Alfonso Urguía Carla Martín-Villalba

Departamento de Informática y Automática, UNED Juan del Rosal 16, 28040 Madrid, España {aurquia,carla}@dia.uned.es http://www.euclides.dia.uned.es/

Monterrey, octubre de 2007

Materiales y contenido del taller

101 (B) (2) (2) (2) 2 000

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Materiales y contenido del taller

Materiales

CD-ROM

- Ejs 3.4 y manuales
- Java DK (jdk-1_5_0_09-windows-i586-p.exe)
- Libro sobre el desarrollo de laboratorios virtuales con Ejs
 - Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Alfonso Urquía, Carla Martín-Villalba
- Código de los laboratorios virtuales explicados en el libro y usados en el taller
- Transparencias

Copia impresa de las transparencias

101 101 121 121 2 000

0.00 \$ (B) (\$) (\$) (\$) \$ 000

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Materiales y contenido del taller

Índice del texto "Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias"

Parte I.	Fundamente	as del modelado y la simulación
	Lección 1.	Conceptos básicos del modelado y la simulación
	Lección 2.	Simulación de modelos de tiempo continuo
Parte II.	Easy Java S	imulations
	Lección 3.	Fundamentos de Ejs
	Lección 4.	Instalación y arranque de Ejs
	Lección 5.	Conceptos básicos para la descripción del modelo
	Lección 6.	Conceptos básicos para la descripción de la vista
Parte III.	Casos de es	tudio
	Lección 7.	Programación de un osciloscopio virtual con Ejs
	Lección 8.	Laboratorio virtual del concepto de ciclo límite
	Lección 9.	Principio de Arquímedes
	Lección 10.	Péndulo simple
	Lección 11.	Conducción de calor a través de una pared múltiple
	Lección 12.	Laboratorio virtual de un sistema mecánico
	Lección 13.	Cálculo del número pi por el método de Monte Carlo
	Lección 14.	Simulación interactiva de un globo aerostático
	Lección 15.	Laboratorio virtual del sistema bola y varilla

Apéndice. Java para el desarrollo de laboratorios virtuales en Ejs

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Materiales y contenido del taller

Contenido del taller

Parte I.	Fundament	os del modelado y la simulación
	Lección 1.	Conceptos básicos del modelado y la simulación
	Lección 2.	Simulación de modelos de tiempo continuo
Parte II.	Easy Java S	Simulations
	Lección 3.	Fundamentos de Ejs
	Lección 4.	Instalación y arranque de Ejs
	Lección 5.	Conceptos básicos para la descripción del modelo
	Lección 6.	Conceptos básicos para la descripción de la vista
Parte III.	Casos de es	tudio
	Lección 7.	Programación de un osciloscopio virtual con Ejs
	Lección 8.	Laboratorio virtual del concepto de ciclo límite
	Lección 9.	Principio de Arquímedes
	Lección 10.	Péndulo simple
	Lección 11.	Conducción de calor a través de una pared múltiple
	Lección 12.	Laboratorio virtual de un sistema mecánico
	Lección 13.	Cálculo del número pi por el método de Monte Carlo
	Lección 14.	Simulación interactiva de un globo aerostático
	Lección 15.	Laboratorio virtual del sistema bola y varilla

101 (B) (2) (2) (2) 2 900

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Simulación de Modelos de Tiempo Continuo

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Materiales y contenido del taller

Material complementario

Libro sobre Ejs

Creación de Simulaciones Interactivas en Java Francisco Esquembre

Editorial Pearson Prentice-Hall

Sitios web

- http://www.um.es/fem/Ejs/Ejs_es/
- http://www.euclides.dia.uned.es/simulab-pfp/

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Motivación y contenido

En este tema se explican algunos aspectos fundamentales de la simulación de los modelos matemáticos de tiempo continuo.

Estas explicaciones constituyen la base para la comprensión del algoritmo para la simulación interactiva que emplea Ejs.

Contenido

- 1. Variables v ecuaciones
- 2. Parámetros, variables de estado y variables algebraicas
- 3. Algoritmo de la simulación
- 4. Causalidad computacional
- 5. Variables conocidas y desconocidas
- 6. Asignación de la causalidad computacional

Variables y ecuaciones

Los modelos matemáticos están compuestos por ecuaciones, que describen la relación entre las magnitudes relevantes del sistema. Estas magnitudes reciben el nombre de variables.

Ejemplo

Sobre un objeto de masa constante (m) actúan dos fuerzas:

- 1. La fuerza de la gravedad $(m \cdot g)$, donde g se considera constante
- Una fuerza armónica de amplitud (F₀) y frecuencia (ω) constantes
- La fuerza total (F) aplicada sobre el objeto

$$F = m \cdot g + F_0 \cdot \sin(\omega \cdot t)$$

hace que éste adquiera una aceleración (a):

 $m \cdot a = F$

Además, la posición (x) y la velocidad (v) pueden calcularse de: $\frac{dx}{dt} = v, \frac{dv}{dt} = a$

(ロ> (型) (3) (3) (3) (3) (3) (3)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Parámetros, variables de estado y variables algebraicas

El punto de partida para la simulación del modelo consiste en clasificar sus variables de acuerdo al criterio siguiente:

- Parámetros. Son aquellas variables cuyo valor permanece constante durante la simulación.
- Variables de estado. Son las variables que están derivadas respecto al tiempo.
- Variables algebraicas. Son las restantes variables del modelo. Es decir, aquellas que no aparecen derivadas en el modelo y que no son constantes.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Variables y ecuaciones

Ejemplo (cont.)

El modelo está compuesto de cuatro ecuaciones:

$$F = m \cdot g + F_0 \cdot sin(\omega \cdot t)$$

 $m \cdot a = F$
 $\frac{dx}{dt} = v$
 $\frac{dv}{dt} = a$

Estas ecuaciones describen la relación existente entre las magnitudes relevantes del sistema, que son las variables del modelo:

- la aceleración gravitatoria (g)
- Ia amplitud (F₀) y frecuencia (ω) de la fuerza armónica
- la fuerza neta (F) aplicada sobre el objeto
- Ia masa (m), posición (x), velocidad (v) y aceleración (a) del objeto

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Simulación de Modelos de Tiempo Continuo

Parámetros, variables de estado y variables algebraicas

Ejemplo

$$F = m \cdot g + F_0 \cdot \sin(\omega \cdot t)$$
$$m \cdot a = F$$
$$\frac{dx}{dt} = v$$
$$\frac{dv}{dt} = a$$

- Cuatro parámetros: g, m, F₀, ω
- Dos variables de estado: x, v
- Dos variables algebraicas: a, F

La variable tiempo (t) no se incluye en la clasificación.

101 (B) (2) (2) (2) 2 900

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Parámetros, variables de estado y variables algebraicas

Ejemplo

Las variables de este modelo se clasifican de la manera siguiente:

- Parámetros: u₀, ω, C, R₁, R₂
- Variable de estado: uc
- Variables algebraicas: u, i_{R1}, i_{R2}, i_C

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias — Simulación de Modelos de Tiempo Continuo

Un algoritmo para la simulación

Ejemplo

$$F = m \cdot g + F_0 \cdot \sin(\omega \cdot t)$$
$$m \cdot a = F$$
$$\frac{dx}{dt} = v$$
$$\frac{dv}{dt} = a$$

Parámetros: g, m, F_0 , ω Variables de estado: x, v Variables algebraicas: a, F Se sustituyen las derivadas por variables auxiliares:

> $\frac{dx}{dt} \rightarrow derx$ $\frac{dv}{dt} \rightarrow derv$

x, v variables de estado $[F] = m \cdot g + F_0 \cdot \sin(\omega \cdot t)$ $[a] = \frac{F}{m}$ [derx] = v [dery] = a

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Un algoritmo para la simulación

121 121 2 940

Inicia

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Un algoritmo para la simulación

Ejemplo (cont.)

derv(t) = a(t)

Método Euler 1er orden explícito:

$$\frac{dx}{dt} = derx(t) \approx \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

$$\begin{array}{lll} x(t + \Delta t) &=& x(t) + derx(t) \cdot \Delta t \\ v(t + \Delta t) &=& v(t) + derv(t) \cdot \Delta t \end{array}$$

Asignar valor al incremento en el tiempo (At) Inicializar la variable tiempo Asignar valor a m = 10, Fo = 15, w = 10, g = -9.8 los par limatros Asignar value inicial a x(0) = 10, y(0) = 7las variables de estado $C_{a}(cular c | value, co c | instantc | F(t) = m^*g + Fu^* sin(w^*t)$ t, de las variables algebraicas a(t) = F(t) / mv de las derivadas derx(t) = y(t)derv(t) = a(t)t=t+At vsriable tienno x(t) < 0 C Fin Calcular el valor, en instante thAt, de las variables de estado $x(t+\Delta t) = x(t) + detx(t) = \Delta t$ $v(t+\Delta t) = v(t) + derv(t) * \Delta t$

101 (B) (2) (2) (2) 2 000

Un algoritmo para la simulación

Ejemplo (cont.)

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias L'Simulación de Modelos de Tiempo Continuo

Un algoritmo para la simulación

Ejemplo (cont.)

Cabe plantearse si $\Delta t = 0.01$ es adecuado.

En la figura se muestra la diferencia entre la posición del objeto calculada usando $\Delta t = 0.005$ y $\Delta t = 0.01$.

Dependiendo cuál sea el objetivo del estudio de simulación, el error (y consecuentemente, el valor $\Delta t = 0.01$) será o no aceptable.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Un algoritmo para la simulación

El valor del tamaño del paso de integración (Δt) debe escogerse alcanzando un compromiso entre precisión y carga computacional.

Cuanto menor sea el valor de $\Delta t,$ menor es el error que se comete en el cálculo de las variables del modelo, pero mayor es el tiempo de ejecución de la simulación.

Un procedimiento (existen otros) para estimar el error cometido al escoger un determinado valor de Δt es:

Comparar los resultados obtenidos usando Δt y los obtenidos usando un valor menor, por ejemplo, $\frac{\Delta t}{2}$.

- Si la diferencia entre ambos resultados es aceptable, entonces el valor ∆t es adecuado.
- En caso contrario, se comparan los resultados obtenidos usando Δt/2 y Δt/4. Si el error es aceptable, se emplea Δt/2. Si el error es demasiado grande. se investigan los valores Δt/2 y Δt/4.

así sucesivamente.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Causalidad computacional

Como se ha mostrado en el ejemplo anterior, para realizar el cálculo de las variables algebraicas y las derivadas, es preciso despejar de cada ecuación la variable a calcular y ordenar las ecuaciones, de modo que sea posible resolverlas en secuencia.

Para plantear el algoritmo de la simulación de un modelo, es preciso realizar las tareas siguientes:

- Decidir qué variable debe calcularse de cada ecuación y cómo deben ordenarse las ecuaciones del modelo, de modo que puedan ser resueltas en secuencia. A esta decisión se la denomina asignación de la causalidad computacional.
- Una vez se ha decidido qué variable debe evaluarse de cada ecuación, debe manipularse simbólicamente la ecuación a fin de despejar dicha variable.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Causalidad computacional

Ejemplo

Se desea modelizar una resistencia eléctrica mediante la Ley de Ohm:

La caída de potencial, u, entre los bornes de una resistencia es igual al producto de un parámetro característico de la resistencia. R. por la intensidad de la corriente eléctrica, i, que circula a través de la resistencia.

La ecuación $u = i \cdot R$ constituve una relación entre las tres variables u. R e i, que es válida para cualquiera de las tres posibles causalidades computacionales admisibles de la ecuación:

> $[u] = i \cdot R$ $[i] = \frac{u}{R}$ $[R] = \frac{u}{\cdot}$

donde se ha señalado la variable a evaluar de cada ecuación incluvéndola entre corchetes y se ha despejado escribiéndola en el lado izquierdo de la igualdad.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Causalidad computacional

Ejemplo

La casualidad computacional de la ecuación de la resistencia depende del resto de las ecuaciones del modelo

 $[i] = i_1 \cdot \sin(\varpi \cdot t)$

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Causalidad computacional

La causalidad computacional de una determinada ecuación del modelo no sólo depende de ella misma. sino que también depende del resto de las ecuaciones del modelo.

Es decir.

La causalidad computacional es una propiedad global del modelo completo.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Causalidad computacional

A continuación, se describe un procedimiento sistemático para asignar la causalidad computacional de un modelo.

Sin embargo, para aplicarlo deben previamente clasificarse las variables del modelo en conocidas y desconocidas, según sean conocidas o desconocidas en el instante de evaluación.

En primer lugar, por tanto, se explicará cómo realizar esta clasificación.

101 (B) (2) (2) (2) 2 000

 $\leq [u] = i \cdot R$

Variables conocidas y desconocidas

Variables conocidas:

- La variable tiempo
- Los parámetros del modelo

Este tipo de variables es que no son calculadas de las ecuaciones del modelo, sino que se les asigna valor al inicio de la simulación (en la llamada fase de "inicialización del modelo") y éste permanece constante durante toda la simulación.

- Las entradas globales al modelo Son aquellas variables cuyo valor se especifica, independientemente del de las demás variables, para cada instante de la simulación.
- Las variables que aparecen derivadas en el modelo Son consideradas variables de estado, es decir, se asume que se calculan mediante la integración numérica de su derivada. (El motivo es evitar tener que derivar numéricamente en tiempo de simulación)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Variables conocidas y desconocidas

Ejemplo

La variable uc aparece derivada, con lo cual es una variable de estado del modelo.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Variables conocidas y desconocidas

Se sustituye la derivada de cada variable de estado, allí donde aparezca, por una variable auxiliar (por ejemplo, de nombre igual al de la variable de estado, pero anteponiendo el prefijo "der"). Estas variables auxiliares se clasifican como desconocidas y se añade al modelo la condición de que cada variable de estado es ucorrespontente variable auxiliar.

Variables desconocidas:

- Las variables auxiliares introducidas, de la forma descrita anteriormente, sustituyendo a las derivadas de las variables de estado.
- Las restantes variables del modelo. Es decir, aquellas que, no apareciendo derivadas, dependen para su cálculo en el instante de evaluación del valor de otras variables.
 Estas variables se denominan variables algebraicas.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Variables conocidas y desconocidas

Ejemplo (cont.)

Con el fin de realizar la asignación de la causalidad computacional, se sustituye en el modelo $\frac{du_c}{d\mu}$ por la variable auxiliar $deru_C$

и	=	$u_0 \cdot \sin(\omega \cdot t)$		и	=	$u_0 \cdot \sin(\omega \cdot t)$
i _{R1}	=	$i_{R2} + i_C$		i _{R1}	=	$i_{R2} + i_C$
u – <mark>u</mark> c	=	$R_1 \cdot i_{R1}$	\implies	u – uc	=	$R_1 \cdot i_{R1}$
$C \cdot \frac{du_C}{dt}$	=	i _C		C · deru _C	=	i _C
u _C	=	$i_{R2} \cdot R_2$		uс	=	$i_{R2} \cdot R_2$

A efectos de la asignación de la causalidad computacional, se considera que:

- La variable de estado, u_C, es conocida.
- La derivada de la variable de estado, deruc, es desconocida.

Al realizar la simulación, uc se calculará integrando deruc.

Variables conocidas y desconocidas

Ejemplo (cont.)

 $\begin{array}{rcl} u & = & u_0 \cdot \sin(\omega \cdot t) \\ i_{R1} & = & i_{R2} + i_C \\ u - u_C & = & R_1 \cdot i_{R1} \\ C \cdot deru_C & = & i_C \\ u_C & = & i_{R2} \cdot R_2 \end{array} \qquad \begin{array}{rcl} 11 \text{ variables: } & u_1, i_{R1}, i_{R2}, i_C \\ u_C & u_C & u_C & u_C \\ u_U & u_C & R_1, R_2, C \\ u_U & u_C & u_C & u_C \\ u_C & u_C & u_C & u_C \\$

Descontando del número total de ecuaciones, el número de variables de estado, se obtiene el número de ecuaciones disponibles para el cálculo de variables algebraicas.

5 ecuaciones - 1 variable de estado = 4 variables algebraicas

El resto de las variables deberán ser parámetros:

5 parámetros

La persona que realiza el modelo deberá decidir, de entre las variables que no son estados, cuáles son las variables algebraicas y cuáles los parámetros. Una posible elección de los parámetros: $\omega \in \mathcal{R}$, $\mathcal{R} \lor V C$

101 (B) (2) (2) (2) 2 000

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Asignación de la causalidad computacional Singularidad estructural del modelo

Antes de realizar la partición se comprueba la no *singularidad* estructural del modelo. Es decir, se comprueba:

- Que el número de ecuaciones y de incógnitas (obtenido siguiendo el criterio anterior de clasificación de las variables en conocidas y desconocidas) es el mismo.
- Que cada incógnita puede emparejarse con una ecuación en que aparezca y con la cual no se haya emparejado ya otra incógnita.

Si alguna de estas dos condiciones no se verifica, se dice que el modelo es *singular* y es necesario reformularlo para poder simularlo. Si el modelo no es singular, se procede a asignar la casualidad computacional. Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias - Simulación de Modelos de Tiempo Continuo

Asignación de la causalidad computacional

A continuación, se describe un procedimiento sistemático para asignar la causalidad computacional de un modelo.

Consta de los dos pasos siguientes:

- 1. Comprobar que el modelo no es estructuralmente singular.
- 2. La asignación en sí de la causalidad computacional (llamada también **partición**).

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Asignación de la causalidad computacional Partición

Una vez se ha comprobado que el modelo no es *singular*, se realiza la asignación de causalidad computacional siguiendo 3 reglas:

- Las variables que aparecen derivadas se consideran variables de estado y se suponen conocidas, ya que se calculan por integración a partir de sus derivadas. Las derivadas de las variables de estado son desconocidas y deben calcularse de las ecuaciones en que aparezcan.
- 2. Las ecuaciones que poseen una única incógnita deben emplearse para calcularla.
- Aquellas variables que aparecen en una única ecuación deben ser calculadas de ella.

Asignación de la causalidad computacional Partición

Aplicando las tres reglas anteriores a sistemas no singulares, pueden darse dos casos:

Caso 1. Se obtiene una solución que permite calcular todas las incógnitas usando para ello todas las ecuaciones. Esto significa que las variables pueden ser resueltas, una tras otra, en secuencia.

En este caso, el algoritmo proporciona una ordenación de las ecuaciones tal que en cada ecuación hay una y sólo una incógnita que no haya sido previamente calculada.

En ocasiones será posible despejar la incógnita de la ecuación. En otros casos, la incógnita aparecerá de forma implícita y deberán emplearse métodos numéricos para evaluarla.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Asignación de la causalidad computacional

Ejemplo

 u_0 , ω , R_1 , R_2 y C parámetros u_C variable de estado u, i_{R1} , i_{R2} , i_C , $deru_C$ incógnitas

$$\begin{array}{rcl} u & = & u_0 \cdot \sin \left(\omega \cdot t \right) \\ i_{R1} & = & i_{R2} + i_C \\ u - u_C & = & R_1 \cdot i_{R1} \\ C \cdot deru_C & = & i_C \\ u_C & = & i_{R2} \cdot R_2 \end{array}$$

Comprobar no Singularidad Estructural

ecuaciones (5) = # incógnitas (5)

101 (0) (2) (2) (2) 2 OQO

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Asignación de la causalidad computacional Partición

Caso 2. Se llega a un punto en que todas las ecuaciones tienen al menos dos incógnitas y todas las incógnitas aparecen al menos en dos ecuaciones.

Corresponde al caso en que hay sistemas de ecuaciones.

Si en este sistema las incógnitas intervienen linealmente, será posible despejarlas resolviendo el sistema simbólicamente.

Si al menos una de las incógnitas interviene de forma no lineal, deberán emplearse métodos numéricos para evaluar las incógnitas.

El algoritmo de partición asegura que la dimensión de los sistemas de ecuaciones obtenidos es mínima.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación de Modelos de Tiempo Continuo

Asignación de la causalidad computacional

Ejemplo (cont.)

 $u_0, \omega, R_1, R_2 \neq C$ parámetros u_C variable de estado $u, i_{R1}, i_{R2}, i_C, deru_C$ incógnitas $u = u_0 \cdot \sin(\omega \cdot t)$

 $\begin{aligned} &i_{R1} &= i_{R2} + i_C \\ &u - u_C &= R_1 \cdot i_{R1} \\ &C \cdot deru_C &= i_C \\ &u_C &= i_{R2} \cdot R_2 \end{aligned}$

Fundamentos de Ejs

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Motivación y contenido

En este tema se explica:

- Quién y con qué finalidad ha desarrollado Ejs.
- La metodología de Ejs para la creación de laboratorios virtuales.

Contenido

- 1. ¿Qué es Easy Java Simulations?
- 2. Metodología para la creación de laboratorios virtuales
- 3. Definición del modelo
- 4. Definición de la vista
- 5. Ejecución y distribución del laboratorio virtual

101 (01 (2) (2) (2) (2) (0)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

¿Qué es Easy Java Simulations?

Easy Java Simulations (abreviado: Ejs) es un entorno de simulación gratuito que ha sido diseñado y desarrollado por el profesor Francisco Esquembre¹.

Ejs ha sido especialmente ideado para el desarrollo de aplicaciones docentes, permitiendo a profesores y alumnos crear de forma sencilla sus propios laboratorios virtuales, sin que para ello requieran de conocimientos avanzados de programación.

http://fem.um.es/Ejs/

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias - Fundamentos de Ejs

Metodología para la creación de laboratorios virtuales Paradigma "modelo - vista - control"

La metodología para la creación de laboratorios virtuales de Ejs está basada en una simplificación del

paradigma "modelo - vista - control"

que establece que el laboratorio virtual se compone de 3 partes:

- Modelo: describe los fenómenos bajo estudio. Está compuesto por un conjunto de variables y por las relaciones entre ellas.
- Vista: representación gráfica de los aspectos más relevantes del fenómeno simulado.
- Control: define las acciones que el usuario puede realizar sobre la simulación.

¹Prof. Dr. Francisco Esquembre, Dpto. de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30071 Murcia (España): E-mail: fem@um.es

Metodología para la creación de laboratorios virtuales Paradigma "modelo - vista - control"

Estas tres partes están interrelacionadas entre sí:

- El modelo afecta a la vista, ya que debe mostrarse al usuario cuál es la evolución del valor de las variables del modelo.
- El control afecta al modelo, ya que las acciones ejercidas por el usuario pueden modificar el valor de las variables del modelo.
- La vista afecta al modelo y al control, ya que la interfaz gráfica puede contener elementos que permitan al usuario modificar el valor de las variables o realizar ciertas acciones.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Metodología para la creación de laboratorios virtuales Simplificación del paradigma "modelo - vista - control" realizada por Ejs

Ejs integra el control en la vista y en el modelo:

Las propiedades de los elementos gráficos de la vista (posición, tamaño, etc.) pueden asociarse con las variables del modelo, dando lugar a un flujo de información bidireccional entre la vista y el modelo.

Cualquier cambio en el valor de una variable del **modelo** es automáticamente representado en la **vista**.

Recíprocamente, cualquier interacción del usuario con la vista de laboratorio virtual, modifica la correspondiente variable del modelo.

------101 (B) (2) (2) (2) 2 900 olicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Eundamentos de Eis Eundamentos de Ejs Metodología para la creación de laboratorios virtuales Metodología para la creación de laboratorios virtuales Páginas HTML de introducción Estructura de un laboratorio en Eis Resumiendo lo anterior. la definición de un laboratorio virtual mediante Eis se estructura en las siguientes 3 partes: Además del modelo y la vista. Eis permite incluir en el laboratorio Introducción: páginas HTML que incluyen los contenidos virtual páginas HTML que realicen las funciones de educativos relacionados con el laboratorio virtual. documentación, informando acerca de la finalidad del laboratorio. Modelo: modelo dinámico cuva simulación interactiva es la sus instrucciones de uso, recomendaciones pedagógicas, etc. hase del laboratorio virtual Vista: interfaz entre el usuario y el modelo. Tiene 2 funciones: Este conjunto de páginas recibe el nombre de Introducción. 1. Proporciona una representación visual del comportamiento dinámico del modelo.

2. Proporciona los mecanismos para que el usuario pueda interaccionar con el modelo durante la simulación.

101 (B) (2) (2) (2) 2 000

Metodología para la creación de laboratorios virtuales Estructura de un laboratorio en Ejs

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Definición de la vista

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Definición del modelo

Botones para la selección de los paneles de definición del modelo

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Fundamentos de Ejs

Definición de la vista

Ejemplo: laboratorio virtual de los cuatro tanques

2 940

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Fundamentos de Ejs

Ejecución y distribución del laboratorio virtual

Una vez que el usuario ha definido el modelo, la vista y la introducción del laboratorio virtual, Ejs automáticamente:

- genera el código Java del programa,
- lo compila,
- empaqueta los ficheros resultantes en un fichero comprimido, y
- genera páginas HTML que contienen la introducción y la simulación como un applet.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Ejecución y distribución del laboratorio virtual

Entonces, existen tres posibles formas de ejecutar el laboratorio virtual:

- Como un applet, abriendo con un navegador web (Internet Explorer, Netscape, etc.) el documento HTML generado por Ejs para el laboratorio. Esta opción permite publicar el laboratorio virtual en Internet.
- Ejecución desde el entorno Ejs.
- Ejecución como una aplicación Java independiente.

Actividad: Ejecución de un laboratorio ya creado

101 (B) (2) (2) (2) 2 000

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias Descripción del modelo en Ejs

Motivación

En este tema se explica el algoritmo para la simulación de Ejs.

Las explicaciones se fundamentan en los conceptos expuestos en el Tema "*Simulación de modelos de tiempo continuo*", apareciendo dos elementos adicionales:

- Ejs está diseñado para permitir la interactividad del usuario sobre el modelo durante la simulación.
- La descripción de cómo debe Ejs realizar el cálculo de los parámetros y de las variables algebraicas debe realizarse mediante fragmentos de código escritos en Java.

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias Descripción del modelo en Ejs

Descripción del modelo en Ejs

Contenido

Motivación

En este tema se explica:

- Cuáles son los componentes de un modelo en Ejs
- Cuál es el algoritmo de simulación de Ejs
- Cómo se declaran variables y se inicializan en Ejs
- Cuál es la utilidad de los paneles Evolución y Ligaduras
- Cómo definir métodos propios
- Cuáles son los algoritmos para la integración de ODE que soporta Ejs

- 1. Componentes del modelo en Ejs
- 2. Descripción algorítmica del modelo
- 3. El algoritmo de simulación de Ejs
- 4. Declaración e inicialización de las variables
- 5. Descripción de la evolución
- 6. Descripción de las ligaduras
- 7. Métodos propios del usuario

1010 S. (5) (5) (5) (0)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

Descripción algorítmica del modelo

El modelo se describe en Ejs mediante fragmentos de código Java escritos en los paneles Inicialización, Evolución, Ligaduras y Propio.

Esto implica que:

el modelo matemático debe ser manipulado por el programador del laboratorio virtual con el fin de formularlo como una secuencia ordenada de asignaciones del tipo

variable = expresión;

Ejs realiza la ejecución de esta asignación de la forma siguiente:

- Se evalúa la expresión del lado derecho de la igualdad, empleando para ello el valor que en ese punto de la ejecución tengan las variables que intervienen en dicha expresión.
- Se asigna el resultado obtenido a la variable situada al lazo izquierdo de la igualdad.

Aplicación de la Simulación p	or Ordenador	r a la Enseñanza	de las Ciencias
Descripción del modelo en	Ejs		

El algoritmo de simulación de Ejs Orden de ejecución de los paneles

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

El algoritmo de simulación de Ejs

Para entender cómo estructurar la definición del modelo en los diferentes paneles, es preciso comprender el *algoritmo de simulación* de Ejs.

Se entiende por algoritmo de simulación de Ejs a

el orden en el que Ejs ejecuta los diferentes paneles y las diferentes ventanas dentro de cada panel

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

El algoritmo de simulación de Ejs Orden de ejecución de las páginas de un panel

Si un panel consta de varias páginas, éstas se ejecutan siguiendo su orden de izquierda a la derecha.

Ejemplo

Orden de ejecución:

- principales
- 2. Variables auxiliares

🏂 Easy Java Simulation	s - C:VEjs33/Simul	ationsViaboratorio	sTextoVissajous.x	nt 🔳 🗖 🔀
ା Introducción	* Modelo	े Vista		
Variables Variables Variables	nicialización Variables auxiliare	O Evolución	ි Ligaduras	O Propio 🗋
Nombre	Valo	r Tic	o Dim	ensión 🔳 🛅
maximo	1.2*amplibud	double		। (स
minimo	-1.2*amplitud	double		
n	150	int		

101 (B) (2) (2) (2) 2 900

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Eis

El algoritmo de simulación de Ejs Orden de ejecución de los algoritmos de una página

Ejs ejecuta los algoritmos de una página siguiendo el orden en que están escritos, como si se tratara de un programa en Java.

pio	ି Pro	* Ligaduras	े Evolución	\odot Inicialización	○ Variables
				(a)	modelo matematia
					dend = v1;
18					den2 = v2;
12				(x1-x0_muele1);	Provelle1 = -k1 *
18				-b * v1,	Farrortguator -
18					v = v1 - v2;
18					
18				f = Rv*v - Rm; }	if (Adelante) (F
12				f = Rv * v + Rm;)	(Detras) (F
- 8		(ador);)	elet + Famortigu	f = m2 / (m1+m2)*(Fm.	If (Acopio) { F
12					
18	1	Ff = Rv*v + Rm;	Detras = true;	RD) (Acopio = faise	If (Acopio && FY :
- 8	1	Ff = Rv * v - Rm;	Adelante = true;	-R0) Acopio = faise	If (Acopio 88 FY -
12					
18				le1 + Famortiguador-F	Friatal = Friuel
12					Francia - Ft
18				11;	at - Enasation
12				2	32 = Fmasa2 / n
- 18					derv1 = a1;
					derv2 = a2;
_					

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

El algoritmo de simulación de Ejs

Ejemplo

Eiemplo

La derivadas de las variables de estado deben expresarse en función únicamente de variables de estado, parámetros y la variable tiempo.

Puesto que se ha asignado la causalidad computacional del modelo, las manipulaciones necesarias para ello se pueden realizar de manera sencilla.

 $\frac{d[u_C]}{dt} = deru_C = \frac{i_C}{C} = \frac{i_{R1} - i_{R2}}{C}$ $= \frac{\frac{u-u_C}{R_1} - \frac{u_C}{R_2}}{\frac{u_0 \cdot \sin(\omega \cdot t) - u_C}{R_1}} = \frac{u_0 \cdot \sin(\omega \cdot t) - u_C}{R_1} - \frac{u_0 \cdot \sin(\omega \cdot t) - u_C}{R_$ $\frac{R_2}{R_2}$

101 101 121 121 2 00

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

El algoritmo de simulación de Ejs

Ejemplo

Inicio

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

El algoritmo de simulación de Ejs

Eiemplo (cont.)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

El algoritmo de simulación de Ejs

alicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Declaración e inicialización de las variables

 Panel Ligaduras: asignaciones para calcular las variables algebraicas y las derivadas de las variables de estado.

La *partición* indica cómo ordenar las ecuaciones y qué variable despejar de cada ecuación.

 Panel Evolución: cálculo de las variables de estado, mediante integración de sus derivadas.

Página EDO - uso de los métodos de integración de Ejs

- La derivada de cada variable de estado debe expresarse en función únicamente de variables de estado, parámetros y la variable tiempo
- Ejs gestiona automáticamente el incremento de la variable tiempo a lo largo de la simulación

101 (B) (2) (2) (2) 2 000

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

Declaración e inicialización de las variables

Es preciso declarar y asignar valor inicial a:

- La variable tiempo, que típicamente se inicializará a cero.
- Las constantes y parámetros.
- Las variables de estado, tanto continuas como discretas.

Es preciso declarar, pero no inicializar:

- Las variables algebraicas.
- Las derivadas de las variables de estado (variables auxiliares que se han introducido al analizar la causalidad computacional del modelo).

No es preciso inicializar estas variables debido a que su valor en el instante inicial de la simulación lo calcula Ejs de ejecutar el código del panel *Ligaduras*.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Declaración e inicialización de las variables Panel Variables

i allei vallabie.

Tipos:

- boolean: true o false
- int: entero
- double: real
- String: cadena de caracteres

Dimensión:

- q dimensión [10]:
 q [0], · · · , q [9]
- q dimensión [10] [20]: matriz de 10 filas (0, ..., 9), 20 columnas (0, ..., 19)

Ejemplo

Introducció	n ⊛Modelo ଼Vi	ista		
* Variables C	Inicialización \odot E	volución O	Ligaduras O Propio	
Nombre	Valor	Tao	Dimensión	1C
tempo	0.0	double		16
p1	1.0	double		10
p2	3.0	double	[10]	
n	100	int		16
opcion1	true	boolean		118
xt	102.1	double		112
2	2*x1+(p1+p2)/n	double		117
y1		double		114
y2		double		11
denx1		double		11
den/2		double		

Declaración:

panel Variables

Descrinción del modelo en Eis

Inicialización:

- Tiempo, constantes, parámetros, v.e.: paneles Variables y Inicialización
- Variables algebraicas y derivadas: panel Ligaduras

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

Declaración e inicialización de las variables Panel Inicialización

Ejemplo

La variable q es un vector de n componentes:

$$q[0], ..., q[n-1]$$

que se inicializa:

$$q[0] = \frac{1}{n-1}$$

 $q[i] = -q[i-1] + \frac{2 \cdot i}{n-1}$
para $i : 1, ..., n-1$

Variables Inicialización Evolución Ligaduras Propio Inicialización Inicialización Propio Inicialización Inininicialización Inicialización Inicializa	Introducción · Modelo	○ Vista		
unatore to	Variables · Inicialización	O Evolución	O Ligaduras	O Propio
tor (int i = 1; i < n; i++) (] = 1/(n-1); ((nt) = 1: (< n: (++)))			C. C

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias L Descripción del modelo en Ejs

Declaración e inicialización de las variables Panel Inicialización

Ejemplo

Introduce	ión 🔹 Modelo	ି Vista
ି Variables	* Inicialización	© Evolució
vista amortiguada	r]	
_amortiguadorFi	o(0] = LB;	
x_amortiguador#(o[1] = LB;	
c_amortiguadorFig	(0[2] = LA;	
k_amortiguadorFij	(o[3] = LA;	
x_amortiguadorFi	o[4] = 0;	
x_amortiguadorFi	(o[5] = LA;	
x_amortiguadorF(io[6] = LA;	
c_amortiguador#ij	(c[7] = LB;	
x_amortiguadorFi	(0[8] = LB;	
y_amortiguadorFi	jo]0) = γAmortiguador	+ LD/2;
y_amortiguadorFi	io[1] = yAmortiguador	+ LC/2;
y_amortiguadorFi	(o[2] = yAmortiguador	+ LC/2;
y_amortiguadorFi	[0[3] = yAmortiguador;	
y_amortiguadorFi	[0]4] = yAmortiguador;	
y_amortiguadorFi	io[5] = yAmortiguador;	
y_amortiguadorFi	io[6] = yAmortiguador	- LC/2;
y_amortiguadorFi	io[7] = yAmortiguador	- LC/2;
y_amortiguadorFi	(a)8] = yAmortiguador	- LD/2 ;
1		

000

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Descripción del modelo en Ejs

Descripción de la evolución

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Pulse para crear una página

Descrinción del modelo en Eis

Permite escribir algoritmos (reinicializar variables de estado)

Pulse para crear una página EDO

Asistente para la definición de ecuaciones diferenciales ordinarias

- Euler
- Punto medio (Euler-Richardson)
- Runge-Kutta (4° orden)
- Runge-Kutta-Fehlberg (4°-5° orden)

Imágenes por segundo

Regula velocidad ejecución simulación

Arranque

- Activado: comienza la simulación al ejecutar el laboratorio virtual
- Desactivado: es preciso definir un botón de arranque, cuya acción sea una llamada al método _play()

Descripción de la evolución Página EDO

El código que genera Ejs para una página EDO realiza las dos tareas siguientes:

- 1. Calcula el valor de las variables de estado en $t + \Delta t$, aplicando el método de integración seleccionado.
- 2. Incrementa el valor de la variable tiempo en Δt .

Puesto que el código generado por Ejs para una página EDO incrementa el valor de la variable tiempo

en un laboratorio virtual no puede haber más de una página de EDO

Si el laboratorio no tiene ninguna página EDO, debe programarse explícitamente el incremento de la variable tiempo

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Descripción de las ligaduras

Ejemplo: paneles evolución y ligaduras

ointrod	ucción 🔹 Modelo	o Vista
O Variab	les inicialización matica	⊖Evolución *Ligaduras ⊖Propi
Finuelei Finnortguid Franai - F ai - Fmas	kt * (kt - xt_muelet); or = -b * vt; muelet + Famoriguado at / mt;	ς
ା Introd Variab	ucción ·* Modele les · · · Inicialización	> ⊂Vista ≪Evolución ⊂Ligaduras ⊂Propi
insigenes per segundo	cálculo estados i chem Var, Indep. 1	an pared
C	Fitato	[Detroits
20 15 10	$\frac{d \times 1}{d t} =$	v1 (-k1*(x1-x0 muslet1)-b*v11/m1

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Métodos propios del usuario

El usuario puede definir, en el panel *Propio*, todos aquellos *métodos* en lenguaje Java que precise para la definición del modelo o de la vista.

Típicamente, los métodos se emplean para definir acciones sobre el modelo que son activadas desde la vista (por ejemplo, cuando el usuario pulsa un botón).

Estos métodos pueden ser invocados desde cualquier parte de la simulación, y está es su única finalidad. Es decir, a excepción de los puntos donde son invocados, durante la simulación no se realiza ninguna otra llamada a estos métodos.

Ejemplo: paneles evolución y ligaduras

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Descripción del modelo en Ejs

Variables Inicialización * Evolución Ligaduras Propio	
Determine [[[]] ([]]	

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Métodos propios del usuario

Ejemplo

ା Introducción 🔹 Mo	delo 🤌	ି Vista							
○ Variables ○ Inicializa	ición 🤇	C Evolución		Ligadu	ras 🔹 Pro	pio			
public void mover_masa1 () { yMasa1 = 0; if (x1 > LB + LP) { x1 = LB + LP ;	- Proyled	uden del elemento Me	nal						
1	-	losición y Tansaño		Ve	ibilidad e Interacció				Aspecto G
ROTZIANIEN	×	d	3 =	VISEN		C)	-	Estile	RECTANC
21-14-11P	Y	yMacat)) (A	Active	13.00	5	60	Pesición	NEST
AT - DA + DF,	z		7) es		Accianes			6826	
1111111	Tamatic X	5	7	AlPubier	(HERED	t9	-	Calar Relieve	0.192.84
II (((1 < LB)))	TenninY	12	2 00	Al Mover	mever_masato	d2	\$	Calar Linos	
x1 = LD,	Tornaño Z	<u> </u>	2 -	Al Saller	_0940_	đ	\$	Grean	
	Facula X		💓 06						
ſ	Escolary) =						
	Excels Z) ee						

Conceptos básicos para la descripción de la vista

200

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias Conceptos básicos para la descripción de la vista

Descripción del panel vista

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias — Conceptos básicos para la descripción de la vista

Características fundamentales de la vista

La **vista** del laboratorio virtual es la interfaz entre el usuario y el modelo.

Mediante la manipulación de la vista, el usuario puede:

- Controlar la ejecución de la simulación
- Cambiar los parámetros, las variables de entrada o las variables de estado del modelo

Para configurar la vista en Ejs debemos seleccionar el panel Vista. Este panel se subdivide en dos paneles: el panel Árbol de elementos y el panel Elementos para la vista.

🏂 Lasy Java Simulations - laboratorios lex	ta/lissajaus_es.xml	🛛
Introducción O Modelo	* Vista	
Árbol de elementos	Elementos para la vista	Ď
🗗 Vista de la simulación	Contenedares-	

Conceptos básicos para la descripción de la vista

Árbol de elementos

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Conceptos básicos para la descripción de la vista

Clases de elementos de tipo Contenedor

Estas clases pueden contener otros elementos gráficos. Podemos diferenciar estos elementos según tengan o no ejes coordenados:

- Elementos que no tienen ejes coordenados: Ventana, VentanaDialogo, Panel. En todos estos elementos hay que especificar qué política de distribución se sigue para alojar a los elementos que alberga:
 - Márgenes: los hijos se sitúan en cinco áreas (centro, izquierda, derecha, arriba o abajo).
 - Caja horizontal: los hijos se sitúan horizontalmente de izquierda a derecha.
 - Caja vertical: los hijos se sitúan verticalmente de arriba a abajo.
 - Rejilla: se indica el número de filas y columnas.
 - Flujo izquierda/centro/derecha: la distribución flujo hace que los hijos se alineen horizontalmente.
- Elementos con ejes coordenados: PanelDibujo, PanelDibujo3D, PanelConEjes. Para colocar un elemento dentro de un objeto de estas clases hay que especificar sus coordenadas.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Conceptos básicos para la descripción de la vista

Elementos de la vista

Referencia: http://www.um.es/fem/Ejs/LibroEjs/CD/Referencia/Referencia.html

200

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Conceptos básicos para la descripción de la vista

Clase PanelDibujo

Este elemento sólo contiene elementos de tipo Dibujo.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias <u>Conceptos bási</u>cos para la descripción de la vista

Clases PanelDibujo3D y PanelConEjes

PanelConEjes: variante de la clase PanelDibujo que incluye, por defecto, un sistema de ejes coordenados.

PanelDibujo3D: contenedor especial en tres dimensiones para elementos gráficos de dibujo.

C. Propieda	des del elemente	Panel	(a.e.	tjes						
	Accoración y Ejen		_		Exceles		_		Configuración	
Titulo	ParelCord(es)	0	-	Antonacala X	114	12	-	Castrado	d?	-
Founds Tt		25	-	Antonic da Y	224	12	-	Espacies	69	-
Tipo de Ejes		12	-	Mining X		10	64	Correntee	đ	-
Titute X		10	-	Minimo X		10	00	Formato X	đ	-
PesterX		D.	-	Minut		10	-	Formate Y	đ	
Tee for X		12	-	Ménney		12	(m	i	specto trático	
Malle X		18			Inter acción			oformat	d?	-
They		10	-	×		B	-	Interior	13	-
Der De Y		16	-	Y		12	-	Fendo	d?	-
The Da V		10	-	AlPubar		12	100	Calor	69	-
Malla Y		10	i.	Al Mover		12	9	Fuerze	67	-
Details		間	-	A Saltar		12	4	Aprila	D2	-
Dolla Tricta		10								

121 2 040

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Conceptos básicos para la descripción de la vista

Clases de elementos de tipo Dibujo

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias <u>Conceptos básicos para la descripción de la vista</u>

Clases de elementos de tipo Básicos

Visu	alizació	in h	tenu			
-	P	e		÷	lito.	[m]
А	F	Σ		-	4:	f
03						

Validate		Marcas	Assecto Scilico
risbie	🕥 🚥 Marcas	🕃 🖛 Tamala	cf =
dor	💽 🚥 Pormate-M.	29 am Farala	(second
0.0	💭 🕫 Cercano	12 00 COMM	de Lista de acciones
streo 1.0	2 m	eracción fuerdo	stan): Perar an reactio la simulación
mata .	rt9 on Active	2 - Rente	steed : Fieudar as pass de la proteción
antie.	rt7 on AlPulser	12 100	seFPS(10) : Filar (aproximadamente) el número de im
	Al Mover	26	setDebe(2000) : Fijar el retraso (en milisegandas) par
	Al Sultar	12 9	result) - restablecer scarrieras el estado recia
			resetview(): Limpier la vista
. Consideration and	I a base a ba Out a a		LifearMewig : Inicializar la vista
Disc	NMA A	eerta Griffice	deadlessages) Limpla el AreaTedo
Texts	📿 🕫 Tanalo	(C ²¹) 00	sket("Element /Tde"/Nessage") : Nuesta messajes
ina sero	rt ²⁰ au Fende		readState("epicolala") : Leer el estado del modelo previo
depending in the	157 m Cake	-57 au	OservadorONO:
Autor.	cit mi tanta	-12 m	QuemadorOFF0:
autor .	10 0 0000		
	La do where	1 6 6 1 2 6 1	

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de un osciloscopio virtual con Ejs

Programación de un osciloscopio virtual con Ejs

Descripción del modelo

Las figuras de Lissajous se obtienen de la superposición de dos movimientos armónicos perpendiculares:

 $x = A \cdot \cos(\omega_1 \cdot t)$ $y = A \cdot \cos(\omega_2 \cdot t + \delta)$ (movimiento horizontal) (movimiento vertical)

La trayectoria resultante, (x(t), y(t)), depende de la relación de las frecuencias, $\frac{\omega_2}{\omega_0}$, y de la diferencia de fase, δ .

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Descripción de la introducción

Pasos necesarios para describir la introducción:

1. Arrancar el entorno de simulación Ejs.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Programación de un osciloscopio virtual con Ejs

El algoritmo de la simulación

- Crear las páginas necesarias en el panel introducción. Para ello haga clic con el ratón sobre la frase "Pulse para crear una página".
- 3. Escriba en la zona de texto de la página lo que desee.
- 4. Para ver el código HTML generado, seleccione Ver / Ver Código Fuente.

2 200

101 (B) (2) (2) (2) 2 000

Aplicación de la Simulación por Ordenador a la Ensellanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Descripción de la introducción

Para desplegar el menú debe situar el ratón sobre la lengüeta de la ventana y pulsar el botón derecho del ratón

ngaros de Lissofies nitar Var Fuente Di 198 Ci Di as figuras de Lissofie enymolectares.	Editar esta pógino <u>Hondr</u> una pógino Copiar una pógino Mover esta pógino alta texpierelas Mover esta pógino alta texpierelas Mover esta pógino alta ferecha Pomentinera esta pógino Activas Dosachitor esta pógino Elimikor esto pógino	
Ency Jave Street Introduce Figures de Decide Estar We Fase B B C E Athese Organy C	nines - C (p.) (Birodalised and ión · Nodelo · Vista autores autores autores i · x · a · a · a · z · z ada Meto	na Apata

Paso previos a programar el modelo de un laboratorio virtual empleando Ejs:

- 1. Clasificar las variables del modelo en conocidas y desconocidas:
 - Variables conocidas: parámetros (A, ω₁, ω₂, δ) y la variable tiempo (t).
 - Variables desconocidas: las dos variables algebraicas x e y.
- Aplicar el algoritmo de asignación de la causalidad computacional:

$$[x] = A \cdot \cos(\omega_1 \cdot t)$$

$$[y] = A \cdot \cos(\omega_2 \cdot t + \delta)$$

Programación de un osciloscopio virtual con Eis

Variables

del modelo

minimo y n

El algoritmo de la simulación

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Declaración e inicialización de las variables

En el caso del osciloscopio virtual, van a definirse dos páginas:

Página "Variables principales"

Se declaran las variables que intervienen en el modelo matemático y las variables necesarias para su resolución numérica.

Modelo matemático	Modelo en Ejs
t	tiempo
×	×
у	у
A	amplitud
ω1	frecuencia1
ω2	frecuencia2
δ	desfase
deltaTiempo	deltaTiempo

Página "Variables auxiliares"

Se declaran las variables empleadas para la definición de la vista (maximo, minimo v n).

101 (B) (2) (2) (2) 2 900

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Declaración e inicialización de las variables

Declaración e inicialización de las variables

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Programación de un osciloscopio virtual con Ejs

Creación de la página "Variables principales"

- Pulse con el ratón sobre la frase "Pulse para crear una página". que aparece en el panel Variables
- En la ventana que se abre, asigne a la página el nombre "Variables principales"

🎄 Lasy Java Simulations	C113336imu	lations Viaberat	oriesTexto	llissajous.xrr	· . DX
ା Introducción	* Modelo	ା Vista			
* Variables In Variables principales	icialización	C Evolució	on ⊖L	igaduras	O Propio
Nombre	Valo	r da	Tipo uble	Dima	15859 L

Página	
"Variables	principales'

🎄 Easy Java Simulations	C:VE js 3315 in ulation	Maboratorios Texto\	issajeusml 📃	- 🖂
ି Introducción	* Modelo 🔍 V	ïsta		
* Variables O In	icialización 🔗 E	volución 🛛 🔾 Li	jaduras 🔗 Propio	Ľ.
Variables principales	ariables auxiliaros			3
Norsbre	Valor	Tito	Dimensión	민비
tempo	0.0	double		1631
detaTiempo	0.05	double		1000
amplitud	30.0	double		
trecuencia1	1.05	couble		
frecuencia2	1.0	double		۶À
desfase	0.0	clouble		12
x		double		
y .		double		

Declaración e inicialización de las variables

Creación de la página "Variables auxiliares"

- 1. Pinche con el botón derecho del ratón sobre la lengüeta de la página de variables ya existente
- En el menú desplegable que aparece, haga clic con el ratón sobre "Añadir una página"
- 3. Se abre una ventana, en la cual debe especificar el nombre de la nueva página: Variables auxiliares

Introducción	n ● Modelo 🔍 Vi	ista	
* Variables	Inicialización 📀 E	volución 📀 Lig	gaduras 📀 Propio 🛛
Valables minchalas	Variables are libros		
Variables principales	Variables acolitares	Tiso	Dimensión
Variables principales Nombre maximo	Variables acciliares	Tipo	Dimensión
Variables principales Nombre maximo minimo	Variables accellares Valor 1.2*ampitud -1.2*ampitud	Tipo double double	Dimensión

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Le Programación de un osciloscopio virtual con Eis

Programación del modelo

Página de Evolución

- 1. Para definir la ecuación de evolución, haga clic sobre el subpanel con el letrero "Pulse para crear una página"
- Se abre un ventana, en la cual debe especificarse el nombre que se asigna a la nueva página que se va a crear.
 Por eiemplo, dele a la página el nombre Avance en el tiempo
- Escriba la ecuación de evolución. Observe que la ecuación finaliza con punto y coma (;)

🛓 Eny Java S	imulations - C:VEjs33%imu	lations Vaboratorio	sTextoVissajous.xn	•
ା Introd	ucción 🔹 Modelo	ି Vista		
े Variabi	es 🗢 Inicialización	* Evolución	O Ligaduras	o Propio 🛅
Insigenes	Avance en el tiempo			<u>a</u>
par segundo	tiempo = tiempo + deltaTi	empo;		

21 2 940

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación del modelo

21 2 940

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de la vista

Página de Ligaduras

- 1. Haga clic sobre el botón Ligaduras.
- La interfaz de Ejs muestra un panel que contiene la frase "Pulse para crear una página" Haga clic con el ratón sobre esta frase.
- 3. Asigne a esta página el nombre Cálculo de la posición.

e Lasy Java Simulations - CN Js3055mulationsViaboratoriosTr	extaVissajaus.xm	
ାntroducción * Modelo ି Vista		
Variables Inicialización Evolución Cliculo de la posición	* Ligaduras	Propio
k = amplitud * Math.cos(frecuencia1 * tiempo); y = amplitud * Math.cos(frecuencia2 * tiempo + desfase);		

Vista que se desea obtener

Programación de un osciloscopio virtual con Ejs

Programación de la vista

Definición de la ventana de la vista del laboratorio virtual

- 1. Haga clic sobre la clase Ventana
- Haga dic sobre la frase Vista de la simulación Con ello está indicando que el objeto que está a punto de crear (de la clase Ventana) debe ubicarse dentro del objeto raíz de la vista
- Se abre una ventana, en la cual debe escribir el nombre del nuevo objeto. Dele el nombre Ventana_principal

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de la vista

Añada un objeto de la clase PanelDibujo

- Haga clic sobre el icono de la clase PanelDibujo, lo cual indica a Ejs que van a crearse objetos de esta clase.
- A continuación, haga clic con el ratón sobre la frase Ventana principal. Asigne valor a los siguientes parámetros del objeto que está creando:
 - Nombre del objeto. Llámelo Pantalla
 - Posición, dentro del contenedor Ventana_principal, del objeto Pantalla. Acepte la posición por defecto: centro

Objeto de la clase PanelDibujo, llamado Pantalla

21 121 2 040

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de la vista

Despliegue el menú de configuración de Pantalla y seleccione Propiedades

bel de elementes	Elementos para la vista
Vista de la simulación	Castonetores-
Wentana_principal	
Pri) Davraes Meni pera Pantalia	🔳 🔛 🐱 🗵
Properties	Dásicas
Cambiar parks	
La posición os Centra Cambiar avaición	A 1 🖾 🖦 4
Mover arritor	Oitejo
Mover abajo	Básicos Grafas y cuerpos Campos
Eliminar	• < •• = • ~ B

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de la vista

Menú de propiedades del objeto Pantalla

Anteneza Y too. 2 (a) Caralansi Materica Y too. 2 (b) Caralansi X 2 (c) C		Escalas				Certiguración
Antenna y Van 2 (* Freenand Materia y Van 2 (* Freenand Materia y Harrison (* Freenand) Materia	Autoescala X	false	5	80	Custratio	and the second s
Minoro K Binoro L Binoro K Binoro K Minoro K Binoro K Binoro K Binoro K X Binoro K Binoro K Binoro K Y Binoro K Binoro K Binoro K Alber C Binoro K Binoro K Alber C Binoro K Alber C Binoro K	Autoescala Y	false	67	80	Espacios	🔹 Lista de variables del models apropiadas 🛛 👌
Hainni annan 2 m bainni 2 Hainni 2 Hai	Minimo X	minimo		-	Coordenadar	deltaTiempo : double :
Missov minor @ in Finder focused2 colored2 Missov minor in Finder focused2 colored2 X Z in Finder focused2 colored2 V Z in Colored2 colored2 colored2 Mither Z in Colored2 in Colored2 in Colored2 Mither Z in Colored2 in Colored2 in Colored2 Mither Z in Colored2 in Colored2 in Colored2	Másimo X	maximo		-	hermato X	amplitud : double :
Xiatawi Markatiki Markatiki Markatiki Y Image Tanada South Y Image South South Al Pates Image Gala South Al Market Image Gala South	Minimo Y	minimo		00	Formeto Y	tecuencia2 : double :
Memory Conf. Tannaha Conf. Conf. V 2 m To month doubt V 2 m Case month doubt Nations 2 % Case month doubt Althors 27 % France month doubt Althors 27 % Annaha month doubt	Míximo Y	maximo		-		desfare : double : r . double :
X 2*** 6**** Fando Pando Pand		Interacción			Tamaño	y : double :
Y 23 min Cater n min Al Putco CD % Function Al Monorr CD % Function Al Statz Al Statz G %	×			-	Fendo	maximo : double :
Al Polsce Car	Y			- 260	Color	n (int)
Al Mover C27 % Ayuda Al Soltar C27 %	Al Pulsar		69	-	Fuente	
Al Soltar CP %	Al Mover		127	-	Ayusta	
	Al Soltar		67	-		

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Eis

Programación de la vista

Ubique dentro del contenedor *Pantalla* un objeto de dibujo, que defina qué es lo que debe dibujarse

- Seleccione la clase Traza Traza: una secuencia de puntos
- Haga clic con el ratón sobre el objeto Pantalla Con ello se crea un objeto del tipo Traza y se ubica dentro del contenedor Pantalla

Dele al objeto del tipo Traza que está creando el nombre Representación_gráfica

Star Jan Handelman, C. Star 2000 Handelman, Star Andelman, Star 2000 Handelman, Star 200

121 2 040

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Programación de un osciloscopio virtual con Ejs

Programación de las capacidades interactivas

Se va a dotar al osciloscopio virtual de dos capacidades interactivas

- Van a añadirse algunos botones que permitan al usuario seleccionar determinadas frecuencias y desfases, de entre un conjunto predeterminado de ellas, las cuales dan lugar a figuras de Lissajous vistosas. Cada botón corresponderá con una determinada selección de las frecuencias y el desfase.
- Se colocarán casillas numéricas en las cuales el usuario podrá escribir el valor de las frecuencias y del desfase de las figuras que desea visualizar.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Programación de la vista

Asigne valor a las propiedades del objeto Representación_gráfica

- Indique qué variables deben representarse Enlace la propiedad X con la variable x, y la propiedad Y con la variable y
- Indique cuántos puntos deben dibujarse Para ello, enlace la propiedad Puntos con la variable n
- 3. Escoja el color de la línea

200

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de las capacidades interactivas

Cree un objeto de la clase Panel y ubíquelo dentro de Ventana_principal

- 1. Haga clic sobre el icono de la clase Panel
- Haga clic sobre la palabra Ventana_principal Llame Panel_controles a este nuevo objeto de la clase Panel, y sitúelo en la posición izquierda (de este modo, los controles quedarán situados a la izquierda de la pantalla)

Objeto de la clase Panel, llamado Panel_controles

Programación de las capacidades interactivas

Para añadir los botones que realicen las acciones, es preciso:

 Programar la acción a realizar cuando se pulse cada botón Deben programarse métodos en lenguaje Java (uno por cada botón) que realicen las acciones deseadas.

La programación de estos métodos forma parte de la definición del modelo.

 Incluir los tres botones en la vista y asociarle a cada uno su método De este modo, cuando se haga clic sobre un botón se ejecutará el método asociado, con lo cual se realizará la correspondiente acción.

Se pretende programar tres botones:

Botón	ω_1	ω_2	Δt	п
А	0.06981	0.08744	1	2000
в	0.19198	0.24443	1	2000
С	0.54105	0.38397	1	300

101 (B) (2) (2) (2) 2 900

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de las capacidades interactivas

Método b, que se asociará con el Botón B

Easy Java Simulations - InboratoriesTextellissajous_es.aml	
ାntroducción 🔹 Modelo ଁ Vista	
🛛 Variables 🔿 Inicialización 🔿 Evolución 🔗 Ligaduras 🏽 Propio	
A B C	
public void b () (1
frecuencia1 = 0.19198;	16
frecuencia2 = 0.24443; deltaTerror = 1	L.
n = 2000;	
}	6
Companyation	
•	1 12
Los mensales aparecerán aquí	
Archivo leido correctamente D. IEBS A_051101 (Simuladorisvadoradoros) extorissago.	is_es xm

Aplicac	ión de	la Sim	ulación por	Ordenador	a la	Enseñanza	de las	Ciencias
Prop	gramac	ión de	un oscilosc	opio virtual	con	Ejs		

Programación de las capacidades interactivas

Método a, que se asociará con el Botón A

Easy Java Simulations - C:1Ejs33\Sim	alationsVatoratorio	sTexto\lissajous.xn	× . 🗆 🛛
O Introducción · Modelo	vista		
O Variables O Inicialización	O Evolución	CLigaduras	* Propio
A			2
public void a () { freturentis1 = 0.06981; freturentis2 = 0.09744; dettaTiempo = 1; n = 2000; }			E
Comentario			1
Los mensajes aparecerán aqui			

> 2 DAC

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de las capacidades interactivas

Método c, que se asociará con el Botón C

😓 Easy Java Simulations - C:VE js 339Simulations Valoratorios Textollissajous .xml 📃 [
☉ Introducción 💌 Modelo 😳 Vista	
⊖Variables ⊜Inicialización ⊖Evolución ⊖Ligaduras #Propio	
A B C	6
public vold c () (frecuencial = 0.54106;	E
trecuencia2 = 0.30397; detaTiempo = 1; 0 = 300'	
	12
Cornestario	
Los mensajes aparecerán aquí	

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Eis

Programación de las capacidades interactivas

Una vez definidos los métodos se definen los **hotones** en la vista

- Definir un obieto de la clase Panel, dentro del cual se ubicarán los botones. Nombre del nuevo objeto: Panel_botones. Posición: Arriba
- 2. Definir 3 obietos del tipo Botón y ubicarlos dentro de Panel_botones Nombres de los nuevos obietos: A. B v C. Posiciones: Arriba. Centro v Abaio

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de las capacidades interactivas

Incluya las casillas numéricas

- 1. Cree un objeto de la clase Panel y ubíquelo dentro de Panel_controles Nombre del nuevo objeto: Panel casillas. Posición: Abajo
- 2. Cree 3 objetos de la clase CampoNumerico y ubíquelos dentro de Panel_casillas Nombre de los nuevos obietos: Frecuencia1. Frecuencia2 y Desfase Posición: Arriba. Centro y Abaio

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Programación de un osciloscopio virtual con Ejs

Programación de las capacidades interactivas

Asocie las acciones con los hotones

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Programación de un osciloscopio virtual con Ejs

Programación de las capacidades interactivas

Configure las propiedades del elemento Frecuencia1

- Sitúese sobre Frecuencia1 y pulse el botón derecho del ratón
- 2. Se despliega un menú (Menú para Frecuencia1), Seleccione Propiedades
- Se abre una ventana (Propiedades del elemento Frecuencia1)

	🎄 Prop	iedades del elen	iento F	rec	uencia1			×
odebom lab unitable del modelo		Principales	Aspecto Gráfico					
astá enlazada con el botón	Variable	frecuencia1		000	Tamaño		r S	080
	Valor		2	68	Fondo		C ²	60
valor de la variable	Formato	w1 = 0.0000	d e	080	Color		C [®]	680
	Editable		5	68	Fuente		2	68
usuario modifica el valor escrito	Acción	_reset/iewt)	d P	4	Ayuda		2	66
un la casilla				-			-	_

El método _resetView() limpia la vista

Programación de un osciloscopio virtual con Ejs

Aplicación de la Simulació Un laboratorio virtual p Descripción

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Programación de las capacidades interactivas

Configure las propiedades de los elementos Frecuencia2 y Desfase

	Main			Graphical	Aspect	
Variable	frecuencia2		- 00	Size	67	- 66
Value			- 260	Background	dP	8
Format	w2 = 0.0000	12	-	Foreground	11	-
Editable		d e	-98	Font	c ^o	
Action	_reset/iew()	107	4	Tooltip		
Propert	ties for element De	stase				R
						200
	Main			Graphical	Ispect	
Variable	Main desfase	D	-	Graphical a	tspect	
Variable Value	Main desfase	2	980 980	Graphical) Size Background	lspect	000 000
Variable Value Format	Main desfase desfase = 0.0000	2	90 90 90	Graphical Size Background Foreground	lspect 67 67 67	92 92 93
Variable Value Format Editable	Main desfase desfase = 0.0000		80 80 80 80	Graphical Size Background Foreground Fort	lspect	000 000 000

Un laboratorio virtual para ilustrar el concepto de ciclo límite

	\$ 200		(a) (Q) (S) (S) (S) 1
n por Ordenador a la Enseñanza de las Ciencias		Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias	
ara ilustrar el concepto de ciclo límite		Un laboratorio virtual para ilustrar el concepto de ciclo límite	
del modelo		Descripción del laboratorio virtual	

Un ciclo límite en el plano XY está descrito por las ecuaciones siguientes:

$$\begin{array}{rcl} \displaystyle \frac{dx}{dt} & = & \displaystyle y + \frac{K \cdot x \cdot (1 - x^2 - y^2)}{\sqrt{x^2 + y^2}} \\ \displaystyle \frac{dy}{dt} & = & \displaystyle -x + \frac{K \cdot y \cdot (1 - x^2 - y^2)}{\sqrt{x^2 + y^2}} \\ \displaystyle \varepsilon(0) & = & \displaystyle x_0 & (\text{Condiciones iniciales}) \\ \displaystyle \psi(0) & = & \displaystyle y_0 \end{array}$$

donde K es un parámetro del modelo.

El ciclo límite es un círculo de radio 1.0. Es decir, cualquiera que sean las condiciones iniciales para x e y (excepto $x_0 = y_0 = 0$), $|x^2 + y^2| \rightarrow 1$ cuando $t \rightarrow \infty$

El laboratorio virtual deberá permitir al alumno modificar interactivamente:

- El valor del parámetro K
- El valor de las variables x e y

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Tarea 1

Escriba la Introducción del laboratorio virtual

Para ello, use las imágenes:

- cicloLimite1.gif
- cicloLimite2.gif
- cicloLimite4.gif

que encontrará en el directorio Imagenes

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias L Un laboratorio virtual para ilustrar el concepto de ciclo límite

Complete el

algoritmo de

la simulación

Aplicación de la Simulación por Ordenador a la Enselianza de las Ciencias — Un laboratorio virtual para ilustrar el concepto de ciclo límite

Tarea 3

Tarea 4

Tarea 2

Realice la definición del modelo en Ejs

- 1. Declaración e inicialización de las variables
- 2. Páginas Evolución y Ligaduras

Se pretende obtener la vista siguiente

Un laboratorio virtual para ilustrar el concepto de ciclo límite

Péndulo simple

Tarea 4

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Péndulo simple

Descripción del modelo

Clasificar las variables del modelo en:

- Parámetros
- Variables de estado
- Variables algebraicas

101 (B) (2) (2) (2) 2 900

Péndulo simple

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Tarea 1

Tarea 2

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Tarea 3

Realice la definición del modelo en Ejs

- Declaración e inicialización de las variables
- Completar la página Ligaduras
- Completar la página Propio

101 (B) (2) (2) (2) 2 (0)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

L_{Péndulo} simple

Péndulo simple

Realice la **definición de la vista** en Ejs

El árbol de la vista debe contener los siguientes elementos

- Objeto de la clase Boton
- Objeto de la clase Etiqueta

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

- Objeto de la clase Selector
- Objeto de la clase PanelDibujo
- Objeto de la clase Flecha
- Objeto de la clase Particula
- Objeto de la clase VentanaDialogo
- Objeto de la clase PanelConEjes
- Objeto de la clase Traza

Árbol de la vista resultante

resultante

Conducción de calor en una pared múltiple

Descripción del modelo

Tarea 4

Conducción de calor en una pared múltiple

920 5 (5) (5) (5) (5)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Conducción de calor en una pared múltiple

Descripción del modelo

Pared de una cámara frigorífica compuesta por 3 capas Conducción de calor 1D en el estacionario

$$\begin{array}{rcl} T_1 - T_2 & = & \frac{L_A}{n_A} \cdot q_s \\ T_2 - T_3 & = & \frac{L_B}{n_B} \cdot q_s \\ T_3 - T_4 & = & \frac{L_C}{n_C} \cdot q_s \\ \hline & T_3 - T_4 & = & \frac{L_C}{n_C} \cdot q_s \\ \hline & r_1 & r_1 & r_1 \\ \hline & r_1 & r_1 & r_2 \\ \hline & r_1 & r_2 & r_2 \\ \hline \end{array}$$

Tras realizar la asignación de la causalidad computacional, se obtienen la ecuaciones siguientes:

$$\begin{bmatrix} q_x \end{bmatrix} = \frac{T_1 - T_4}{\frac{L_A}{\kappa_A} + \frac{L_B}{\kappa_B} + \frac{L_C}{\kappa_C}}$$
$$\begin{bmatrix} T_2 \end{bmatrix} = T_1 - \frac{L_A}{\kappa_A} \cdot q_x$$
$$\begin{bmatrix} T_3 \end{bmatrix} = T_4 + \frac{L_C}{\kappa_C} \cdot q_x$$

Conducción de calor en una pared múltiple

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Conducción de calor en una pared múltiple

Tarea 1

Tarea 2

Realice la definición del modelo en Ejs

- Declaración e inicialización de las variables
- Completar la página de ligaduras

1010 5 (B) (2) (2) 2 000

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Conducción de calor en una pared múltiple

Tarea 3

Árhol de la vista

resultante

Tarea 3

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Conducción de calor en una pared múltiple

A partir del fichero ParedMulticapaTarea3.xml, completar la definición de la vista de Ejs

La vista ha de tener una ventana (VentanaPlots) donde se muestre el perfil de temperatura a lo largo de la pared (variables T y x)

Cálculo de PI por el método de Monte Carlo

Cálculo de PI por el método de Monte Carlo

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Cálculo de PI por el método de Monte Carlo

Descripción del modelo

Estimación del valor de π mediante el método de Monte Carlo. El procedimiento consta de los pasos siguientes:

- 1. Se lanza el dardo de forma aleatoria ntotal veces. Sea naciertos el número de veces que el dardo ha guedado dentro del círculo.
- El número π se estima de la forma siguiente:

$$\pi \approx 4 \cdot \frac{n_{aciertos}}{n_{total}}$$

A mayor número de tiradas, se espera una meior aproximación.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Tarea 3

Tarea 4

Realice la definición del modelo en Ejs

- Declaración e inicialización de las variables
- Completar la página de ligaduras
- Completar la página de propio

Obtener de un número aleatorio distribuido uniformemente en [-1,1]:

2 * Math.random() - 1

Realice la definición de la vista en Ejs.

El árbol de la vista debe contener los elementos de dibujo siguientes:

- Objeto de la clase ConjuntoParticulas
- Objeto de la clase Particula

1000 E (E) (E) (E) (D)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Cálculo de P1 por el método de Monte Carlo

Tarea 4

Árbol de la vista

resultante

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Cálculo de PI por el método de Monte Carlo

Tarea 4

Vista resultante

Simulación interactiva de un globo aerostático

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Descripción del modelo

Simulación interactiva de un globo aerostático

"El globo aerostático obtiene su fuerza de sustentación mediante el calentamiento de aire dentro de una cavidad. La diferencia de densidades entre el aire caliente dentro de la cavidad y el aire frió del exterior origina una fuerza debida al empuje de Arquímedes que compensa el peso total de globo (teniendo en cuenta el peso de los ocupantes y el lastre)."

Simulación interactiva de un globo aerostático

Tarea 2

A partir del fichero GloboAerostaticoTarea1.xml, complete la definición del modelo en Ejs.

Para ello realice las dos tareas siguientes:

- 1. Rellene la página Evolución (inserte las EDO)
- 2. Rellene la página Ligaduras (inserte las ecuaciones restantes)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Tarea 3

A partir del fichero GloboAerostaticoTarea2.xml, complete la definición de la vista de Ejs.

Para ello realice las dos tareas siguientes:

1. Realice una vista animada del globo aerostático. Para ello use dos objetos de la clase Imagen y un objeto de la clase Particula.

Asocie a cada uno de los dos objetos de la clase Imagen las imágenes globoAerost.jpg y sun.gif que se encuentran ubicadas en el directorio Imagenes.

 Cree una ventana donde se puedan ver la variación temporal de las variables h, P, T y Tg.
 Para ello emplee objetos de las siguientes clases: VentanaDialogo, PanelConEjes y Traza.

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Simulación interactiva de un globo aerostático

Tarea 3

Vista

resultante:

101 (B) (2) (2) (2) 2 900

101 (B) (2) (2) (2) 2 000

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Simulación interactiva de un globo aerostático

Tarea 3

Árbol de la vista resultante

Sistema bola y varilla

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Descripción del modelo

Sistema bola y varilla

 $\frac{dx}{dt} = v$ $\frac{dv}{dt} = -\frac{5}{7} \cdot g \cdot \sin(\theta)$

Se realizan las dos consideraciones siguientes:

- Se limita la posición de la bola a la longitud de la varilla Cuando la bola alcanza uno de los extremos de la varilla, no se permite que sobrepase el extremo y se iguala su velocidad a cero.
- Modelado de la fricción

Cuando la velocidad de la bola y el ángulo de la varilla son pequeños, la velocidad de la bola se hace cero.

101 (B) (2) (2) (2) 2 900

920 5 (5) (5) (5) (5)

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias

Tarea 1

Sistema bola y varilla

Complete el

algoritmo de

la simulación

Tarea 2

Realice la definición del modelo en Ejs

- 1. Declaración e inicialización de las variables
- 2. Páginas Evolución y Ligaduras

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias Sistema bola y varilla

Tarea 3

Aplicación de la Simulación por Ordenador a la Enseñanza de las Ciencias L Sistema bola y varilla

Tarea 3

Vista resultante

900

24