v$ $derx_1, derv_1, derx_2, derv_2$

Variables de estado:

 X_1, V_1, X_2, V_2

10 Modelado de la fricción (6/12)

Causalidad computacional del modelo en modo deslizante

$$[derx_1] = v_1, \quad [derx_2] = v_2$$

$$[F_{muelle1}] = -k_1 \cdot (x_1 - x_{0,muelle1})$$

$$[F_{amortiguador}] = -b \cdot v_1$$

$$[v] = v_1 - v_2$$

$$[F_f] = \begin{cases} R_v \cdot v + R_m & \text{si } v > 0 \\ R_v \cdot v - R_m & \text{si } v < 0 \end{cases}$$

$$[F_{masa1}] = F_{muelle1} + F_{amortiguador} - F_f$$

$$[F_{masa2}] = F_f$$

$$[a_1] = \frac{F_{masa1}}{m_1}, \quad [a_2] = \frac{F_{masa2}}{m_2}$$

$$[derv_1] = a_1, \quad [derv_2] = a_2$$

Causalidad computacional del modelo en **modo acoplado**

$$[derx_1] = v_1, \quad [derx_2] = v_2$$

$$[F_{muelle1}] = -k_1 \cdot (x_1 - x_{0,muelle1})$$

$$[F_{amortiguador}] = -b \cdot v_1$$

$$[v] = v_1 - v_2$$

$$v = 0$$

$$V =$$

Sobra una ecuación y falta una ecuación.

10 Modelado de la fricción (7/12)

Modelo para el modo acoplado:

Una solución es sustituir

$$v = 0$$

por:

$$a_1 = a_2$$

Y además, inicializar a cero la velocidad cuando se produce la conmutación al modo acoplado.

Esto es necesario, ya que en el instante en que se produce la conmutación *v* estará próximo a cero, pero no será exactamente cero.

$$[derx_1] = v_1, \quad [derx_2] = v_2$$

$$[F_{muelle1}] = -k_1 \cdot (x_1 - x_{0,muelle1})$$

$$[F_{amortiguador}] = -b \cdot v_1$$

$$[v] = v_1 - v_2$$

$$a_1 = a_2$$

$$F_{masa1} = F_{muelle1} + F_{amortiguador} - F_f$$

$$F_{masa2} = F_f$$

$$a_1 = \frac{F_{masa1}}{m_1}, \quad a_2 = \frac{F_{masa2}}{m_2}$$

$$[derv_1] = a_1, \quad [derv_2] = a_2$$

$$5 \text{ ecuaciones.}$$

$$5 \text{ incógnitas:}$$

$$F_{masa1}, F_{masa2},$$

$$F_f,$$

$$a_1, a_2$$

Resolviendo simbólicamente el lazo algebraico, se obtiene ...

10 Modelado de la fricción (8/12)

Modelo ordenado y resuelto, válido para ambos modos:

$$[derx_1] = v_1, [derx_2] = v_2$$

$$[F_{muelle1}] = -k_1 \cdot (x_1 - x_{0,muelle1})$$

$$[F_{amortiguador}] = -b \cdot v_1$$

$$[v] = v_1 - v_2$$

modo deslizante

modo acoplado

$$\begin{bmatrix} F_f \end{bmatrix} = \begin{cases} R_v \cdot v + R_m & \text{si } v > 0 \\ R_v \cdot v - R_m & \text{si } v < 0 \end{cases} \qquad \begin{bmatrix} F_f \end{bmatrix} = \frac{m_2}{m_1 + m_2} \left(F_{muelle1} + F_{amortiguador} \right)$$

$$\begin{bmatrix} F_{masa1} \end{bmatrix} = F_{muelle1} + F_{amortiguador} - F_f$$

$$\begin{bmatrix} F_{masa2} \end{bmatrix} = F_f$$

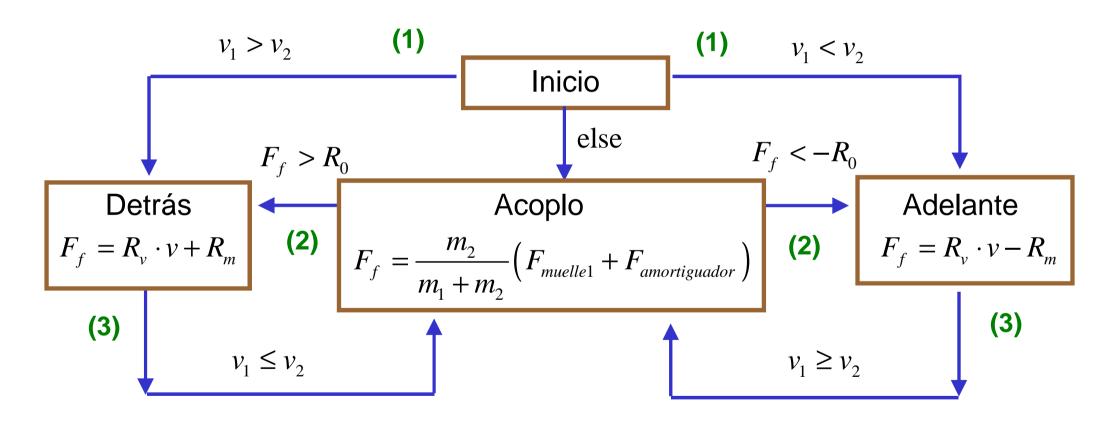
$$\begin{bmatrix} a_1 \end{bmatrix} = \frac{F_{masa1}}{m_1}, \ [a_2] = \frac{F_{masa2}}{m_2}$$

$$[derv_1] = a_1, \ [derv_2] = a_2$$

$$cuando \ (\text{deslizante} \rightarrow \text{acoplado}) \ \{v = 0\}$$

10 Modelado de la fricción (9/12)

La conmutación entre los modos puede modelarse como una máquina determinista de estado finito:

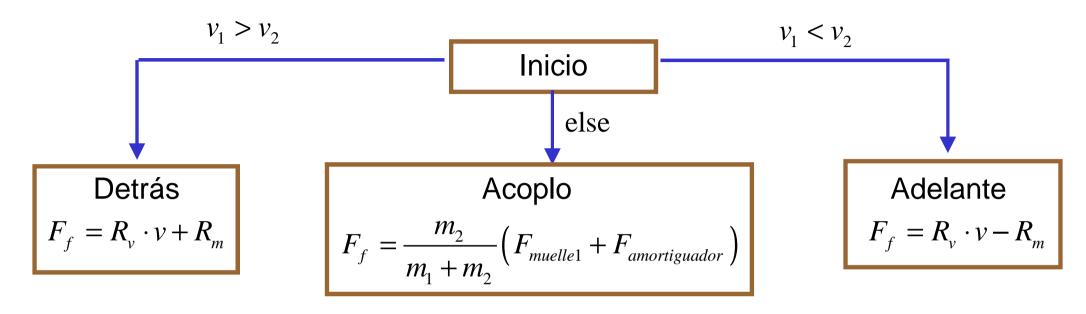


(1) Inicialización

(2) Ligaduras

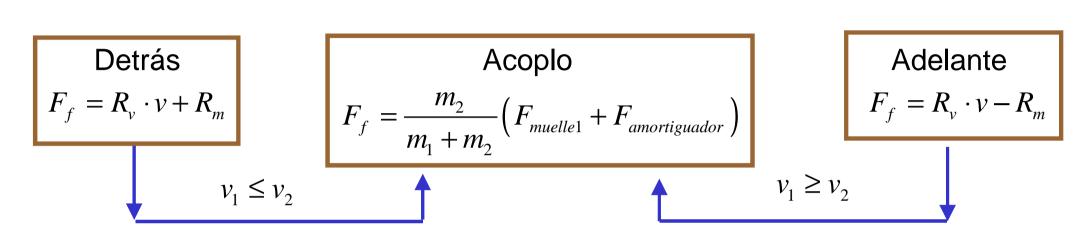
(3) Evolución

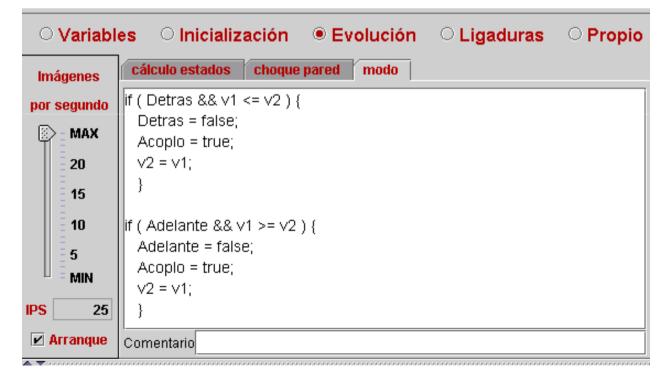
10 Modelado de la fricción (10/12)



10 Modelado de la fricción (11/12)

Inicio





10 Modelado de la fricción (12/12)

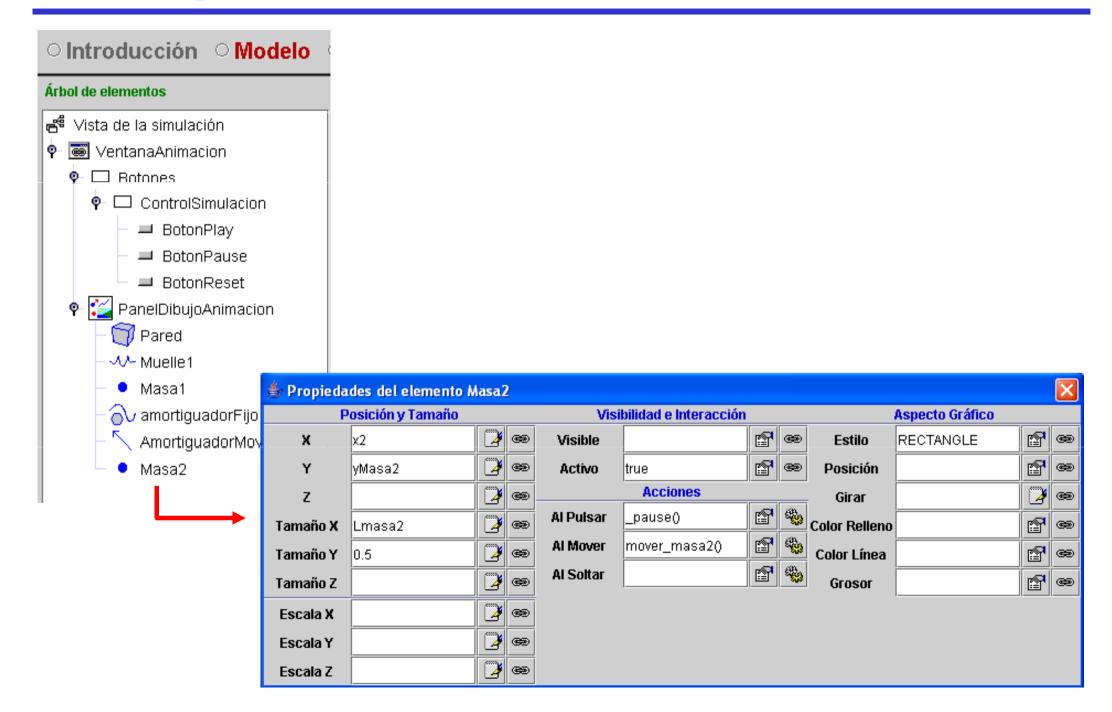


```
○ Inicialización ○ Evolución

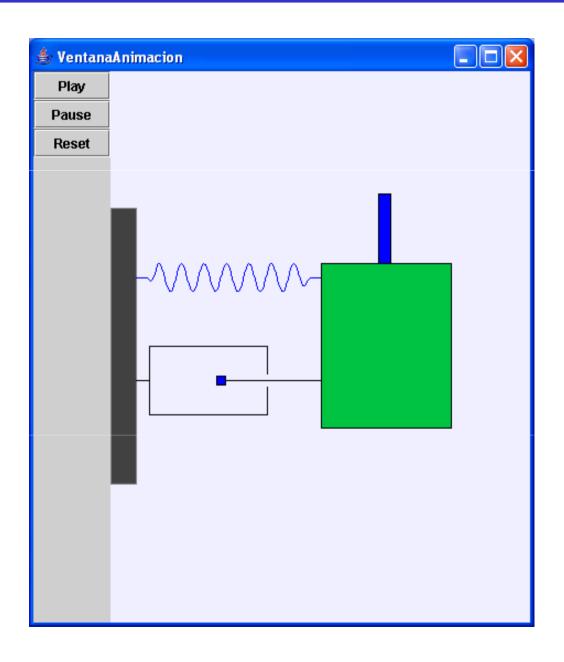
    Variables

                                                    Ligaduras
                                                                    Propio
 modelo matematico
derx1 = v1;
derx2 = v2:
Fmuelle1 = -k1 * ( x1 - x0 muelle1 );
Famortiguador = -b * v1;
V = V1 - V2:
lif (Detras) { Ff = R∨*∨+Rm; }
if (Acoplo) { Ff = m2 / (m1+m2)*(Fmuelle1 + Famortiguador); }
if ( Acoplo && Ff > RO ) { Acoplo = false; Detras = true; Ff = Rv * v + Rm; }
if ( Acoplo && Ff < -R0 ) { Acoplo = false; Adelante = true; Ff = Rv * v - Rm; }
Fmasa1 = Fmuelle1 + Famortiquador-Ff;
||Fmasa2 = Ff;
a1 = Fmasa1 / m1;
🛮 a2 = Fmasa2 / m2:
derv1 = a1;
lderv2 = a2:
```

11 Programación de la Vista (1/2)



11 Programación de la Vista (2/2)

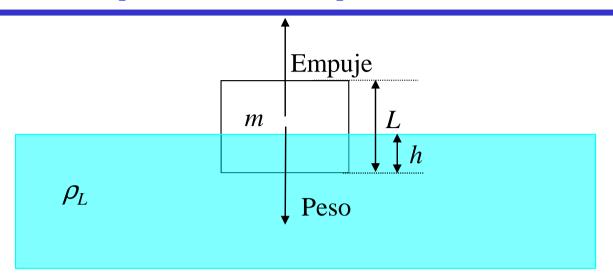


SistemaMecanicoCompleto.xml

Prácticas con los talleres 1 y 2

Contenido de la sesión de prácticas

- 1 Principio de Arquímedes
- 2 Bola y varilla



Principio de Arquímedes:

"todo cuerpo sumergido en un fluido experimenta un empuje vertical hacia arriba igual al peso del volumen de fluido desalojado"

$$Peso = m \cdot g$$

$$Empuje = L^2 \cdot h \cdot \rho_L \cdot g$$

En el equilibrio:

$$Peso = empuje \rightarrow m \cdot g = L^2 \cdot h \cdot \rho_L \cdot g$$

Interactividad:

El laboratorio deberá permitir al usuario cambiar la masa del objeto, pero siempre de modo que el objeto no se hunda.

Para ello:

El objeto se encuentra en el límite de flotación cuando:

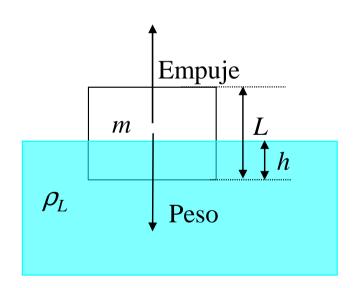
$$h = L$$

Estando el objeto en equilibrio, se encuentra en el límite de flotación cuando su peso es igual a:

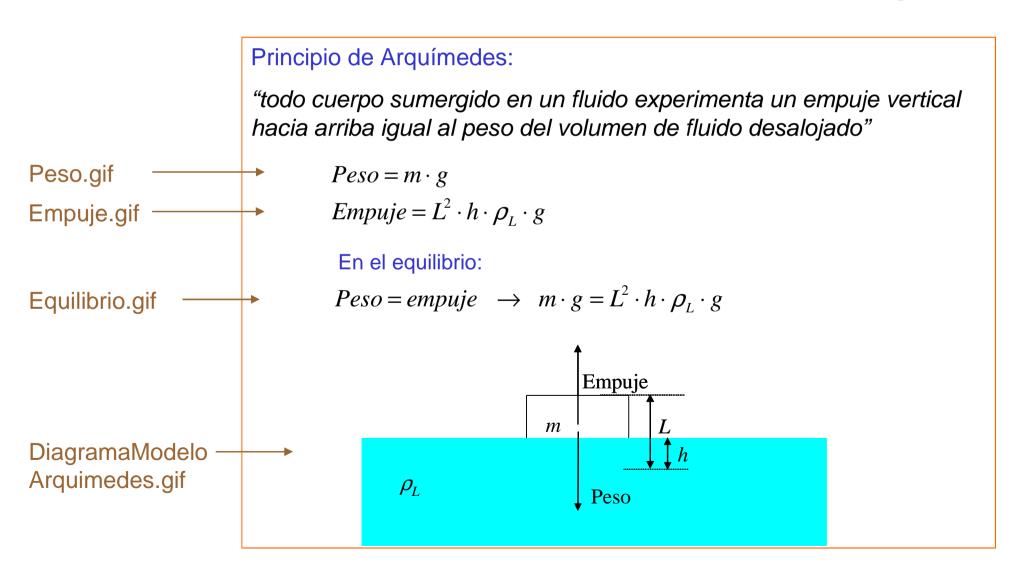
$$m \cdot g = L^2 \cdot L \cdot \rho_L \cdot g$$

Así pues, el objeto no se hunde mientras su masa satisfaga:

$$m \le \rho_L L^3$$



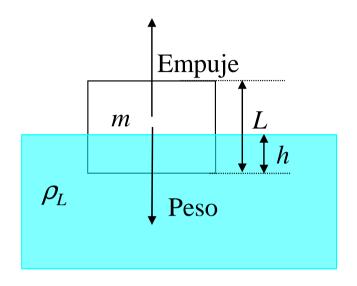
Tarea 1: escribir la introducción del laboratorio virtual, con el contenido siguiente:



Modelo matemático:

$$h = \frac{m}{\rho_L \cdot L^2}$$

$$m_{\max} = \rho_L \cdot L^3$$

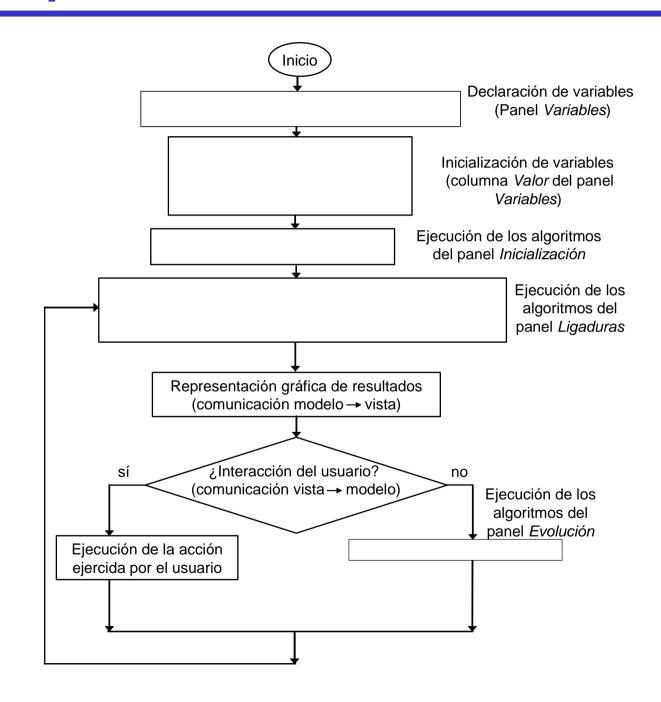


Tarea 2: clasificar las variables del modelo en:

- parámetros:
- variables de estado:
- variables algebraicas:

Tarea 3:

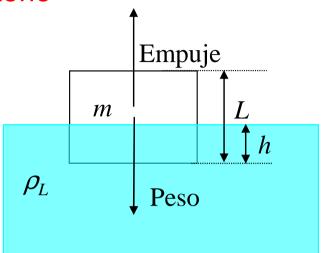
complete el algoritmo de la simulación



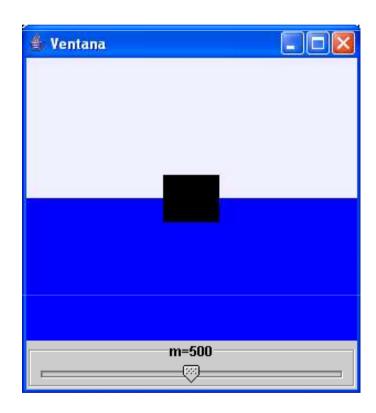
Tarea 4: realice la definición del modelo en Ejs (declaración e inicialización de las variables, páginas Evolución y Ligaduras)

Tarea 5: realice la definición de la Vista del laboratorio

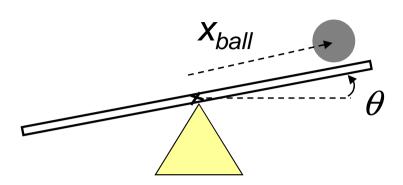




Tarea 5 (cont.): el aspecto final de la Vista es el siguiente



Descripción del sistema:



Modelo matemático:

$$\frac{dx_{ball}}{dt} = v_{ball}$$

$$\frac{dv_{ball}}{dt} = -\frac{5}{7} \cdot g \cdot \sin(\theta)$$

Se limita la posición de la bola a la longitud de la varilla:

Cuando la bola alcanza uno de los extremos de la varilla, no se permite que sobrepase el extremo y se iguala su velocidad a cero.

Modelado de la fricción:

Cuando la velocidad de la bola y el ángulo de la varilla son pequeños, la velocidad de la bola se hace cero.

Tarea 1: clasifique las variables del modelo matemático

$$\frac{dx_{ball}}{dt} = v_{ball}$$

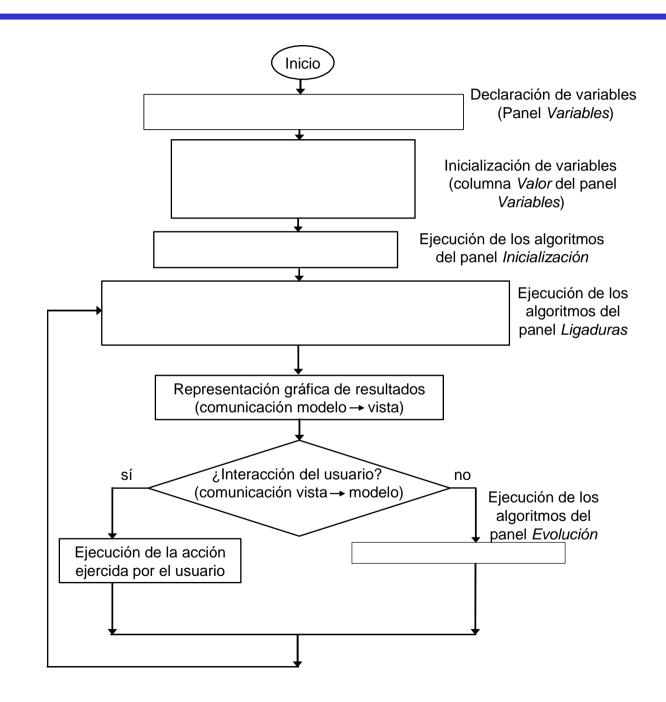
$$\frac{dv_{ball}}{dt} = -\frac{5}{7} \cdot g \cdot \sin(\theta)$$

en:

- parámetros:
- variables de estado:
- variables algebraicas:

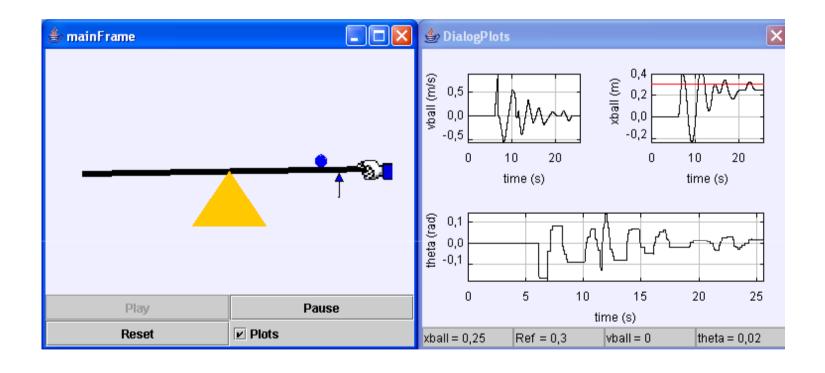
Tarea 2:

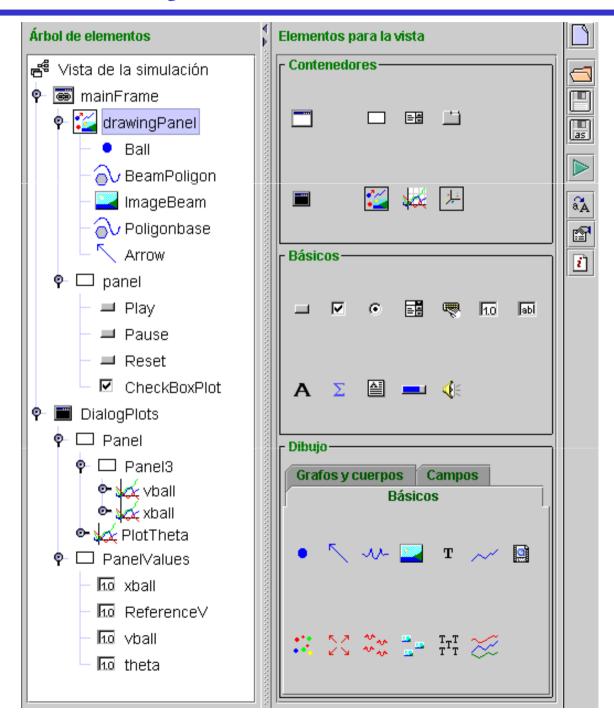
complete el algoritmo de la simulación

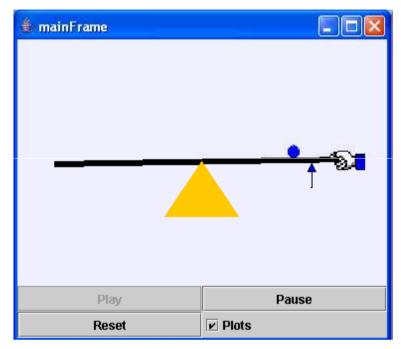


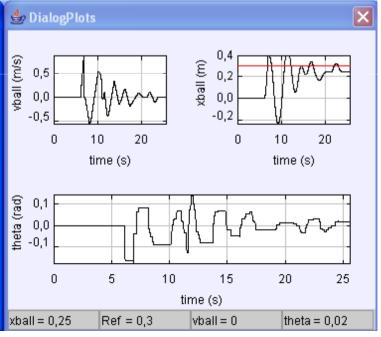
Tarea 3: realice la definición del modelo en Ejs (declaración e inicialización de las variables, páginas Evolución y Ligaduras)

Se pretende obtener la Vista siguiente :



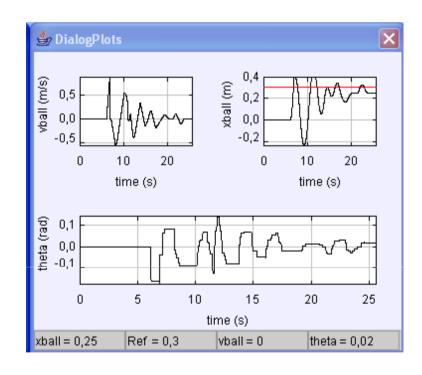






Tarea 4: realice la programación de la ventana DialogoPlots de la Vista, partiendo del laboratorio *bolaVarilla_tarea4.xml*

S variables Offi	icialización O Evolu	ción ○ Ligadura
VariablesVisualizacion1	VariablesVisualizacion2	Variables
Nombre	Valor	Tipo
dt	0.01	double
time	0	double
g	9.8	double
theta	0	double
xball	0	double
vball	0	double
derxball		double
dervball		double
lbeam	0.8	double
xmax	lbeam/2	double
thmax	Math.PI/18	double
Reference	0.2	double



Solución a las prácticas de los talleres 1 y 2

Contenido de la solución a la sesión de prácticas

1 Solución principio de Arquímedes

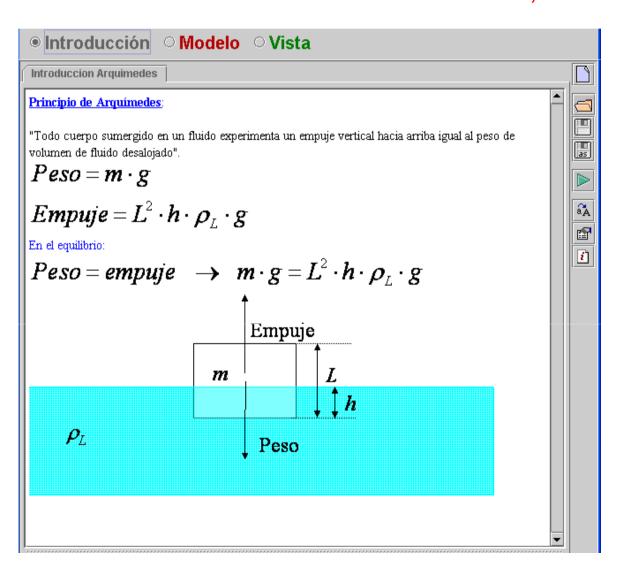
Arquimedes.xml

2 Solución bola y varilla

bolaVarilla.xml

1. Solución principio de Arquímedes (1/6)

Tarea 1: escribir la introducción del laboratorio virtual, con el contenido siguiente:



1. Solución principio de Arquímedes (2/6)

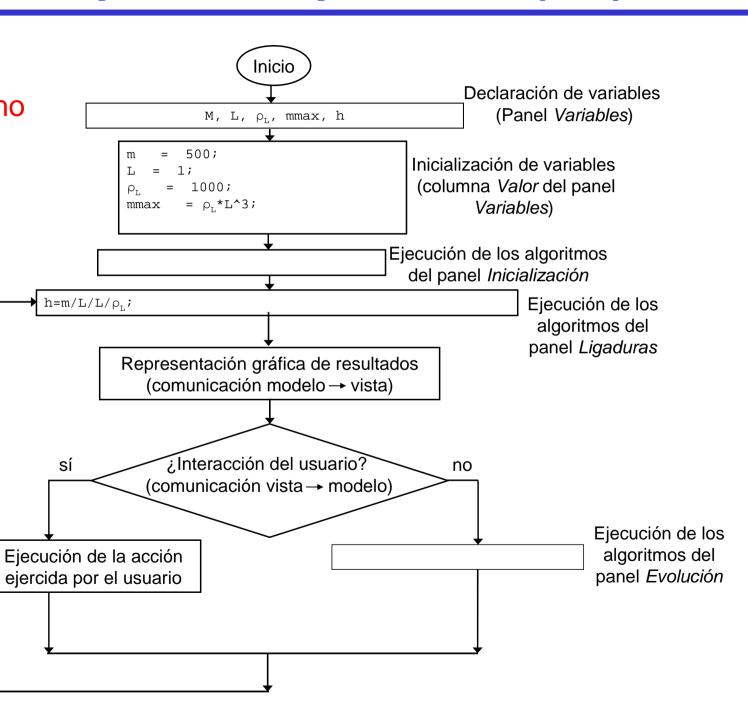
Tarea 2: clasificar las variables del modelo en:

- parámetros: L, m, ρ_L , m_{max} .
- variables de estado:
- variables algebraicas: h.

1. Solución principio de Arquímedes (3/6)

Tarea 3:

complete el algoritmo de la simulación



1. Solución principio de Arquímedes (4/6)

Tarea 4: realice la definición del modelo en Ejs (declaración e inicialización de las variables, páginas Evolución y Ligaduras)

	○Introducción ● Modelo ○ Vista					
	● Variables ○ Inicia	alización 🔘 Evolución	O Ligaduras	O Propio		
	VariablesModelo Variables	sVisualizacion				
	Nombre	Valor	Tipo	Dimensión		
	m	500	double			
	L	1	double			
$\rho_{L} {\longrightarrow}$	dL	1000	double			
	mmin	10	double			
	mmax	dL*L*L*L	double	á		
	h		double			

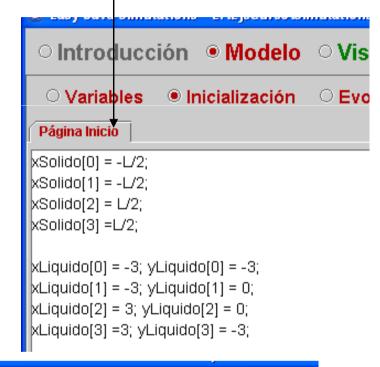
1. Solución principio de Arquímedes (5/6)

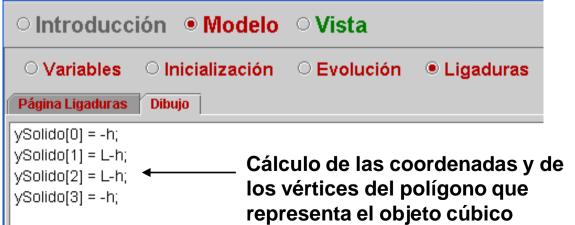
Tarea 5: realice la definición de la Vista del laboratorio

Variables necesarias para la definición de la Vista



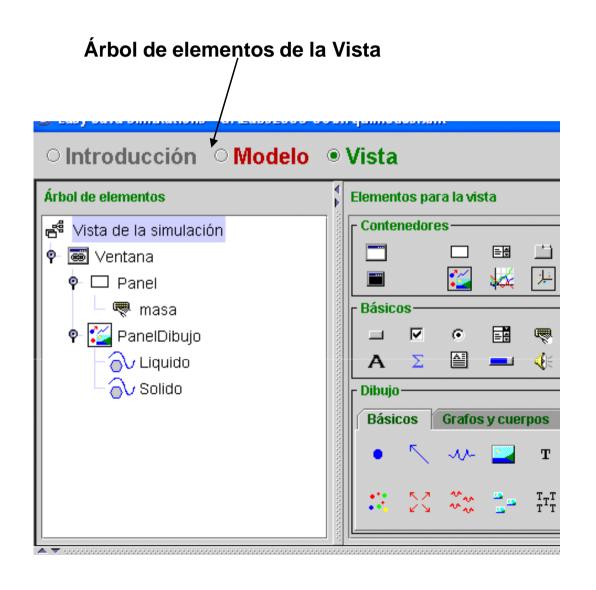
Inicialización de las variables

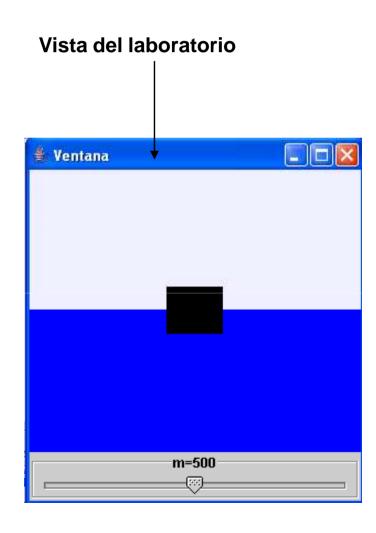




1. Solución principio de Arquímedes (6/6)

Tarea 5: realice la definición de la Vista del laboratorio (Cont.)





2. Solución bola y varilla (1/11)

Tarea 1: clasifique las variables del modelo matemático

$$\frac{dx_{ball}}{dt} = v_{ball}$$

$$\frac{dv_{ball}}{dt} = -\frac{5}{7} \cdot g \cdot \sin(\theta)$$

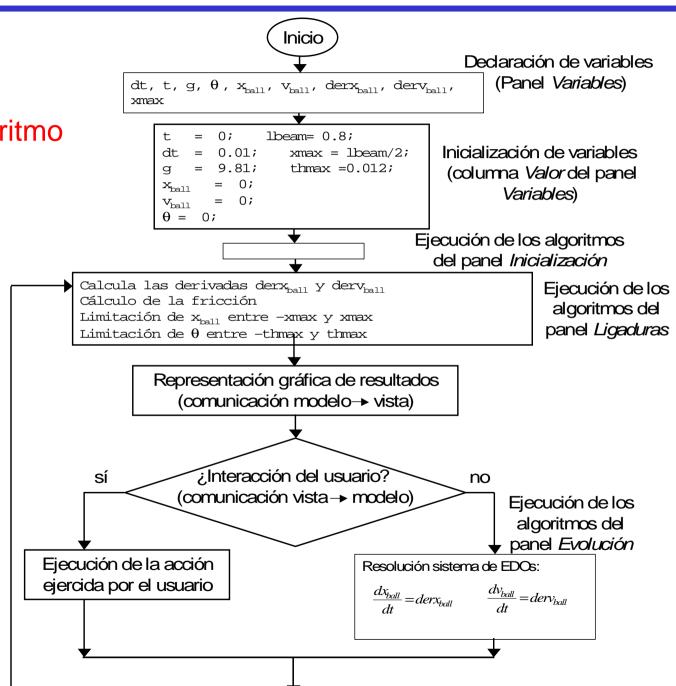
en:

- parámetros: g, θ .
- variables de estado: x_{ball}, v_{ball}
- variables algebraicas:

2. Solución bola y varilla (2/11)

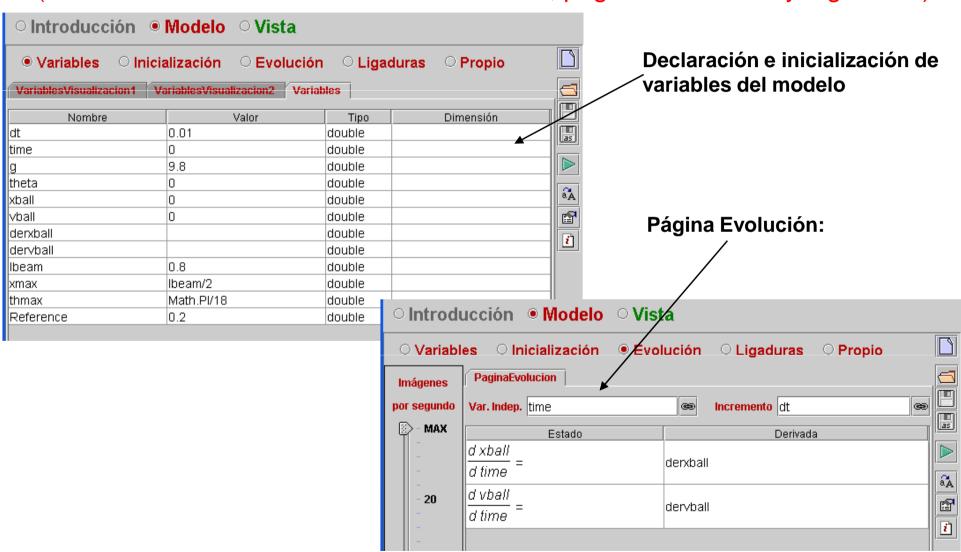
Tarea 2:

complete el algoritmo de la simulación



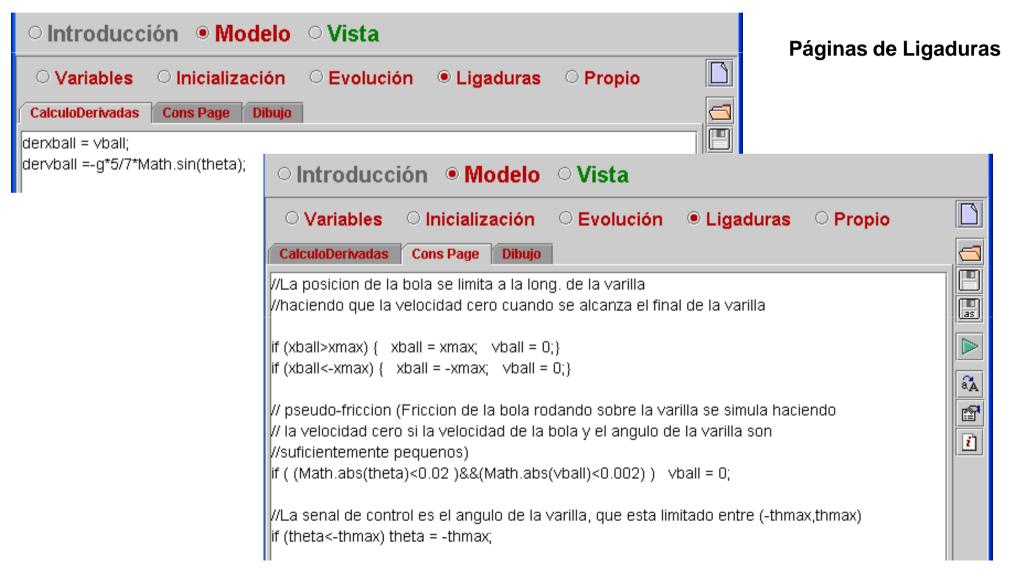
2. Solución bola y varilla (3/11)

Tarea 3: realice la definición del modelo en Ejs (declaración e inicialización de las variables, páginas Evolución y Ligaduras)



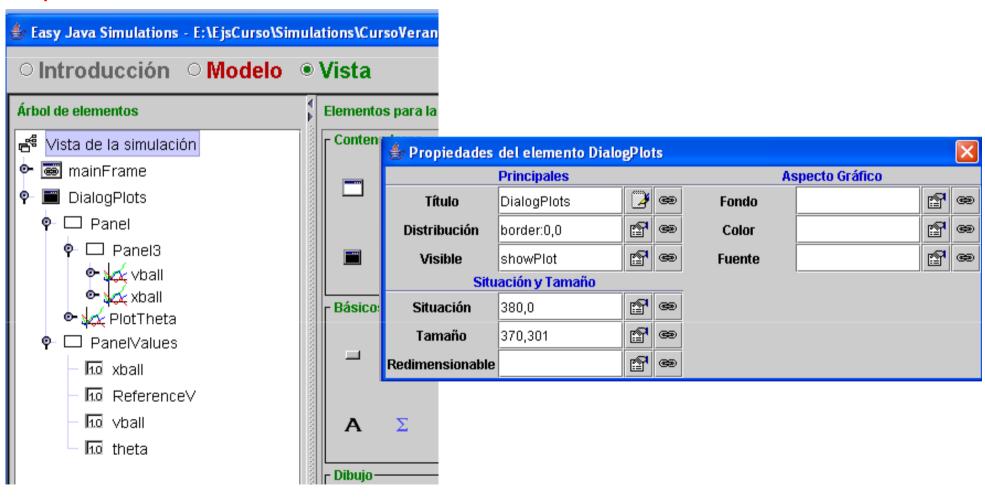
2. Solución bola y varilla (4/11)

Tarea 3: realice la definición del modelo en Ejs (declaración e inicialización de las variables, páginas Evolución y Ligaduras) (Cont.)



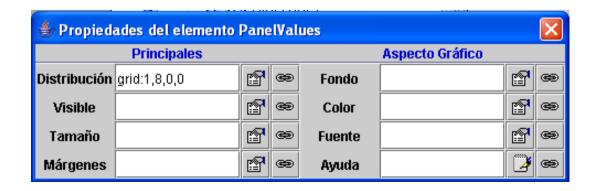
2. Solución bola y varilla (5/11)

Tarea 4: realice la programación de la ventana DialogoPlots de la Vista, partiendo del laboratorio *bolaVarilla_tarea4.xml*



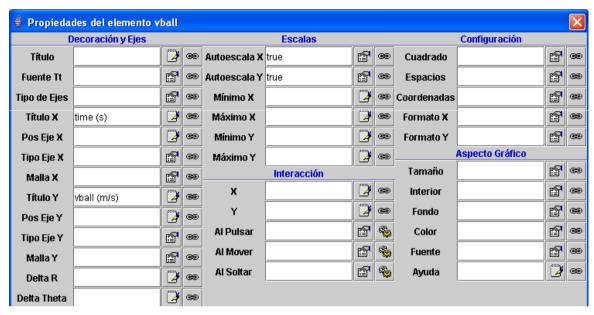
2. Solución bola y varilla (6/11)

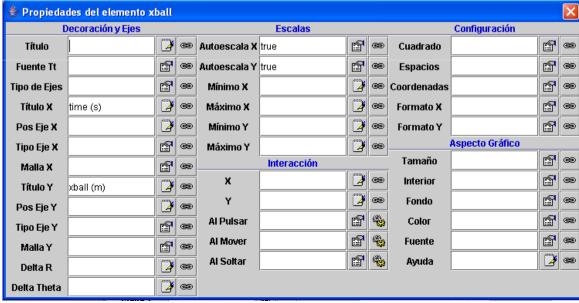
Tarea 4 (Cont. 1)



2. Solución Bola y varilla (7/11)

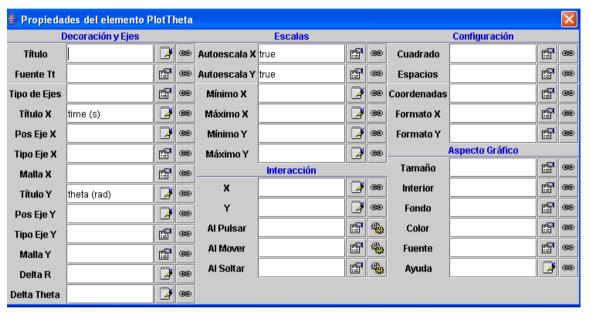
Tarea 4 (Cont. 2)

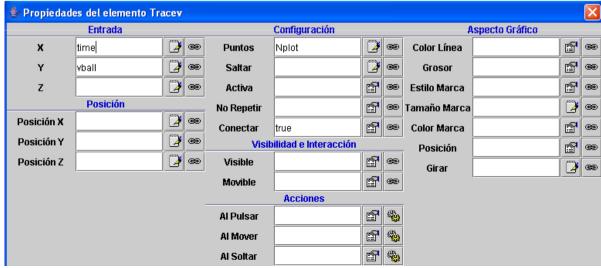




2. Solución Bola y varilla (8/11)

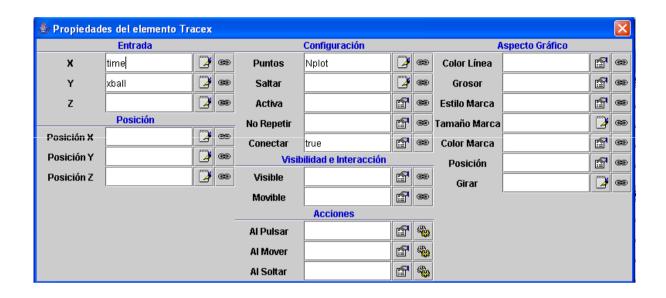
Tarea 4 (Cont. 3)

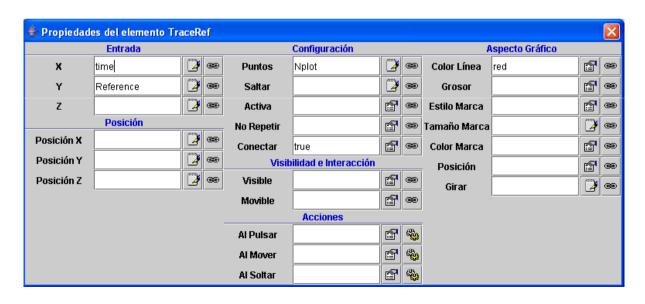




2. Solución bola y varilla (9/11)

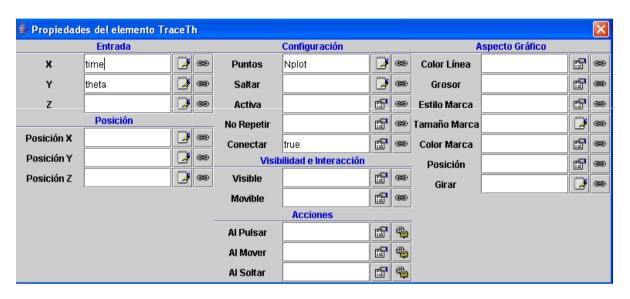
Tarea 4 (Cont. 4)





2. Solución Bola y varilla (10/11)

Tarea 4 (Cont. 5)



2. Solución bola y varilla (11/11)

Tarea 4 (Cont. 6)

Referencias

Referencias

Elmqvist, H., F.E. Cellier y M. Otter: "Object-Oriented Modeling of Hybrid Systems", European Simulation Symposium, The Netherlands, octubre 25-28, 1993.

Esquembre, F.: "Creación de Simulaciones Interactivas en Java. Aplicación a la Enseñanza de la Física". Editorial Pearson Prentice Hall. ISBN: 84-205-4009-9. Fechas de publicación: 2005.

Esquembre, F.: "Easy Java Simulations. The Manual for Version 3.1". Agosto 2002. Disponible en: http://fem.um.es/Ejs

Urquía, A y C. Martín: "Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias", Texto entregado gratuitamente a los alumnos del curso del "Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias", perteneciente al Programa de Formación del Profesorado de la UNED.