
Ph.D. Dissertation

Hybrid System Modeling Using the
Parallel DEVS Formalism and the

Modelica Language

Victorino Sanz Prat

Computer Scientist

Departamento de Informática y Automática

Escuela Técnica Superior de Ingenieŕıa Informática

Universidad Nacional de Educación a Distancia

Madrid, 2010

Department Informática y Automática
E.T.S. de Ingeniería Informática

Title Hybrid System Modeling
Using the Parallel DEVS Formalism
and the Modelica Language

Author Victorino Sanz Prat

Degree Computer Scientist
Facultad de Informática
Universidad Politécnica de Madrid

Supervisors Alfonso Urquía Moraleda
Sebastián Dormido Bencomo

To my wife, Irene.

Acknowledgements

I would like to express my eternal gratitude to the people that has contributed,

to a greater or lesser extent, to the development of this dissertation.

First of all, to my supervisors Prof. Alfonso Urqúıa and Prof. Sebastián

Dormido, for giving me the opportunity to work at the department, to enter

the modeling and simulation world, for helping me and supporting my work

in all its terms. Specially, I would like to thank the support offered by Prof.

Alfonso Urqúıa for introducing me into this research work, for guiding me during

its development, for reviewing my work and always having the best advice or

comment.

To Prof. François E. Cellier, Prof. Gabriel A. Wainer and Prof. Mamadou

D. Seck, for inviting me to visit them in their home institutions, for offering good

advices and critics, and for the shared work.

To Prof. Carla Mart́ın and Prof. Miguel Ángel Rubio, for sharing their

knowledge about Modelica and about modeling and simulation in general, for

their friendship, and for being at the other end of the rope.

To Prof. José Manuel Dı́az, for all his good advices and help.

To the rest of my colleagues at the department. Specially those who shared

a bit their lives with me inside the 5.06, and also the one currently dedicated to

pottery. Thank you for the encouraging conversations, discussions, shared coffees

and jokes.

To Prof. Cesar de Prada and Prof. Daniel Sarabia, for the information

provided about their model of the supermarket refrigeration system developed

using EcosimPro.

To my old colleagues at Sun Microsystems, Alberto Ambroj, David Piqueras,

Manuel Paniagua and Jose Antonio Sanfelix, for pushing me to leave them and

start a new life at the university.

Finally, I would like to thank the immeasurable support provided by my family

and friends, always encouraging me to carry on and giving me further more than

the best they can. Specially to my wife, Irene, for her infinite patience, so many

times not deserved, for sharing her life with me and for the received love.

Contents

List of Figures ix

List of Tables xiii

List of Acronyms xv

1 Introduction, Objectives and Structure 1

1.1 Introduction . 1

1.2 Objectives . 4

1.3 Document Structure . 7

1.4 Publications . 11

1.5 Research Projects . 12

2 Hybrid System Modeling and Simulation 13

2.1 Introduction . 13

2.2 Continuous-time Modeling . 14

2.2.1 Evolution of Continuous-time Modeling 14

2.2.2 Graphical Block-Diagram Modeling 16

2.2.3 The Physical Modeling Paradigm 17

2.2.4 The Object-Oriented Modeling Methodology 17

2.2.5 Object-Oriented Modeling Environments 19

2.3 The Modelica Language . 20

Contents

2.3.1 Characteristics of Modelica 20

2.3.2 Modelica Classes . 23

2.3.3 Modelica Libraries . 25

2.3.4 Simulation of Modelica Models 27

2.4 Discrete-Event System Modeling 29

2.5 Discrete-Event System Simulation 30

2.6 The Parallel DEVS Formalism . 33

2.6.1 Atomic P-DEVS Models . 34

2.6.2 Coupled P-DEVS Models 35

2.6.3 DEVS-based Approaches for Hybrid System Modeling . . . 36

2.7 The Arena Simulation Environment 38

2.7.1 Arena Panels . 39

2.7.2 SIMAN Language . 41

2.7.3 Random Number Generation in Arena 41

2.7.4 Random Variates Generation in Arena 43

2.8 Conclusions . 43

3 Integrating the P-DEVS Formalism in EOO Languages 45

3.1 Introduction . 45

3.2 Identification of Requirements . 45

3.2.1 Discrete-Event Model Behavior 45

3.2.2 Model Communication Mechanism 46

3.2.3 Interfacing P-DEVS and Other Modeling Formalisms . . . 47

3.3 Requirements Applied to Modelica 49

3.3.1 Atomic P-DEVS Models . 49

3.3.2 Modular P-DEVS Models 49

3.3.3 Interface Between P-DEVS Models and Models Described

Using Other Formalisms in Modelica 50

3.4 Conclusions . 51

4 Message Passing Mechanism in Modelica 53

4.1 Introduction . 53

ii

Contents

4.2 Definition of the Problem . 54

4.3 Required Functionalities of the Message Passing Mechanism 55

4.4 Specification and Design of a Message Passing Mechanism for EOO

Languages . 55

4.4.1 Messages and Mailboxes . 56

4.4.2 Communication Using Messages and Mailboxes 58

4.4.3 Example of Model Communication Using Messages 62

4.5 Analysis of Alternative Implementations of Message Passing Com-

munication in Modelica . 64

4.5.1 Direct Transmission . 65

4.5.2 Text File Storage . 66

4.5.3 Dynamic Memory Storage 67

4.6 Implemented Message Passing Mechanism in Modelica 68

4.6.1 Default Message Type . 69

4.6.2 Functions to Manage the Default Message Type 69

4.6.3 Defining Other Types of Messages 70

4.7 P-DEVS Model Communication in Modelica 70

4.7.1 1-to-Many Connections . 72

4.8 Conclusions . 73

5 The DEVSLib Library 75

5.1 Introduction . 75

5.2 DEVSLib Architecture . 76

5.2.1 User’s Area . 76

5.2.2 Developer’s Area . 79

5.3 Atomic P-DEVS Models in DEVSLib 79

5.3.1 Components of the AtomicDEVS Model 81

5.3.2 Definition of the State and its Initialization 81

5.3.3 Interface of the AtomicDEVS Model 83

5.3.4 Definition of the Transition, Output and Time Advance

Functions . 84

iii

Contents

5.3.5 Event Detection and Execution of Transitions 84

5.4 Coupled P-DEVS Models in DEVSLib 86

5.5 Additional Characteristics Included in DEVSLib 87

5.6 Conclusions . 88

6 Construction of Discrete-Event Models Using DEVSLib 89

6.1 Introduction . 89

6.2 Construction of New Atomic Models 90

6.2.1 Processor Model Constructed Using DEVSLib 91

6.3 Construction of Coupled P-DEVS Models 95

6.4 Modeling an Automatic Teller Machine 96

6.5 Quantized State Systems in DEVSLib 98

6.5.1 QSS Methods in DEVSLib 100

6.5.2 Lotka-Volterra System . 101

6.6 Conclusions . 104

7 Hybrid System Modeling Using DEVSLib 107

7.1 Introduction . 107

7.2 Interfaces between DEVSLib and Other Modelica Libraries 108

7.2.1 Signals to Messages . 109

7.2.2 Messages to Signals . 111

7.3 Controlled Tanks System . 111

7.4 Opto-Electrical Communication System 118

7.4.1 Communication Between the Opto-Electrical Interfaces . . 119

7.4.2 Modelica/DEVSLib Model 120

7.4.3 Experiment and Results . 122

7.5 Conclusions . 126

8 Modeling of Hybrid Control Systems Using DEVSLib 127

8.1 Introduction . 127

8.2 Modeling of Hybrid Control Systems Using DEVSLib 127

8.2.1 Sensors and Actuators . 128

iv

Contents

8.2.2 Controllers . 129

8.3 Supermarket Refrigeration System 130

8.3.1 Display Case . 130

8.3.2 Suction Manifold . 133

8.3.3 Compressor Rack . 134

8.3.4 Experiment Setup and Simulation Results 137

8.4 Crane and Embedded Controller System 139

8.4.1 Crane System Model . 140

8.4.2 Discrete Controller Model 143

8.4.3 Simulation Results and Discussion 146

8.5 Conclusions . 150

9 Process-Oriented Modeling in Modelica 151

9.1 Introduction . 151

9.2 Additional Required Functionalities 152

9.3 Entity Management . 153

9.4 Dynamic Object Management . 154

9.5 Conclusions . 156

10 The SIMANLib Library 157

10.1 Introduction . 157

10.2 Library Architecture . 158

10.3 Blocks . 159

10.3.1 Create . 160

10.3.2 Dispose . 162

10.3.3 Queue . 162

10.3.4 Seize . 164

10.3.5 Delay . 165

10.3.6 Release . 167

10.3.7 Branch and BranchRule . 168

10.3.8 Assign and ExternalAssign 169

10.3.9 Count . 170

v

Contents

10.3.10 Tally . 170

10.4 Elements . 171

10.4.1 EntityType . 171

10.4.2 Queue . 172

10.4.3 Resource . 173

10.4.4 Objects, Attributes and Variables 174

10.4.5 Counter . 175

10.4.6 DStat . 175

10.4.7 Tally . 177

10.5 Model Construction Using SIMANLib 178

10.6 Modeling a Restaurant Using SIMANLib 181

10.7 Conclusions . 183

11 The ARENALib Library 185

11.1 Introduction . 185

11.2 Library Architecture . 185

11.3 Flowchart Modules . 187

11.3.1 Create . 187

11.3.2 Dispose . 187

11.3.3 Process . 188

11.3.4 ExternalProcess . 189

11.3.5 Decide . 190

11.3.6 Assign . 191

11.3.7 Record . 191

11.4 Data Modules . 192

11.5 System Modeling Using ARENALib 193

11.6 Electronic Factory Model . 194

11.7 Conclusions . 196

12 Hybrid Process-Oriented Modeling 197

12.1 Introduction . 197

12.2 Orange Juice Canning Factory . 197

vi

Contents

12.3 Tank-level Control System . 201

12.4 Soaking-Pit Furnace System . 202

12.5 Conclusions . 205

13 The RandomLib Library 207

13.1 Introduction . 207

13.2 The CMRG package . 208

13.2.1 Uniform Random Number Generation 210

13.3 The Variates Package . 212

13.3.1 Random Variates Generation 214

13.3.2 Use of Another RNG . 217

13.4 Conclusions . 218

14 Conclusions and Future Research 219

14.1 Conclusions . 219

14.2 Future Research . 222

Bibliography 225

APPENDIX 243

A Semaphores in Modelica 245

A.1 Introduction . 245

A.2 Semaphore Mechanism Description 246

A.3 Modelica Semaphore Model . 247

A.3.1 Mutual Exclusion . 248

A.3.2 Dining Philosophers . 250

A.4 Synchronization of DEVS Message Communication Using Semaphores253

A.5 Semaphore Model Source Code . 257

vii

List of Figures

2.1 Simulation algorithm of hybrid models. 28

4.1 Model communication with messages using connectors. 60

4.2 Example of a SIMAN single-queue system modeled using messages. 63

4.3 Example of P-DEVS models communication scheme in Modelica. . 72

5.1 DEVSLib library architecture: a) general architecture; b) user’s

area; and c) developer’s area. 77

5.2 Event detection and transition execution diagram of the Atom-

icDEVS model. 84

6.1 Simple coupled P-DEVS model constructed using DEVSLib. 95

6.2 State diagram of the ATM system (the system generates outputs

at encircled states). 97

6.3 ATM system modeled using DEVSLib: a) top-level components

and; b) authorization subsystem. 97

6.4 Simulation results for the DEVSLib ATM model, obtained using

Dymola. 97

6.5 a) Quantization function with hysteresis and; b) block diagram of

a QSS system [Kofman and Junco, 2001]. 99

6.6 Lotka-Volterra model composed using DEVSLib. 101

List of Figures

6.7 Simulation of the Lotka-Volterra model developed using DEVSLib,

PowerDEVS and ModelicaDEVS (relative errors between the Pow-

erDEVS and DEVSLib models at the right). Integration method:

a) QSS1; b) QSS2; and c) QSS3. 103

7.1 Response of DEVSLib signal-to-message interface models: a) CrossUP

(value == 2); b) CrossDOWN (value == 2); and c) quantizer

(quantum == 1). 110

7.2 Controlled two-tank system. 111

7.3 State diagram of the controlled two-tank system. 112

7.4 Tank system modeled with: a) DEVSLib and; b) StateGraphs. . . 114

7.5 Tank system controller modeled with: a) DEVSLib and; b) State-

Graphs. 115

7.6 Internal structure of the tank controller implemented using DE-

VSLib. 116

7.7 Simulation results of the tank filling/emptying system (DEVSLib

and StateGraph results overlap). 116

7.8 Basic opto-electrical interfaces [Biere et al., 2007]. 119

7.9 Basic opto-electrical communication system modeled using Mod-

elica/DEVSLib. 120

7.10 Opto-electrical transmitter modeled using DEVSLib. 120

7.11 Opto-electrical receiver modeled using DEVSLib. 121

7.12 Sinusoid electrical current transformed into optical impulses, mod-

eled with: a) CD++ and; b) Modelica [Sanz, Jafer, Wainer, Nico-

lescu, Urquia and Dormido, 2009]. 123

7.13 Optical impulses translated into current by the receiver, modeled

with: a) CD++ and; b) Modelica [Sanz, Jafer, Wainer, Nicolescu,

Urquia and Dormido, 2009]. 124

7.14 Opto-electrical communication system, modeled with: a) CD++

and; b) Modelica [Sanz, Jafer, Wainer, Nicolescu, Urquia and

Dormido, 2009]. 125

x

List of Figures

8.1 Simple temperature control system described using DEVSLib. . . . 129

8.2 a) Display case, including air controller; and b) detail of air con-

troller modeled using DEVSLib. 133

8.3 Pressure control modeled using: a) DEVSLib and the MSL; and

b) an atomic DEVSLib model. 135

8.4 Actions performed by the atomic DEVSLib PI controller (note that

no output is generated with phase == 1). 136

8.5 Supermarket refrigeration system modeled using DEVSLib and

Modelica. 137

8.6 Evolution of air temperatures in both displays using: a) first and

second control approaches; b) atomic DEVSLib control approach. . 138

8.7 Scheme of the crane system [Schiftner et al., 2006] 141

8.8 “Crane and Embedded Controller” system: a) non-linear system

with discrete controller; b) discrete controller implemented with

DEVSLib and the MSL; and c) diagnosis module of the controller . 144

8.9 Task B results in: a) DEVSLib; and b) Schiftner [2006] 148

8.10 Task C results in: a) DEVSLib; and b) Schiftner [2006] 149

10.1 SIMANLib library architecture. 159

10.2 SIMANLib ExternalAssign block. 170

10.3 Bank teller system modeled using SIMANLib: a) flowchart dia-

gram (blocks); and b) static data (elements). 179

10.4 Number of customers in queue for the bank teller system modeled

using SIMANLib. 180

10.5 Restaurant modeled using SIMANLib. 181

11.1 ARENALib library: a) general architecture; b) detail of the Ba-

sicProcess package. 186

11.2 ARENALib Create module. 187

11.3 ARENALib Dispose module. 187

11.4 ARENALib Process module. 188

11.5 ARENALib ExternalProcess module. 189

xi

List of Figures

11.6 ARENALib Decide module. 191

11.7 ARENALib Record module. 191

11.8 Bank teller system modeled using ARENALib. 193

11.9 Electronic assembly system modeled using ARENALib. 194

12.1 Orange juice canning factory modeled using SIMANLib. 199

12.2 Simulation results of the orange juice canning factory. 200

12.3 Tank-level control system modeled using ARENALib (first ap-

proach). 201

12.4 Tank-level control system modeled using ARENALib (second ap-

proach). 202

12.5 Evolution of the tank level for the Tank-level control system. . . . 202

12.6 Soaking-pit furnace system modeled using ARENALib. 203

12.7 Evolution of temperatures in the soaking-pit furnace system. . . . 204

13.1 RandomLib structure: a) CMRG package; and b) Variates package. 208

13.2 Discrete and continuous probability distribution functions included

in RandomLib. 213

13.3 Some random variates generated by model VariatesSimple2, using

RandomLib: a) continuous distributions and; b) discrete distribu-

tions. 216

A.1 Access to shared resource in mutual exclusion using semaphores. . 249

A.2 Results of mutual exclusion model (processes alternate their criti-

cal sections). 250

A.3 Dining philosophers problem modeled using Modelica: a) five philoso-

phers; and b) nine philosophers. 251

A.4 Simulation results for the dining philosophers problem modeled

using Modelica. 253

A.5 Internal structure of the AtomicDEVS model. 254

A.6 Simulation results for the SenderReceiver model. 257

xii

List of Tables

2.1 Modelica 3.1 specialized classes and their characteristics [Modelica

Association, 2009]. 24

2.2 Some available free Modelica libraries [Modelica Libraries, 2010]. . 26

2.3 Some discrete probability distributions supported by Arena. 43

2.4 Some continuous probability distributions supported by Arena. . . 43

4.1 Operations with mailboxes. 61

4.2 Operations with messages. 61

6.1 Comparison of simulation performance based on the Lotka-Volterra

model. 104

7.1 Performance comparison based on the tank system. 117

8.1 Parameters for the supermarket refrigeration system. 138

8.2 Initial conditions for state variables. 139

8.3 Model variables . 141

8.4 Model parameters . 142

8.5 Task A results . 146

9.1 Variables of the Entity record in SIMANLib and ARENALib. . . . 153

10.1 Bank teller system simulation results using SIMANLib and SIMAN.180

List of Tables

10.2 Restaurant simulation results, comparing SIMANLib and SIMAN

(in average values). 183

11.1 Bank teller system simulation results using SIMANLib, ARENALib,

Arena and SIMAN. 193

11.2 Electronic factory simulation results, comparing ARENALib and

Arena (in average values). 195

13.1 Components of the RngStream record. 209

xiv

List of Acronyms

ACSL Advanced Continuous Simulation Language

ATM Automatic Teller Machine

CMRG Combined Multiple Recursive Generators

CSSL Continuous System Simulation Language

DAE Differential and Algebraic Equations

DASSL Differential Algebraic System Solver

DESS Differential Equation System Specification

DEVS Discrete Event System Specification

DEV&DESS Discrete Event and Differential Equation System Specification

DTSS Discrete Time System Specification

EOO Equation-Based Object-Oriented

FDTD Finite-Difference Time-Domain

FEM Finite Elements Method

FIFO First In First Out

GUI Graphical User Interface

HVF Higher Value First

IPC Inter Process Communication

LIFO Last In First Out

LVF Lower Value First

MSL Modelica Standard Library

ODE Ordinary Differential Equations

ONoC Optical Network on Chip

P-DEVS Parallel Discrete Event System Specification

QSS Quantized State System

RNG Random Number Generator

SoC Systems on Chip

TCP/IP Transfer Control Protocol / Internet Protocol

1
Introduction, Objectives

and Structure

1.1 Introduction

In the physical modeling paradigm, systems are described in a modular way. A

system is decomposed into subsystems, and each subsystem is described using

an interface, balances of mass, energy and momentum, and material equations.

The interface is used to describe the relations between subsystems. A model is

considered as a constraint between model variables [Åström et al., 1998].

The object-oriented modeling methodology facilitates the description of mod-

els using acausal equations, which makes the application of the physical modeling

paradigm possible. In object-oriented models, the mathematical manipulations

needed to simulate the model in a digital computer (e.g., computational causality

assignment, algebraic loop tearing and index reduction) are automatically per-

formed by the modeling environment. This represents a considerable advantage

when compared with the block-diagram modeling paradigm, where the model

has to be manually manipulated by the modeler in order to simulate it [Åström

et al., 1998]. This methodology also facilitates the design, programming, reuse

and maintenance of models [Cellier, 1996].

Modelica is a general-purpose modeling language, freely distributed under its

own license, that allows the description of models following the object-oriented

methodology. Similarly to effort performed in the 60’s to describe the CSSL

Chapter 1 Introduction, Objectives and Structure

standard [Augustin et al., 1967], Modelica constitutes an international effort to

standardize the description of models using this methodology [Mattsson et al.,

1998], in comparison with the multiple languages previously developed. The

use of an standard language facilitates the exchange of models between different

users and tools. Modelica includes characteristics from languages like ALLAN

[Jeandel et al., 1997], Dymola [Elmqvist, 1978], NMF [Sahlin et al., 1996], Ob-

jectMath [Fritzson et al., 1995], Omola [Andersson, 1989], SIDOPS+ [Breuneuse

and Broenink, 1997] and Smile [Kloas et al., 1995].

The first version of Modelica appeared in September 1997. Since then, Model-

ica has been increasingly used to describe models. The industry and the research

communities have widely accepted the language, as seen in the increasing num-

ber of contributions and participants in the International Modelica Conferences

[Modelica, 2010]. Also, the number of Modelica libraries developed (both free

and commercial) has increased. Even the language itself has been in continuous

development, being the 3.1 its last version [Modelica Association, 2009].

The functionalities of the Modelica language are extended by the develop-

ment of libraries of components. Modelica libraries are compilations of com-

ponents jointly designed to facilitate the description of models using different

formalisms or in different domains. Currently, Modelica supports the description

of models from multiple domains (e.g., electrical, mechanical, thermodynamical

and chemical) by means of different libraries [Modelica Libraries, 2010]. Some of

the supported formalisms are the ODE, DAE, Bond Graphs [Cellier and Nebot,

2005] and System Dynamics [Cellier, 2008].

The description of discrete-event and hybrid models using Modelica is facili-

tated due to the included functionalities to manage time and state events [Otter

et al., 1999; Mattsson et al., 1999]. Using these hybrid modeling functionali-

ties, Modelica supports multiple discrete-event modeling formalisms, like Petri

Nets [Mosterman et al., 1998], StateGraphs [Otter et al., 2005] and StateCharts

[Ferreira and de Oliveira, 1999].

As already mentioned, the use of a methodology or a mathematical formalism

to describe models facilitates its development, maintenance, reuse and adaptation

2

1.1 Introduction

to different experiments and situations. The Parallel DEVS (P-DEVS) formal-

ism [Chow, 1996] and the process-oriented paradigm [Law, 2007] are two widely

used methodologies to describe discrete-event systems. Multiple contributions

have also discussed their application to the description of hybrid dynamic models

[Vangheluwe, 2000; Giambiasi and Carmona, 2006; Kelton et al., 2007].

The Classic DEVS formalism was described by Zeigler [1976]. P-DEVS is an

extension of the Classic DEVS formalism that allows simultaneous occurrences of

events, removing the restriction of their sequential management. DEVS has been

also considered as the equivalent of the differential equations formalism for de-

scribing discrete-event systems [Zeigler, 1989]. Other discrete-event system mod-

eling methodologies and formalisms can be described using DEVS [Vangheluwe,

2000].

The process-oriented paradigm is one of the three “world-views” [Kiviat, 1969]

commonly used to describe discrete-event systems. It provides an intuitive mech-

anism to describe a system as a series of interconnected processes, instead of

occurrences of events. Process-oriented models represent systems as a flow of en-

tities that flow through the processes of the system using the available resources

[Law, 2007]. Arena, which is internally implemented using the SIMAN language

[Pegden et al., 1995], is a simulation environment widely used in academia and in-

dustry to describe discrete-event systems following the process-oriented approach

[Kelton et al., 2007].

The feasibility of describing Classic DEVS models in Modelica was demon-

strated in Fritzson [2003]. Also, a Modelica library called ModelicaDEVS [Bel-

trame and Cellier, 2006] was developed for modeling continuous-time systems

using the Classic DEVS formalism and the QSS integration algorithms [Kof-

man, 2004]. These DEVS implementations in Modelica define the communica-

tion between models as a change in the value of a boolean variable, and using

the mentioned hybrid modeling functionalities to perform the management of

discrete-events. However, as it will be discussed, the description of P-DEVS and

process-oriented models require additional mechanisms currently not present in

Modelica. The description of the P-DEVS model communication mechanism in

3

Chapter 1 Introduction, Objectives and Structure

Modelica is not straightforward. None of the existing Modelica libraries support

the P-DEVS formalism, neither the process-oriented approach to develop models

of discrete-event systems in Modelica. The use of P-DEVS to formally describe

discrete-event systems in Modelica could facilitate the construction, maintenance

and reuse of models and the introduction of other formalisms, like the process-

oriented approach, into Modelica.

1.2 Objectives

The main objective of this Ph.D. dissertation is to include new functionalities

in the Modelica language to describe the discrete-event part of hybrid models

using the P-DEVS formalism and the process-oriented paradigm. The use of

these methodologies combined with the object-oriented modeling methodology,

supported by Modelica, will facilitate the description of hybrid dynamic models.

To achieve this objective, the completion of the following tasks is proposed:

1. The identification and analysis of the requirements to describe P-DEVS and

process-oriented models in Modelica. This task constitutes the foundations

of the work presented in this dissertation.

2. A new Modelica library, named DEVSLib, will be designed and developed

to facilitate the description of discrete-event models using the P-DEVS

formalism. The definition of new atomic and coupled models using this

library will be as close as possible to the formal P-DEVS specification of

the model.

3. The communication between P-DEVS models follows a message passing

structure. The current Modelica mechanism for model communication is

based on the connection of model variables, so it does not facilitate the

transmission of structured information between models. A message passing

communication mechanism in Modelica will be proposed, to facilitate the

description of P-DEVS models. This mechanism could be used to commu-

4

1.2 Objectives

nicate structured information between models using multiple configurations

(1:1, 1:N, N:1). Therefore:

(a) A message passing mechanism in Modelica will be proposed, together

with the language modifications needed to facilitate the communica-

tion of models using the proposed mechanism.

(b) A partial implementation of the proposed message passing mechanism

will be developed, using the current Modelica functionalities. This

mechanism will be used in the development of the DEVSLib library.

4. The P-DEVS formalism will be used to describe the behavior of some of

the components of the SIMAN language. This formal specification will

facilitate the implementation of these components in Modelica, using the

new DEVSLib library. In this way, the P-DEVS formalism will be used to

support process-oriented modeling in Modelica.

5. Two new libraries, named SIMANLib and ARENALib, will be designed and

implemented in Modelica to support the description of discrete-event models

using the process-oriented modeling paradigm. These two new libraries will

provide similar model description and analysis functionalities to the Arena

simulation environment and the SIMAN language. The SIMANLib library

will reproduce the functionalities of the Create, Dispose, Queue, Seize, De-

lay, Release, Branch, Count, Tally and Assign SIMAN blocks. These blocks

have been selected because they constitute the basic components required to

describe the majority of the processes found in logistic systems. The ARE-

NALib library will reproduce the functionalities of the Create, Dispose,

Process, Record, Decide and Assign modules of the Arena’s BasicProcess

panel. These components, similarly to Arena, will be constructed using the

components of the SIMANLib library.

6. Discrete-event system models are sometimes stochastic. Another task of

this dissertation will be to provide the Modelica language with stochastic

modeling functionalities. Neither the Modelica language nor the Modelica

5

Chapter 1 Introduction, Objectives and Structure

Standard Library include any random number generation functionality. A

new free Modelica library, named RandomLib, will be developed to facili-

tate the generation of uniform random numbers and random variates. The

functionalities included in RandomLib will replicate the stochastic model-

ing functionalities included in the Arena simulation environment, in order

to facilitate the validation of the developed models.

7. Interface models will be developed and included in the implemented libraries

to make them compatible with the rest of the Modelica libraries. This is, to

allow the connection of discrete-event models constructed using DEVSLib,

SIMANLib and ARENALib with models constructed using other Modelica

libraries. These interface models will translate the discrete-event messages

generated by the P-DEVS models into discrete-time signals, and discrete-

time and continuous-time signals into messages. The interaction between

process-oriented components and continuous-time models will also be stud-

ied. Some process-oriented components will be extended with additional

functionalities to interact with continuous-time models, and construct hy-

brid process-oriented models.

8. The description of hybrid control systems will also be studied. In this case,

discrete-event controllers will be described using the P-DEVS formalism

and the continuous-time plants using other Modelica libraries. Both parts

will be connected using the developed interface models.

9. Finally, a set of models to illustrate the use of the developed libraries will

be implemented. These models will include both discrete-event stochas-

tic models and deterministic hybrid models. Two models, of an automatic

teller machine and the predator-prey interactions described by Lotka and

Volterra, will be used to describe the construction of discrete-event mod-

els using the P-DEVS formalism in Modelica, by means of the DEVSLib

library. Two hybrid models of a two tank system and an opto-electrical

communication system will be used to present the description of hybrid dy-

namic systems using DEVSLib. The application of the P-DEVS formalism

6

1.3 Document Structure

to the description of hybrid control systems will be discussed using models

of a supermarket refrigeration system and a crane with an embedded dis-

crete controller. Models of a bank teller, a restaurant and an electronic as-

sembly factory will be used to present the construction of process-oriented

models using SIMANLib and ARENALib. Finally, models of an orange

juice factory, a tank-level controller and a soaking-pit furnace system will

be described to show the hybrid process-oriented functionalities included in

SIMANLib and ARENALib.

1.3 Document Structure

The description of the developments presented in this dissertation is organized in

the following chapters and appendices:

Chapter 2. The evolution and current state of the different modeling and simulation

techniques that can be applied to hybrid system modeling is presented in

this chapter. The evolution of continuous-time and discrete-event modeling

methodologies is described, detailing the characteristics of the Modelica

language, the P-DEVS formalism and the Arena simulation environment.

The evaluation of the described methodologies has been used as an starting

point for the development of this Ph.D. dissertation.

Chapter 3. The requirements needed to describe P-DEVS models in Modelica are iden-

tified and discussed in this chapter. The identification of the conceptual

differences between Modelica and P-DEVS supposes the first step in the

development of this dissertation. The rest of the work presented in this dis-

sertation refers to the approaches taken and developed in order to facilitate

the description of P-DEVS models in Modelica.

Chapter 4. The design and implementation of a message passing mechanism in Model-

ica is described in this chapter. This has been the most important challenge

encountered during the development of this dissertation, and represents the

7

Chapter 1 Introduction, Objectives and Structure

cornerstone of the performed works. The approaches studied and imple-

mented during the development of this mechanism are discussed. The se-

lected approach, its use and the ports defined to establish communication

between models are detailed.

Chapter 5. The DEVSLib library, that supports the P-DEVS formalism in Modelica,

is described in this chapter. The general architecture of the library and its

components are described. The developed message passing mechanism is

used to describe the communication between models in DEVSLib. The pre-

sentation of the library is performed from the point of view of the developer,

describing the implementation details.

Chapter 6. The construction of discrete-event models using the DEVSLib library is

described in this chapter. Two case studies are discussed to describe the

use of the DEVSLib library. A model of an automatic teller machine is

described as an example of a pure discrete-event system modeled using

P-DEVS. Also, a discrete-event model of a Lotka-Volterra predator-prey

system, which is defined using differential equations, is discussed. This

model has been constructed using the QSS integration methods developed

using DEVSLib, to demonstrate that the library can be used to model

multiple types of DEVS-based systems.

Chapter 7. The description of hybrid systems using the DEVSLib library is presented in

this chapter. The behavior of the interface models included in the library, in

order to combine P-DEVS models with other Modelica libraries is detailed.

The use of these interfaces to describe hybrid systems is presented by means

of two case studies. The first case study represents a system with two tanks

controlled by a discrete-event controller. This case study is included to

describe the interactivity between the continuous-time part (i.e., the tanks

and valves) with the discrete-event behavior (i.e., the controller), which

is algorithmically described. The second case study represents an opto-

electronic communication interface, where the electronic part is modeled

using continuous-time Modelica models and the optical part is modeled

8

1.3 Document Structure

using DEVSLib. This case study is included to show the versatility of using

DEVSLib and Modelica to describe multi-domain hybrid systems.

Chapter 8. The application of the modeling functionalities included in DEVSLib to the

description of hybrid control systems is presented in this chapter. These

functionalities are described by means of two case studies: a crane system

with an embedded discrete controller and a supermarket refrigeration sys-

tem. Both models are used to present the feasibility of describing hybrid

control systems using DEVSLib combined with other Modelica models. An

evaluation of different approaches (using Modelica, atomic DEVSLib models

or coupled DEVSLib models) to describe the controllers is also discussed.

Chapter 9. The functionalities required to describe process-oriented models in Modelica

are analyzed in this chapter. Process-oriented models communicate using

a mechanism equivalent to P-DEVS models, and so the described message

passing mechanism is used to facilitate their description. However, addi-

tional funcitionalities are required in order to model systems following the

process-oriented approach. These functionalities include the management

of the entities and their flow through the system, and the management of

variable-size data structures to store user-defined information and statisti-

cal indicators.

Chapter 10. A new Modelica library, named SIMANLib, that includes low-level func-

tionalties to describe process-oriented models is presented in this chapter.

The architecture of the library, its design, components and implementation

are detailed. SIMANLib includes components equivalent to the Create,

Dispose, Queue, Seize, Delay, Release, Branch, Count, Tally and Assign

SIMAN blocks. The description of the SIMANLib components has been

performed using the P-DEVS formalism, and their development has been

performed using the DEVSLib library. These components are found in the

majority of models developed to describe logistic systems, and are also used

to describe the internal behavior of the ARENALib components. A case

study of a restaurant modeled using SIMANLib is described.

9

Chapter 1 Introduction, Objectives and Structure

Chapter 11. Another new Modelica library, named ARENALib, that includes high-level

functionalities to describe process-oriented models is presented in this chap-

ter. ARENALib functionalities are at a higher-level when compared with

SIMANLib functionalities, that describe simpler actions and processes. The

architecture of the library, its design, components, implementation and use

are detailed. ARENALib includes components equivalent to the Create,

Dispose, Process, Record, Decide and Assign modules of the Arena’s Ba-

sicProcess panel. A case study of a electronic assembly factory is described.

Chapter 12. The functionalities included in SIMANLib and ARENALib for the devel-

opment of hybrid systems following the process-oriented approach are de-

scribed in this chapter. The use of these functionalities to describe systems

is shown by means of three case studies: an orange juice canning factory,

a tank-level control system and a soaking-pit furnace system. These case

studies include different characteristics described using the hybrid process-

oriented modeling functionalities included in SIMANLib and ARENALib.

Chapter 13. The implementation of the RandomLib library is presented in this chapter.

This new library can be used, in combination with the other developed

libraries, to describe discrete-event stochastic models. It includes a random

number generator and multiple random variates generation functions.

Chapter 14. The conclusions of this dissertation, as well as some ideas for future research

work, are presented in this chapter.

Appendix A. This appendix contains a description of a semaphore model developed using

Modelica. This model was designed and implemented during the develop-

ment of the message passing mechanism as a synchronization method for

P-DEVS models communication. However, due to the poor performance

obtained using this model it was discarded in the final implementation of

the communication mechanism. Because of this its description is not in-

cluded in Chapter 4.

10

1.4 Publications

1.4 Publications

The following contributions have been published during the development of this

Ph.D. dissertation:

1. V. Sanz, A. Urquia and S. Dormido. ARENALib: A Modelica Library for

Discrete-Event System Simulation. In Proceedings of the 5th International

Modelica Conference, Vienna, Austria, 2006, pp 539–548.

2. V. Sanz, A. Urquia and S. Dormido. DEVS Specification and Implementa-

tion of SIMAN Blocks Using the Modelica Language. In Proceedings of the

Winter Simulation Conference 2007, Washington, D.C., USA, 2007, p 2374.

3. V. Sanz, A. Urquia and S. Dormido. Introducing Messages in Modelica

for Facilitating Discrete-Event System Modeling. In Proceedings of the 2nd

International Workshop on Equation-Based Object-Oriented Languages and

Tools, Paphos, Cyprus, 2008, pp 83–94.

4. V. Sanz, A. Urquia and S. Dormido. Introducing Messages in Modelica

for Facilitating Discrete-Event System Modeling. Simulation News Europe,

18(2), 2008, pp 42–53.

5. V. Sanz, S. Jafer, G. Wainer, G. Nicolescu, A. Urquia and S. Dormido.

Hybrid Modeling of Opto-Electrical Interfaces Using DEVS and Modelica.

In Proceedings of the DEVS Integrative M&S Symposium, Spring Simulation

Multiconference, San Diego, CA, USA, 2009.

6. V. Sanz, F.E. Cellier, A. Urquia and S. Dormido. Modeling of the AR-

GESIM “Crane and Embedded Controller” System using the DEVSLib

Modelica Library. In Proceedings of the 3rd IFAC Conference on Analy-

sis and Design of Hybrid Systems (ADHS’09), Zaragoza, Spain, 2009.

7. F.E. Cellier and V. Sanz. Mixed Quantitative and Qualitative Simulation

in Modelica. In Proceedings of the 7th International Modelica Conference,

Como, Italy, 2009, pp 86–95.

11

Chapter 1 Introduction, Objectives and Structure

8. V. Sanz, A. Urquia and S. Dormido. Parallel DEVS and Process-Oriented

Modeling in Modelica. In Proceedings of the 7th International Modelica

Conference, Como, Italy, 2009, pp 96–107.

9. V. Sanz, A. Urquia and S. Dormido. Integrating Parallel DEVS and

Equation-Based Object-Oriented Modeling. In Proceedings of the DEVS

Integrative M&S Symposium, Spring Simulation Multiconference, Orlando,

FL, USA, 2010.

1.5 Research Projects

The works required for the development of this dissertation have been performed

in the framework of the following research projects:

1. “Herramientas interactivas para el modelado, visualización, simulación y

control de sistemas dinámicos”, CICYT, DPI2004-01804, January 2004 –

December 2006, Principal researcher: Prof. Dr. Sebastián Dormido Ben-

como.

2. “Control de sistemas complejos en la loǵıstica y producción de bienes y

servicios. Acrónimo: COSICOLOGI-CM”, IV PRICIT 2005–2008, Plan

Regional de Ciencia y Tecnoloǵıa de la Comunidad de Madrid, Ref. S-

0505/DPI/0391, January 2005 – December 2008, Principal researcher: Prof.

Dr. Sebastián Dormido Bencomo.

3. “Modelado, simulación y control basado en eventos”, CICYT, DPI2007-

61068, October 2007 – September 2012, Principal researcher: Prof. Dr.

Sebastián Dormido Bencomo.

12

2
Hybrid System Modeling

and Simulation

2.1 Introduction

Continuous-time and discrete-event modeling are two of the main paradigms used

to describe dynamic systems. The use of one or the other paradigm is dictated

by the characteristics of the system and the requirements of the study to be

performed.

Many systems include a combination of interacting continuous-time and discrete-

event dynamics. This type of systems are denominated hybrid dynamic systems.

The techniques used to describe hybrid systems follow these approaches:

– The continuous-time based approach, that focuses on developing continuous-

time methodologies and techniques that include functionalities to manage

events.

– The discrete-event based approach, that is based on the inclusion of continuous-

time simulation functionalities (i.e., numerical integration of algebraic and

differential equations) to discrete-event simulation tools.

Formalisms, modeling languages or simulation tools are usually designed for mod-

eling and simulation of either continuous-time or discrete-event models. They are

later extended including some functionalities to describe hybrid systems.

Chapter 2 Hybrid System Modeling and Simulation

A description of the evolution of both continuous-time and discrete-event

modeling and simulation approaches is discussed in this chapter. The purpose

of this description is to identify the state-of-the-art methodologies for describ-

ing continuous-time and discrete-event models, discuss their functionalities for

describing hybrid systems and study the possibility of combining both method-

ologies in order to improve the description of hybrid dynamic systems. This

analysis has been considered as the starting point for the development of this

dissertation.

2.2 Continuous-time Modeling

Continuous-time models are defined by the continuous variation of their state

variables and the time. The values that can be assigned to the state variables

can change an infinite number of times in a finite time interval (i.e., are of type

real). Continuous-time models can be described using a combination of differen-

tial and algebraic equations, depending on the characteristics of the system and

the physical laws that describe its behavior.

2.2.1 Evolution of Continuous-time Modeling

During the first half of the 20th century, the simulation of continuous-time models

was performed using physical devices to represent the equations used to describe

the behavior of the system. For instance, the mechanical differential analyzer

developed by Bush [1931] used angles to represent variables, ball and disc inte-

grators, and gear boxes for function generation.

Lately, it was demonstrated that these simulations could be performed using

electronic circuits [Ragazzini et al., 1964]. This improvement facilitated the ex-

perimental set up of the problem and the measure of the variables of the system,

now represented using electrical voltages.

However, simulation studies using this approach were tedious [Åström et al.,

1998]. The equations used to describe the system had to be transformed and

represented using basic operations (like integration, addition and multiplication).

14

2.2 Continuous-time Modeling

The representation of magnitudes and resolutions was limited and scaling of vari-

ables was usually required. Multiple interconnections between model components

were required to represent functions relating several variables.

Basically, the work of the modeler was to represent the system by means of

equations, and also to find a suitable representation of those equations in order

to simulate them. Multiple mathematical manipulations had to be manually

performed to the equations in order to obtain this representation (e.g., the removal

of algebraic loops), thus leading to error prone modeling. This approach was

denominated analog simulation [Jackson, 1960].

The analog simulation evolved with the use of digital computers to perform

simulation studies. The systems of ordinary differential equations could be pro-

grammed in a digital computer, transforming the differential equations into dif-

ference equations. The simulation was performed using a numerical integration

algorithm. These numerical algorithms play a basic role in simulation and have

been widely studied [Atkinson, 1989; Butcher, 2003; Cellier and Kofman, 2006].

Multiple numerical algorithms have been developed to simulate the behavior of

ordinary differential equations (ODE’s), like the Runge-Kutta methods [Butcher,

2003], and differential-algebraic equations (DAE’s), like the DASSL integration

algorithm [Petzold, 1983; Brenan et al., 1989].

In order to facilitate the description of models, the CSSL standard [Augustin

et al., 1967] appeared as a unification of the concepts and language structures

of the simulation tools available up to date. A description of the CSSL stan-

dard and its functionalities can be found in Rimvall and Cellier [1986]. Multiple

implementations of modeling and simulation environments followed the CSSL

standard. ACSL [Mitchell and Gauthier, 1976] became the de-facto standard

for continuous-time modeling and simulation. ACSL was also improved with the

inclusion of constructs for combined continuous/discrete modeling.

However, even with the use of technological advances like the digital comput-

ers, the development of models was still tedious. The use of physical devices was

substituted with the use of programming languages and numerical integrators,

but the task of modeling was still equivalent to that in the analog simulation.

15

Chapter 2 Hybrid System Modeling and Simulation

The modeler had to describe the system using equations and represent those

equations, using a programming or simulation language, into a form suitable for

simulation.

2.2.2 Graphical Block-Diagram Modeling

Graphical representations of systems were commonly used to describe models

in analog simulations. However, due to the lack of graphical capabilities of the

early digital computers, simulators were reverted to textual descriptions of the

models. The development of models using graphical descriptions were recovered,

and extended, with the availability of graphical displays for personal workstations

and computers, as well as the development of graphical user interfaces (GUI’s).

The block-diagram modeling methodology allows to describe models in a hi-

erarchical and modular way. Each model is composed as a combination of blocks,

input and output ports, and interconnections between ports and blocks. Coupled

models can be composed as a combination of models, with interconnected ports.

Port connections are performed drawing lines between ports. Model libraries

contain commonly used blocks to facilitate the development of new models, by

simply drag and drop the required blocks.

Several environments support the graphical block-diagram modeling method-

ology. The MATRIXX environment included the SystemBuild tool [Shah et al.,

1985]. Matlab, currently considered as a de-facto standard for computing and

algorithm programming in engineering, included the SIMULINK environment

[Grace, 1991]. VisSim is a PC-based environment developed in 1990 [Darnell and

Kolk, 1990]. ACSL also included Graphics Modeller in 1993.

The block-diagram modeling paradigm inherits many of its characteristics

from the analog simulation. Blocks represent the basic operations used in analog

simulation to describe equations (e.g., addition, multiplication, integration, etc.).

The use of a graphical tool in a digital computer facilitates the description of the

model, providing advantages regarding the modular and hierarchical description

of models.

16

2.2 Continuous-time Modeling

The requirement of defining explicit state models (ODE) in analog simula-

tion is inherited by the block-diagram modeling, and supposes a limitation. The

construction of models still requires the modeler to manually perform mathemat-

ical manipulations to the equations. A paradigm shift is required to solve this

limitation.

2.2.3 The Physical Modeling Paradigm

Models in the physical modeling paradigm are defined in a modular way. A

system is decomposed into subsystems, and each subsystem is described using

an interface, balances of mass, energy and momentum, and material equations.

The interface is used to describe the relations between subsystems. A model is

considered as a constraint between model variables [Åström et al., 1998].

The physical modeling paradigm supposes an evolution from the block-diagram

modeling. The description of the model is closer to the definition of a real phys-

ical system, and is naturally performed using differential, algebraic and discrete

equations [Cellier et al., 1996]. The equations of the model may also change due

to the occurrence of discrete events, leading to hybrid models. The mathematical

manipulations of the equations, required to execute the simulation in a digi-

tal computer, are automatically performed by the modeling environments using

symbolic formula manipulation algorithms (like the Tarjan [1972] and Pantelides

[1988] algorithms).

2.2.4 The Object-Oriented Modeling Methodology

Equation-based object-oriented (EOO) modeling methodology facilitates the phys-

ical modeling paradigm. One of the first contributions regarding the EOO mod-

eling was performed by Elmqvist [1978]. The object-oriented programming tech-

niques were applied to modeling, in order to facilitate the description of systems

and reducing the time and cost of model development [Cellier, 1996]. The idea

is to define basic models of components and use them to construct bigger and

more complex models. Similarly to how an engineer designs a new system, us-

17

Chapter 2 Hybrid System Modeling and Simulation

ing already existing components. The EOO methodology has the characteristics

described below [Cellier, 1996].

– Encapsulation of knowledge. The model has to contain all the information

that represents the object, and a well-defined interface to communicate with

its environment.

– Topological interconnection capability. It should be allowed to connect mod-

els following the topological structure of the real system.

– Hierarchical modeling. Models constructed with basic equations or as a

combination of other models can not be distinguished when observed from

the outside, and can be arranged in a hierarchical fashion using the model

interface. Models can have the same interface and the same behavior, while

being described using different methods (i.e., equations or interconnected

components).

– Object instantiation. Models can be described as generic classes. Objects

can be instantiated from those classes by a mechanism of model invocation.

– Class inheritance. Common information shared by several models should

be included into general classes. That information should be used by other

models using an inheritance mechanism.

– Generalized networking capability. Model interconnections can be made

directly or using nodes. The behavior of these nodes is defined by the

across or through variables that compose it. The values of across variables

in a node are equaled. The values of through variables are summed up and

the sum equaled to zero.

Each model is composed of internal description and interface. The internal

description can be defined behaviorly (i.e., using equations or algorithms), or

describing its internal structure (i.e., as a combination of interconnected com-

ponents). The interface describes the interaction of the component with other

components and its environment.

18

2.2 Continuous-time Modeling

Equations are acausal, maintaining their mathematical meaning (opposite to

the assignment meaning usually given in programming languages to the ’=’ sign).

Connections between models are non-directional.

2.2.5 Object-Oriented Modeling Environments

Multiple modeling languages have been developed to support the EOO method-

ology. The modeling environments supporting EOO languages automatically

perform the symbolic manipulations required to translate the acausal, object-

oriented description of the model into efficient executable code [Cellier and Kof-

man, 2006].

EOO modeling languages facilitate the description of the continuous-time part

of hybrid models using differential and algebraic equations. In addition, these

languages provide constructs to describe discontinuities in the continuous-time

behavior, equations with variable structure, and time and state events. The mod-

eling environments needs, for simulating hybrid models (i.e., a set of synchronous

differential, algebraic and discrete equations), are the following [Urquia, 2000]:

1. A simulation algorithm appropriate for hybrid systems (for instance, the

Omola simulation algorithm is described in [Andersson, 1994]).

2. An adequate treatment of the discrete events [Elmqvist et al., 1993]: the

detection, the accurate determination of the trigger time [Elmqvist et al.,

1993; Cellier, 1979; Cellier et al., 1993; Elmqvist et al., 1994] and the re-start

problem solution.

3. Algorithms to carry out the symbolic manipulation of the linear systems of

simultaneous equations and to tear the nonlinear ones [Elmqvist and Otter,

1994].

Many languages and tools support the EOO methodology. Dymola appeared

in the 1990’s, as a result of the development of the ideas proposed by Elmqvist

[1978], Cellier [1979] and the DSBlock interface developed by Otter and Elmqvist

[1995]. Other languages that support this methodology are gPROMS [Barton

19

Chapter 2 Hybrid System Modeling and Simulation

and Pantelides, 1994], EcosimPro [EA International, 2010], χ (Chi) [van Beek

and Rooda, 2000], Verilog-AMS [Frey and O’Riordan, 2000] and VHDL-AMS

[IEEE, 1997]. Modelica constitutes an international effort to standardize the

description of models following the object-oriented methodology, joining ideas

from existing languages and tools [Mattsson et al., 1998].

2.3 The Modelica Language

Modelica is a free modeling language, distributed under its own license, mainly

designed to describe mathematical models of physical systems [Modelica Asso-

ciation, 2009]. Modelica is developed and maintained by the Modelica Associ-

ation, which is an international association composed by multiple organizations

and individual members [Modelica, 2010]. The language includes several char-

acteristics from previous languages, like ALLAN [Jeandel et al., 1997], Dymola

[Elmqvist, 1978], NMF [Sahlin et al., 1996], ObjectMath [Fritzson et al., 1995],

Omola [Andersson, 1989], SIDOPS+ [Breuneuse and Broenink, 1997] and Smile

[Kloas et al., 1995]. Multiple free and commercial tools support the Model-

ica language, such as CATIA [Dassault Systemes, 2009], Dymola [Dynasim AB,

2006], LMS Imagine.Lab AMESim [LMS International, 2009], MapleSim [Maple-

soft, 2009], MathModelica [MathCore Engineering AB, 2009], SimulationX [ITI

GmbH, 2009], OpenModelica [Fritzson et al., 2002] and Scicos [Campbell et al.,

2006].

2.3.1 Characteristics of Modelica

Some of the main functionalities to describe models offered by Modelica are [Mod-

elica Association, 2009]:

– Description of models using acausal equations. The causality is automat-

ically assigned by the modeling environment by performing symbolic ma-

nipulations to the equations.

20

2.3 The Modelica Language

– Combined use of equations and algorithms to define models. The algorithms

are executed imperatively, facilitating the description of behaviors with a

fixed causality. The single assignment rule is not applied inside an algorithm

section, but it is applied between different sections.

– Reusable algorithm descriptions, as functions. That allow to describe algo-

rithmic operations as functions with parameters, and reuse them by simply

calling the defined function using the appropriate parameters.

– Models can be either directly coded in a single Modelica class, composed by

interconnected instantiations (objects) of different classes, or a combination

of both methods. The modeler can select to describe the behavior of a

model, using equations, or to describe its internal structure, including and

interconnecting previously developed components.

– Information encapsulation, that allows to hide information contained in a

class that may not be relevant for outer classes or users. This functional-

ity helps to structure the information contained in a model, and to avoid

erroneous assignments or misuse of the internal components of a class.

– Multiple class inheritance and definition of partial classes, which include

general properties of a class but can not be instantiated (i.e., all Modelica

models inherit the characteristics of a superclass named class). Classes may

inherit information or characteristics from one or multiple classes, using the

extends clause. This facilitates the description of common characteristics

that are shared by several models or classes.

– Class parameterization of the defined objects. Using the replaceable and

redeclare constructs it is possible to modify the class of an object, even

when already defined in a model. It simplifies the experimentation with

the model. The modeler is allowed to modify the class of a defined object

instead of having to re-describe the model and its components (e.g., in a

model of a car, different types of motors – electrical, combustion, etc. – can

21

Chapter 2 Hybrid System Modeling and Simulation

be tested without having to describe multiple models of the same car each

one with a different motor, only the class of the motor is changed).

– Solving the initialization problem for a model is sometimes problematic.

Modelica offers capacities for the initialization of the model, like the start

and fixed attributes, initial equation and initial algorithm sections, and the

initial() condition. These capacities allow to define different descriptions

within the same model. One description is only used during the initializa-

tion and the other is used to describe the dynamic behavior.

– Provides language constructs to describe the trigger conditions of time and

state events, and also the actions associated to the events [Elmqvist et al.,

1993; Mattsson et al., 1999; Otter et al., 1999]. These actions can be:

(1) update the value of discrete-time variables; (2) reinitialize continuous-

time state variables, using when clauses; and (2) change the mathematical

description of equations and assignments, using the if statement.

– Textually based treatment of event conditions (using the noEvent construct).

Real elementary relations within expressions are taken literally instead of

generating crossing functions (i.e., no state or time event is triggered). This

characteristic can be used to avoid errors during the treatment of expres-

sions inside if statements, where the value of one of the branches is invalid

(e.g., the square root of a negative value).

– Model annotations, that may contain additional information of the model

(i.e., the graphical representation, icon representation, environment-dependent

information, version, documentation, etc.). This functionality helps the

modeler to describe the behavior, characteristics and use of the developed

model.

– Components and connections vectorization. That facilitates the description

of multiple equal components or connectors, by declaring them as arrays.

22

2.3 The Modelica Language

– External function interface with C and Fortran. Which facilitates the in-

clusion of C and Fortran code into Modelica, extending the functionalities

of Modelica with those of these general programming languages.

– Supports automatic and user-defined selection of state variables (using the

stateSelect attribute). Dymola automatically performs the selection of the

state variables of the model. However, in order to obtain a better selection

the modeler can use this functionality to indicate the desired state variables.

The dynamic selection of variables during the simulation is also supported.

2.3.2 Modelica Classes

Everything in Modelica is described using a class. There are different specialized

classes to facilitate the description of models. These classes present restrictions

in the amount and type of components they may contain, from the general Mod-

elica class. The characteristics and restrictions of these specialized classes are

summarized in Table 2.1.

A Modelica model is one of the mentioned specialized classes, but it has no

restrictions from the general class. A model in Modelica may include a variation

of the following components:

– parameters/constants: that represent the variables whose value remain con-

stant during the simulation.

– variables: that represent the variables whose value may vary during the

simulation.

– algorithm sections: to describe algorithmic behavior (i.e., imperatively de-

scribed and sequentially executed).

– equation sections: including descriptions of the relations between the vari-

ables of the model (algebraic and differential variables).

– initial algorithms/equations: like the previous sections, but only used to

initialize the state of the model.

23

Chapter 2 Hybrid System Modeling and Simulation

A model in Modelica has to fulfill the single-assignment rule. This means that

the number of unknown variables and equations in the model has to be equal,

and that the number of equations in each branch of a conditional equation must

also be equal. Otherwise, the model is incorrect.

Modelica provides the connector class, to describe the model interface, and

the connect sentence, to describe the interactions (or connections) between mod-

els. Variables in the connectors can be either across or through. Variables in

Modelica connectors are described by default as across, and the flow modifier is

provided to describe through variables. The values of across variables between

two connected connectors are equaled, and the values of through variables are

summed up and the sum is equaled to zero. For instance, the voltage across a

node in an electric circuit represents an across variable, while the current repre-

sents a through variable.

Table 2.1: Modelica 3.1 specialized classes and their characteristics [Mod-
elica Association, 2009].

Record used to define structured and complex data types. It can
only include public components (equation, algorithm, ini-
tial and protected sections are not allowed). They have
implicitly available construction functions.

Type used to define new data types, based on the basic types
(enumeration, array, Real, Boolean and Integer).

Model used to describe general models (identical to the general
class, with no restrictions).

Block used to describe block-diagram models. Each connector
must have well defined input and output ports (using the
input and output modifiers).

Function used to describe algorithmic functions, with parameters
and output values.

Connector used to define the interface ports of the models. They or
any of its components can not contain equations.

Package used to hierarchically structure the developed models, and
create model libraries. They may only contain model dec-
larations and constants.

Operator used to define overloaded operations over data types de-
scribed as records. May only contain function declarations.

Operator function easier way to describe an operator with only one function.

24

2.3 The Modelica Language

2.3.3 Modelica Libraries

The possibility of reusing components from different libraries strengthen the Mod-

elica modeling capabilities. Modelica supports multiple modeling formalisms by

means of libraries of components [Modelica Libraries, 2010]. For instance, State-

Graphs [Otter et al., 2005], Petri Nets [Mosterman et al., 1998], DEVS [Beltrame,

2006], System Dynamics [Cellier, 2008] and Bond Graphs [Cellier and Nebot,

2005].

Also, the description of models from multiple application domains is facilitated

due to the currently available Modelica libraries. Libraries for domains such as

thermodynamics [Cellier and Greifeneder, 2008; Casella and Leva, 2003], electrical

[Cellier et al., 2007], mechanical [Otter et al., 2003], fuel cells [Rubio et al., 2005],

vehicle dynamics [Andreasson, 2003] and virtual laboratories [Martin-Villalba

et al., 2008] are available.

The main Modelica library is the Modelica Standard Library (MSL), which is

developed and supported by the Modelica Association [MSL, 2010]. An incom-

plete list of some freely available Modelica libraries is shown in Table 2.2.

25

T
a
b
le

2
.2

:
S

om
e

av
ai

la
b

le
fr

ee
M

o
d

el
ic

a
lib

ra
ri

es
[M

o
d

el
ic

a
L

ib
ra

ri
es

,
20

10
].

L
ib

ra
ry

N
am

e
Sh

or
t

D
es

cr
ip

ti
on

W
as

te
W

at
er

Fr
ee

lib
ra

ry
fo

r
m

od
el

lin
g

an
d

si
m

ul
at

io
n

of
w

as
te

w
at

er
tr

ea
tm

en
t

pl
an

ts
[R

ei
ch

l,
20

03
].

O
b

je
ct

St
ab

Fr
ee

lib
ra

ry
fo

r
po

w
er

sy
st

em
s

vo
lt

ag
e

an
d

tr
an

si
en

t
si

m
ul

at
io

n
[L

ar
ss

on
,

20
00

].
A

T
pl

us
B

ui
ld

in
g

Si
m

ul
at

io
n

an
d

B
ui

ld
in

g
C

on
tr

ol
(f

uz
zy

co
nt

ro
l

lib
ra

ry
in

cl
ud

ed
)

[F
el

gn
er

et
al

.,
20

02
].

M
ot

or
cy

cl
eD

yn
am

ic
s

T
hi

s
M

od
el

ic
a

lib
ra

ry
ha

s
be

en
de

ve
lo

pe
d

fo
r

th
e

dy
na

m
ic

si
m

ul
at

io
n

of
a

m
ot

or
cy

cl
e,

an
d

ta
ilo

re
d

to
te

st
an

d
va

lid
at

io
n

of
ac

ti
ve

co
nt

ro
l

sy
st

em
s

fo
r

m
ot

or
cy

cl
e

dy
na

m
ic

s
[D

on
id

a
et

al
.,

20
06

].
N

eu
ra

lN
et

w
or

k
It

pr
ov

id
es

th
e

ne
ur

al
ne

tw
or

k
m

at
he

m
at

ic
al

m
od

el
[C

od
ec

à
an

d
C

as
el

la
,

20
06

].
V

eh
ic

le
D

yn
am

ic
s

Fr
ee

lib
ra

ry
to

m
od

el
th

e
dy

na
m

ic
s

of
ve

hi
cl

e
ch

as
si

s
[A

nd
re

as
so

n,
20

03
].

SP
IC

E
L

ib
Fr

ee
lib

ra
ry

w
it

h
so

m
e

of
th

e
m

od
el

in
g

an
d

an
al

ys
is

ca
pa

bi
lit

ie
s

of
th

e
el

ec
tr

ic
ci

rc
ui

t
si

m
ul

at
or

P
SP

IC
E

[U
rq

ui
a

et
al

.,
20

05
].

Sy
st

em
D

yn
am

ic
s

Fr
ee

lib
ra

ry
fo

r
m

od
el

in
g

ac
co

rd
in

g
to

th
e

pr
in

ci
pl

es
of

sy
st

em
dy

na
m

ic
s

of
J.

Fo
rr

es
te

r
[C

el
lie

r,
20

08
].

T
ec

hT
he

rm
o

Fr
ee

lib
ra

ry
fo

r
te

ch
ni

ca
l

th
er

m
od

yn
am

ic
s

[S
te

in
m

an
n

an
d

Z
un

ft
,

20
02

].
Fu

zz
yC

on
tr

ol
Fr

ee
lib

ra
ry

fo
r

fu
zz

y
co

nt
ro

l.
T

he
rm

oP
ow

er
Fr

ee
lib

ra
ry

to
m

od
el

th
er

m
al

po
w

er
pl

an
ts

(b
as

ed
on

M
od

el
ic

a.
M

ed
ia

)
[C

as
el

la
an

d
L

ev
a,

20
03

]
B

on
dL

ib
Fr

ee
lib

ra
ry

to
m

od
el

ph
ys

ic
al

sy
st

em
s

w
it

h
bo

nd
gr

ap
hs

[C
el

lie
r

an
d

N
eb

ot
,

20
05

].
E

xt
en

de
dP

et
ri

N
et

s
Fr

ee
lib

ra
ry

to
m

od
el

P
et

ri
N

et
s

an
d

st
at

e
tr

an
si

ti
on

di
ag

ra
m

s
(e

xt
en

de
d

ve
rs

io
n)

[F
ab

ri
ci

us
an

d
B

ad
re

dd
in

,2
00

2a
].

Fu
el

C
el

lL
ib

Fr
ee

lib
ra

ry
to

m
od

el
fu

el
ce

lls
[R

ub
io

et
al

.,
20

05
].

Q
SS

F
lu

id
F

lo
w

Fr
ee

lib
ra

ry
fo

r
qu

as
i

st
ea

dy
-s

ta
te

flu
id

pi
pe

flo
w

[F
ab

ri
ci

us
an

d
B

ad
re

dd
in

,
20

02
b]

.
SP

O
T

Fr
ee

lib
ra

ry
pr

ov
id

in
g

co
m

po
ne

nt
s

to
m

od
el

po
w

er
sy

st
em

s
bo

th
in

tr
an

si
en

t
an

d
st

ea
dy

-s
ta

te
m

od
e.

M
od

el
ic

aD
E

V
S

A
fr

ee
lib

ra
ry

fo
r

di
sc

re
te

-e
ve

nt
m

od
el

in
g

us
in

g
th

e
D

E
V

S
fo

rm
al

is
m

[B
el

tr
am

e
an

d
C

el
lie

r,
20

06
].

M
ul

ti
B

on
dL

ib
Fr

ee
lib

ra
ry

to
m

od
el

ph
ys

ic
al

sy
st

em
s

w
it

h
m

ul
ti

-b
on

d
gr

ap
hs

[Z
im

m
er

,
20

06
].

E
xt

er
na

lM
ed

ia
L

ib
ra

ry
In

cl
ud

in
g

ex
te

rn
al

flu
id

pr
op

er
ty

co
m

pu
ta

ti
on

co
de

in
M

od
el

ic
a

[C
as

el
la

an
d

R
ic

ht
er

,
20

08
].

V
er

if
A

fr
ee

lib
ra

ry
fo

r
ve

ri
fy

in
g

th
e

M
od

el
ic

aS
pi

ce
lib

ra
ry

(p
ar

t
of

B
on

dL
ib

).
B

ui
ld

in
gs

Fr
ee

lib
ra

ry
fo

r
m

od
el

in
g

bu
ild

in
g

en
er

gy
an

d
co

nt
ro

l
sy

st
em

s,
ba

se
d

on
M

od
el

ic
a.

F
lu

id
[W

et
te

r,
20

09
].

V
ir

tu
al

L
ab

B
ui

ld
er

V
ir

tu
al

L
ab

B
ui

ld
er

M
od

el
ic

a
lib

ra
ry

fa
ci

lit
at

es
th

e
im

pl
em

en
ta

ti
on

of
vi

rt
ua

l-
la

bs
us

in
g

on
ly

M
od

el
ic

a
[M

ar
ti

n-
V

ill
al

ba
et

al
.,

20
08

].

26

2.3 The Modelica Language

2.3.4 Simulation of Modelica Models

Models in Modelica are described following the EOO modeling methodology.

They are later translated by the modeling environment into a hybrid DAE form.

The formal description of a hybrid DAE is [Modelica Association, 2009]:

c := fc(relation(v))

m := fm(v, c)

0 = fx(v, c)

with v := [ẋ, x, y, t,m, pre(m), p], and where:

– p are the variables without time dependency (i.e., parameters or constants).

– t is the independent variable (time).

– x(t) is the set of variables that appear differentiated.

– m(te) are the variables that are unknown and only change their values at

event instants te. pre(m) are the values of these variables immediately

before the event.

– y(t) is the set of algebraic variables.

– c(te) are the conditions of all if-expressions, included when-expressions after

conversion.

– relation(v) are the relations containing variables vi (e.g., v1 < v2).

This description defines a DAE which may include discontinuities, variable struc-

ture and/or discrete-events.

Equations in Modelica follow the synchronous data flow principle, meaning

that at each time instant the active equations express relations between variables

that have to be fulfilled concurrently [Otter et al., 1999]. The order in which the

equations are evaluated is automatically determined by data flow analysis of the

system of equations, leading to unique computations of the unknown variables.

27

Chapter 2 Hybrid System Modeling and Simulation

Figure 2.1: Simulation algorithm of hybrid models.

The interpretation of the language specification regarding the treatment of events

has been questioned by Nikoukhah [2007], considering that different interpreta-

tions may lead into different model and compiler constructions. A proposal for

introducing synchronous and asynchronous events in Modelica was performed by

Nikoukhah and Furic [2008].

The simulation is performed as follows Modelica Association [2009]: (1) the

continuous-time part is solved using a numerical integration algorithm; (2) if

any of the event conditions is met during integration, the integration algorithm

is halted and the event instant is determined; (3) at the event instant the set

of algebraic and discrete equations are solved; and (4) once the event has been

treated, the event conditions are checked again. If a new event is triggered,

it is immediately executed (i.e., event iteration). Otherwise, the integration is

restarted. The diagram shown in Fig. 2.1 summarizes this procedure.

28

2.4 Discrete-Event System Modeling

2.4 Discrete-Event System Modeling

Discrete-event models are defined by the occurrence of events [Banks et al., 1996;

Cassandras and Lafortune, 1999]. An event can be defined as a phenomenon that

occurs instantaneously in a given point in time and affects the represented system

(e.g., the arrival of a new customer, the impact of a ball with the ground, the

end of a pre-programmed process, etc.). The state of a discrete-event model can

only change a finite number of times in an finite time interval, depending on the

occurrence of events. The values of the state variables remain constant between

two consecutive events.

Events can be of two types: state events, when a certain condition that in-

volves any state variable of the model is met (e.g., the level of a tank reaches the

maximum value), and time events, that are scheduled to occur in a certain point

in time (e.g., a process that will finish in three minutes). Also, events can occur

simultaneously, and perform several changes in the state variables at the same

time.

The development of discrete-event modeling and simulation techniques has

been broad, in comparison to the continuous-time modeling techniques that are

mainly based on the DAE formalism. Multiple formalisms and simulation lan-

guages have been developed, depending on the characteristics of the systems to

model and the purposes of the simulation studies.

Modeling formalisms help to describe and study the behavior and charac-

teristics of systems, by means of a mathematical description. The application

of discrete-event modeling formalisms to the construction of the discrete-event

part of hybrid models facilitates the model development, maintenance and reuse

[Robinson et al., 2004]. It also helps to ensure the correctness and validity of the

developed model.

Some of the most common formalisms for discrete-event system modeling

are: Finite State Automata/Machines, StateCharts, Process Algebra, π-Calculus,

Petri Nets, Generalized Semi-Markov Processes and DEVS. Finite State Au-

tomata, Petri Nets, StateCharts and DEVS, can be remarked due to their high

29

Chapter 2 Hybrid System Modeling and Simulation

acceptance in engineering [Hrúz and Zhou, 2007]. Page [1994] discussed the char-

acteristics of some of these modeling formalisms based on a set of requirements.

None of the evaluated formalisms fulfilled the whole set of requirements, showing

deficiencies in one or more aspects. Each formalism has its own characteristics

and functionalities.

Many extensions of the basic formalisms have been developed in order to add

new functionalities to them. For example, Time Petri Nets is an extension of the

Petri Nets formalism to allow the modeling of dynamic models (i.e., represent

the evolution of time), Hybrid Petri Nets [David and Alla, 2001] and Hybrid

Automata [Lynch et al., 2003] are extensions for hybrid system modeling using

Petri Nets or Automata, respectively.

DEVS (Discrete EVent Systems specification) was developed by Zeigler [1976]

as a general formalism for representing systems. The main characteristic of

DEVS is the hierarchical and modular description of models. Extensions to the

DEVS formalism include Parallel DEVS [Chow, 1996], DEV&DESS for combined

continuous-time and discrete-event systems [Zeigler et al., 2000], RT-DEVS for

real-time discrete-event systems [Hong et al., 1997], Cell-DEVS for cellular au-

tomata [Wainer and Giambiasi, 2001], Fuzzy-DEVS [Kwon et al., 1996] and Dy-

namic Structuring DEVS [Barros, 1995].

DEVS can be considered as a universal formalism [Zeigler et al., 2000] for

DEVS (Discrete Event System Specification), DTSS (Discrete Time System Spec-

ification) and DESS (Differential Equation System Specification), due to possible

model transformations from other formalisms to DEVS [Vangheluwe, 2000]. The

DEVS formalism has been considered as the “differential equations for discrete-

event systems” [Zeigler, 1989]. Differential equations can be simulated using

DEVS [Kofman et al., 2001].

2.5 Discrete-Event System Simulation

Formal models are independent from any programming language, and thus have

to be translated or implemented in order to be simulated. Simulations can be

30

2.5 Discrete-Event System Simulation

programmed using general purpose programming languages or specific simula-

tion languages. The development of discrete-event simulation languages is based

on the perspective used to represent the world, in order to simulate it. These

perspectives where introduced by Lackner [1962] and extended by Kiviat [1969]

into the three categories, or “world-views”, commonly used in the literature (each

discrete-event simulation language or tool focuses in one of these world-views):

– Event-scheduling (also called event-driven) focuses on events, which cause

changes in the state of the system. The model of the system consists on a

description of the causes and the effects of the events in the system. The

order in which the events are treated represents the evolution of the state

of the system [Fishman, 2001]. The simulation is performed maintaining

a list of events ordered by its time of occurrence. The simulation clock is

advanced to the next event, and its treatment is executed.

– Activity-scanning, that focuses on the activities performed in the system

and the conditions that control the begin and end of such activities. The

resources are considered as prerequisites for those activities. An example of

application of this approach using the Stroboscope environment is presented

in Martinez and Ioannou [1995]. A comparison of the activity scanning

approach and the process interaction approach is given in Ioannou and

Martinez [1999].

– Process-interaction (also called process-oriented) focuses on how entities

flow through the system. Some processes are applied to the entities, after

capturing the required resources. This provides a more natural representa-

tion of the processes and components in a system, and their interactions.

This is the approach of simulation languages such as GPSS/H, SIMAN,

SIMSCRIPT II.5 and SLAM.

The factors involved in the evolution of discrete-event simulation are dis-

cussed in Nance and Sargent [2002]. External factors, such as the revolution

of computer hardware, the advances of computer software, computer graphics,

human-computer interactions and computer networks are presented. Also inter-

31

Chapter 2 Hybrid System Modeling and Simulation

nal factors, such as the development of formal modeling methodologies, the study

of pseudo-random number generators and the improvement on the verification and

validation of the developed models among others, are discussed.

Nance [1993] provided a survey of the evolution of the discrete-event simula-

tion languages structured in the following periods:

– Search (1955-60): with focus on the identification of concepts for model

representation and the needs for simulation modeling. The first developed

simulation language is credited to Tocher and Owen [1960], and called GSP

(General Simulation Program).

– Advent (1961-65): where the foundations of the current simulation pro-

gramming languages appeared. Some of the main languages that appeared

during this period are GPSS, SIMULA I, SIMSCRIPT, CSL, GASP, OPS-3

and DYNAMO.

– Formative (1966-70): where the concepts of simulation where reviewed and

clarified, taking advance of the new computing possibilities due to hard-

ware improvements. Some languages suffered several revisions, like GPSS

(with GPSS II and III), SIMULA (with SIMULA 67) , SIMSCRIPT (with

SIMSCRIPT II), GASP (with GASP II) and OPS-3 (with OPS-4), while

other languages appeared, like ECSL.

– Expansion (1971-78): where some languages suffered mayor expansions,

like GPSS (with GPSS/NORDEN, NGPSS, GPSS V6000, GPDS, GPSS

1100 and GPSS/H), SIMSCRIPT (with SIMSCRIPT II.5, C-SIMSCRIPT,

ECSS and CSP II) and GASP (with GASP IV and GASP PL/I).

– Consolidation and regeneration (1979-86): where the main simulation lan-

guages consolidated their positions (like GPSS and SIMSCRIPT II.5) and

were made available for multiple platforms, such as personal computers

and microprocessors. Also, two new languages appeared as descendents

from GASP: SLAM II and SIMAN.

32

2.6 The Parallel DEVS Formalism

These periods are also discussed in Robinson [2005] and summarized in four

instead of five, mentioning the impulse of visual interactive simulations in the

evolution of languages.

Robinson [2005] also discusses the evolution of discrete-event simulation from

the 1990s to the present. During this period, and due to the increasing perfor-

mance of personal computers and better human-computer interfaces, the use of

visual interactive simulations, simulation optimization, virtual reality and soft-

ware integration played the main role in the evolution of simulation technolo-

gies. Multiple Visual Interactive Modeling Systems (VIMS as denominated by

Pidd [2004]) or Simulation Packages (as denominated by Law and Kelton [2000])

were developed during this period, like Arena, AutoMod, ProModel, WITNESS,

Simul8 and Extend among many others. The characteristics and functionalities

of the Arena simulation environment are discussed later in this chapter.

2.6 The Parallel DEVS Formalism

The Parallel DEVS (P-DEVS) formalism was introduced by Chow [1996] as an

extension to the original Classic DEVS formalism. P-DEVS removes the sequen-

tial management of events, allowing simultaneous occurrences of events. It also

facilitates the user the control over confluent events, or simultaneous internal and

external events, by defining the confluent transition function (δcon).

Several simulation environments support the Parallel DEVS formalism, in-

cluding DEVS-C++ [Zeigler et al., 1996], adevs [Nutaro, 1999], DEVSJAVA [Zei-

gler and Sarjoughian, 2003] and CD++ [Liu and Wainer, 2007]. These environ-

ments are mainly based on general programming languages, like C++ or JAVA.

They provide functions and data structures designed to facilitate the description

of P-DEVS models, but general computer programming skills and knowledge are

required in order to develop models using them. Each environment uses a par-

ticular format to describe models, so model exchange and reutilization between

environments is difficult to perform. The use of a common language or format

33

Chapter 2 Hybrid System Modeling and Simulation

to describe P-DEVS models could facilitate their development, maintenance and

reuse between different tools.

Models in P-DEVS, as well as in the Classic DEVS formalism, can be de-

scribed behaviorally (named atomic) or structurally (named coupled). This sec-

tion contains a description of the P-DEVS specification and behavior of atomic

and coupled models. Also, multiple existing DEVS-based methodologies and for-

malisms to describe hybrid systems are discussed.

2.6.1 Atomic P-DEVS Models

According to the P-DEVS formalism, an atomic model is the smallest component

that can be used to describe the behavior of a system. It is defined by a tuple of

eight elements [Chow, 1996; Zeigler et al., 2000]:

M = (XM , S, YM , δint, δext, δcon, λ, ta)

where:

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} Set of input ports and values.

S Set of sequential states.

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} Set of output ports and values.

δint : S −→ S Internal transition function.

δext : Q×Xb
M −→ S External transition function, where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the

total state set and e is the time elapsed

since the last transition.

δcon : Q×Xb
M −→ S Confluent transition function.

λ : S −→ Y b
M Output function.

ta : S −→ <+
0,∞ Time advance function.

An atomic model remains in the state s ∈ S, for a time ts = ta(s). After ts is

elapsed, an internal event is triggered and the state is changed to snew = δint(s).

34

2.6 The Parallel DEVS Formalism

Before that, an output can be generated using the output function and the state

previous to the event (output = λ(s)).

After the execution of the transition, a new internal event is scheduled at time

tsnew = ta(snew)+ time. Then, tlast = time, where time is the current simulation

time.

Multiple inputs can be received simultaneously through one or several ports.

– If any input is received at time text and text < ts (so the inputs are received

before the next internal event), an external event is triggered. During the

external event, the state is changed to snew2 = δext(s, e, bag), where s is the

current state, e is the elapsed time since the last transition (text− tlast) and

bag ⊆ XM is the set of received input messages.

– If the external input is received at time text and text = ts, the external and

the internal events are triggered simultaneously. This situation triggers a

confluent event (that substitutes the external and internal events), and the

state is changed to snew3 = δcon(s, e, bag), being s the current state, e the

elapsed time, and bag ⊆ XM the set of received inputs (similarly to the δext

function). Also, similarly to the internal events, an output can be generated

as output = λ(s) before executing the confluent transition function.

New internal events are also scheduled after the external and confluent transi-

tions using ta(). Note that the time advance function can return a zero value,

generating an immediate internal event.

2.6.2 Coupled P-DEVS Models

The P-DEVS formalism supports the hierarchical and modular description of the

model. Every model has an interface to communicate with other models.

A coupled P-DEVS model is a model composed of several interconnected

atomic or coupled models, that communicate externally using the input and

output ports of the coupled model interface. It is described by the following

tuple [Zeigler et al., 2000]:

35

Chapter 2 Hybrid System Modeling and Simulation

M = (X,Y,D, {Md|d ∈ D}, EIC,EOC, IC)

where:

X = {(p, v)|p ∈ IPorts, v ∈ Xp} Set of input ports and values.

Y = {(p, v)|p ∈ OPorts, v ∈ Yp} Set of output ports and values.

D Set of the component names.

Md DEVS model, for each d ∈ D.

EIC External Input Coupling : connections be-

tween the inputs of the coupled model and

its internal components.

EOC External Output Coupling : connections

between the internal components and the

outputs of the coupled model.

IC Internal Coupling : connections between

the internal components.

The connection of P-DEVS models implies the establishment of a information

transmission mechanism between the connected models. P-DEVS models follow

a message passing communication mechanism. A model generates messages as

outputs, using its output function, which are received by other models as external

inputs. Messages can be received simultaneously through one or multiple ports.

Connections between models can be in the form of 1-to-1, 1-to-many and many-

to-1. Each message can transport an arbitrarily complex amount of information,

depending on the particular application.

2.6.3 DEVS-based Approaches for Hybrid System

Modeling

The DEVS formalism was initially designed to describe discrete-event systems.

However, multiple methods have been developed to describe hybrid systems using

DEVS-based techniques:

36

2.6 The Parallel DEVS Formalism

– The generalization of the Classic DEVS formalism into the GDEVS for-

malism [Giambiasi and Carmona, 2006], that allows to describe models

whose state is described using polinomies (instead of constants). This fa-

cilitates the description of continuous-time behavior using discrete-event

mechanisms.

– The state quantization is a method to obtain a discrete-event approxima-

tion of a continuous-time system [Kofman et al., 2001]. The simulation is

performed at discrete steps based on the variation of the state, instead of

the time. It represents a reduction in computational cost and the possibility

for distributed implementation. Zeigler and Lee [1998] initially proposed a

method to describe continuous-time systems using state quantization. It

was later extended into the concept of Quantized State Systems (QSS),

including an hysteresis in order to guarantee legitimate DEVS models [Kof-

man and Junco, 2001; Kofman, 2004].

– Mixed discrete-event and continuous-time description of the system. Mul-

tiple modeling environments and languages include functionalities to de-

scribe continuous-time systems and simulate them using numerical inte-

gration methods. These tools allow the combination of discrete-event and

continuous-time dynamics. Some of these environments are the JAMES II

[Himmelspach and Uhrmacher, 2009], D-SOL [Jacobs et al., 2002], the Vir-

tual Laboratory Environment [Quesnel et al., 2008] and CD++ [Wainer,

2002].

The DEV&DESS formalism describes a subclass of dynamic systems that

includes the subclasses specified by DEVS and DESS (Differential Equation

System Specification) [Prähofer, 1991; Zeigler et al., 2000]. The system

is described using a combination of discrete-event and continuous inputs,

states and outputs, that interact to represent the desired system behavior.

As described in Zeigler [2006], the DEV&DESS formalism can be embedded

into DEVS.

37

Chapter 2 Hybrid System Modeling and Simulation

– The Heterogeneous Flow System Specification (HFSS) is an extension of

DEVS that builds in an input sampling mechanism as well as variable

structure capability [Barros, 2002b,a, 2003]. However, there has been no

discussion of the conditions under which models in the formalism are well-

defined or whether closure under coupling holds for the formalism [Zeigler,

2006].

– Another approach has been to transform continuous-time models, described

using Modelica, into DEVS models in order to simulate them [D’Abreu

and Wainer, 2005]. This method uses Bond Graphs as an intermediate

formalism to perform the transformation.

However, none of these methods support the EOO methodology for continuous-

time system modeling. The advantages of the continuous-time object-oriented

modeling, described above in this chapter, should be considered for describing

hybrid systems.

The Modelica language could be a vehicle for combining the use of the DEVS

formalism with other modeling formalisms and techniques. The feasibility of de-

scribing atomic DEVS models in Modelica was demonstrated in [Fritzson, 2003].

Also, a Modelica library, called ModelicaDEVS [Beltrame and Cellier, 2006; Bel-

trame, 2006], was developed for modeling continuous-time systems using the

DEVS formalism and the QSS integration algorithms [Kofman, 2004; Cellier and

Kofman, 2006].

2.7 The Arena Simulation Environment

Arena is a commercial software environment marketed by Rockwell Automation

Inc. designed for discrete-event system modeling and simulation [Kelton et al.,

2007]. Arena follows the process-oriented approach to describe systems. It is one

of the most widely used environments for describing discrete-event and logistic

systems.

38

2.7 The Arena Simulation Environment

Since the objective of this dissertation is the description of P-DEVS and

process-oriented models in Modelica, Arena has been selected as an example in

which to base the performed work. This will help to validate the developed mod-

els by comparison with equivalent models constructed using Arena. Comparisons

between hybrid models will also be performed, since Arena provides some func-

tionalities for describing hybrid systems.

Arena models are composed of flowchart diagram and static data. The flowchart

diagram describes the structure of the system, the connection between compo-

nents and the flow of entities through them. The static data represents the

particular characteristics of the elements in the system (i.e., the structure of the

queues, the capacity of the resources, etc.). Thus, components in Arena are di-

vided into flowchart modules and data modules. Models are constructed using a

graphical user interface, including the required modules into a blank“draft”model

(i.e., using drag and drop), and configuring the connections and parameters of

the included modules.

The behavior of flowchart diagram modules is similar to the behavior of P-

DEVS models. The transmission of messages between P-DEVS models could

represent the flow of entities between modules. Thus, the P-DEVS formalism

will be used to introduce process-oriented models in Modelica.

2.7.1 Arena Panels

Components in Arena are arranged into panels, similarly to the libraries in Mod-

elica. Each panel includes elements to describe different types of processes at

multiple levels of abstraction. The main panel is named BasicProcess, and con-

tains basic model components. However, these components can be used to rep-

resent many of the processes and behaviors usually found in systems. Some of

the other available panels are the AdvanceProcess, AdvanceTransfer, AgentUtil,

FlowProcess and Packaging.

The flowchart modules of the BasicProcess panel are:

– Create, that represents the starting point for entities in the system.

39

Chapter 2 Hybrid System Modeling and Simulation

– Dispose, opposed to the create module, represents the end point for the

entities.

– Process, represents any process to be performed to an entity during a defined

period of time. The use of resources to process the entity is not mandatory,

and can be configured using the parameters of the module.

– Decide, represents a division in the flow of entities. The division can be

probabilistic or following a certain condition. Multiple division rules can

be applied.

– Batch, is used to group entities temporarily or permanently, depending on

certain conditions.

– Separate, is used to separate previously batched entities or to copy entities

into multiple replications.

– Assign, is used to assign new values to the global variables of the system or

the user-defined attributes of the entities.

– Record, is used to collect statistics during the simulation. These statistical

indicators are reported at the end of the simulation.

The data modules of the BasicProcess panel are:

– Entity, represents a type of entities that are created in the system. Different

parameters can be assigned to different types of entities (e.g., customers,

pieces, cars, etc.).

– Queue, describes the characteristics of a queue associated to a Process.

– Resource, describes the characteristics of the resources associated to a Pro-

cess.

– Variable, is used to define global variables in the system.

– Schedule, is used to describe the patterns of time associated with the avail-

ability of resources, the creation of entities, or processing delays.

40

2.7 The Arena Simulation Environment

– Set, is used to aggregate multiple elements of the system into sets (i.e., sets

of resources, counters, tallies, etc.)

At the lowest level of abstraction, Arena includes two panels: the Blocks and

the Elements. These two panels correspond to the components of the SIMAN

modeling language [Pegden et al., 1995]. Each Arena component is internally

described using a combination of these SIMAN components.

2.7.2 SIMAN Language

Models described using SIMAN are also composed of flowchart diagram and static

data. The flowchart diagram is described using Blocks, and the static data is de-

scribed using Elements. The blocks represent simple actions performed during

the flow of entities through the system. For instance, seizing or releasing a re-

source, being delayed in a process, update an statistical indicator or wait in a

queue. The elements, like the data modules in Arena, represent the particular

characteristics of some components in the system (i.e., resources, queues, vari-

ables, etc.). Some of the elements are also used to describe the experiment to be

performed with the system, like the duration, number of runs, the initialization

of the random number generator, etc.

2.7.3 Random Number Generation in Arena

Process-oriented models are sometimes stochastic [Law, 2007]. The inter-arrival

times for entity creation and processing delays are examples of random variables

commonly used in models.

Arena includes a Combined Multiple Recursive Generator (CMRG) to gen-

erate random uniform numbers and random variates [L’Ecuyer, 1999]. This ran-

dom number generator (RNG) gives the possibility of creating multiple random

streams, and sub-streams, that can be considered as independent RNGs [L’Ecuyer

et al., 2002]. Each random variable can be assigned with a different stream, thus

facilitating the execution of independent replications or the application of vari-

ance reduction techniques [Law and Kelton, 2000].

41

Chapter 2 Hybrid System Modeling and Simulation

A detailed description of this generator can be found in L’Ecuyer [2001]. The

backbone generator, whose period is later divided into streams and sub-streams,

is described with two components of order three. At the step n, the state of

the generator is described by the pair of vectors s1,n = (x1,n, x1,n+1, x1,n+2) and

s2,n = (x2,n, x2,n+1, x2,n+2) which evolve according to:

x1,n = (1403580× x1,n−2 − 810728× x1,n−3) mod m1

x2,n = (527612× x2,n−1 − 1370589× x2,n−3) mod m2

where m1 = 232 − 209 = 4294967087 and m2 = 232 − 22853 = 4294944443, and

its output un is defined by:

zn = (x1,n − x2,n) mod 4294967087

un =


zn/4294967088 if zn > 0

4294967087/4294967088 if zn = 0

Having this generator, with a period ρ, a transition function T can be defined

that T (sn) = sn+1 and T ρ(s) = s, being sn the state of the generator at step n.

To partition the period of the generator, two numbers v and w, being z = v+w,

are selected. The period is divided into adjacent streams of length Z = 2z, and

each stream is divided into V = 2v sub-streams of length W = 2w. Selecting

v = 51 and w = 76, the generator period is close to 2191, and can be divided

into disjoint streams of length 2127. At the same time, each stream can also be

divided into 251 adjacent sub-streams, each of length 276.

Being s0 the initial seed, Ig is the initial state of the stream g, having I1 = s0,

I2 = TZ(s0) and so Ig = T (g−1)Z(s0). The first sub-stream of g starts in Ig, the

second in TW (Ig), the third in T 2W (Ig), and so on. Cg denotes the state of the

generator at a given moment of the execution. Bg denotes the initial state of

the sub-stream that contains Cg. And Ng denotes the initial state of the next

sub-stream to Bg. Any sub-stream can be selected to generate random numbers

using the transition function T over any of these states.

42

2.8 Conclusions

2.7.4 Random Variates Generation in Arena

Using the CMRG generator as source of uniform random numbers, Arena provides

multiple functions to generate random variates following multiple probability dis-

tributions. Some of the included probability distributions are shown in Tables 2.3

and 2.4.

Table 2.3: Some discrete probability distributions supported by Arena.

Empirical Discrete ({cp1, ..., cpn}, {v1, ..., vn})
Bernoulli (p)
Discrete Uniform (i, j)
Binomial (t, b)
Geometric (b)
Negative Binomial (t, b)
Poisson (λ)

Table 2.4: Some continuous probability distributions supported by Arena.

Empirical Continuous ({cp1, ..., cpn}, {v1, ..., vn})
Uniform (a, b)
Exponential (β)
Erlang (β,m)
Gamma (α, β)
Weibull (α, β)
Normal (µ, σ2)
LogNormal (µ, σ2)
Beta (α1, α2)
Johnson (α1, α2, a, b) bounded if α2 > 0
Johnson (α1, α2, γ, β) unbounded otherwise
Triangular (min,mode,max)

2.8 Conclusions

Multiple languages and environments currently support the description of hybrid

systems. Some approaches are focused on modeling continuous-time systems

and support the management of time and state events. Other approaches are

focused on modeling discrete-event systems and include some functionalities to

43

Chapter 2 Hybrid System Modeling and Simulation

describe the continuous-time part of the system (i.e., numerical integration algo-

rithms). Formalisms, modeling languages or simulation tools are usually designed

for modeling and simulation of either continuous-time or discrete-event models.

They are later extended including some functionalities to describe hybrid systems.

The combination of continuous-time and discrete-event modeling methodologies

could facilitate the description of hybrid models.

Modelica is one of the most advanced languages for continuous-time and hy-

brid system modeling. The equation-based object-oriented methodology, sup-

ported by Modelica, provides several advantages in comparison with the block-

diagram modeling approach. The acausal description of models using differential,

algebraic and discrete equations is one of these advantages.

The use of mathematical formalisms to describe discrete-event models facil-

itate its development, maintenance, reuse, validation and correctness. P-DEVS

is a modeling formalism that supports the description of discrete-event, discrete-

time and continuous-time models. Also, the process-oriented approach allows to

perform a natural description of logistic systems, in terms of entities, resources

and processes. It is a widely used approach to describe systems in academia and

the industry.

Modelica currently supports multiple discrete-event modeling formalisms, like

Petri Nets, Classic DEVS, StateCharts and StateGraphs. However, the P-DEVS

formalism and the process-oriented approach are currently not supported. The

requirements needed to support these two discrete-event modeling approaches in

Modelica will be discussed. The integration of the P-DEVS formalism with Mod-

elica could facilitate the description of the discrete-event part of a hybrid system

in Modelica (using the P-DEVS formal specification, instead of just language

constructs), and the combination of P-DEVS models with other already available

Modelica components. This development will also help to introduce the DEVS

formalism into the Modelica community, without requiring the use of different

modeling tools. The Modelica language could be a vehicle for combining the use

of the DEVS formalism with other modeling formalisms and techniques.

44

3
Integrating the P-DEVS Formalism

in EOO Languages

3.1 Introduction

The identification of the requirements needed to describe P-DEVS models using

an equation-based object-oriented (EOO) language is discussed in this chapter.

These requirements, when particularly applied to the Modelica language, can be

seen as the definitions of the challenges to be solved with the development of this

dissertation. The proposed solutions constitute the rest of the works presented.

3.2 Identification of Requirements

In this section, the requirements needed to describe P-DEVS models using an

EOO modeling approach are discussed. These requirements meet the necessity

to describe atomic and coupled P-DEVS models, and the possibility to combine

discrete-event and continuous-time models.

3.2.1 Discrete-Event Model Behavior

P-DEVS models, as discrete-event models, have a fixed causality. The actions

associated with the events are described algorithmically using functions.

EOO models are described using differential, algebraic and discrete equations.

Discrete-time and event management constructs are required to describe the be-

Chapter 3 Integrating the P-DEVS Formalism in EOO Languages

havior of a P-DEVS model in EOO languages. The discrete part of the model

can be described in different ways, depending on the functionalities provided by

the language itself (i.e., algorithm sections [Elmqvist et al., 1998], concurrent

programming language statements [van Beek and Rooda, 2000], operating proce-

dures [Barton and Pantelides, 1994] or event-driven processes [IEEE, 1997; Frey

and O’Riordan, 2000]).

In general, EOO languages provide functionalities to manage discrete events.

These functionalities have to be combined to reproduce the semantics of P-DEVS

models (i.e., event detection, management and execution of transition functions),

in order to facilitate the description of P-DEVS models in EOO languages.

3.2.2 Model Communication Mechanism

Each P-DEVS model, atomic or coupled, has an interface to communicate with

other models. These interfaces allow the composition of modular and hierarchical

models, in order to construct more complex models. EOO models also contain

model interfaces that allow the connection of multiple components in a similar

fashion, to construct more complex models. However, the concepts underneath

both model interfaces and their connections are different.

Model communication in P-DEVS usually involves the exchange of informa-

tion. A P-DEVS model can send information to another model connected to

one of its output ports, using the output function. The information transmitted

from one model to another is the message. These messages can transport an

arbitrarily amount of complex structured information, from a single number to

the description of a customer (as an entity in a system). Thus, P-DEVS models

communicate using a message passing mechanism. Connections between models

can be in the form of 1-to-1, 1-to-many and many-to-1. Messages can be received

simultaneously through one or multiple ports.

On the other hand, the connections between models in EOO languages are

based on the energy-balance principle. Variables in the connectors describe either

across or through values. Across variables in a node (i.e., a connection point) have

the same value, while the through values are summed up and the sum equaled

46

3.2 Identification of Requirements

to zero. For instance, the voltage in a node of an electric circuit represents an

across variable (e.g., A.u = B.u, if A and B are connectors composed of an across

variable u, and connected using the sentence connect(A,B)). The current in a

node of an electric circuit represents a through variable (e.g., A.i+B.i = 0, where

A and B are composed of a through variable i).

The amount of information in the connection is fixed, due to the amount

of variables in the connector, and can not be modified during the simulation.

The structure of this information is also fixed, described by the variables of the

connector. The information transmitted using EOO connections (i.e., the values

of the variables in the connectors) can only be assigned once at each time instant,

not allowing to transmit multiple values simultaneously.

A message passing mechanism has to be defined to be used with EOO lan-

guages in order to facilitate the description of P-DEVS models. Ideally, this

message passing mechanism should be transparent to the user in order to fa-

cilitate the integration of both formalisms without increasing the complexity of

model development.

3.2.3 Interfacing P-DEVS and Other Modeling Formalisms

The idea is to combine models described using P-DEVS with models defined

using other formalisms for continuous-time modeling (i.e., the physical modeling

paradigm), using EOO languages. This combination facilitates the description of

multi-formalism hybrid systems.

Two approaches for communicating P-DEVS models with other formalisms

are proposed:

– Translated Interface Connections: Connecting the output of a P-DEVS

model to the input of a continuous-time model, or viceversa. Due to the

mentioned differences in the model communication mechanism, it is re-

quired to define interface models that translate messages into discrete-time

signals, and both continuous-time and discrete-time signals into messages.

These interface models allow to couple discrete-event and continuous-time

47

Chapter 3 Integrating the P-DEVS Formalism in EOO Languages

components together in the hierarchy of models that compose a hybrid sys-

tem.

The model of a motor of a pendulum clock [Kriger, 2002] can be observed

as an example of this type of interaction. The oscillation of the pendulum

is described as a continuous-time model. The rest of the clock is modeled

as a discrete-event system. Interfaces are required to communicate to the

clock the oscillation pace of the pendulum, in form of tics (each tic repre-

sented by a message). On the other hand, the oscillation of the pendulum

can be stopped and started using some buttons in the clock that generate

messages, which need to be translated into discrete-time signals in order to

be managed by the continuous-time model.

– Direct Interface Connections: Allowing to describe the behavior of a discrete-

event model which is influenced by the state of a continuous-time model.

P-DEVS models could receive continuous-time or discrete-time signals as

inputs to its transition functions. In order to maintain the modularity in

the model construction, these inputs must be connected using the model in-

terfaces. These connections are similar to the interactions described in the

DEV&DESS formalism between the discrete-event and the continuous-time

parts of a hybrid model.

As an example of these interactions we can consider a crane system con-

trolled by a discrete controller (such example, modeled using DEVSLib, is

presented in Sanz, Cellier, Urquia and Dormido [2009]). The controller peri-

odically (executing internal transitions) calculates the control-signals using

the current position of the crane, which is represented by a continuous-time

signal. The value of the continuous-time variable is considered as an input

for the internal transition function of the controller. No sampling is needed

to obtain the value of the signal. The environment reads the current value

of the signal whenever the internal transition function has to be executed.

This signal could be quantized and stored as a state variable of the con-

troller, but it will decrease unnecessarily the simulation performance.

48

3.3 Requirements Applied to Modelica

3.3 Requirements Applied to Modelica

This section presents the described requirements when applied to the particular

case of the Modelica language. Each of these challenges have been treated during

the development of this dissertation, and so references are included to the chapters

where the solutions are discussed.

3.3.1 Atomic P-DEVS Models

Modelica provides language constructs to describe the trigger conditions of time

and state events, and also the actions associated to the events [Mattsson et al.,

1999]: (1) update the value of discrete-time variables and reinitialize continuous-

time state variables, using when clauses; and (2) change the mathematical de-

scription of equations and assignments, using the if statement.

These functionalities have been used to describe models following multiple

formalisms, like State Charts, Petri Nets, State Graphs and Classic DEVS. As

will be demonstrated in this dissertation, the same functionalities can be used

to describe the behavior of P-DEVS models. To this end, the detection of the

occurrences of internal, external and confluent events has to be defined. Also, the

execution of the actions associated with each type of event has to be managed

(i.e., the execution of transition functions). The description of atomic and cou-

pled P-DEVS models in Modelica is discussed in Chapter 5. The description of

process-oriented models using the developed support for the P-DEVS formalism

in Modelica is performed in Chapters 9, 10 and 11.

3.3.2 Modular P-DEVS Models

Modelica functionalities to communicate models follow those of the EOO lan-

guages, and are based on establishing relations between ports. Ports in Modelica

are named connectors, and the relationships between ports are performed using

connect sentences. Ports are composed of one or several variables. The connection

between two ports establishes a relationship between their variables. Modelica

49

Chapter 3 Integrating the P-DEVS Formalism in EOO Languages

variables inside connectors are defined as across by default, or as through using

the flow modifier.

However, these language constructs are not enough to describe the required

P-DEVS message communication mechanism because:

– They do not allow the simultaneous transmission of messages from one

port to another, due to the single-assignment rule (a variable can only be

assigned from one equation).

– They do not allow to connect multiple output ports to the same model and

transmit simultaneous messages, also due to the single-assignment rule.

– The amount of information transmitted by the connector is fixed by the

number of variables in it.

– The structure of the information transmitted with the connection is also

fixed due to the variables defined in the connector.

The concepts underneath P-DEVS and Modelica communication mechanisms

are different. In order to allow the description of P-DEVS models in Model-

ica, a message passing mechanism has to be implemented. The proposed and

implemented message passing mechanism in Modelica is described in Chapter 4.

3.3.3 Interface Between P-DEVS Models and Models

Described Using Other Formalisms in Modelica

In order to combine P-DEVS and Modelica models from other libraries, the two

types of model communication have to be fulfilled:

– Multiple interface models have to be constructed to translate the messages,

as described in the message passing mechanism described in Chapter 4, into

discrete-time signals. Also, the continuous-time and discrete-time signals

from the Modelica models have to be translated into messages. A descrip-

tion of the developed interface models is performed in Chapter 7. Also,

a description of the functionalities included to construct hybrid process-

oriented models is included in Chapter 12.

50

3.4 Conclusions

– The direct connections from Modelica to P-DEVS models can be supported

by allowing continuous-time inputs for the transition functions. The value

of the continuous-time signal connected to one of these inputs is used as

an input for the transition function. A definition of this extension to the

formalism is included in Chapter 5, together with the description of the

atomic P-DEVS model behavior in Modelica.

3.4 Conclusions

The differences between P-DEVS and EOO models have been identified. These

differences can be considered as requirements in order to support P-DEVS models

in EOO languages. The requirements to describe P-DEVS and process-oriented

models in Modelica are:

– The description of discrete-event model behavior.

– The description of model communications following a message passing mech-

anism.

– The description of model interfaces to combine discrete-event models with

models from other Modelica libraries.

The study of these requirements and the development of solutions will be the

base of the works described in the rest of this dissertation.

51

4
Message Passing Mechanism

in Modelica

4.1 Introduction

The most important challenge found during the development of the DEVSLib

library has been the communication between P-DEVS models. P-DEVS models

communicate following a message passing mechanism. Modelica, using its current

functionalities, does not facilitate the description of a message passing mechanism.

The description of this communication mechanism in Modelica is the cornerstone

for supporting P-DEVS models.

In this chapter, the work performed to facilitate the description of the P-

DEVS model communication mechanism in Modelica is discussed. The differences

between both communication approaches are described, identifying the required

functionalities for message passing. The specification and design of the message

passing mechanism is generalized to the EOO languages. The elements, messages

and mailboxes, defined to perform the communication using message passing are

discussed, together with the operations required to manage them. An example of

communication between models using the defined mechanism is included. After

that, different approaches are analyzed to manage the communication of messages

between Modelica models. The selected approach, based on dynamic memory

management, is used to implement the mechanism as an external library coded

in C. A default message type is described together with the functions to manage

Chapter 4 Message Passing Mechanism in Modelica

it. Finally, the use of this mechanism to describe P-DEVS model communication

is discussed. The implemented mechanism will be used in the development of the

DEVSLib library.

4.2 Definition of the Problem

As described in Chapter 3, the concepts underneath P-DEVS and Modelica model

communication mechanisms are different. The communication between P-DEVS

models follows a message passing mechanism. Models can share information,

transmitted as impulses of structured data through connections (i.e., the mes-

sages). The communication between Modelica models follows the energy-balance

principle. This communication establishes relations between variables (across and

through) inside connected ports (i.e., connectors).

The current Modelica communication mechanism (using connectors and con-

nect sentences) does not facilitate the description of a message commmunication

mechanism. The constructs included in the language:

– Do not allow the simultaneous transmission of messages from one port to

another, due to the single-assignment rule (a variable can only be assigned

from one equation).

– Do not allow to connect multiple output ports to the same model and

transmit simultaneous messages, also due to the single-assignment rule.

– The amount of information transmitted by the connector is fixed by the

number of variables defined inside it.

– The structure of the information transmitted with the connection is also

fixed due to the variables defined in the connector.

Model communication in P-DEVS involve additional things than in Modelica,

because of the transmission of information. These differences can be extended

to any EOO language. In order to facilitate the description of P-DEVS mod-

els in EOO languages, a message passing mechanism has to be described and

implemented.

54

4.4 Specification and Design of a Message Passing Mechanism for EOO Languages

4.3 Required Functionalities of the Message Passing

Mechanism

In order to reproduce the information exchange between P-DEVS models, the

message passing mechanism should satisfy the following requirements:

1. Connections between models should be of any form (i.e 1-to-1, 1-to-many

and many-to-1).

2. Messages should be transmitted/received instantaneously (i.e., without de-

lay).

3. Multiple messages could be transmitted simultaneously through the same

or multiple ports of a model.

4. Messages should be able to transport any kind of information. The infor-

mation transported by the message could be different in each transmission.

The type and structure of that information should be defined by the mod-

eler.

Ideally, the mechanism should be transparent to the user in order to facilitate its

use without increasing the complexity of model development.

4.4 Specification and Design of a Message Passing

Mechanism for EOO Languages

A general communication model can be described using three concepts: the

sender, the receiver and the communication channel. The proposed message

communication mechanism replicates this structure, defining elements to rep-

resent each of these concepts and the operations performed by each element in

order to accomplish with the communication. The sender is naturally represented

by the model that initiates the communication. The receiver is represented by

a mailbox in the model that receives the communication. The communication

55

Chapter 4 Message Passing Mechanism in Modelica

channel is represented by the message transmitted between them. The mailbox

and the message are the data structures proposed to describe the message pass-

ing mechanism. The behavior of these two structures is detailed, as well as the

operations to perform model communication usign them (i.e., message sending,

tranmission, detection, and treatment).

4.4.1 Messages and Mailboxes

The model communication mechanism using messages involves two elements:

– The message itself. The message represents the information either traveling

inside a model or from one model to another.

– The mailbox. The mailbox receives the incoming messages and stores them

until they are read. The mailbox also represents the concept of a bag of

messages in the P-DEVS formalism.

The specification of the characteristics of the mailboxes and the messages,

and their behavior, are the following:

– The content of the message, this is the information transported, can be

of different types. A message could transport a single number, an array,

a record or any other object, defined as an instance of a class. It is the

modeler who defines the contents of the messages and the way to manage

them. For instance, in a typical communication between P-DEVS models

the messages transport single numbers. However, in the implementation

of the QSS systems at least three values are required (the value, the first

and the second derivatives, in case of the third order integrator), which are

transported using an array. In the communication between Arena modules

the information transported by each message represents an entity, with

pre-defined atributes and also a variable number of user-defined atributes.

Each entity can transport a different number of attributes, depending on

the flowchart diagram of the system.

56

4.4 Specification and Design of a Message Passing Mechanism for EOO Languages

– Messages can be of different types. Different types of messages can be used

to establish priorities in their management or to describe different types

of information in the system (e.g., parts of type A and B) Also, the type

of a message is independent from its content. Messages of the same type

can trasnport different contents, and vice-versa. A mailbox can store any

message independently of its type.

– The mailbox warns the model when new incoming messages are received.

This behavior prevents from unnecessarily checking the mailbox for new

messages.

– Once received, the message can be read from the mailbox.

– The transmission of messages between models is performed instantaneously.

Any message sent from one model will immediately be received by another

model.

– Messages can be received simultaneously, either in the same or different

mailboxes.

– Received messages have to be stored temporarily in the mailbox, until they

are read.

– Message communication has to be performed in two stages: sending and

reception. The former involves the transmission of any message in the

system at a given point in time, so all the messages sent are stored in the

mailbox at the end. After that, all the messages are available for reception

in each mailbox and can be read and managed as required. If a model

sends several messages to the same mailbox, all the sent messages have to

be stored in the mailbox before the first message can be read by the receiver.

The design of these two elements, in order to include them in an EOO lan-

guage, can be performed as follows.

The message can be described using two components: the type and the con-

tent.

57

Chapter 4 Message Passing Mechanism in Modelica

– The type of a message can be represented using an integer value. Different

values can be assigned in order to separate the messages of the system into

different sets. The type can also be used to organize the messages stored in

the mailboxes or as a priority to read them from the mailbox, similarly to

the behavior of UNIX IPC messages mechanism.

– The content represents the information transported by the message. The

content of a message is defined by the modeler. Depending on the charac-

terstics of the language, the content can be defined as a general abstract

class, whose characteristics can be inherited to describe particular classes

for different types of contents. It can also be described as a reference (i.e.,

a pointer) to the user-defined data structures used to describe each par-

ticular type of content. In any case, the modeler has to provide enough

functionalities to manage the defined types of contents.

The mailbox represents a temporary storage for messages. When a message

is sent to a mailbox, it is stored in the mailbox until the receiver reads it. The

number of messages stored in a mailbox is not limited, so this structure has to be

able to dynamically change its dimension. A mailbox has to be described using

linked lists (of messages) stored using dynamic memory.

4.4.2 Communication Using Messages and Mailboxes

The transmission of messages between models can be performed directly or be-

tween connected mailboxes:

– In a direct transmission, the sender composes the message (i.e., defining its

content) and sends it to a mailbox in the receiver using a pre-defined func-

tion (i.e., sendMessage()). In this case, the reference to the mailbox in the

receiver has to be known in advance by the sender (e.g., using a pre-defined

mailbox name). This requirement does not satisfy the modularity princi-

ple of the object-oriented methodology, and so its use is not recommended.

However, this method also provides a simple mechanism to communicate

58

4.4 Specification and Design of a Message Passing Mechanism for EOO Languages

information about concurrent or immediate events inside a model itself (i.e.,

being the sender and the receiver at the same time).

Mailboxes can also be shared between models. Sharing a mailbox implies

that several models can access to the message storage that it represents.

Each model sharing the mailbox can access the stored messages, reading or

extracting them from the mailbox. Read messages are kept in the mailbox

until they are extracted, and removed, from it. Messages that have been

read by a model are still available for other models until they are extracted.

– Connected mailboxes are a special case of mailboxes which are defined inside

connectors. Two mailboxes, inside connectors, connected using a connect

sentence represent a bidirectional message communication pipe. They will

act as input/output mailboxes instead of only receiving messages, like the

mailboxes in the direct transmission. A message sent through one end of the

pipe will be transported to the opposite end, and vice-versa. If more than

two models are connected to the same pipe, a copy of the message will be

transported to each receiver connected to the pipe. This provides a message

broadcast functionality that also emulates the message transmission in P-

DEVS, however in P-DEVS the communication is not bidirectional. The

functionalities of the connect sentence in Modelica have to be extended in

order to support this mailbox behavior.

An example of this behavior is shown in Fig. 4.1. Model A defines a new

message m, and sets its type to 1 (using the function settype()) and its

content to c (using the function setcontent()). When composed, it sends

the message to the mailbox mbox (which is defined inside a connector)

using the function putmsg(). The message is then copied to the mailboxes

in models B and C. Each of these models is waiting for the reception of

a new message, using the function checkmsg() inside a when statement

(which will be active after the reception of a new message). When received,

models B and C extract the message from the mailbox (using the getmsg()

function) and get the type of the message (gettype() function). Model B is

59

Chapter 4 Message Passing Mechanism in Modelica

Figure 4.1: Model communication with messages using connectors.

waiting for messages with type 1, and model C is waiting for messages with

type 2. Thus, model C discards the message and model B reads its content

(using function getcontent()).

The detection of message reception is implicit in the action of sending it, since

they are transferred instantaneously. Every time a model sends a message to a

mailbox, the simulator knows that the message will be received by another model

and that event will have to be treated properly. At that time, the simulator can

schedule a new time event that will represent the reception of the message (even

if this situation occurs immediately and no simulation time elapses). In this way,

events for message reception and treatment can be scheduled properly in advance.

The mailbox warns when a new message has arrived. The mailbox activates a

listener function that can be used as a condition to detect any incoming message

(e.g., used with the when or if statements in Modelica). This does not mean that

the condition has to be effectively checked at each simulation step, because it is

notified by the send message operation. Once a new message arrives to a mailbox,

the arrived message or messages have to be read and treated. The management

of the content of each message has to be defined by the user.

60

4.4 Specification and Design of a Message Passing Mechanism for EOO Languages

Following with the design of the message passing mechanism, several oper-

ations to manage the behavior of messages and mailboxes are proposed. The

functions and their description are shown in Tables 4.1 and 4.2. The operations

are described as function prototypes, where the parameters indicate the class (or

type) of the objects received as inputs.

Table 4.1: Operations with mailboxes.

Operation Description
newmailbox(mailbox) Initializes the mailbox.
checkmsg(mailbox) Warns about the arrival of a new message. It

changes its value from false to true and immedi-
ately back to false at each message arrival event.

newmsg() Detects the arrival of a message to any of the mail-
boxes declared in the model. This helps to man-
age the simultaneous arrival of messages in different
mailboxes.

nummsg(mailbox) Returns the number of messages stored in the
mailbox.

readmsg(mailbox,select) Reads a message from the mailbox. The select
parameter represents a user-defined function used
to select the desired message to be read from the
mailbox (e.g., the first, last, a given position of the
list, or using a particular condition).

getmsg(mailbox,select) Extracts a message from the mailbox, deleting it.
The select parameter is used in the same way as
in the readmsg function.

putmsg(mailbox,message) Sends the message to the mailbox.

Table 4.2: Operations with messages.

Operation Description
newmsg(content,type). Creates a new message with the defined

type and content.
gettype(message). Returns the type of the message.
settype(message,newtype). Updates the type of the message to the

value of newtype.
getcontent(message). Reads the content of the message.
setcontent(message,newcontent). Inserts the newcontent into the message.

61

Chapter 4 Message Passing Mechanism in Modelica

4.4.3 Example of Model Communication Using Messages

In order to show the behavior of the model communication mechanism using

messages and mailboxes, the following example is described. It corresponds to

a single-queue system, described using similar elements to the ones found in the

SIMAN language.

The structure of the model is shown in Fig. 4.2. It is composed of a Create,

Queue, Seize, Delay, Release and Dispose models. The communication between

these models is performed using messages. The input and output ports used to

define the interface of the models contain mailboxes. As described above, the

connection between two ports establishes a communication channel. Messages

will be sent from one side and received at the other.

The Create model periodically creates new messages and sends them through

its output port. These messages are received by the Queue model and are stored

there waiting to be procesed. After receiving a new message, the Queue model

creates an auxiliary message (maux) and sends it to the Seize model after setting

its value to 0 and the type to 1 (the value of the type will be used to differenciate

input messages in the Seize model). The Seize model can receive two types of

messages:

– Type 1, that representes a new message stored in the queue. If this type of

message is received, the Seize model increases the counter for the number of

messages waiting in the queue and checks the state of the resource. If the re-

source is idle: (1) it seizes the resouce (using the function seize(resource));

(2) extracts a message from the input mailbox of the Queue model that

contains the messages waiting (the Seize model has to obtain the reference

to this mailbox either as a parameter or using a pre-defined value); (3) de-

creases the counter for the number of messages in the queue; and (4) finally

sends the extracted message to the next model.

– Type 2, that represents messages arrived from the Release model meaning

that the resource has been released. If this type of message is received,

the Seize model checks the counter of messages to see if there is any mes-

62

F
ig

u
re

4
.2

:
E

xa
m

p
le

of
a

S
IM

A
N

si
n

gl
e-

q
u

eu
e

sy
st

em
m

o
d

el
ed

u
si

n
g

m
es

sa
ge

s.

63

Chapter 4 Message Passing Mechanism in Modelica

sage waiting in the queue. If any message is waiting, the recently released

resource is assigned to a new message, which is extracted form the queue

and sent to the next model. If no messages are waiting, the Seize models

updates the state of the resource (to idle) and waits for new messages.

The messages sent from the Seize model arrive to the Delay, that represents

the time the message is being processed. The received messages are assigned

with a random delay and stored in a temporary storage using the function put().

This function returns the time (nextout) of the first delay to finish, between the

messages stored in the storage. When the simulation time reaches the value of

nextout, the Delay model extracts the message from the storage and sends it to

the Release model. When the Release model receives a message, it relaeases the

resource (using the function releaseResources()) and redirects the message to

the next connected model. It also creates a new message (m2) with type 2 that

will be sent to the Seize model to notify the release of the resource. Finally, the

messages arrive to the Dispose model that removes them from the system.

4.5 Analysis of Alternative Implementations of Message

Passing Communication in Modelica

Due to the current functionalities of the Modelica language (i.e., the use of the

synchronous data flow principle, the single-assignment rule, the imposibility to

define a variable number of objects in a model or to define data structures of a

varible size), only a partial implementation of the described mechanism has been

performed. The message passing mechanism has been implemented in an external

library written in C and named “events.c”. It contains multiple data structures

and functions to reproduce as close as possible the described behavior of messages

and mailboxes. These external data structures and functions are connected with

Modelica using the external function interface included in Dymola [Olsson, 2005].

The approach used to perform the message transmission is completely trans-

parent to the final user. At the user level, the communication is just defined by

64

4.5 Analysis of Alternative Implementations of Message Passing Communication in Modelica

connecting the output ports of some models to the input ports of other mod-

els. The transmission and reception of messages is performed using Modelica

functions.

Several approaches were studied and developed in order to implement a suit-

able message passing mechanism in Modelica. The approaches studied and imple-

mented while developing the message passing mechanism are described next. A

direct implementation using modelica connectors, the use of a temporary storage

described using text files and the use of dynamic memory to store the transmit-

ted messages were evaluated. Finally, the dynamic memory approach was used

to implement the communication mechanism.

4.5.1 Direct Transmission

A direct implementation of a message passing mechanism using Modelica connec-

tors was studied. It consists in specifying inside the connector all the variables

that define a type of message. The values assigned to the variables of one con-

nector represent the content of the message.

These values are related, because of the connect sentence, to the values of

the variables in the connector of the next model. In this way, a message is

directly transmitted from one model to another. Different types of messages

require different connectors, one for each type, with different variables.

The direct transmission is the simplest way of communicating models, but

presents a problem: the simultaneous reception of several messages. There are

three possible situations for this problem:

– 1-to-1 connection: one model sends several messages to another model at

the same time.

– Many-to-1 connection: several models simultaneously send messages to an-

other model.

– A combination of the previous cases: several models simultaneously send

one, or more, messages to another model.

65

Chapter 4 Message Passing Mechanism in Modelica

The following solutions have been applied to this problem:

1. Synchronizing the message transmission between models using semaphores.

The synchronization allows the sender and receiver to manage the flow of

messages between both models, using a send/ACK mechanism like in the

TCP/IP communication. Thus, the sender model will send a message to

the receiver and wait for an ACK. On the other hand, the receiver model

will read the messages when it is ready to process them, and only send

the ACK back if it is still ready to continue processing more messages. A

model of the semaphore synchronization mechanism, based on a previous

work by Lundvall and Fritzson [2003], has been implemented and is freely

available for download at Euc [2009]. A disadvantage of this solution is the

performance degradation due to the event iteration that takes place during

the synchronization phase of the message transmission. The characteristics,

structure and use of the semaphore model are detailed in Appendix A, since

this approach is not used in the final implementation.

2. Including in the connector a through (i.e., flow) variable that represents the

number of messages sent from a model. So, the model receiving the mes-

sages will know the number of messages received, even with many senders

because the number of messages sent from each sender will be summed up.

However, the content of multiple messages can not be transmitted simultaneously

using the direct transmission approach. The variables of the connector that

describe the message can not be assigned with different values, that represent the

different contents, at the same time.

4.5.2 Text File Storage

The other analyzed approaches for implementing the message passing mechanism

are based on using an intermediate storage of the transmitted messages. This

storage behaves as a communication buffer between two or more models.

The first approach was to use a text file to store the messages, so the sender

writes the message to the file and notifies it to the receiver, that subsequently

66

4.5 Analysis of Alternative Implementations of Message Passing Communication in Modelica

reads the written message. This approach allows simultaneous reception of mes-

sages, because several messages can be written to the file, but its performance

and versatility are poor.

The storage is implemented in a text file. Each line of text stores the infor-

mation related to each of the transmitted messages. The connector contains a

reference to the text file (e.g., the file-name) and the flow variable indicating the

number of messages received (as described in the direct approach). The reference

to the file is shared between the models connected to that connector, allowing

them to access the file simultaneously.

Each model able to receive messages (i.e., with an input port) creates a stor-

age text file and sets the reference to that file in the connector. Functions to

read/write messages from/to the file were developed. A model writes one or sev-

eral messages to the file using the write function. Another function can be used

by the receiver to check the number of messages in the file. When a new recep-

tion is detected, either by checking the file or detecting a change in the value of

the flow variable in the connector, the receiver reads the messages and processes

them. Thus, this approach allows the simultaneous reception of several messages.

A disadvantage associated with this approach is the poor performance due to

the high usage of I/O operations to access the files. Also, the structure of the

information stored in the files is not very flexible if any additional information

has to be included. If new types of messages need to be used, the file management

functions (i.e., read and write) have to be re-implemented to correctly parse the

text file to support the new changes.

4.5.3 Dynamic Memory Storage

In order to improve the performance of the text file approach, the intermediate

storage was moved from the file-system to the main memory. Using the Modelica

external functions interface, a library in C was created to manage the intermediate

storage using dynamic memory allocation. A message is represented in Modelica

using a record class, and in C using its equivalent struct data structure. Messages

67

Chapter 4 Message Passing Mechanism in Modelica

are stored using dynamic linked lists during their transmission from one model

to another.

Instead of a reference to the text file, the connector contains a reference

to the memory space that stores the messages, together with the flow variable

that indicates the number of messages received. That reference is the memory

address pointing to the beginning of the linked list. Similarly to the file text

approach, each model able to receive messages initializes the linked list as a

queue (i.e., using the createQueue() function), and sets the reference to it in

the connector. Messages can be transferred to the queue using the write function

(i.e., sendEvent()), and can be extracted using the read function (i.e., getEvent()

or readEvent()). Another function is used to check the availability of received

messages (i.e., numEvents()), in order to process them.

This approach also allows the simultaneous reception of several messages. The

performance is highly increased in comparison to the text file approach. Also, the

structure of the information only depends on the data structures managed by the

functions and can be easily adapted. For modifying the message type, it is only

necessary to change a data structure and not all the functions used to manage

that structure.

4.6 Implemented Message Passing Mechanism in

Modelica

The implemented message passing mechanism in Modelica is described in this

section. It consist on the description of a default message type, that will be

used to transport information between models, and the required functions the

manage this message type. These functions implement the management of the

communication using the described dynamic memory approach. The re-definition

of the default message type, in order to adapt it to other applications, is also

described in this section.

68

4.6 Implemented Message Passing Mechanism in Modelica

4.6.1 Default Message Type

The default type of message is composed of: Type, represented by an integer

variable, and Value, which is represented by a real variable. The message also

includes a Port variable, that represents the port the message has been received

through, but this value is managed by the receiver model and not by the user.

This structure is defined in the “events.c” file as a C struct, and in Modelica as a

record named stdEvent.

This default message can be used to define the content of a message as real

or integer numbers, or a combination of both. Also, as several messages can be

simultaneously sent through an output port, this type of message can be used to

transmit arbitrarily complex information (e.g., arrays of numbers).

4.6.2 Functions to Manage the Default Message Type

The functions used to manage the default type of message and the linked lists

(or queues) used to store them during the transmission are:

QCreate Creates a new queue to store messages.

QDestroy Deletes the messages and frees the memory of an already

created queue.

QAdd Inserts a new message in the queue. The message is inserted

at the end of the queue (FIFO).

QAddFirst Inserts a new message in the queue. The message is inserted

at the beginning of the queue (LIFO).

QAddLVF Inserts a new message in the queue. A ordering value is used

to select the position in the queue. Each message has an

associated value, and the messages are ordered from lower to

higher values (LVF, or Low Value First).

QAddHVF Inserts a new message in the queue. Like in the LVF, an

ordering value is used to select the position of the messages.

They are ordered from higher to lower values (HVF, or High

Value First).

69

Chapter 4 Message Passing Mechanism in Modelica

QRead Reads the first message from the queue without deleting it.

QGet Reads the first message form the queue and deletes it.

QGetPos Reads the message located in a given position in the queue

and deletes it.

QSize Returns the length of the queue.

QFirstTime Returns the insertion time of the first message in the queue.

QFirstOrder Returns the ordering value of the first message in the queue.

QPosOrder Returns the ordering value of the message in a given position

in the queue.

4.6.3 Defining Other Types of Messages

The implemented message passing mechanism allows the user to define the con-

tent of each message. There are two ways of re-defining the type of message:

– Changing the C structure in the “events.c” file and the content of the stdE-

vent in Modelica.

– Describing the new message type as a new structure in C, including the

functions to manage it (i.e., read, write, etc.), and using the Value vari-

able of the standard message type as a reference to the new type, whose

object should be stored in dynamic memory. This approach is used in the

development of the ARENALib and SIMANLib libraries.

4.7 P-DEVS Model Communication in Modelica

The communication of P-DEVS models in Modelica uses the described implemen-

tation of the message passing mechanism, using the default message type. The

input and output P-DEVS ports are represented using two Modelica connectors:

inPort and outPort. These two connectors are composed of one across variable,

named queue, and one through variable, named event.

70

4.7 P-DEVS Model Communication in Modelica

The event variable represents a counter of the received messages in an input

port. Every time a message is sent through an output port, the event value of

that port is increased. As event is a through variable (or flow), all the values of

the event variables from the output ports connected to an input port are summed

up, giving the final number of messages received in that input port. The event

corresponds to the flow variable described with the implemented message passing

mechanism to allow the simultaneous reception of multiple messages, even from

different senders.

The queue variable represents the reference to the dynamic memory space

used to temporarily store the received messages until the model executes its

external transition. The messages are read, and deleted, from the memory by the

external transition function. However, in order to facilitate the management of

simultaneous messages, messages can be read arbitrarily – i.e., non-sequentially,

using an index – without deleting them from memory.

An example of the communication between P-DEVS models in Modelica,

using the inPort and outPort connectors, is shown in Fig. 4.3. Models A and B

have connectors of type outPort. These ports are connected to a single input port,

of type inPort, defined in model C. Model C initalizates the value of its “queue”

with a reference to the dynamic memory storage used to store the messages

received. The values of the “queue” variables of models A and B are equaled

to the same reference, because they are defined as across variables (A.queue =

B.queue = C.queue). Thus, models A and B can send messages to C using this

reference and the QAdd() function. The “event” variable will be used by A and

B to notify new messages sent to C after executing the mentioned function (by

increasing its value when a new message is sent). The value of the“event”variable

of C is equaled to the sum of the other two “event” variables, due to the included

flow modifiers (A.event + B.event = C.event). Model C can observe the reception

of new messages by checking the variations in the value of its “event” variable.

71

Chapter 4 Message Passing Mechanism in Modelica

Figure 4.3: Example of P-DEVS models communication scheme in Model-
ica.

4.7.1 1-to-Many Connections

Using the implemented message passing communication mechanism is not possi-

ble to perform 1-to-many connections between models (like the connection shown

in Fig. 4.1). This limitation arises because each input port has a queue for stor-

ing incoming messages. An output port of a model connected to the input port

of another model receives the reference to that queue, used to write the trans-

mitted messages. Each output port can send messages only to one input port,

because the queue variable in the connector can not be assigned with several

values (corresponding to the references of the queues that will have to receive the

message).

A possible solution is the inclusion of an intermediate model to duplicate the

received message and simultaneously send copies of it to several receivers. This

72

4.8 Conclusions

model should have several output ports, each one connected to a receiver, that

will be used to send the copies of the message. Several output ports can send

messages simultaneously to the same input port, because all of them share the

reference to the same queue (as shown in Fig. 4.3).

4.8 Conclusions

The communication mechanism between models in P-DEVS are different to the

communication mechanism used by most of the EOO languages. Models in P-

DEVS communicate using a message passign mechanism, that allows to transfer

impulses of information between models. Connections between models in EOO

languages are based in the energy-balance principle, using variables defined as

across and through. In order to describe P-DEVS models using Modelica, a

message passing mechanism has to be described and implemented.

A message passing mechanism has been specified and designed to be included

in EOO languages. It is based on the definition of messages and mailboxes as

elements to describe the communication, and the operations to manage these

elements.

Multiple alternatives to implement the described communication mechanism

in Modelica have been evaluated and implemented. The approach selected for

the implementation uses dynamic memory to transmit messages between models.

Using this approach, a default message type is defined and the operations to

perform the communication using messages in Modelica have been implemented.

However, this default message type can be easily adapted to other applications.

The implementation of the mechanism has been performed as an external library

coded in C language, connected to Modelica using its external function interface.

The implemented mechanism has been used to describe the P-DEVS model

communication approach in Modelica. It will facilitate the description of P-DEVS

and process-oriented models. The implemented mechanism is transparent to the

user, and connections between models are performed using Modelica connectors

and connect sentences.

73

5
The DEVSLib Library

5.1 Introduction

DEVSLib is a new free Modelica library, distributed under the Modelica License

2, that supports the P-DEVS formalism. In this chapter the architecture and the

implementation of the library are presented.

The implementation is detailed describing how the behavior of atomic and

coupled P-DEVS models has been expressed using Modelica. The functionali-

ties provided by Modelica to describe abstract classes, replaceable objects and

functions, as well as the functionalities for event management, has been used to

perform this implementation. The communication between models in DEVSLib

has been described using the mechanism presented in Chapter 4.

The developed library supports a modular and hierarchical description of P-

DEVS models, which facilitates the construction of multiple kind of models and

their understanding. The development of discrete-event models using the DEVS-

Lib library, and its functionalities to describe hybrid systems will be described in

Chapters 6, 7 and 8.

Chapter 5 The DEVSLib Library

5.2 DEVSLib Architecture

In order to facilitate the understanding and use of DEVSLib, its models can

be classified into two groups: the “user’s area” and the “developer’s area”. This

division helps to focus on the library components required by the task to perform.

A modeler that only needs to construct a new discrete-event model will be focused

on the user’s area. Modelers that require additional functionalities than the ones

included in the library will be focused in the developer’s area.

The top level of the hierarchy is shown in Fig. 5.1a. The “user’s area” consists

of the User’s Guide, the atomicDraft package, the coupledDraft model, the Aux-

Models package and the examples provided within the Examples package. The

“developer’s area” consists of a single package – i.e., the SRC package.

5.2.1 User’s Area

The “user’s area” contains all the models intended to be used directly by the

library user. In particular, those needed to develop atomic and coupled P-DEVS

models, to interface with continuous-time models and also the models imple-

menting the QSS integration methods. The documentation of these packages is

oriented to those who need to use the library, but do not need to understand its

internal design and implementation.

The structure of the “user’s area” is shown with more detail in Fig. 5.1b.

The atomicDraft package and the coupledDraft model are used to define new

atomic and coupled P-DEVS models. The AuxModels package contains some

useful auxiliary models that are usually needed. It includes the following models:

– Generator and Display are models that can be used as source and sink of

messages, respectively.

– DUP and DUP3 are models that duplicate each incoming message and

instantaneously send a copy of it through all its output ports (two in the

case of DUP, and three in DUP3). The use of these models is detailed in

Section 5.5.

76

(a) (b) (c)

Figure 5.1: DEVSLib library architecture: a) general architecture; b) user’s
area; and c) developer’s area.

77

Chapter 5 The DEVSLib Library

– Select is a model that sends each received message through one of its two

output ports, depending on a given boolean condition.

– BreakLoop is used to break algebraic loops in coupled models. Its use is

detailed in Section 5.5.

– DiCO, DIBO, Quantizer, CrossUP and CrossDOWN are the interface mod-

els used to combine DEVSLib models with models from other Modelica

libraries. Their use is detailed in Section 7.2.

– QSS1, QSS2 and QSS3 are models that implement the first, second and

third order QSS integration methods. Their use is detailed in Section 6.5.

The Examples package contains several models that can help the user to learn

and understand the use of the library. The included models are the following:

– SimpleModels package contains some simple atomic and coupled DEVSLib

models. Implementations of Generator and Display are provided, as well as

Processor, Switch, Pipe an other examples described in Zeigler et al. [2000].

– ATM package contains the model of an Automatic Teller Machine. The

formal specification of this model can be found in Saadawi [2004].

– Clock2 includes the model of a pendulum clock. It is modeled as a hybrid

system, with the pendulum represented by a continuous-time model and

the rest of the clock by a P-DEVS model. The specification of the model

can be found in Kriger [2002].

– CarFactory includes a model of a car production factory [Sun, 2001].

– HybridONoC contains a hybrid model of an optoelectrical communication

system. Detailed information about the model can be found in Sanz, Jafer,

Wainer, Nicolescu, Urquia and Dormido [2009].

– QSSIntegration includes a differential equation, a Lotka-Volterra and a

flyback-converter models implemented using QSS integration methods. Other

required models such as adder, multiplier, gain, square-root, step, constant,

and switch, are also included.

78

5.3 Atomic P-DEVS Models in DEVSLib

– ControlledTanks includes a hybrid model of a two-tank system with discrete

controller.

– PetriNetsExamples includes the model of an MM1 queue system. This

model will be compared with its implementation included in the Extended

PetriNets Modelica library [Fabricius and Badreddin, 2002a].

5.2.2 Developer’s Area

On the contrary, the “developer’s area” contains data structures and partial mod-

els that the library user does not need to use directly. The documentation of this

area is oriented to the library developers.

The“developer’s area”is shown in detail in Fig. 5.1c. The AtomicDEVS model

contains the Modelica implementation of the general behavior of an atomic P-

DEVS model. This model is inherited by the atomicDraft package of the “user’s

area”. In the AtomicDEVS model, a data structure (i.e., a record) represents the

state of the model and Modelica functions describe the P-DEVS functions (i.e.,

state-initialization, transition, output and time-advance functions).

In addition, the “developer’s area” contains the implementation of input and

output ports, functions supporting the message passing mechanism needed to

communicate P-DEVS models, the implementation of the event-duplicator model

(DUP), the model to break algebraic loops (BreakLoop), the implementation of

the Select model, the interfaces to combine DEVSLib with other libraries and the

QSS integration methods.

The rest of this chapter is devoted to describe the implementation details of

these models, used to describe the P-DEVS behavior in Modelica.

5.3 Atomic P-DEVS Models in DEVSLib

This section describes the implementation of a general atomic P-DEVS model

in DEVSLib. DEVSLib includes an abstract model, named AtomicDEVS, that

implements the basic behavior for the atomic P-DEVS model.

79

Chapter 5 The DEVSLib Library

The AtomicDEVS model performs the detection of the internal, external and

confluent events, the compilation of the input messages in a bag, the generation

of the bag of output messages and the management of the actions described

using the transition functions. DEVSLib has been developed using Dymola. The

description of the behavior of DEVSLib models has been performed using the

mechanisms to manage the simulation time and events included in Dymola. Only

the triggering conditions for time events (usually internal events where tnextInt =

t+ σ), the management of the messages between models (which are transmitted

using the previously described mechanism), and the occurrence of simultaneous

events needed to be taken into account for the development of the library.

The AtomicDEVS model also allows continuous-time inputs for the transi-

tion functions. The value of the continuous-time signal connected to one of these

inputs is used as an input for the transition function, and can affect the behav-

ior of the model. No sampling or any other discretization mechanism is neces-

sary. This behavior is similar to the definition of the transition functions in the

DEV&DESS formalism [Zeigler et al., 2000]. Thus, the specification of the mod-

els supported by DEVSLib is described with the tuple (notice the extra Xcont

value, included to describe the mentioned continuous-time inputs for the tran-

sition functions, in comparison with the tuple described in Zeigler et al. [2000])

M = (XM , Xcont, S, YM , δint, δext, δcon, λ, ta), where:

XM = {(p, v)|p ∈ IPorts, v ∈ Xp}

Xcont = {xc|xc ∈ <}

YM = {(p, v)|p ∈ OPorts, v ∈ Yp}

δint : S ×Xcont −→ S

δext : Q×Xb
M ×Xcont −→ S where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set and

e is the time elapsed since the last transition.

δcon : Q×Xb
M ×Xcont −→ S

λ : S −→ Y b
M

ta : S −→ <+
0,∞

80

5.3 Atomic P-DEVS Models in DEVSLib

XM is the set of input ports and values, Xcont is the set of continuous-time input

values, S is the set of sequential states, YM is the set of output ports and values,

δint is the internal transition function, δext is the external transition function,

δcon is the confluent transition function, λ is the output function and ta is the

time advance function.

5.3.1 Components of the AtomicDEVS Model

The AtomicDEVS model has been described as a Modelica partial model that

contains the basic components of an atomic P-DEVS model. It is composed of:

– The state.

– The interface to connect with other models.

– Some functions that describe its behavior.

The definition of these components in Modelica is shown in Listing 5.1. These

components are defined as private (or protected), except the state, to indicate

that these components belong to the AtomicDEVS model and cannot be used by

other models.

5.3.2 Definition of the State and its Initialization

The state is described using a Modelica record, named S. The class of S is defined

as a replaceable record, named State, in order to allow the re-definition of the

state. This allows to define the state of the model based on the behavior to

represent, including the desired variables in the re-defined State record. The

State has to be always described as a Modelica record.

The initialization of the state is performed using the initState function. This

function has also been defined as replaceable to allow its re-definition depending

on the behavior of the model.

81

partial model AtomicDEVS "Partial atomic DEVS model"
replaceable record State = stdState;
State S "Current State";
parameter Integer numIn = 1 "Num of input ports";
parameter Integer numOut = 1 "Num of output ports";

protected
// connection to input ports
Real iEvent[numIn];
Integer iQueue[numIn];
// connection to output ports
Real oEvent[numOut];
Integer oQueue[numOut];
replaceable function Fout "Output Function"
input State s;
input Integer queue[nports];
input Integer nports;

end Fout;
replaceable function Fcon "Confluent Transtition Function"
input State s;
input Real e;
input Integer bag;
output State sout;

algorithm
sout := s;

end Fcon;
replaceable function Fint "Internal Transition Function"
input State s;
output State sout;

algorithm
sout := s;

end Fint;
replaceable function Fext "External Transition Function"
input State s;
input Real e;
input Integer bag;
output State sout;

algorithm
sout := s;

end Fext;
replaceable function Fta "Time advance Function"
input State s;
output Real sigma;

algorithm
sigma := Modelica.Constants.inf;

end Fta;
replaceable function initState "Initial State Function"
output State out;

end initState;
... // rest of the code removed

Listing 5.1: AtomicDEVS model components.

82

5.3 Atomic P-DEVS Models in DEVSLib

5.3.3 Interface of the AtomicDEVS Model

The interface of the model is composed of the input and output ports, and four

array variables that relate these ports with the rest of the AtomicDEVS model.

The ports correspond to the connectors described in Section 4.7. The arrays,

named iEvent, iQueue, oEvent and oQueue, are required in order to allow a

variable number of ports in the interface, without modifying the internal imple-

mentation for each different model. The number of input and output ports has

to be specified using the parameters numIn and numOut. The values of these

parameters are used to define the size of the mentioned arrays. The values of

the “event” and “queue” variables of each port have to be assigned to a position

in each array. The “event” variables of input ports are assigned to the iEvent

array. The “queue” variables of input ports are assigned to the iQueue array. The

“event” variables of output ports are assigned to the oEvent array. The “queue”

variables of output ports are assigned to the oQueue array. An example of these

assignments, using two input and one output ports, is shown in Listing 5.2 (no-

tice the different indexes used for the in1 and in2 ports in the assignments to the

iEvent and iQueue arrays).

parameter Integer numIn = 2 "number of input ports";
parameter Integer numOut = 1 "number of output ports";
inPort in1 "first input port";
inPort in2 "second input port";
outPort out1 "first output port";

equations
in1.event = iEvent[1];
in1.queue = iQueue[1];
in2.event = iEvent[2];
in2.queue = iQueue[2];
out1.event = oQueue[1];
out1.queue = oEvent[1];

Listing 5.2: Port to array assignments in the AtomicDEVS model.

83

Chapter 5 The DEVSLib Library

5.3.4 Definition of the Transition, Output and Time

Advance Functions

The internal transition (Fint), external transition (Fext), confluent transition

(Fcon), output (Fout) and time advance (Fta) functions are also defined as re-

placeable in order to allow their re-declaration. The modeler can express the

desired model behavior by re-defining these functions. The re-definition of these

functions has to be performed following the function interfaces shown in List-

ing 5.1. The inputs of each function have to be maintained in the re-definition.

Other inputs can be added to the re-defined functions (e.g., to represent the

previously mentioned continuous-time inputs for the transitions).

5.3.5 Event Detection and Execution of Transitions

The event detection and transition execution process performed by the Atom-

icDEVS model is shown in Fig. 5.2. The AtomicDEVS model triggers an external

event when the event variable of any of the input ports (checking the assigned

iEvent[i]) changes its value (iEvent[i] <> pre(iEvent[i])). Notice that the num-

Figure 5.2: Event detection and transition execution diagram of the Atom-
icDEVS model.

84

5.3 Atomic P-DEVS Models in DEVSLib

ber of input ports is defined by the modeler, and thus a condition must be set

for each port separately. A variable, named previousInternalTransition, is used

to store the time of the previous transition and calculate the elapsed time. Inter-

nal events are triggered when the simulation time reaches the scheduled time for

the next internal transition (time >= pre(nextInternalTransition)). The value

of the variable nextInternalTransition is updated after each transition with the

value time + Fta(S). Confluent events are triggered with the simultaneous oc-

currence of both situations. Mutually exclusive boolean conditions decide which

transition should be executed at each event.

The boolean variables that define which transition to execute at each event are

checked using “when” statements (e.g., when internalEvent then...). The three

when statements (for the internal, external and confluent transitions) are defined

inside an algorithm section, because the same variables are modified inside each

when statement. The following actions are performed inside each statement.

During an external transition, the AtomicDEVS model updates the value of

the variable that stores the elapsed time, compiles the received messages in the

bag and executes the Fext function (δext). The bag of messages is defined as a

list of messages, similarly to the queue variable of the input ports. The received

messages are extracted from the input ports and put into the bag before executing

the external transition function. The external transition function receives as

parameters (or inputs) the current state, the elapsed time and the reference to

the bag of received messages. The Fext function has to manage the received

messages and return the future state for the model. After that, the state of the

model is updated using the output of Fext.

During internal transitions, the AtomicDEVS model executes the output func-

tion Fout (λ) using the current state. After that, it executes the Fint function

(δint) that returns the future state of the model. The state is updated using the

output of Fint .

During the execution of Fout, output messages are sent using the function

sendEvent(). This function calls the external function QAdd to insert the new

message into the queue of an output port of the model. The AtomicDEVS model

85

Chapter 5 The DEVSLib Library

checks the queues of the output ports (represented by the array oQueue[i]) to

find if any message has been sent through them during the execution of Fout.

If any message has been sent, the AtomicDEVS notifies the transmission of the

message by increasing the value of the event variable of each port (oEvent[i]) by

the number of messages sent through it. The queues of two connected ports (input

and output) are represented by the same data structure in dynamic memory, so

each message inserted in the queue of an output port is available (i.e., is received)

at the queue of the input port.

In a confluent transition, the AtomicDEVS model generates an output exe-

cuting the Fout function and the current state. After that, it updates the variable

that stores the elapsed time, executes the Fcon function (δcon), and updates the

state of the model with its output.

A new internal transition is scheduled using the Fta function (ta) after each

transition. The Fta function can return any possitive real number, including zero.

Immdiate internal transitions and infinite delays can be modeled returning zero

and infinite values, respectively.

5.4 Coupled P-DEVS Models in DEVSLib

Coupled DEVSLib models are described following their P-DEVS specification. A

coupled model is composed of:

– Interface, that allows the connection of the coupled model with another

models.

– Internal components, which are a combination of atomic or coupled models.

– Coupling connections between the interface and the internal components,

and between internal components themselves.

The interface of a DEVSLib coupled model is defined using the described

input and output ports. The internal components of a DEVSLib coupled model

are defined instantiating objects from other already available atomic or coupled

DEVSLib models. Since the message passing mechanism used to communicate

86

5.5 Additional Characteristics Included in DEVSLib

DEVSLib models is transparent to the user, the coupling connections between

ports and components are defined using Modelica connect sentences between

input and output ports.

5.5 Additional Characteristics Included in DEVSLib

The following additional characteristics have been included in DEVSLib to im-

prove the construction of coupled models:

– The first characteristic regards the simultaneous connections between the

output port of one model with multiple input ports (i.e., 1-to-many connec-

tions). This problem has been described in Chapter 4. DEVSLib includes

a model, named DUP, to reproduce 1-to-many connections. The DUP

model contains one input port, used to receive messages, and two input

ports, used to send copies of the received message to multiple receivers.

The DUP3 model is similar to the DUP model, but has three output ports.

Also, several DUP model can be serially connected if more that three copies

of the message are required.

– The second characteristic regards the generation of algebraic loops while

connecting model components. An algebraic loop is generated when the

output of a model is connected to the input of another model, directly or

indirectly connected to the former, creating a loop between both models.

Due to Modelica follows the synchronous data flow principle, this situa-

tion can not be solved automatically by the simulator (it can not find the

correct causality assignment for the models in the loop) and produces an

error. Similarly to the previous case, DEVSLib includes a model, named

BreakLoop, aimed to avoid this situation. The BreakLoop model defines

the causality and breaks the algebraic loop by inserting a pre() operator in

the detection of its external events.

– The third characteristic is the possibility to connect the output of a model

to the input of the same model (i.e., self-connections). This behavior is not

87

Chapter 5 The DEVSLib Library

allowed in P-DEVS, but can not be restricted in the Modelica environment.

The modeler has to describe the model avoiding this type of connections.

5.6 Conclusions

A new Modelica library, named DEVSLib, has been developed to support the

P-DEVS formalism. It includes functionalities to describe atomic and coupled

P-DEVS models, and combine them with models developed using other Modelica

libraries.

The implementation of the DEVSLib library has been performed as close as

possible to the formal specification of models using P-DEVS. A general imple-

mentation of the behavior of P-DEVS models has been provided, that can be used

to describe multiple types of models. Models are composed of state (including a

function for its initialization), interface and transition, output and time advance

functions. These elements have been described using the Modelica functionalities

for describing object-oriented models, such as the re-declaration of abstract mod-

els, replaceable objects and functions, and the functionalities to manage discrete

events. The elements of a DEVSLib model can be re-declared in order to describe

the desired behavior. The interface is described using input and output ports,

and facilitates the description of modular and hierarchical models. The com-

munication between models is performed using the previously described message

passing mechanism.

DEVSLib also includes some functionalities to perform 1-to-many connec-

tions, not supported by the described message passing mechanism, and the Break-

Loop model that can be used to break algebraic loops when constructing coupled

models.

88

6
Construction of Discrete-Event

Models Using DEVSLib

6.1 Introduction

The architecture and implementation of the DEVSLib library were presented in

the previous chapter. On the other hand, this chapter is devoted to present the

use of the library to construct discrete-event models. This is performed from the

point of view of a modeler, who wants to construct new discrete-event models

using DEVSLib.

The functionalities of the library are presented by means of several case stud-

ies. The description of the construction of new atomic models is performed with

the implementation of the Processor model described in Zeigler et al. [2000]. This

model represents a single-server-with-queue system, that receives jobs and pro-

cesses them. The construction of new coupled models is also presented using a

simple example. Two additional and more complex models are also discussed.

The first represents an automatic teller machine that has been described with

a pure discrete-event model using the P-DEVS formalism. The second consists

in a model of the predator-prey interactions, described by Lotka and Volterra.

This is a continuous-time system described using a discrete-event model using

the implementation of the QSS integration methods included in DEVSLib. As

it will be demonstrated in this and the next chapters, DEVSLib can be used to

model discrete-event, continuous-time and hybrid systems.

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

6.2 Construction of New Atomic Models

The description of atomic models using DEVSLib follows its formal P-DEVS

specification. The user defines the variables that represent the state and their

initialization. Also, the user has to define the actions performed by the transition

functions, in order to update the state of the model after an event, as well as the

time advance and output functions.

The construction of a new atomic model starts with the duplication of the

atomicDraft model (shown in Fig. 5.1a), which is used as an skeleton for the new

model. The atomicDraft model contains:

– A model named atomic that extends the AtomicDEVS model and represents

the new model.

– A record, named st, that represents the new state for the model.

– A function, named initst, used to initialize the state.

– Other functions, named con, int, ext, out and ta, that represent the con-

fluent transition, internal transition, external transition, output and time

advance functions, respectively.

The steps required to develop a new model are the following:

1. Define the interface of the model, including the required input and output

ports, as instances of the DEVSLib “inPort” and “outPort” connectors, into

the atomic model and setting the value of the numIn and numOut param-

eters to the number of included input and output ports. The atomicDraft

model includes by default one input and one output ports. The variables

(event and queue) of the included ports have to be assigned to the iEvent,

iQueue, oEvent and oQueue arrays of the AtomicDEVS model, in order to

allow the correct reception and transmission of messages.

2. Redefine the state, including in the st record the required variables to de-

scribe the state of the new model (i.e., number of customers in queue,

90

6.2 Construction of New Atomic Models

processing units, etc.). By default, the atomicDraft model includes two

variables, phase (used to represent the current phase of the model) and

sigma (used to schedule the next internal event).

3. Redefine the initialization of the defined state, including in the initst func-

tion the initial values for the variables in st. The initst function receives

the initial values for the variables in the st record as inputs and returns the

initialized st record.

4. Redefine the transition functions, including in the ext, int and con functions

the Modelica code that describes the actions performed during transitions.

By default, the confluent transition function (con) is defined using the ext

and int functions, executing the internal transition before the external tran-

sition. The default behavior of the internal and external transition functions

is to return the state previous to the execution of the transition (i.e., the

state is not modified).

5. Redefine the output function, including in the out function the Modelica

code that generates output messages (i.e., calling the sendEvent() func-

tion). The default function does not generate any message.

6. Redefine the time advance function, modifying the ta function to return the

time for the next internal transition, depending on the current state. By

default, it returns the value of the sigma variable of the state.

6.2.1 Processor Model Constructed Using DEVSLib

The Processor model, described in Zeigler et al. [2000], is an example of ba-

sic P-DEVS atomic model. DEVSLib also includes implementations of Passive,

Storage, Generator, BinaryCounter, Processor, Ramp, Switch and Pipe models,

described by Zeigler et al. [2000]. Another model, called Display, has been im-

plemented to be able to graphically display the message transmission between

models, because Dymola does not display changes in variables occurred during

zero-time intervals.

91

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

The Processor model receives jobs, each one represented by a real number.

If the resource is available, it processes the job and otherwise the job is balked.

After a pre-defined processing time is elapsed, the process ends, the resource is

released and the model is able to receive new jobs. The P-DEVS specification of

this model is the following:

M = (XM , S, YM , δint, δext, δcon, λ, ta)

where:

XM = <

S = {”passive”, ”active”} × <+
o ×<

YM = <

δint(phase, σ, job) = (”passive”,∞, ∅)

δext(phase, σ, job, e, x) =


(”active”,4, x) if phase = ”passive”

(”active”, σ − e, job) if phase = ”active”

δcon = δext(δint, 0, x)

λ(”active”, σ, job) = job

ta(phase, σ, job) = σ

The steps to build this particular model using DEVSLib are the following:

1. Create the package for the new model duplicating the atomicDraft model.

This package will be called “processor”. The “atomic” model inside the new

package has also to be renamed (e.g., to “processor”).

2. Declare the in and out ports, and relate them with the iEvent, iQueue,

oEvent and oQueue arrays of the AtomicDEVS model, as shown in List-

ing 6.1.

model processor extends AtomicDEVS(numIn=1,numOut=1,
redeclare record State = st);
redeclare function Fcon = con;
redeclare function Fint = int;
redeclare function Fext = ext;

92

6.2 Construction of New Atomic Models

redeclare function Fta = ta;
redeclare function initState = initst(dt=processTime);
parameter Real processTime = 1;
Interfaces.inPort in1; // input port
Interfaces.outPort out1; // output port

equation
// relation between ports and arrays
iEvent[1] = in1.event;
iQueue[1] = in1.queue;
oEvent[1] = out1.event;
oQueue[1] = out1.queue;

end processor;

Listing 6.1: Modelica code of a processor system modeled using DEVSLib.

3. The state of the model is composed of phase, sigma, job, processing time

(dt) and a counter for the received jobs. The declaration of the state (using

the st record) and the state initialization function are shown in Listing 6.2.

Notice that the input of the initst function corresponds to the processTime

parameter declared in the processor model (see Listing 6.1).

record st "State of the model"
Integer phase; // 1 = passive, 2 = active
Real sigma; // internal transitions interval
Real job; // current processing job
Real dt; // default processing time
Integer received; // num of jobs received

end st;

function initst "State Initialization Function"
input Real dt;
output st out;

algorithm
out.phase := 1; // passive
out.sigma := Modelica.Constants.inf; // waiting
out.job := 0;
out.dt := dt;
out.received := 0;

end initst;

Listing 6.2: Modelica code of the state and the state initialization function of the
processor model.

4. Redeclare the external, internal and confluent transition functions to repro-

duce the behavior of the model (described above with its formal specifica-

tion), as shown in Listing 6.3.

function con "Confluent Transition Function"
input st s;
input Real e;
input Integer bag;
output st sout;

algorithm

93

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

sout := ext(int(s),0,bag); // first internal transition
end con;

function int "Internal Transition Function"
input st s;
output st sout;

algorithm
sout := s;
sout.phase := 1; // passive
sout.sigma := Modelica.Constants.inf;
sout.job := 0;

end int;

function ext "External Transition Function"
input st s;
input Real e;
input Integer bag;
output st sout;

protected
Integer numreceived;
stdEvent x;

algorithm
sout := s;
numreceived := numEvents(bag);
if s.phase == 1 then
for i in 1:numreceived loop
x := getEvent(bag);
if i == 1 then
sout.job := x.Value;
Modelica.Utilities.Streams.print("* Msg to process");

else
Modelica.Utilities.Streams.print("* Msg balked");

end if;
sout.received := sout.received +1;

end for;
sout.phase := 2; // active
sout.sigma := s.dt; // processing_time

else
sout.sigma := s.sigma - e;

end if;
end ext;

Listing 6.3: Modelica code of the transition functions redeclared in the processor
model.

5. Also, redeclare the output and time advance functions, as shown in List-

ing 6.4.

function out "Output Function"
input st s;
input Integer queue[nports];
input Integer nports;

protected
stdEvent y;

algorithm
if s.phase == 2 then
y.Type := 1;
y.Value := s.job;
sendEvent(queue[1],y);

end if;
end out;

94

6.3 Construction of Coupled P-DEVS Models

function ta "Time Advance Function"
input st s;
output Real sigma;

algorithm
sigma := s.sigma;

end ta;

Listing 6.4: Modelica code of the output and time advance functions redeclared in
the processor model.

6.3 Construction of Coupled P-DEVS Models

The coupledDraft model included in DEVSLib provides a simple way to start the

development of new coupled DEVSLib models. It can be duplicated and the copy

adapted to the behavior of a new coupled model. New input and output ports

can be included, by inserting new instances the DEVSLib “inPort” and “outPort”

connectors. The components of the model can be included in the same fash-

ion, instantiating the required components that have been previously developed.

The coupling connections are defined by including Modelica “connect” sentences

between input and output ports, either between the interface and the internal

components, or among the internal components themselves. Dymola offers func-

tionalities to perform these procedures, using drag and drop, and graphically

defined connections between ports.

Figure 6.1: Simple coupled P-DEVS model constructed using DEVSLib.

95

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

An example of a coupled model constructed using DEVSLib is shown in

Fig. 6.1. The components of this model are the Generator, Pipe and Switch

models described in Zeigler et al. [2000]. The Generator is used as a source of

messages. It periodically generates new messages and sends them through its

output port. The Pipe represents a coupled model with three processors. It has

been constructed connecting three Processor models (described in the previous

section) in series. The Switch model sends the messages received in the first input

port through the second output port, and vice-versa. The Display models have

been included to observe the outputs of the Switch model.

6.4 Modeling an Automatic Teller Machine

The description of a discrete-event model using DEVSLib is presented in this

section. The model represents an ATM system (Automatic Teller Machine) that

is composed of a card reader, an operation authorization subsystem and the cash

dispenser. The behavior of the system is described in the state diagram shown in

Fig. 6.2. The DEVS specification of the system can be found in Saadawi [2004].

The behavior of the system is as follows. The user inserts a card in the ATM.

The system recognizes the new insertion and asks the user to introduce his PIN

number. In case of a failed PIN number, the system ask the user to enter the

correct PIN. If the user fails three times inserting the PIN, the system ejects the

card. When the correct PIN is inserted, the system asks the user to enter the

amount of cash to withdraw. If the balance in the account of the user is not

correct, the system asks the user for a new amount. When the balance is correct,

the system gives the cash to the user and ejects the card. While the system is

busy, any new card insertion is neglected.

The ATM system constructed using DEVSLib is shown in Fig. 6.3 (notice

the required DUP and BreakLoop models). The BreakLoop models are required

to define the causality in the loops. The card reader and the cash dispenser are

simple atomic DEVSLib models. They are modeled following the procedure de-

scribed in Section 6.2. The operation authorization mechanism is modeled using

96

Figure 6.2: State diagram of the ATM system (the system generates outputs
at encircled states).

Figure 6.3: ATM system modeled using DEVSLib: a) top-level components
and; b) authorization subsystem.

Figure 6.4: Simulation results for the DEVSLib ATM model, obtained using
Dymola.

97

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

a coupled model, as shown in Fig. 6.3. It is composed by three atomic models: the

user interface, the balance verifier and the PIN verifier. The interactions between

the system and the user, in order to obtain the PIN number and the amount of

cash, have been modeled statistically generating the data from random uniform

distributions. The correctness of the PIN number and the balance in the user

account have also been modeled using uniform random numbers.

The correspondence between the model shown in Fig. 6.3 and the diagram

shown in Fig. 6.2 is as follows. The card reader performs the CARD IN ac-

tion. The GET PIN and the GET AMOUNT actions are performed by the

user interface. The PIN VERIFY and the BALANCE VERIFY actions are per-

formed by the pin verifier and balance verifier models, respectively. Finally,

the GIVE CASH action is performed by the cash dispenser. The CASH and

EJECT CARD outputs represent the output messages that arrive to the output

ports in Fig. 6.3a.

The simulation results are shown in Fig. 6.4. The card insertions are shown

at the top, in the middle the end time of the operations, and below the amount

of cash withdrawn by the user in each operation. It can be noticed that since the

insertions of the card are modeled at a constant rate, some of the insertions (in

this case the third one) are neglected because the system is still busy with the

previous insertion.

6.5 Quantized State Systems in DEVSLib

As DEVSLib has been designed for describing general P-DEVS models, the de-

scription of continuous-time models using the Quantized State System (QSS)

methods is supported by DEVSLib. This section presents the implementation of

the QSS1, QSS2 and QSS3 integration methods as atomic DEVSLib models and

its application to the simulation of the Lotka-Volterra model.

Quantized State Systems (QSS) are continuous-time systems whose state tra-

jectories are converted into piecewise constant functions using a quantization

function with hysteresis [Kofman and Junco, 2001]. These systems can be de-

98

6.5 Quantized State Systems in DEVSLib

scribed as discrete-event systems using the DEVS formalism. A change in the in-

put of the system is represented as an event, that generates a new output. Events

represent changes in the state trajectories. The hysteresis is used to avoid prob-

lems with infinite number of events and define legitimate DEVS models [Zeigler

et al., 2000]. QSS has also been extended for simulating hybrid systems, com-

bining QSS models of continuous-time systems with other discrete-event DEVS

models [Kofman, 2004].

A QSS system can be defined as follows. Having the following system:

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(6.1)

Its associated quantized state system is defined as:

ẋ(t) = f(q(t), u(t))

y(t) = g(q(t), u(t))
(6.2)

where q(t) and x(t) are related by quantization functions with hysteresis. The

behavior of a quantization function with hysteresis is shown in Fig. 6.5a.

(a) (b)

Figure 6.5: a) Quantization function with hysteresis and; b) block diagram
of a QSS system [Kofman and Junco, 2001].

99

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

6.5.1 QSS Methods in DEVSLib

DEVSLib includes atomic models for the QSS first (QSS1), second (QSS2) and

third (QSS3) order integrators. These integrators can be used in combination

with other atomic models (i.e., Step, Square, Constant, Add, Gain, Multiplier

and Switch, also included in DEVSLib), to describe continuous-time systems in

a block-diagram fashion.

The development of the QSS integrators has been performed following the

procedure described in Section 6.2. Each integrator has one input and one output

ports. The external events represent a change in the first derivative of the state

variable. The external transition function updates the value of the state variable

using the new derivative and schedules a new internal event. The scheduled

internal event represents the point in time when the value of the state will change

by the predefined quantum (i.e., the next step of the quantization function shown

in Fig. 6.5a). At internal events, the current value of the state variable is sent as

an output and a new internal event is scheduled (representing the next quantum-

variation of the state variable).

The content of the messages between QSS models in DEVSLib is as follows:

– The first order algorithm only uses the value of the variable to perform the

calculations, so one message of the default type (i.e., including Type and

Value variables) can transport this information.

– The second order algorithm uses the value of the variable and its first deriva-

tive. In this case, two messages are used to transport this information.

These messages are transmitted simultaneously and are identified using the

Type variable (e.g., “Type == 1” represents the value, and “Type == 2”

represents the first derivative).

– The third order algorithm uses the value, the first and the second deriva-

tive. Thus, an additional third message is simultaneously transmitted to

transport the value of the second derivative. This message is identified

100

6.5 Quantized State Systems in DEVSLib

with the “Type == 3”. The external transition functions are programmed

to recognize the type of each message and use their values as required.

6.5.2 Lotka-Volterra System

The Lotka-Volterra model of the predator-prey interaction [Lotka, 1925; Volterra,

1931] is used to illustrate the continuous-time system modeling with DEVSLib.

The equations of the Lotka-Volterra model are the following:

dx

dt
= xα− xyβ

dy

dt
= −yγ + xyδ

where y is the number of predators, x is the number of preys, and α, β, γ and

δ are parameters that represent the interaction between both species (in this case

study the value α = β = γ = δ = 0.1 has been used). The predator and the prey

populations are inversely related: the growth of one of the species reduces the

growth rate of the other, and vice-versa. The result is an oscillatory behavior in

the population of both species.

The model described using DEVSLib QSS algorithms is shown in Fig. 6.6,

using the first order integrator (QSS1). The QSS1 model could be substituted

with either the QSS2 or QSS3 models to apply other integrator. The multiplier

and adder modules are also DEVSLib atomic models. Three DUP models are

Figure 6.6: Lotka-Volterra model composed using DEVSLib.

101

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

required to divide the flow of messages at the output of the integrators and the

multiplier. Also, three BreakLoop models are included to break the algebraic

loops between the adder, the multiplier and the integrators.

In order to compare the simulation results and performance, the Lotka-Volterra

model has also been developed using the PowerDEVS software tool and the Mod-

elicaDEVS library. The simulation results obtained by using DEVSLib, Pow-

erDEVS and ModelicaDEVS are shown in Fig. 6.7. The model has been simu-

lated using the QSS1 (Fig. 6.7a), QSS2 (Fig. 6.7b) and QSS3 (Fig. 6.7c) methods.

The results using QSS1 in the three implementations almost overlap (see the left

side of Fig. 6.7a). The results using QSS2 and QSS3 in the PowerDEVS and

DEVSLib models are also very similar (see the left side of Figs. 6.7b and 6.7c).

The results obtained with the ModelicaDEVS model using QSS2 and QSS3 are

different from the other models. The most likely cause of these differences is a

programming error in the ModelicaDEVS integrator, which has not been detected

in previous evaluations using other models.

The relative errors, in percentages, between the DEVSLib and the Pow-

erDEVS models are shown at the right side of Figs. 6.7a, 6.7b and 6.7c. The errors

show the differences between the outputs of each integrator (i.e., QSS1, QSS2 and

QSS3, for predators and preys). These differences remain similar when increas-

ing the order of the integrator. The differences concerning the ModelicaDEVS

implementation have not been calculated due to the aforementioned error in the

implementation.

The simulation performance of the Lotka-Volterra model, using QSS1, QSS2

and QSS3, has been compared. The obtained results are shown in Table 6.1.

The performance indicators are the mean execution time, calculated from six

simulation runs, and the number of events. The simulated time is 100 seconds.

The best performance is obtained using PowerDEVS, as also stated in the

comparison performed in Beltrame and Cellier [2006], because it is designed for

simulating discrete-event systems following the DEVS simulator described in Zei-

gler et al. [2000]. Dymola is designed to efficiently simulate continuous-time sys-

tems, and includes algorithms to detect and treat discrete-events. This leads to

102

(a)

(b)

(c)

Figure 6.7: Simulation of the Lotka-Volterra model developed using DE-
VSLib, PowerDEVS and ModelicaDEVS (relative errors between the Pow-
erDEVS and DEVSLib models at the right). Integration method: a) QSS1;
b) QSS2; and c) QSS3.

103

Chapter 6 Construction of Discrete-Event Models Using DEVSLib

a robust hybrid system simulation approach. However, these algorithms unnec-

essarily degrade the performance while simulating pure discrete-event systems.

ModelicaDEVS has been specifically designed for modeling of continuous-time

systems using the QSS integration methods. In contrast, DEVSLib has been

designed to support the P-DEVS formalism and the QSS methods have been

developed by applying the facilities provided by DEVSLib to describe general-

purpose atomic P-DEVS models. As observed in the simulation results, the

performance of both libraries is similar.

QSS1 QSS2 QSS3

DEVSLib
Execution Time (s) 2.19 0.078 0.031
Number of Events 17366 509 153

PowerDEVS
Execution Time (s) 1.19 0.022 0.0047
Number of Events 5238 172 47

ModelicaDEVS
Execution Time (s) 1.26 0.071 0.047
Number of Events 15538 490 152

Table 6.1: Comparison of simulation performance based on the Lotka-
Volterra model.

6.6 Conclusions

DEVSLib has been designed to describe general discrete-event models following

the P-DEVS formalism. It has been demonstrated that the included functional-

ities can be used to model discrete-event systems, and continuous-time systems

using the QSS integration algorithms included in the library.

The construction of new atomic P-DEVS models using DEVSLib is close to

their formal specification. New models are implemented describing the elements

of the tuple, this is, the state, the interface, and the transition, output, time

advance and state initialization functions. The construction of new coupled P-

DEVS models using DEVSLib also follows their formal specification. Coupled

models are implemented by describing the interface, including the internal com-

ponents, and describing the coupling relations between them and the interface

104

6.6 Conclusions

ports. Dymola provides drag and drop, and connections drawing functionalities

to facilitate this task.

105

7
Hybrid System Modeling

Using DEVSLib

7.1 Introduction

The implementation of the DEVSLib library and its use to construct discrete-

event models following the P-DEVS formalism has been presented in the two

previous chapters. However, following the main objective of this dissertation,

DEVSLib also includes functionalities to describe hybrid systems.

DEVSLib includes interface models that translate the messages into discrete-

time signals, and the continuous-time and discrete-time signals into event trajec-

tories (i.e., series of messages). These interfaces can be used to combine P-DEVS

models with models from other Modelica libraries. This combination facilitates

the description of complex multi-formalism multi-domain hybrid systems.

The interfaces, their implementation and their use are presented in this chap-

ter. Two case studies are described.

– The first case study represents a system with two interconnected tanks con-

trolled using a discrete controller. The tanks and the valves to connect them

are described using a continuous-time model. Two approaches to describe

the discrete controller using DEVSLib are discussed: using an atomic model

or a coupled model. The combination of both models is performed using the

interface models included in DEVSLib. The results obtained with the im-

Chapter 7 Hybrid System Modeling Using DEVSLib

plemented model are compared with the ones obtained using an equivalent

model developed using the StateGraphs Modelica library.

– The second case study represents an opto-electrical communication system.

The electrical part has been described using the Modelica Standard Library,

and the optical part has been described using DEVSLib. The interactions

between both parts are also described using the interface models included

in DEVSLib. The development of this model has been performed in collab-

oration with the ARS Lab group from the Carleton University (Canada)

[ARS Lab, 2010]. The ARS Lab group developed an equivalent model using

their CD++ tool [Wainer, 2002]. The simulation results obtained by both

models are compared and discussed.

7.2 Interfaces between DEVSLib and Other Modelica

Libraries

This section describes the interfaces included in DEVSLib to facilitate the com-

bination of P-DEVS models with other Modelica libraries. These interfaces are

divided in two: the messages-to-signals and the signals-to-messages translations.

These interface models are implemented to manage the standard DEVSLib

message type (with Type and Value variables). However, as described in Sec-

tion 4.6.1, the message type in DEVSLib can be re-defined by the user. In this

case, the interface models can be adapted to the new message type. To perform

this, the modeler has to:

1. Adapt the interface models to allow the construction of new messages using

the new type. The interface models generate messages, and thus they should

be able to construct a message with a content valid for the new type. For

example, if the new message type includes a name for each message, a

procedure to assign names for the new messages needs to be included.

108

7.2 Interfaces between DEVSLib and Other Modelica Libraries

2. Use the appropriate function to send the new messages. Currently, the

sendEvent() function is used. Depending on the characteristics of the new

type of message, this function can be adapted or a new function should be

required.

7.2.1 Signals to Messages

The translation of continuous-time and discrete-time signals into messages is per-

formed by the following models:

– Quantizer, performs a quantization of the continuous-time (or discrete-time)

input signal generating a new message whenever the signal changes its value

by a given quantum. The message transports the value of the signal at that

time. The condition used to check the variation of the signal(u) is ((u >=

preEvent+ q + Threshold) or (u <= preEvent− q − Threshold)), where

preEvent represents the last quantified value of the signal (it is initialized

with the initial value of u), q is the value of the quantum, and Threshold

is a parameter (set to 10−10 by default) used to avoid inconsistencies when

the value of the signal reaches (but not crosses) the next quantified value.

– CrossUP and CrossDOWN, that generate a new message when the value of

the continuous-time (or discrete-time) signal crosses a pre-defined thresh-

old in any direction, upwards or downwards. The parameters of both

models are: Value, used to check the crossing of the input signal, and

EType, used to set the value of the Type variable of the generated mes-

sage. The condition used to check the crossing in the CrossDOWN model

is ((u < V alue) and above), where above is a boolean variable that in-

dicates if the current value of the input signal is above the V alue or not

(it is used to detect the direction of the crossing, downwards in this case).

The value of the above variable is updated at every simulation step us-

ing the condition ((u > V alue) and not above), that makes above to be

set to true. The condition used to check the crossing in the CrossUP is

((u > V alue) and below), where below is a boolean variable used to detect

109

Chapter 7 Hybrid System Modeling Using DEVSLib

the upwards crossing of the Value. Also , the value of the below variable is

check with the condition ((u < V alue) and not below), that sets it to true.

– BCrossUP and BCrossDOWN, that behave similarly to the CrossUP and

CrossDOWN models, but in this case their inputs are Boolean. These

models generate a new message every time their boolean inputs switch their

value. The value of the generated message is 0 for false and 1 for true.

– CondGen, that is used to generate messages based on a boolean condition.

If the condition becomes true, the model generates a message whose type

and value are specified using the model parameters.

(a) (b)

(c)

Figure 7.1: Response of DEVSLib signal-to-message interface models: a)
CrossUP (value == 2); b) CrossDOWN (value == 2); and c) quantizer
(quantum == 1).

The response of the CrossUP, CrossDOWN and Quantizer models when ap-

plied to a sinusoid signal is shown in Fig. 7.1. The CrossUP model detects the

sinusoid signal crossing the value 2 in upwards direction, and generates a message

with that value. The CrossDOWN model detects the sinusoid signal crossing the

value 2 in downwards direction, and generates a message with that value. The

110

7.3 Controlled Tanks System

Quantizer model generates a message every time the value of the signal changes

in a quantity bigger than the defined quantum – i.e., at values 1 and 2, again at

2 and 1, and so on. It has to be noticed that the signal never crosses the values

3 and -3, so messages are not generated at those points.

7.2.2 Messages to Signals

The translation of messages into discrete-time signals is performed by a model

named DICO (DIscrete-to-COntinuous). The DICO model generates a piecewise-

constant continuous signal whose value is equal to the values transported by the

received messages. DEVSLib also includes a model, named DIBO (DIscrete-to-

BOolean), that generates a boolean signal with value “true” if the value of the

arrived message is greater than zero, and “false” otherwise.

7.3 Controlled Tanks System

An example provided in the StateGraph Modelica library [Otter et al., 2005] will

be employed to illustrate the use of the DEVSLib interfaces and to compare the

performance of these two libraries (i.e., StateGraph and DEVSLib).

Figure 7.2: Controlled two-tank system.

111

Chapter 7 Hybrid System Modeling Using DEVSLib

A diagram of the model is shown in Fig. 7.2. The model consists of two tanks

interconnected with valves, which are manipulated by a discrete-event controller.

One of the valves is connected to the input flow of the first tank. The output

of the first tank is connected to the input of the second tank, with a valve in

between to control the flow between both tanks. The third valve is connected to

the output of the second tank. The discrete controller receives the level of each

tank and controls the positions of the valves (i.e., open/close), in order to fill or

empty them.

The normal operation of the system is as follows (summarized in the state

diagram shown in Fig. 7.3):

1. Valve 1 is opened and tank 1 is filled (the system changes from IDLE to

FILL1 state).

2. When tank 1 reaches its limit, valve 1 is closed (changing from FILL1 to

WAIT1).

3. After a waiting time, valve 2 is opened and the fluid flows from tank 1 into

tank 2 (changing from WAIT1 to FILL2).

4. When tank 1 reaches its limit, valve 2 is closed (changing from FILL2 to

WAIT2).

Figure 7.3: State diagram of the controlled two-tank system.

112

7.3 Controlled Tanks System

5. After a waiting time, valve 2 is opened and the fluid flows out of tank 2

(changing from WAIT2 to EMPTY).

6. When tank 2 is empty, valve 3 is closed (going back to IDLE again).

Three buttons allow starting, resuming, stopping or aborting the normal op-

eration procedure:

– Start, starts the process (leaving the IDLE state). When it is pressed after

“stop” or “shut” the process continues (changing the state from STOP to its

previous state, or restarting the normal operation procedure, respectively).

– Stop, stops the process by closing all valves (changing to the corresponding

STOP state). The controller waits for further input (“start” or “shut”).

– Shut, is used to shutdown the process, by emptying at once both tanks

(changing to the SHUT state, and when empty changing to IDLE). After

emptying the system goes to the start configuration and waits.

The diagrams of the models developed using DEVSLib and StateGraphs are

shown in Fig. 7.4. The continuous-time part (i.e., the tanks and valves) is the

same in both models. Its components (source, valves and tanks) were devel-

oped using plain Modelica code, and can be later interconnected to describe the

structure of the system.

The internal structure of the controller is shown in Fig. 7.5. The StateGraph

controller implements the states and the transitions needed to achieve the desired

plant operation. The controller implemented with DEVSLib includes the models

to translate the continuous-time signals from the tanks, L1 and L2, into trajecto-

ries of events. The level of tank 1 is translated with two cross value models, one

for detecting the full level (set to 0.98m) and another for the empty level (set to

0.001m). Tank 2 only needs the detection of the empty level. Also, the controller

outputs are translated into boolean signals (V1, V2 and V3) that control the

state of the valves, using the DIBO models included in DEVSLib.

The controller itself is a P-DEVS coupled model, shown in Fig. 7.6 (all the

required DUP models have been removed from the figure to facilitate its un-

113

(a)

(b)

Figure 7.4: Tank system modeled with: a) DEVSLib and; b) StateGraphs.

114

(a)

(b)

Figure 7.5: Tank system controller modeled with: a) DEVSLib and; b)
StateGraphs.

115

Figure 7.6: Internal structure of the tank controller implemented using
DEVSLib.

Figure 7.7: Simulation results of the tank filling/emptying system (DEVSLib
and StateGraph results overlap).

116

7.3 Controlled Tanks System

derstanding), that implements the described logic using small P-DEVS atomic

operations included in the library (ifType, storage, setValue, etc.). Also, the DE-

VSLib controller can be implemented as a P-DEVS atomic model including the

control algorithm in the transition functions. The P-DEVS specification of these

models is detailed it the documentation of the model included in the library. The

simulation results of both models, with the atomic or the coupled controller, are

the same (see Fig. 7.7).

The simulation performance of the models composed using DEVSLib and

StateGraphs has been evaluated. Two different DEVSLib implementations of the

controller have been considered: first implementing the controller as an atomic

P-DEVS model and second implementing it as a coupled P-DEVS model. The

models have been configured to continue with the normal operation process during

the whole simulation time, because the initial configuration stops the normal

operation around time 24 minutes. The performance indicators are the mean

execution time, calculated from six simulation runs, and the number of events.

The simulated time is 1000 minutes. The performance comparison is shown in

Table 7.1.

Table 7.1: Performance comparison based on the tank system.

DEVSLib (coupled)
Execution Time [s] 0.313
Number of Events 170 (time) + 448 (state)

DEVSLib (atomic)
Execution Time [s] 0.078
Number of Events 168 (time) + 446 (state)

StateGraphs
Execution Time [s] 0.094
Number of Events 168 (time) + 447 (state)

It can be noticed that the DEVSLib model with the atomic controller and the

StateGraph model have similar execution times. The simulation of the coupled

DEVSLib controller consumes more time than the simulation of the atomic DE-

VSLib controller. This difference in performance, even having similar amount of

events, is mainly due to the amount of operations performed during each event.

The coupled controller activates multiple algorithms while the atomic controller

117

Chapter 7 Hybrid System Modeling Using DEVSLib

has only one. However, the coupled DEVSLib controller is easier to understand

than the atomic DEVSLib controller.

7.4 Opto-Electrical Communication System

Opto-electrical interfaces, transmitters and receivers, can be used to translate

the information contained in form of electrical current into light and viceversa

[Agrawal, 1997]. These interfaces constitute the basic components of Optical

Networks on Chip (ONoC) [Brière et al., 2004]. A transmitter in such inter-

face receives an electrical current and translates it into optical impulses. The

receiver receives the optical impulses and translates them into electrical current

again. ONoC interfaces can be used to substitute electrical interconnects between

processors in digital integrated circuits [Razavi, 2002].

To facilitate the development of such opto-electrical communication systems,

several approaches have been proposed to model and simulate the behavior of the

circuits in order to better understand the involved phenomena. Depending on the

abstraction level used to describe the system, FEM (Finite Elements Method) and

FDTD (Finite-Difference Time-Domain) methods have been used to describe the

optical behavior at the physical level [O’Connor, 2004].

On the behavioral and system levels, several authors use VHDL-AMS to de-

scribe the components of the system [Mieyeville et al., 2004; Brière et al., 2004;

O’Connor, 2004]. Also event-driven approaches have been used to describe com-

ponents at system level, like SystemC [Brière et al., 2005, 2007; O’Connor et al.,

2006] and OMNet++ [Shacham et al., 2007].

A model of basic opto-electrical interfaces constructed using Modelica and

DEVSLib is discussed. This model shows the possibility of defining Systems on

Chip (SoC), using the P-DEVS formalism, at a higher abstraction level than

other existing techniques.

The description of each domain (electrical and optical) using P-DEVS models

simplifies the development of multi-domain communication systems. Also, the

118

7.4 Opto-Electrical Communication System

description of the electrical part as a continuous-time model can be performed

using Modelica, obtaining a more detailed hybrid model.

7.4.1 Communication Between the Opto-Electrical

Interfaces

The opto-electrical communication system is composed of a transmitter that sends

optical information to the receiver, which recovers it and generates a current.

These components are shown in Fig. 7.8.

Figure 7.8: Basic opto-electrical interfaces [Biere et al., 2007].

The transmitter is composed of two components: driver and laser. The driver

receives external information in form of an electrical current, modulates it, and

sends it to the laser. The laser receives the modulated current and generates

optical impulses.

The receiver model is also composed of two components: photodiode and

transimpedance amplifier (TIA). The photodiode receives the optical impulses

and translates them into electrical current. The TIA amplifies the generated

current.

The behavior of each of these components can be described using the DEVS

formalism as shown in [Biere et al., 2007]. Components are basically described as

processors, that receive a message, perform a process to the information contained

in the message and, depending on the defined behavior, send an output message

containing the information processed. This output will be received as input signal

119

Chapter 7 Hybrid System Modeling Using DEVSLib

by the next component. The models developed and discussed in this manuscript

are based in the mentioned DEVS formalization.

7.4.2 Modelica/DEVSLib Model

The transmitter and the receiver have been modeled as coupled P-DEVS models

constructed using the DEVSLib library. The electrical components have been

modeled as continuous-time models, using the electrical components of the Mod-

elica Standard Library. The system modeled with Modelica is shown in Fig. 7.9.

Figure 7.9: Basic opto-electrical communication system modeled using
Modelica/DEVSLib.

The transmitter contains the driver and the laser models, as it is shown in

Fig. 7.10. The current received in the transmitter, through the electrical port, is

passed to the driver model. To simplify the model, the received current is not

modified by the driver. This situation can be easily changed to model different

modulations and polarization of the electrical signal, including them in the driver

model.

Figure 7.10: Opto-electrical transmitter modeled using DEVSLib.

The laser receives the electrical current from the driver. It is composed of the

LaserGen model, which translates the continuous electrical current into discrete-

events, that represent the optical impulses.

120

7.4 Opto-Electrical Communication System

The LaserGen model has been build using the CrossUP model included in

DEVSLib. This model receives a continuous-time input signal (i.e., the electrical

current) and a reference value, and generates a discrete-time message every time

the signal crosses the reference value in the upwards direction. This behavior

represents the generation of an optical impulse every time the electrical current

reaches a given value.

Figure 7.11: Opto-electrical receiver modeled using DEVSLib.

The description of the receiver model is shown in Fig. 7.11. It is composed

of the photodiode and the TIA amplifier. The optical impulses are received in

the optical input port. These impulses are sent to the photoDiode model that

translates each impulse into a current variation. The generated current is sent to

the Tia model, which sends it through the electrical output port.

The photodiode model is composed of a PDiode that performs the translation

from optical impulses into electrical signals. The Pdiode model has been com-

posed using the DICO model included in DEVSLib. The DICO model translates

series of messages into a real piecewise-constant signal, with values equal to the

values of the received messages. Each time the PDiode model receives an op-

tical impulse it raises the generated current to the value of the received optical

impulse. Bigger optical impulses generate higher current variations. This action

simulates the excitation of the photodiode. After the optical impulse is received,

the generated current decreases, because of the lack of optical excitation in the

photodiode.

In order to simplify the system complexity, the Tia model does not modify

the electrical signal. However, as in the case of the driver model, the Tia model

can be modified using Modelica components, or equations.

121

Chapter 7 Hybrid System Modeling Using DEVSLib

7.4.3 Experiment and Results

As mentioned before, a simple example of opto-electrical communication system

has been constructed using the previously described transmitter and receiver

models in Modelica/DEVSLib. This model is compared with an equivalent model

constructed by the ARS Lab group using CD++ [Sanz, Jafer, Wainer, Nicolescu,

Urquia and Dormido, 2009].

In CD++, the continuous electrical current is translated into a set of discrete

inputs using quantized DEVS models. The input can be read from an external

“event”file, which are transmitted to the driver component via its data input port.

The processing time of the driver model is set to 2 seconds. This parameter can

be changed easily to reflect different scenarios.

On the other hand, the input of the Modelica/DEVSLib model is generated

by a current source, available in the Modelica Standard Library. This current

source generates a continuous-time sinusoid current. The sine current activates

the optical generation in the transmitter, generating impulses.

In the Modelica/DEVSLib model, the LaserGen has been configured as a

cross-function with value 0.9A, because the input current corresponds to a sine

input with amplitude 1A. The translation of the input current into optical im-

pulses is shown in Fig. 7.12.

These impulses are received by the receiver and translated into current again.

In the Modelica model, the derivative of the generated current is set to -0.5

to reproduce the lack of excitation. To monitor the generated current in the

Modelica receiver, a current sensor has been included, also from the Modelica

Standard Library. The reception of the optical impulses and its translation into

electrical current is shown in Fig. 7.13.

The simulation results of the complete system are shown in Fig. 7.14. It can

be noticed that no communication delays have been included in the models, but

it will be easy to include them as additional atomic DEVS models.

It can be noticed that the obtained results are very similar in both models.

122

(a)

(b)

Figure 7.12: Sinusoid electrical current transformed into optical impulses,
modeled with: a) CD++ and; b) Modelica [Sanz, Jafer, Wainer, Nicolescu,
Urquia and Dormido, 2009].

123

(a)

(b)

Figure 7.13: Optical impulses translated into current by the receiver, mod-
eled with: a) CD++ and; b) Modelica [Sanz, Jafer, Wainer, Nicolescu,
Urquia and Dormido, 2009].

124

(a)

(b)

Figure 7.14: Opto-electrical communication system, modeled with:
a) CD++ and; b) Modelica [Sanz, Jafer, Wainer, Nicolescu, Urquia and
Dormido, 2009].

125

Chapter 7 Hybrid System Modeling Using DEVSLib

7.5 Conclusions

The combination of the functionalities of the P-DEVS formalism and the Modelica

language facilitate the description of hybrid dynamic models. The DEVSLib

library supports the description of P-DEVS models in Modelica, and includes

interface models to facilitate the connection between DEVSLib models and other

Modelica models.

Since DEVSLib models communicate using a message passing mechanism,

the messages have to be translated in order to be used in other Modelica models.

Two kind of interfaces have been included in DEVSLib:

– The message-to-signal interfaces, that translate series of messages into discrete-

time signals.

– The signal-to-message interfaces, that translate continuous-time and discrete-

time signals into series of messages.

These interfaces have been successfully applied to the description of a two-tank

system with a discrete controller, and the description of an opto-electrical commu-

nication system. Both models are composed of a part described using P-DEVS,

and implemented using DEVSLib, and a continuous-time part described using

Modelica. These parts communicate using the developed interface models.

126

8
Modeling of Hybrid Control Systems

Using DEVSLib

8.1 Introduction

Hybrid models, which define the interaction of continuous-time and discrete-event

dynamics, are used for describing control systems. For instance, control systems

where a continuous-time plant is controlled using discrete-time or event-based

controllers.

The functionalities provided by the DEVSLib library in order to describe hy-

brid control systems are described in this chapter. The Parallel DEVS formalism

and the Modelica language are combined to describe the controller and the plant.

This combined approach facilitates the description of hybrid models, including

the interactions between continuous and discrete parts.

DEVSLib has been successfully used to describe hybrid control systems. Two

case studies are presented, “Supermarket Refrigeration” system [Sarabia et al.,

2009; Larsen et al., 2007] and“Crane and Embedded Controller”system [Schiftner

et al., 2006].

8.2 Modeling of Hybrid Control Systems Using DEVSLib

This section discusses the application of DEVSLib components and functionalities

to describe hybrid control systems. The description of sensors and actuators, and

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

of discrete (time or event based) controllers is presented. The description of the

plant is considered to be performed using a continuous-time model, and thus its

description is not discussed.

8.2.1 Sensors and Actuators

Sensors and actuators are required to communicate the continuous-time model of

the plant with the controller. Since time-based sensors are already available in

the Modelica Standard Library, DEVSLib does not include them.

Event-based sensors can be modeled using the DEVSLib interfaces described

in Section 7.2. The CrossUP and CrossDOWN models can be used as threshold

detectors. The quantizer model can be used to observe the outputs of the plant,

avoiding time-discretization techniques (i.e., sampling).

These event-based sensors translate the information from the outputs of the

plant into messages. These messages represent the inputs of the discrete-event

controller.

The outputs of the discrete-event controller are also represented using mes-

sages. These messages have to be translated and transferred to the plant. The

DEVSLib message-to-signal models (i.e., DICO and DIBO) can be used to trans-

late the generated control signal into a discrete-time real or boolean signal. Also,

DEVSLib includes the “setValue” model, which generates a message with a given

value every time the model receives an external message. This model can be

used to change the value of a message. For example, it can be used to com-

municate constant control actions (e.g., a maximum, minimum, 0 or 1 values),

independently of the value received from the controller.

For instance, consider the temperature control of a heating system. The

heater is turned off when the room temperature reaches a certain value. Using

DEVSLib, this system can be implemented using a CrossUP model to detect the

maximum temperature. The output of the CrossUP is connected to a setValue

model, that sends a message with value 0. This message is received by a DIBO

model that sets its output to false, due to the 0 value of the message, turning

128

8.2 Modeling of Hybrid Control Systems Using DEVSLib

off the heating system. The description of this simple system using DEVSLib is

shown in Fig. 8.1.

Figure 8.1: Simple temperature control system described using DEVSLib.

8.2.2 Controllers

DEVSLib can be used to describe discrete-time and event-based controllers. De-

pending on the complexity of the actions performed by the controller, it can be

implemented as a single atomic model or as a coupled model. The transition

functions of atomic models may contain the algorithms to calculate the control

signal. On the other hand, coupled models can be constructed by combining

simpler actions (e.g., the temperature control shown in Fig. 8.1).

Discrete-time controllers can be described using an atomic DEVSLib model

that only executes periodic internal transitions. Each internal transition rep-

resents a sample interval. The time advance function schedules a new internal

transition for the next sampling time. The inputs for the controller are repre-

sented by continuous-time inputs for the atomic DEVSLib model, as described in

Section 5.3. In this way, no additional sampling is required to read the outputs

of the plant.

Event-based controllers can be described using either atomic or coupled DE-

VSLib models, depending on their complexity. Controller inputs are received as

messages through the input ports from the DEVSLib sensors. The control signals

are also generated as messages and sent through the output ports. These mes-

sages need to be translated using the mentioned message-to-signal models (i.e.,

actuators), in order to connect them with the inputs of the plant. The following

case studies present the construction of these kind of controllers using DEVSLib.

129

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

8.3 Supermarket Refrigeration System

The DEVSLib functionalities for describing hybrid control systems are applied to

the development of a supermarket refrigeration system. This system was proposed

in Larsen et al. [2007] as a benchmark for hybrid control applications.

A supermarket refrigeration system is composed of three main components:

the display cases, the suction manifold and the compressor rack. The display

cases contain the refrigerated goods offered to the customers. These display cases

contain an evaporator that is connected to a pressure line. The objective is to

control the temperature of the goods, which is approximated by the temperature

of the air inside the display. Some external disturbances affect the temperature

of the air in the display.

The refrigerant in each display case flows into the suction manifold. A com-

pressor rack provides refrigerant to the displays by compressing the refrigerant

in the suction manifold. Each display has an inlet valve to control the flow of

refrigerant. Each compressor in the rack can be switch on and off, depending

on the pressure in the line. The traditional control approach for these kind of

refrigeration systems include two main controllers: the air temperature control

included in the display cases, and the pressure control included in the compressor

rack.

This section includes a description of the plant and the traditional control

approach described in Larsen et al. [2007] and Sarabia et al. [2009]. These com-

ponents have been modeled using plain Modelica code, the Modelica Standard

Library and DEVSLib. A comparison of the simulation results obtained by these

three implementations is included.

8.3.1 Display Case

The dynamics of the display case are represented by four state variables: the

temperature of the goods Tgoods, the temperature of the air Tair, the temperature

of the evaporator wall Twall and the mass of liquified refrigerant in the evaporator

130

8.3 Supermarket Refrigeration System

Mref . The inputs of the display are: the pressure in the suction line Psuc, the

state of the inlet valve (open/close) valve and the disturbance Qairload.

The following three equations describe the energy-balance between the goods,

the air curtain and the evaporator [Larsen et al., 2007].

dTgoods
dt

= − Qgoods−air
Mgoods · Cpgoods

(8.1)

dTwall
dt

= Qair−wall −Qe
Mwall · Cpwall

(8.2)

dTair
dt

=
Qgoods−air +Qairload −Qair−wall

Mair · Cpair
(8.3)

where Qairload is the external disturbance on the air curtain and

Qgoods−air = UAgoods−air · (Tgoods − Tair) (8.4)

Qair−wall = UAair−wall · (Tair − Twall) (8.5)

Qe = UAwall−ref (Mref) · (Twall − Te) (8.6)

UA is the overall heat transfer between media (defined with subscripts). M de-

notates the mass, Cp the heat capacity of the media, and Te the evaporation

temperature (approximated by Eq. (8.7), in absence of pressure drop in the suc-

tion line).

Te = −4.3544 · P 2
suc + 29.2240 · Psuc − 51.2005 (8.7)

The heat transfer coefficient between the evaporator wall and the refrigerant

is a function of the mass of liquified refrigerant (see Eq. (8.6)), which is approxi-

mated by the following linear function:

UAwall−ref (Mref) = UAwall−ref,max
Mref

Mref,max
(8.8)

131

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

The accumulation of refrigerant in the evaporator is described by:

dMref

dt
=



Mref,max−Mref
τfill

if valve = 1
Qe
4Hlg if valve = 0,Mref > 0

0 if valve = 0,Mref = 0

(8.9)

where τfill is the filling time of the evaporator, 4Hlg is the specific latent heat of

the remaining liquified refrigerant in the evaporator, which is approximated by

Eq. (8.10).

4Hlg = (0.0217 · P 2
suc − 0.1704 · Psuc + 2.2988) · 105 (8.10)

The mass of refrigerant leaving the evaporator into the suction manifold is

described by:

m = Qe
4Hlg

(8.11)

The temperature control for the display case is defined as an hysteresis con-

troller that opens and closes the inlet valves to regulate the temperature of the air

Tair. The parameters for the controller are the thresholds for the maximum and

minimum temperatures (T air and T air). The hysteresis is operated at a sample

time of 1 second. The state of the valves at the kth sample is defined as:

valve(k) =


1 if Tair > T air

0 if Tair < T air

valve(k − 1) if T air < Tair < T air

(8.12)

The model of the display case has been developed translating the equations

described above into plain Modelica code. Interface ports have been added to the

model in order to allow its connection with the other elements of the refrigeration

system. The developed model is shown in Fig. 8.2.

The air controller detailed in Fig. 8.2b includes a CrossUP model to detect

the maximum temperature for the air. When the air temperature reaches the

maximum, the CrossUP generates a message which is translated into another

132

8.3 Supermarket Refrigeration System

(a) (b)

Figure 8.2: a) Display case, including air controller; and b) detail of air
controller modeled using DEVSLib.

message with value 1 by the setValue model. This last message is translated by

the DIBO model into a “true” value for the valveOpen port. The CrossDOWN

model detects the lower limit for the air temperature and actuates similarly to

the CrossUP model, but in this case the setValue generates a message with value

0, which will close the valve (i.e., setting to “false” the value of the valveOpen

port). The two “Cond” models included in the center of the air controller check

the initial conditions for the air temperature, setting the correct value for the

valve at the beginning of the simulation.

8.3.2 Suction Manifold

The pressure of the suction line, Psuc, is described by:

dPsuc
dt

=
min−suc +mref,const − Vcomp · ρsuc

Vsuc · dρsucdPsuc

(8.13)

where Vsuc is the total volume of the suction manifold, Vcomp is the volume flow

created by the compressors, min−suc is the sum of refrigerant mass from the

display cases into the suction manifold, mref,const is a constant mass flow into the

suction manifold from unmodeled entities, and ρsuc is the density in the suction

133

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

manifold (approximated by Eq. (8.14)).

ρsuc = 4.6073 · Psuc + 0.3798 (8.14)

The model of the suction manifold has been developed similarly to the display

case, translating Eq. (8.13) into plain Modelica code. The interface of the model

is composed of three inputs (m, Vcomp and mref,const) and one output (Psuc).

8.3.3 Compressor Rack

The volume flow generated by each compressor is:

Vcomp,i = compi ·
1

100
· ηvol · Vsl i = 1, ..., q (8.15)

where q is the number of compressors in the rack, compi is the capacity of the

ith compressor, ηvol is the volumetric efficiency and Vsl is the total displacement

volume.

The pressure control for the compressor rack is defined as a PI controller with

a dead band (DB) around the reference pressure (see Eq. (8.16)). This controller

is typically operated at a sample time of 60 seconds.

uPI(t) = Kpe(t) +
∫
e(t)
ki

dt (8.16)

where

e(t) =


P refsuc − Psuc if |e(t)| > DB

0 otherwise
(8.17)

For all the compressors in the rack, the ncth compressor is switched on if

Eq. (8.18) is satisfied, and switched off in any other case.

uPI ≥
nc−1∑
i=1

Ccomp,i + Ccomp,nc
2

(8.18)

134

8.3 Supermarket Refrigeration System

(a)

(b)

Figure 8.3: Pressure control modeled using: a) DEVSLib and the MSL; and
b) an atomic DEVSLib model.

The compressor rack has been modeled using three different approaches. The

dynamics of the compressors, Eq. (8.15), have been modeled using plain Modelica

code, and are common for the three approaches:

– The first approach also uses plain Modelica code to describe the PI control.

– The second approach uses elements from DEVSLib and the Modelica Stan-

dard Library to describe the PI control and the activation of the compres-

sors (detailed in Fig. 8.3a). The sampled control signal generated by the PI

135

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

Figure 8.4: Actions performed by the atomic DEVSLib PI controller (note
that no output is generated with phase == 1).

controller is evaluated by “CrossUP” and “CrossDOWN” models in order to

decide which compressors have to be activated at each sample time.

– The third approach includes an atomic DEVSLib model that represents the

PI control, and DIBO models to translate the generated control signal to

the compressor models (detailed in Fig. 8.3b). In this case, the state of

the PI controller is calculated at each sample time, instead of calculating

it continuously and only sampling its output. The actions performed by

this atomic DEVSLib PI controller are shown in Fig. 8.4. The controller

executes its first sampling at time 0s. At each sample time, it performs

these actions:

1. Executes the output function with phase == 1, and no output is gen-

erated (not shown in Fig. 8.4).

2. Updates the state of the PI controller and decides the next state for

the compressors.

3. Executes again the output function with phase == 2, and sends the

new states to the compressors.

4. Executes again the internal transition function to schedule the next

sample (sigma = sampleTime).

136

8.3 Supermarket Refrigeration System

Figure 8.5: Supermarket refrigeration system modeled using DEVSLib and
Modelica.

8.3.4 Experiment Setup and Simulation Results

The whole refrigeration system is composed of two display cases, one suction

manifold and a compressor rack, that includes two compressors. The developed

model is shown in Fig. 8.5.

The system is evaluated during a day/night operation. During the day, the

external disturbance in each display case is set to 3000J · s−1. During the night,

each display case is covered with “night-covers” that reduce the external distur-

bance to 1800J · s−1, and the constant mass flow in the suction manifold from

0.2 to 0.0kg · s−1.

137

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

(a)

(b)

Figure 8.6: Evolution of air temperatures in both displays using: a) first
and second control approaches; b) atomic DEVSLib control approach.

Table 8.1: Parameters for the supermarket refrigeration system.

Display Cases
Mgoods 200 Kg

Cpgoods 1000 J ·Kg−1 ·K−1

UAgoods−air 300 J · s−1 ·K−1

Mwall 260 Kg

Cpwall 385 J ·Kg−1 ·K−1

UAair−wall 500 J · s−1 ·K−1

Mair 50 Kg

Cpair 1000 J ·Kg−1 ·K−1

UAwall−ref,max 4000 J · s−1 ·K−1

Mref,max 1 Kg

τfill 40 s

Suction Manifold
Vsuc 5 m3

Compressor Rack
Vsl 0.08 m3 · s−1

ηvol 0.81 −

The limit, maximum and minimum, temperatures for the air in the display

cases are 5◦C and 2◦C respectively. The reference pressure for the compressor

rack is set to 1.4bar during the day, and 1.6bar during the night. The capacity of

138

8.4 Crane and Embedded Controller System

Table 8.2: Initial conditions for state variables.

Disp. Case 1 Disp. Case 2
Twall 0◦C 0◦C
Tair 5.1◦C 0◦C
Tgoods 2◦C 2◦C
Mref 0◦C 0◦C

each compressor in the rack is set to 50. The rest of the parameters and initial

conditions for the system are shown in Tables 8.1 and 8.2.

The system is simulated during 14400s, defining the switching between day

and night at time 7200s. Simulation results are shown in Fig. 8.6, including the

evolution of the air temperatures. The results obtained from the models includ-

ing the first and second pressure control approaches are equal and overlap (see

Fig. 8.6a). The results obtained from the third approach (with the atomic DEVS-

Lib pressure controller) are slightly different from previous ones (see Fig. 8.6b).

These differences are explained because in the first and second approaches, the

PI control operates in continuous-time and only its output is sampled, while in

the atomic DEVSLib PI controller all the calculations are performed at the same

time, and remain constant between samples. The results obtained with the third

approach are similar to the results obtained by Sarabia et al. [2009], with a model

of the supermarket refrigeration system constructed using EcosimPro.

8.4 Crane and Embedded Controller System

This section discusses the implementation of the ARGESIM comparison “Crane

and Embedded Controller”. ARGESIM is a non profit working group providing

the infrastructure and administration for dissemination of information on M&S

in Europe [ARGESIM, 2009].

The system consists in a crane controlled by a discrete controller. The crane

is composed of a car that moves along a horizontal rail and a load connected to

the car by a cable. This system was proposed by ARGESIM as a comparison for

different tools that support hybrid modeling.

139

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

Various authors implemented this system using different tools or languages.

Some implementations were based on the original definition of the system [Scheikl

et al., 2002]. These implementations were developed using Matlab [Scheikl, 2001;

Schachinge, 2002; Wöckl and Breitenecker, 2003; Weidinger and Breitenecker,

2003], Anylogic [Garifullin, 2003] and VHDL-AMS [Wang and Kazmierski, 2005].

Another implementation, based on the revised definition of the system [Schiftner

et al., 2006], uses Modelica/Dymola [Schiftner, 2006].

The original and revised definitions of the system differ in the design of the

controller. In the original definition, the controller receives as inputs the angle

of the load and the position of the car. In the revised definition, only the latter

variable is received. Also, the equations of the controller and its parameters are

improved in the revised definition.

The implementation described in this section follows the revised definition of

the system. The crane system has been described as a continuous-time model

using the Modelica language. The controller has been modeled in part using

the DEVSLib library and in part using the Modelica Standard Library (MSL).

Both parts are interconnected using the DEVSLib interface models [Sanz, Cellier,

Urquia and Dormido, 2009].

8.4.1 Crane System Model

The crane system is composed of the car, the cable, and the load (see Fig 8.7). The

discrete controller controls the position of the car to reach the desired position,

specified by the user. A detailed description of the system is given in Schiftner

et al. [2006].

The car moves along the track in accordance with a force fc, provided by a

motor. The force of the motor is calculated using the following first-order ODE

(Ordinary Differential Equation) [Schiftner et al., 2006]:

ḟc = −4(fc − fdesiredc) (8.19)

140

8.4 Crane and Embedded Controller System

Figure 8.7: Scheme of the crane system [Schiftner et al., 2006]

Where fdesiredc is the signal generated by the discrete controller. The car

can also be stopped using a brake, whose activation conditions will be detailed

below. The movement of the car is restricted to the values PosCarMax and

PosCarMin. The load hangs from the car by a cable. Similarly to the car, the

load is influenced by a force fd, that represents some disturbances.

Three sensors are used to observe the state of the system:

1. The position of the car (named PosCar).

2. The maximum position limit (named SwPosCarMax, is activated when

PosCar > PosCarMax).

3. The minimum position limit (named SwPosCarMin, is activated when

PosCar < PosCarMin).

If either the SwPosCarMax or the SwPosCarMin sensor is active, the system

enters EmergencyMode, which causes an emergency stop.

Table 8.3: Model variables

Symbol Description Unit
α angle of the cable rad

fc motor force N

fd load disturbances N

xc position of the car m

xl position of the load m

141

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

Table 8.4: Model parameters

Symbol Description Value
dc friction coefficient of the car 0.5 kg/s

dbrakec friction coefficient of the car with acti-
vated brake

105 kg/s

dl friction coefficient of the load 0.01 kg/s
g gravity 9.81 m/s2

mc mass of the car 10 kg
ml mass of the load 100 kg

PosCarMax maximum position of the car 5 m
PosCarMin minimum position of the car −5 m

r length of the cable 5 m

The equations [Schiftner et al., 2006] that describe the dynamics of the crane

system are the following (variables and parameters are detailed in Tables 8.3 and 8.4):

ẍc
[
mc +ml sin2(α)

]
= −dcẋc + fc + fd sin2(α)

+ml sin(α)
[
rα̇2 + g cos(α)

]
− dlẋc sin2(α)

(8.20a)

r2α̈
[
mc +ml sin2(α)

]
=
[
fd
mc

ml
− fc + dcẋc

]
r cos(α)

−
[
g(mc +ml) +mlrα̇

2 cos(α)
]
r sin(α)

−dl
[
mc

ml
(ẋcr cos(α) + r2α̇) + r2α̇ sin2(α)

] (8.20b)

xl = xc + r sin(α) (8.20c)

Equations (8.20a), (8.20b), and (8.20c) can be linearized [Föllinger, 1985] to

obtain the following linear model, in order to simplify the model and allow a

comparison with the non-liner model:

ẍc = fc
mc

+ g
ml

mc
α− dc

mc
ẋc (8.21a)

rα̈ = −g(1 + ml

mc
)α+ (dc

mc
− dl
ml

)ẋc − r
dl
ml
α̇− fc

mc
+ fd
ml

(8.21b)

xl = xc + rα (8.21c)

142

8.4 Crane and Embedded Controller System

The model equations have been directly programmed in Modelica using equa-

tions (8.21a),(8.21b), and (8.21c) for the linear model, and (8.20a),(8.20b), and

(8.20c) for the non-linear model. Both cases include (8.19), that models the

motor. Dymola can internally handle the implicit equations of the non-linear

model.

8.4.2 Discrete Controller Model

The complete system is shown in Fig. 8.8a. It corresponds to the discrete con-

troller connected to the non-linear model of the crane system. The generators

for the desired car positions and the load disturbances are also shown. The non-

linear model can be substituted by the linear model. The controller, generators,

and connections are compatible in both cases.

The controller is implemented as a cycle-based controller [Schiftner et al.,

2006]. It is composed of three parts: the state-space observer, the regulator, and

the diagnosis module. The state-space observer calculates five “fictitious” states

(q), and the regulator generates a control signal based on the observed states. Ad-

ditionally, the diagnosis module manages the conditions for the EmergencyMode

and the activation of the brake. The structure of the implemented controller is

shown in Fig. 8.8b

Position Controller

The state-space observer and the regulator have been implemented with DEVS-

Lib, as an atomic P-DEVS model. This model corresponds to the “PositionCon-

troller” in Fig. 8.8b, and its P-DEVS specification is the following:

M = (XM , S, YM , δint, δext, δcon, λ, ta)

where:

XM = ∅

S = {<5 ×<}

YM = <

143

Figure 8.8: “Crane and Embedded Controller”system: a) non-linear system
with discrete controller; b) discrete controller implemented with DEVSLib
and the MSL; and c) diagnosis module of the controller

144

8.4 Crane and Embedded Controller System

δint(qn, un) = (qn+1, un+1)

where


qn+1 = (M− dcT)qn + dPosCar + bfdesiredc

un+1 = V PosDesired− hTqn+1

δext(q, u, e,X) = nothing since XM = ∅

δcon(q, u, e,X) = nothing since XM = ∅

λ(q, u) = max(min(u, ForceMax),−ForceMax)

ta(q, u) = cycle

M, d, c, and b are the parameters of the observer, and V and h are the

parameters of the regulator. PosCar and PosDesired are continuous-time inputs

to the δint function, as described in Section 5.3.

The “PositionController” executes an internal transition at each controller

cycle. The internal transition function calculates the new state of the observer

(qn+1), and updates the control signal (un+1). The output function (λ) uses the

parameter ForceMax to saturate the control signal and generate the output that

will be sent to the crane system.

The implementation of the “PositionController” is directly extracted from its

specification, translating the actions performed by each transition function into

Modelica functions. The output port (YM) is defined using a Modelica connector

of the class “outPort”, included in DEVSLib. The input parameters, PosDesired

and PosCar, are defined using connectors from the MSL. Finally, the variables

that define the state (S) have to be declared inside the Modelica record that

represents the state of an atomic model in DEVSLib.

Interface Model

The output of the position controller is generated as a message. It contains the

value of the control signal (fcdesired), which has to be translated into a discrete-

time signal in order to be checked by the diagnosis module (see Fig. 8.8b). The

translation is performed by the“controlSignal”model, which is implemented using

the DICO interface model.

145

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

Diagnosis Module

The diagnosis module monitors the value of the control signal and the sensors

SwPosCarMax and SwPosCarMin. If any of the sensors becomes active, the

controller enters in EmergencyMode and activates the brake. The brake is also

activated when |fdesiredc | < BrakeCondition for more than 3 seconds (where

BrakeCondition is a parameter of the controller).

This module (cf. Figs. 8.8b and 8.8c) has been implemented using compo-

nents from the MSL [MSL, 2010]. This demonstrates the compatibility between

DEVSLib and previously developed Modelica Libraries [2010].

8.4.3 Simulation Results and Discussion

Three tasks (A, B, and C), described in the definition of the system [Schiftner

et al., 2006], have been performed in order to compare this implementation with

previous results.

Task A

This task compares the implementation of the linear and the non-linear models

without the controller and the brake. The input of the plant (fdesiredc) is set to

160 N during 15 s, and then to 0 N. The load disturbances initially start at 0 N

(fd = 0). At time = 4 s, fd = Dest for 3 s. The Dest values are -750 N, -800 N,

and -850 N. The system is simulated for each Dest value during 2000 s, to reach

the steady-state, and the position of the load in each model is compared. The

results are shown in Table 8.5.

Table 8.5: Task A results

Dest Linear Non-Linear Difference
-750 N 294.081 m 294.059 m 0.022 m
-800 N -0.0048651 m -0.0325238 m 0.0276587 m
-850 N -294.091 m -294.18 m 0.089 m

The results obtained are very similar to the ones reported in Schiftner [2006].

The differences between the two models are -0.034 m, 0.013 m, and -0.016 m.

146

8.4 Crane and Embedded Controller System

The slight differences between the two implementations are explained by the

different implementation of the non-linear model – using the MultiBody library

[Otter et al., 2003] instead of plain equations. The use of the DEVS formalism

to describe the discrete controller facilitates its understanding and development,

in comparison with its description in plain Modelica code.

Task B

The next task describes how the non-linear model and the discrete controller work

together. The desired positions for the car are 3 m at time 0 s, -0.5 m at time

16 s, and 3.8 m at time 36 s. The load disturbance is set to -200 N at time 42 s

during 1 s. The results include the position of the car, the position of the load,

the angle, and the activation of the brake over time. The system is simulated

for 60 s. The results are shown in Fig. 8.9, comparing the implementation with

DEVSLib with the one presented in Schiftner [2006].

Task C

The last task evaluates the response of the system in case of an emergency stop.

The scenario is the same as in the task B, but the value of the load disturbance

is 200 N instead of -200 N. The results shown also include the position of the car,

the position of the load, the angle, and the state of the brake over the simulation

time. The system is simulated for 60 s. The simulation results are shown in

Fig. 8.10, also comparing the two implementations.

The emergency stop event is detected when the car reaches its maximum

movement limit (PosCarMax). After that, the car stops and the load oscillates.

In this case there is a slight difference just before the emergency stop. This

difference is due to the parameters of the experiment, because in the latter case

the load disturbances are set to -200 N at time 42 s and to 200 N at time 46 s

resulting in the observed delay of the emergency stop.

Similar comparisons can be performed with the results obtained in previous

implementations [Wöckl and Breitenecker, 2003; Schachinge, 2002; Scheikl, 2001;

Weidinger and Breitenecker, 2003; Wang and Kazmierski, 2005; Garifullin, 2003].

147

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

(a)

(b)

Figure 8.9: Task B results in: a) DEVSLib; and b) Schiftner [2006]

Their results are equivalent to the ones presented in this section. However, these

previous implementations are based on the original definition of the model. Thus,

their results are slightly different mainly due to the inclusion of the angle sensor

as an additional input to the controller and the different design of the control.

148

(a)

(b)

Figure 8.10: Task C results in: a) DEVSLib; and b) Schiftner [2006]

149

Chapter 8 Modeling of Hybrid Control Systems Using DEVSLib

8.5 Conclusions

DEVSLib includes interface models to combine P-DEVS models with the rest

of the Modelica libraries, which facilitates the development of multi-domain and

multi-formalism hybrid models. These interface models can be also used to de-

scribe event-based sensors and actuators, which are commonly used in the descrip-

tion of hybrid control systems. Also, the functionalities provided by DEVSLib

can be applied to the description of discrete-time and event-based controllers.

DEVSLib has been successfully applied to the description of a supermarket

refrigeration system. An event-based controller for the air temperature of the

display cases has been developed using DEVSLib. Also, two different controllers

for the refrigerant pressure line have been developed. The first approach combines

components from the Modelica Standard Library and DEVSLib. The second

approach describes the pressure controller as an atomic DEVSLib model. The

simulation results of the system using the first control approach are equivalent

to the same controller developed using plain Modelica. The results from the

second approach are slightly different, due to the discrete-event nature of the

whole controller.

The system described in the ARGESIM comparison “crane and embedded

controller” has been implemented using Modelica and the DEVSLib library. The

simulation results obtained with this implementation are equivalent to the ones

obtained by previous implementations of the same system, using different tools.

Other tools used to model this system describe the discrete behavior of the con-

troller using formalisms like Finite State Automata, StateCharts, or Petri Nets.

150

9
Process-Oriented Modeling

in Modelica

9.1 Introduction

In order to facilitate the description of models in Modelica following the process-

oriented approach, two new Modelica libraries have been developed. The first

library, named SIMANLib, reproduces some of the basic modeling functionalities

of the SIMAN modeling language [Pegden et al., 1995]. The second library, named

ARENALib, reproduces some of the basic modeling functionalities of the Arena

simulation environment [Kelton et al., 2007].

The objective of this development is to show the feasibility of modeling

discrete-event systems, following the process-oriented approach, using only the

Modelica language functionalities. Other authors have combined different tools

with Modelica in order to describe discrete-event systems [Remelhe, 2002]. SIMAN-

Lib and ARENALib also include functionalities to describe hybrid process-oriented

models, in combination with other available Modelica libraries. The design, de-

velopment and use of SIMANLib and ARENALib are discussed in Chapters 10

and 11. Another library, named RandomLib, has also been developed to facilitate

the description of stochastic models (see Chapter 13).

The components of SIMANLib and ARENALib have been described using the

P-DEVS formalism, and implemented using the DEVSLib library. However, in or-

der to facilitate the description of models following the process-oriented approach

Chapter 9 Process-Oriented Modeling in Modelica

some additional functionalities are required. These additional requirements, the

solutions proposed to accomplish them and their implementation are discussed

in this chapter.

9.2 Additional Required Functionalities

Since SIMANLib and ARENALib components are developed using the DEVSLib

library, their components are connected using the previously described message

passing mechanism (see Chapter 4). The description of process-oriented models

in Modelica requires the following additional functionalities:

– First, it is necessary to define and manage the information that describes

the entities of the system. This information represents the content of the

messages transfered between models.

– Second, simulation results are usually reported using statistical indicators,

due to the stochastic nature of some discrete-event systems. Some of these

statistical indicators have to be calculated during the simulation and some

others at the end. The amount of data that has to be stored to calculate

some of these indicators changes depending on the length of the simulation.

An structure to store information in Modelica needs to be developed, giving

the possibility to increase or decrease the size of the stored data during the

simulation run. This storage structure has to be accessible from multiple

points in the model, in order to facilitate the insertion and removal of data.

The developed information storage structure, named dynamic objects, will

be used to describe special attributes of the entities, global variables of the

model and to store statistical indicators.

The implementation of these functionalities in Modelica is discussed in the fol-

lowing sections.

152

9.3 Entity Management

9.3 Entity Management

Each message, transported between two models, contains the information that

describes an entity. DEVSLib by-default message contains two variables: Value

and Type. An entity can not be described just using these two variables, and

thus, an additional mechanism is required to define entities.

Entities in SIMANLib and ARENALib are described using a Modelica record,

named Entity, that contains multiple variables (see Table 9.1). These variables

are also used to store the information related to the entity during its transit

through the system. These variables correspond to some of the main variables

used in SIMAN and Arena to manage entities.

In order to associate the Entity record with the message passing mechanism,

an external library in C, named “entities.c”, has been programmed to store the

Table 9.1: Variables of the Entity record in SIMANLib and ARENALib.

Variable Name Description
HoldCostRate Cost rate of processing the entity in the system
VACost Cost of Value Added processes applied to the entity
NVACost Cost of Non-Value added processes applied to the en-

tity
WaitCost Cost of Waiting processes (delays, queues, etc.)
TranCost Cost of Transport processes (transporters, conveyors,

etc.)
OtherCost Other costs associated with the entity
CreateTime Time of creation for the entity
StartTime Time of start for the current process
VATime Accumulated time on Value Added processes
NVATime Accumulated time on Non-Value Added processes
WaitTime Accumulated time on Waiting processes
TranTime Accumulated time on Transport processes
OtherTime Accumulated time on Other processes
Number Number of the entity (currently equal to SerialNum-

ber)
SerialNumber Unique number to identify the entity in the system
Type Type of the entity
Attributes Reference to the list of user-defined attributes, using

an Assign module
Primary Defines if the entity is a duplicate or not

153

Chapter 9 Process-Oriented Modeling in Modelica

records (i.e., entities) in dynamic memory using C structs (similarly to the man-

agement of messages in the message passing mechanism). The messages only

transport in their Value variable a reference to the external struct, that repre-

sents an entity. This external library includes the following functions to manage

the stored entities:

ECreate that creates a new entity using a set of initial values.

EDelete that removes an entity from the system and frees the used

memory.

EGet can be used to obtain the value of any variable of the entity.

ERead can be used to obtain the value of all the variables of the

entity simultaneously.

EUpdate can be used to update the value of all the variables of the

entity simultaneously.

An additional problem appears when implementing processes that delay the

entity. These models can include a delay time that represents the time spent

processing the entity. Since the value of the delay time is usually random, the

order of the arrived entities could not correspond to the order of the entities

leaving the process. These processes have to include a temporal storage for the

entities that are being delayed. Some SIMANLib models include an internal

queue, similar to the one used to receive messages from other models, that can

be used as a temporal storage for delayed entities. Entities in this temporal queue

can be ordered depending on their arrival time, or the time they will finish the

delay. In the latter case, the first entity in the queue will be the first to leave the

process. If multiple entities have the same finishing time, all of them are removed

simultaneously from the queue and leave the process.

9.4 Dynamic Object Management

A dynamic object is a two dimensional variable (i.e., a matrix) of real type stored

in dynamic memory. Another external library in C, named “objects.c”, has been

154

9.4 Dynamic Object Management

programmed to manage dynamic objects. In Modelica, they are represented using

an Integer variable, that stores a reference to the object in memory. It is similar

to the Entity record described previously, but in this case the C struct stores a

two-dimensional matrix of real numbers (e.g., double **) and the size of each

dimension.

The management of the dynamic objects is performed using the following

functions:

ObjCreate used to create a new object.

ObjDelete used to delete an existing object and free the memory.

ObjUpdateSize used to modify the size of a currently existing object.

ObjUpdatePos used to update the value of one of the positions of the ob-

ject (e.g., ObjUpdatePos(obj, 1, 1,−3) sets the value of the

position obj[1, 1] to -3).

ObjReadPos used to read the value of one of the positions of the object.

ObjReadI1 used to read the size of the first dimension of the object.

ObjReadI2 used to read the size of the second dimension of the object.

Also, the developed external library supports the description of lists of dy-

namic objects. These are dynamic lists whose length can be modified during the

simulation run, depending on the insertion and removal of objects in the list. The

functions included to manage the lists of objects are:

ObjLCreate used to create a new empty list.

ObjLDelete used to delete an existing list and free the memory.

ObjLAdd used to insert a new element in the list. The position of the

insertion is defined as a parameter of the function.

ObjLLength used to obtain the current length of the list.

ObjLReadPos used to read the value of one position in one of the objects

of the list. The object and the position to read are defined

as parameters of the function.

ObjLCopy used to duplicate the contents of one list, generating a copy.

155

Chapter 9 Process-Oriented Modeling in Modelica

A dynamic object can be used to store any data that needs to be updated

from different places in the model, using the mentioned functions. Global vari-

ables and user-defined attributes are described using dynamic objects (a detailed

description is given in Section 10.4). The statistical indicators are described using

multiple dynamic objects arranged into a Modelica record. This record stores the

values for the mean, the maximum, the minimum and the number of observations

(these values are updated during the simulation). A list of objects is also included

in the record to store the values of the observations, and be able to calculate the

confidence interval for each indicator at the end of the simulation.

9.5 Conclusions

The description of models following the process-oriented approach in Modelica

is supported by the SIMANLib and ARENALib libraries. These two libraries

have been developed to reproduce some of the main functionalities of the SIMAN

language and the Arena simulation environment.

The description of the components of SIMANLib has been performed using

the P-DEVS formalism, and implemented using the DEVSLib library. Thus,

SIMANLib models communicate using the developed message passing mechanism.

As it will be described, ARENALib components are described using combinations

of SIMANLib components.

However, the following additional functionalities are required to support the

process oriented approach:

– Management of the information that describes the entities in the system.

– Description of an information storage structure to facilitate the manage-

ment of variable-size data generated during the simulation run (i.e., statis-

tical indicators, global variables and user-defined attributes for the entities).

These functionalities have been implemented in Modelica by means of external

libraries written in C code.

156

10
The SIMANLib Library

10.1 Introduction

The first approach for the development of ARENALib was to write all its com-

ponents using plain Modelica code [Sanz et al., 2006]. The use of this approach

generated large and complex models that were difficult to understand. The de-

velopment, maintenance, reutilization, and extension of this library was difficult

to perform.

The idea then was to divide the actions performed by each ARENALib mod-

ule into simpler actions, which combined will offer the same functionality as the

original module. The same structure can be observed in the Arena environment,

where the modules are based and constructed using a lower level simulation lan-

guage called SIMAN [Pegden et al., 1995]. The P-DEVS formalism was selected

to specify the behavior and interaction between ARENALib components, facili-

tating its description and implementation.

The objective was to reproduce a subset of the modeling functionalities found

in the SIMAN language, building a new Modelica library called SIMANLib. The

SIMANLib library has been developed to support basic actions and processes,

described as atomic P-DEVS models using the DEVSLib library. SIMANLib

contains low-level components for discrete-event system modeling and simula-

tion, following the process-oriented approach. These are low-level components

Chapter 10 The SIMANLib Library

compared to the modules in ARENALib, which represent the high-level modules

for system modeling. SIMANLib and ARENALib components can be hierarchi-

cally ordered, due to their consistent specification using the P-DEVS formalism.

The functionalities included in SIMANLib and ARENALib can be combined to

facilitate the description of systems at multiple abstraction levels.

A description of the architecture, components, functionalities and use of the

SIMANLib library is discussed in this chapter. A bank teller model is used to

present the construction of new models using SIMANLib. A more complex model

of a restaurant is discussed to exemplify the modeling functionalities of the library.

10.2 Library Architecture

Components in SIMANLib are divided, as well as in the SIMAN language, in

two groups: blocks and elements. The blocks represent the dynamic part of the

system, and are used to describe its structure and define the flow of entities from

their creation to their disposal. The elements represent the static part of the

system, and are used to model different components such as entities, resources,

queues, etc. The use of a formal specification, using the P-DEVS formalism [Sanz

et al., 2007], to describe SIMANLib components helps to understand, develop and

maintain them. The message passing communication in P-DEVS is equivalent to

the communication between blocks in SIMANLib.

The architecture of SIMANLib is shown in Fig. 10.1. Similarly to DEVSLib,

it can be considered that the library is divided in two areas: user’s area and

developer’s area. The user’s area is composed of:

– The User’s Guide, that includes the user-oriented documentation.

– The Blocks package (shown in Fig. 10.1b), that contains components to

describe the flowchart diagram of the system (detailed in Section 10.3).

– The Elements package (shown in Fig. 10.1c), that contains models to specify

the static data of the system and the characteristics of its elements (detailed

in Section 10.4).

158

10.3 Blocks

(a) (b) (c)

Figure 10.1: SIMANLib library architecture.

– The Draft model, that is used as starting point for constructing new process-

oriented models using SIMANLib.

– The BookExamples package, that contains several case studies described in

Pegden et al. [1995]. These examples facilitate the understanding and use

of the library. They have been used to validate SIMANLib, comparing the

results obtained with the ones obtained simulating the equivalent model in

SIMAN/Arena.

The developer’s area is encapsulated in the SRC package, and contains the

developer-oriented documentation and the internal implementation of the com-

ponents of the library.

10.3 Blocks

The Blocks package in SIMANLib includes models used to describe the flowchart

diagram of the system, similarly to the blocks of the SIMAN language. However,

due to the complexity and size of the SIMAN language, only some of the basic

159

Chapter 10 The SIMANLib Library

blocks are included. The contents of the Blocks package are shown in Fig. 10.1b.

The selected blocks correspond to the blocks used to describe the majority of the

processes and actions found in logistic systems. This section includes a description

of each SIMANLib block.

The description of each block contains a general definition of the represented

process (including its interface to communicate with other blocks), the formal

specification of the block using the P-DEVS formalism, and an example of be-

havior on the mostly given situation for the block.

The implementation of the blocks is very close to its P-DEVS definition. Each

block is programmed as an atomic DEVSLib model. The transition functions,

output and time advance function are programmed following the behavior indi-

cated in the P-DEVS specification of the block.

10.3.1 Create

This block represents a starting point for the flow of entities in the system. The

interface of the model is composed of: (1) IN port, used to receive external

petitions for entity creation; and (2) OUT port, used to send the created entities.

The parameters of this block are: (1) EntityType element, used to define the type

of the created entities; (2) Interval, that describes the amount of time between

arrivals (described as a random variate generation function from the RandomLib

library, see Chapter 13); (3) Batch size, that represents the number of entities

created at each arrival to the system; (4) Maximum number of batches, which

limits the number of entities created by the block; and (5) First creation time,

that sets the simulation time for creating the first entity.

Thus, starting at time equal to First creation, this block creates the Batch size

number of entities and sends them to the system. Then, every Interval time new

entities will be created until the Maximum number of batches are created. Each

created entity is assigned with a unique identifier or serial number (i.e, sn). It

can be used to identify a particular entity in the system.

Additionally to this standard behavior, the Create block includes an input

port to receive creation petitions. When this input port is connected, the Create

160

10.3 Blocks

block creates new batches of entities when a new message is received, instead of

every Interval time. This functionality facilitates the integration of SIMANLib

models with other Modelica libraries.

The P-DEVS specification for this block is (when the IN port is not con-

nected):

X = ∅

S = {”start”, ”work”, ”halt”} ×N+

Y = N+

δint(phase, n) : (”work”, BatchSize) if phase == ”start”

(”work”, n + BatchSize) if (phase == ”work”) and

(n < MaxNumOfBatches)

(”halt”,MaxNumOfBatches) otherwise

δext(phase, n, e, x) : nothing since X = ∅

δcon(phase, n, e, x) : nothing since X = ∅

λ(phase, n) : (”work”, n) = send(sn)BatchSize

(”halt”, n) = ∅

ta(phase, n) : FirstCreation if phase == ”start”

Interval if phase == ”work”

∞ otherwise

Where the state contains the current processing situation (i.e., the phase) and

the total number of entities generated. The phase can have three values: start,

work and halt.

When the IN port is connected, the P-DEVS specification for this block is:

X = N+

S = {”send”, ”work”, ”halt”} ×N+

Y = N+

δint(phase, n) : (”work”, n + BatchSize) if (phase == ”send”) and

(n < MaxNumOfBatches)

(”halt”,MaxNumOfBatches) otherwise

161

Chapter 10 The SIMANLib Library

δext(phase, n, e, x) : (”send”, n)

δcon(s, e, x) : δext(δint(s), 0, x)

λ(phase, n) : (”send”, n) = send(sn)BatchSize

(”halt”, n) = ∅

ta(phase, n) : 0 if (phase == ”send”)

∞ otherwise

10.3.2 Dispose

Opposite to the previous block, the Dispose block represents the final point for

entities in the system. Each entity, or group of entities, arrived to a Dispose

block is deleted and removed from the system. The interface of the model is

only composed of the IN port, used to receive entities. This block does not have

parameters.

The P-DEVS specification for this block is:

X = N+

S = {”wait”, ”busy”}

Y = ∅

δint(phase) : (”wait”)

δext(phase, e, x) : (”busy”)

δcon(s, e, x) : δext(δint(s), 0, x)

λ(phase) : nothing since Y = ∅

ta(phase) : ∞ if phase == ”wait”

0 otherwise

10.3.3 Queue

The Queue block defines a temporal storage place for entities waiting to be pro-

cessed. The interface of the model is composed of: (1) IN port used to receive

new entities; (2) OUT port used to connect with a Seize block; and (3) BALK

port used to discard entities when the maximum capacity of the queue is reached.

162

10.3 Blocks

The parameters for this block are: (1) BalkConnected, that indicates if the BALK

port is connected with another block or not; (2) Queue element, that indicates

the Queue element assigned to this block; and (3) Capacity, that sets the storage

capacity of the queue (a zero value indicates infinite).

Any arrived entity is inserted in the queue (following a certain policy, like

FIFO, LIFO, etc., defined by the associated Queue element) and waits for avail-

able resources. If the maximum capacity of the queue is reached, the new entity

is immediately sent through the BALK port (or removed from the system it the

port is not connected). The OUT port of a Queue block must be connected

to a Seize block. When the entity is inserted in the queue, the Queue block

sends a message to the Seize block that represents a “petition of resources”, re-

quired to process the entity. Thus, no entities are transferred between these two

blocks. The transmitted message carries the information as follows: the type of

the message transports the current size of the queue, and the value of the mes-

sage transports a reference to the storage of entities (which is a dynamic list of

entities, as described in Section 9.3). The management performed by the Seize

block is detailed below in this section. When the required resources are available,

the Seize block extracts an entity from the queue (using the reference transmitted

in the message). After that, the entity continues through the flowchart-diagram

of the system.

The P-DEVS specification for this block is:

X = N+

S = {”wait”, ”send”, ”balk”} ×N+

Y = N+

δint(phase, n) : (”wait”, n)

δext(phase, n, e, x) : (”send”, n+ 1) if n < Capacity

(”balk”, n) if n == Capacity

δcon(s, e, x) : δext(δint(s), 0, x)

163

Chapter 10 The SIMANLib Library

λ(phase, n) : send(petition) if phase = ”send”

balk(sn) if phase = ”balk”

ta(phase, n) : ∞ if phase = ”wait”

0 otherwise

Where the state represents the phase (i.e., waiting for an arrival, sending a

resource petition or balking an entity) and the number of elements in the queue.

The send(petition) function is used to send a resource petition to the Seize block.

The balk(sn) function is used to balk an entity.

10.3.4 Seize

This block represents the operation of seizing a resource to perform some process

to an entity waiting in queue. The interface of the model is composed of: (1)

IN port, used to receive resource petitions from the Queue block; (2) OUT port,

used to send the entities that captured the resource; (3) S port, used to redirect

resource petitions to the Resource element; and (4) R port, used to receive the

confirmation of a seized resource from the Resource element. The parameters of

the block are: (1) Priority of selecting the entity to seize the resources between

the ones waiting for them; and (2) ResourceUnits to be seized (the resource units

can not be seized partially, but in a whole set).

The Seize block receives resource petitions through the IN port (which must

be connected to a Queue block). The Seize block must also be connected to a

Resource element using the S and R ports. The resource petitions are redirected

to the Resource element through the S port. The message transmitted with the

redirected petition contains the following information: the number of resource

units to seize, and the reference to the dynamic queue where the entities are

stored. The number of resource units is transmitted using the Type variable of

the message. The reference to the dynamic queue is transmitted using the Value

variable of the message. These resource petitions are ordered by the Priority

assigned to the Seize block. The reference to the queue is used to identify the

queue to extract entities when the resource becomes available, since multiple

164

10.3 Blocks

Queue/Seize blocks can be connected to the same Resource element. When the

resource becomes available, the Resource element sends a confirmation message

to the R port of the Seize block. Then, the Seize block extracts the first entity in

the Queue (i.e., using the reference to the dynamic queue in memory), and sends

it through its OUT port.

The P-DEVS specification for this block is:

X = N+

S = {”wait”, ”seize”, ”send”}

Y = N+

δint(phase) : (”wait”)

δext(phase, e, x) : (”seize”) if x.port == IN

(”send”) if x.port == R

δcon(s, e, x) : δext(δint(s), 0, x)

λ(phase) : send(petition) if phase = ”seize”

send(sn) if phase = ”send”

ta(phase) : ∞ if phase = ”wait”

0 otherwise

Where the state shows the current situation of the block (i.e., waiting for an

arrival, redirecting seize petitions, or sending an entity that already captured the

resource). The send(petition) function generates a new message that contains a

new seize petition and sends it to the Resource element. The send(sn) function

extracts an entity from the queue and sends it to the next block.

10.3.5 Delay

The Delay block represents the time an entity spends being processed. The

interface of the model is composed of: (1) IN port, used to receive entities; and

(2) OUT port, used to send the processed entities. As parameters, it only has

the Duration that represents the fuction used to calculate the elapse of time the

165

Chapter 10 The SIMANLib Library

entity is being delayed (corresponds to a random variate generation function from

the RandomLib library).

Each entity that arrives to a Delay block is assigned with a delay interval. The

length of this interval is computed using the function designed with the Duration

parameter. Once the entity has its delay interval, it is inserted in an internal

queue for delayed entities. The order of insertion is calculated depending on the

time to leave the block for each entity. So, the first entity in the queue will be

the first to leave the Delay block. When the simulation time reaches the time to

leave for the first entity in the block, this is extracted from the queue and sent

to the next block in the diagram. Multiple entities could have the same time to

leave, and thus, this situation is evaluated and, if necessary, multiple entities are

extracted form the queue.

The P-DEVS specification for this block is:

X = N+

S = {(<+ ×N+)}

Y = N+

δint(list) : ({(tm+1, snm+1), . . . , (tn, snn)}) if list ==

{(t1, sn1), . . . , (tm, snm), . . . , (tn, snn)} and ∀i = 1..m|ti ≤

time

δext(list, e, x) : ({(Duration, sn)}) if list is empty

order((Duration, sn), list) otherwise

δcon(s, e, x) : δext(δint(s), 0, x)

λ(list) : send(sni) if list == {(t1, sn1), . . . , (tm, snm), . . . , (tn, snn)}

and ∀i = 1..m|ti ≤ time

ta(list) : ∞ if list is empty

t1 − time if list == {(t1, sn1), . . . , (tn, snn)}

Where the state of the block contains the list of entities being processed. The

time is a global variable in the system, common to all the models. The order()

function is used to insert a new element in the list, ordered by the duration of its

delay.

166

10.3 Blocks

10.3.6 Release

This block is used to release the resources previously seized by an entity. This

operation is the opposite to the one performed by the Seize block. The interface

of the model is composed of: (1) IN port, used to receive entities; (2) OUT port,

used to send the entities after releasing the resource; and (3) R port, used to

send release petitions to the Resource element. This block has as parameter: the

ResourceUnits that have to be released.

Each Release block must be connected to a Resource element using the R

port. When the block receives an entity, it sends a release petition to the Re-

source element connected to the R port. The release petition is represented by a

message where the type contains the ResourceUnits to be released. The entity is

immediately sent through the OUT port to the next block in the diagram.

The P-DEVS specification for this block is:

X = N+

S = {”wait”, ”release”} × <+

Y = N+

δint(phase, sn) : (”wait”, 0)

δext(phase, sn, e, x) : (”release”, x.value)

δcon(s, e, x) : δext(δint(s), 0, x)

λ(phase, sn) : send(releaseUnits) and send(sn) if phase ==

”release”

ta(phase, sn) : ∞ if phase == ”wait”

0 if phase == ”release”

Where the state is composed of phase (that indicates if the model is waiting

for new entities or sending a release petition to the resource element) and the

serial number of the last received entity (required to send it using the output

function).

167

Chapter 10 The SIMANLib Library

10.3.7 Branch and BranchRule

The Branch and BranchRule blocks can be used to divide the flow of entities in

the model, depending on certain conditions. SIMAN defines this behavior only

with the Branch block. But, in order to allow a variable number of rules for

selecting entities, it has been divided in two blocks in SIMANLib. The P-DEVS

specification of these, and the following blocks described in this section, is not

included because their management of the entities is equivalent to a Delay block

with a zero delay-time. The actions performed by each block are included within

the external transition function.

The Branch block must be followed by, at least, one BranchRule block. It

receives entities and sets a new private attribute, named maxNumberOfBranches,

whose value is used to limit the number of rules evaluated for the entities across

the branch (its value must be at least 1). After that, the received entity is sent

to the first BranchRule.

Each BranchRule block represents a particular condition to divide the flow of

entities. The interface of the model is composed of: (1) IN port, used to receive

entities from the Branch or other BranchRule blocks; (2) OUT port, used to send

selected entities; and (3) NEXT port, used to connect with other BranchRule

blocks (this port can be connected or not, depending on the required behavior).

The conditions for entity flow division of the BranchRule block can be of three

types:

1. IF type, that selects the entity if a given boolean condition becomes true,

2. WITH type, that selects the entity following a given probability, and

3. ELSE type, that always selects the entity (this rule is usually located as

the last BranchRule block).

When an entity arrives to a BranchRule block, it is evaluated following the

defined type of condition. If the entity is selected after evaluating the condition,

the block sends it through its OUT port and decrements in one unit the value

of the maxNumberOfBranches attribute. A duplicate of the entity is sent to the

168

10.3 Blocks

next BranchRule if the maxNumberOfBranches is still greater than zero. If the

entity is not selected in this BranchRule, it is sent through the NEXT port (or

removed from the system if the port is not connected).

10.3.8 Assign and ExternalAssign

The Assign block represents a point to define the value of the global variables

of the system or the user-defined attributes of the entities. Global variables or

user-defined atributes are represented using dynamic objects, and thus they are

bi-dimentional matrices of real numbers. The parameters of the Assign block are:

(1) variable or attribute to assign with a new value (represented by a Variable or

Attribute element); (2) position (row and column) of the attribute or variable;

and (3) value to assign. When an entity arrives to the block, the value is assigned

to the indicated position of the variable or attribute. The entity is immediately

sent to the next block in the diagram.

Additionally, SIMANLib includes another block called ExternalAssign. The

ExternalAssign block includes two additional ports in its interface: Y and CHANGE

ports. The value of the Y port corresponds to the value assigned to the attribute

or variable each time an entity arrives to the block. Thus, Y is a discrete-time

variable of Real type. The boolean value of the CHANGE port switches every

time a new entity arrives to the block, and so, the value of Y could have changed.

This block can be used to communicate the process-oriented part of a system (de-

scribed using SIMANLib) with a continuous-time part of the system (described

using any other Modelica library).

The ExternalAssign block is described as a P-DEVS coupled model. The

internal structure of the model is shown in Fig. 10.2. The SIMANLib Assign

block is combined with the SetValue, DUP and DICO models from the DEVSLib

library in order to construct this model.

169

Chapter 10 The SIMANLib Library

Figure 10.2: SIMANLib ExternalAssign block.

10.3.9 Count

The Count block is used to account the flow of entities in one point of the

flowchart-diagram of the system. The parameters of the block are: (1) Counter

element, that records the value of the count; and (2) Increment, used to modify

the counter. When a new entity arrives to the Count block, the value stored in

the Counter element is modified by the Increment value (increased or decreased,

depending on its sign). The entity is immediately sent to the next block of the

diagram.

10.3.10 Tally

The Tally block is used to record a time-dependent statistical indicator. The pa-

rameters of the block are: (1) Value, that represents a variable used to obtain new

observations for the indicator; (2) Tally element, that records the observations

and values calculated by this block. The Tally indicator contains variables to

store the average, maximum, minimum, number of observations and last values

of the observations. When a new entity arrives to the Tally block, a new observa-

tion is obtained from the Value variable. Using the value of the new observation,

the variables stored in the indicator are updated. The entity is immediately sent

to the next block of the diagram.

170

10.4 Elements

10.4 Elements

The Elements package contains the components to describe the static information

of a process-oriented model. This information corresponds to the types of entities

in the system, the characteristics of the queues and resources, the global variables,

the attributes and the statistical indicators. As mentioned in the description of

some SIMANLib blocks, some of the elements have to be associated with blocks

in the flowchart diagram.

The contents of the Elements package are shown in Fig. 10.1c. Each element

is described using a Modelica record, that contains the variables to store the

information about the element, and a set of functions to manage the informa-

tion contained in the record. The characteristics and use of each element in the

package are described in this section.

10.4.1 EntityType

The EntityType element represents a type of entities that could arrive to the

system (e.g., customers, parts, pieces, etc.). This element has to be associated

with a Create block. The variables contained in the EntityType element are:

Id Identification number for the entity type.

HoldCostRate Cost rate of processing the entity in the system

VACost Cost of Value Added processes applied to the entity.

NVACost Cost of Non-Value added processes applied to the entity

WaitCost Cost of Waiting processes (delays, queues, etc.)

TranCost Cost of Transport processes (transporters, conveyors, etc.)

OtherCost Other costs associated with the entity.

These variables are used to initialize the fields Type, HoldCostRate, VACost,

NVACost, WaitCost, TranCost and OtherCost of an entity (see Table 9.1) when

created by the Create block.

171

Chapter 10 The SIMANLib Library

The set of functions associated with the EntityType element are used to man-

age entities in general, and not only this particular element. The included func-

tions are:

NewEntity() Creates a new entity with a new unique serial number. This

function uses the ECreate function to allocate the memory

for the new entity.

Duplicate() Duplicates an existing entity, setting its attribute Primary

to 0 (which indicates that the entity is a copy).

ECreate() Allocates memory for a new entity and initializes its at-

tributes.

EDelete() Removes an existing entity from memory.

EGet() Reads the value of one of the attributes (or fields) of the

entity.

ESet() Sets a new value of one of the attributes of the entity.

ERead() Reads all the attributes of an entity simultaneously.

EUpdate() Updates all the attributes of an entity simultaneously.

10.4.2 Queue

The Queue element represents the characteristics of a queue in the system. This

element has to be associated with a Queue block. The variables contained in the

Queue element are:

Ranking Defines the policy used to order the entities in the queue.

AttrNum Identifies the number of the attribute to use with the LVF

and HVF rankings

The Ranking can be of the following types: FIFO, LIFO, LVF (Lower Value

First), and HVF (Higher Value First). The LVF and HVF rankings use the value

of the attribute identified with the AttrNum variable to order the entities in

the queue. The lowest value will be first in the LVF ranking, and the highest

value will be first in the HVF policy. Since the management of these variables is

172

10.4 Elements

performed by the Queue block, the Queue element does not have any associated

function.

10.4.3 Resource

The Resource element represents the resources available in the system that can

be used to process entities. Each resource is divided into resource units, which

can be seized by the entities.

Multiple processes can share the same resources. The Resource element has

been implemented as an atomic P-DEVS model that receives seize and release

petitions for the represented resources, and sends confirmations for the captured

resources. In this way, multiple Seize and Release blocks could be connected to

the same resource element (representing processes that share a resource).

The interface of the model is composed of: (1) S port, used to receive seize

petitions from the Seize blocks; (2) R port, used to receive release petitions from

the Release blocks; and (3) O port, used to send the confirmation messages to

the Seize blocks for the captured resources. The parameter of this block is the

Capacity of the resource (i.e., the number of available resource units).

The behavior of the model is as follows. When the Resource receives a seize

petition containing the number of resource units requested, the model checks if

the petition can be satisfied. If so, the model seizes the required units and sends

a confirmation message through the O port. The confirmation message will be

received by the Seize block, extracting the entity from the queue. If the seize

petition can not be satisfied (i.e., not enough resource units are available), the

seize petition is stored in a FIFO queue awaiting for released resources. When

the Resource model receives a release petition, immediately releases the number

of resource units contained in the petition and checks if any of the awaiting seize

petitions can be satisfied with the currently available resources.

173

Chapter 10 The SIMANLib Library

10.4.4 Objects, Attributes and Variables

The Object element represents user-defined information that is required in the

description of the system. This is, user-defined attributes for the entities or

global variables of the system. Objects are implemented as dynamic objects (i.e.,

dynamic two-dimensional matrices of real numbers, described in Section 9.4).

The variables contained in the Object element are:

Number Identify the Object in the system. A different number has

to be assigned to each Object in the system.

Rows Defines the number of rows of the matrix.

Cols Defines the number of columns of the matrix.

InitialValue Defines the initial value for the Object.

objType Defines if the object corresponds to an user-defined attribute

(value == 1) or a global variable (value == 0).

P Contains a reference to the dynamic object in memory.

The functions associated with the Object element are the same as the func-

tions included to manage dynamic objects (see Section 9.4). The initial value for

the Object is set at the beginning of the simulation using the InitialValue variable

and the ObjUpdate function. At the end of the simulation, the memory allocated

for the object is freed.

The Attribute element represents a user-defined attribute, which is assigned

to the entities using an Assign block. The value of an attribute can be different

for each assigned entity. The Attribute element is implemented extending the

Object element, and setting its objType to 1. Like the Objects, each attribute

in the model must have a unique number assigned, which will be used to identify

it (e.g., using it for ordering the LVF or HVF rankings in a Resource element).

The functions associated with the Attribute element are:

get() Reads the value of an attribute in a particular entity.

set() Sets a new value for an attribute in a particular entity.

174

10.4 Elements

The Variable element represents a global variable in the model. Like the

Attribute element, the Variable is implemented extending the Object element

and setting its objType to 0. The functions associated with the Variable element

are:

get() Reads the value of the variable.

set() Sets a new value for the variable.

10.4.5 Counter

The Counter element represents a counter that can be increased or decreased

using a Count block. Since a Counter can be modified from multiple Count

blocks in the same model, it has been implemented using a dynamic object. The

variables contained in the Counter element are:

Name Defines a user-meaningful name for the counter (e.g., “Nu-

mArrivals”).

Limit Defines the simulation limit for the counter (if the limit is

reached, the simulation terminates).

OutFile Defines the name of the output file to write the simulation

results (“SIMANLIB RESULTS.txt” by default).

P Contains a reference to the dynamic object in memory.

The functions associated with the Counter element are:

get() Reads the value of the counter.

set() Sets a new value for the counter.

The value of the Counter is managed by its associated Count blocks, using the

mentioned functions. At the end of the simulation, the Counter element writes

in the OutFile its name and its final value.

10.4.6 DStat

The DStat element represents a discrete (time-independent) statistical indicator

for a discrete variable in the system. The observations of the indicator are ob-

175

Chapter 10 The SIMANLib Library

tained when the selected variable changes its value. The element records the last,

average, minimum, maximum and number of observation values for the selected

variable. The value of each observation is also stored, in order to calculate the

confidence interval at the end of the simulation. The DStat elements are not

associated with any block of the flowchart diagram. The variables contained in

the DStat element are:

Name Defines a user-meaningful name for the DStat (e.g.,

“NumWaiting”).

Expression Defines the expression used as discrete variable to observe

(it can correspond to a single variable or to a combination

of multiple variables (e.g., queue1.NQ+ queue2.NQ).

OutFile Defines the name of the output file to write the simulation

results (“SIMANLIB RESULTS.txt” by default).

PLastValue Contains a reference to the dynamic object used to record

the last observed value.

PMean Contains a reference to the dynamic object used to record

the average value.

PMinimum Contains a reference to the dynamic object used to record

the minimum value.

PMaximum Contains a reference to the dynamic object used to record

the maximum value.

PObservations Contains a reference to the dynamic object used to record

the number of observations.

PValues Contains a reference to the dynamic object used to record

the list of observed values.

The functions associated with the DStat element are:

DStatUpdate() Updates the DStat when a new observation is performed.

DStatVariation()Calculates the confidence interval using the list of observed

values.

176

10.4 Elements

When the selected variable, or expression, changes its value, a new observation

is performed. DStat element uses the DStatUpdate() function to update the

recorded values. At the end of the simulation, the DStat calculates the confidence

interval using the DStatVariation() function and writes the results to OutFile.

10.4.7 Tally

The Tally element represents a time-dependent statistical indicator. This is, an

statistical indicator calculated from a variable whose observations are obtained

at certain points in time independently of the changes in its value. This element

has to be associated with a Tally block. The variables contained in the Tally

element are:

Name Defines a user-meaningful name for the Tally (e.g.,“NumDis-

pached”).

OutFile Defines the name of the output file to write the simulation

results (“SIMANLIB RESULTS.txt” by default).

PLastValue Contains a reference to the dynamic object used to record

the last observed value.

PMean Contains a reference to the dynamic object used to record

the average value.

PMinimum Contains a reference to the dynamic object used to record

the minimum value.

PMaximum Contains a reference to the dynamic object used to record

the maximum value.

PObservations Contains a reference to the dynamic object used to record

the number of observations.

PValues Contains a reference to the dynamic object used to record

the list of observed values.

The functions associated with the Tally element are:

177

Chapter 10 The SIMANLib Library

TallyUpdate() Updates the Tally when an entity crosses the Tally block.

TallyVariation() Calculates the confidence interval using the list of observed

values.

The Tally block calculates the statistical indicator during the simulation, de-

pending on the flow of entities across it. The Tally element writes the results to

the OutFile at the end of the simulation.

10.5 Model Construction Using SIMANLib

The construction of process-oriented models using the SIMANLib library follows

the following steps.

1. Create the new blank model by duplicating the Draft model included in the

library.

2. Describing the flowchart diagram of the system using interconnected SIMAN-

Lib blocks. Since the Resource elements must be connected to the Seize and

Release blocks of the flowchart diagram, they should be also included in this

step.

3. Describe the static information of the model by including the required

SIMANLib elements.

4. Finally, configure the parameters of the included blocks and elements to

represent the desired simulation experiment.

These steps are detailed with the construction of a simple model: a bank teller.

In this model, the customers arrive to the bank and wait their turn in the queue.

If the teller is idle, the customer is served immediately. Otherwise, the teller will

serve the first customer in the queue. When finished, the customer leaves the

bank and the teller serves another customer if anyone else is waiting, or waits for

a new arrival.

178

10.5 Model Construction Using SIMANLib

(a)

(b)

Figure 10.3: Bank teller system modeled using SIMANLib: a) flowchart
diagram (blocks); and b) static data (elements).

The first step will be to duplicate the Draft model, creating the model called

BankTeller. The second step is to describe the flowchart diagram of the system.

This is performed by including and connecting, using drag and drop, the blocks

and Resource element shown in Fig. 10.3a. The included blocks are: Create (that

represents the arrival of customers), Queue, Seize (that together with the Release

manages the availability of the teller), Delay (that represents the delay due to the

service time), Release and Dispose (that represents the departure of customers).

The third step is to describe the static information of the system. This is

performed by including, also using drag and drop, the required elements (the

ones associated with the included blocks, like the EntityType and the Queue,

and the other required to calculate statistical indicators, like the DStat). The

included elements are (shown in Fig. 10.3): Resource (that represents the teller),

EType (that represents the customers), Queue (that describes the organization of

the queue) and DStat (that calculates the statistics for the number of customers

in queue).

The final step is to configure the parameters of the included components.

In this case, the inter-arrival time for customers is set to an exponential(10)

distribution, the capacity of the queue is infinite, the number of resources to seize

179

Chapter 10 The SIMANLib Library

Table 10.1: Bank teller system simulation results using SIMANLib and
SIMAN.

Model Avg. in Queue Half-Width
SIMANLib 3.3073 -
SIMAN 3.2089 0.22

and release for each entity is 1, the capacity of the resource is also 1 and the delay

time is set to an exponential(8) distribution.

The configuration for this experiment represents an M/M/1 queue system,

with an analytical result of 3.2 for the average number of customers in the queue.

The statistical indicator for the number of customers in queue is automatically

calculated during the simulation run by the DStat element. The results after

simulating the system during 106 time units using SIMANLib and SIMAN are

equivalent (shown in Table 10.1, including the Half-Width interval calculated

using SIMAN). The evolution of the number of customers in queue during the

simulation is shown in Fig. 10.4. The average of customers in the queue performs

fast changes during the beginning of the simulation, but later approaches the 3.2

value that matches with the mentioned analytical solution.

Figure 10.4: Number of customers in queue for the bank teller system
modeled using SIMANLib.

180

10.6 Modeling a Restaurant Using SIMANLib

Figure 10.5: Restaurant modeled using SIMANLib.

10.6 Modeling a Restaurant Using SIMANLib

As a case study, the restaurant model described in Pegden et al. [1995] has been

composed using SIMANLib. It describes a more complex system, in comparison

with the bank teller system, with several processes and a division in the flow of

entities.

The behavior of the system is as follows. Customers arrive in groups from

2 to 5 persons and wait for an available table. If there are already 5 groups

waiting, the new group leaves the restaurant without waiting. The restaurant

has 50 tables. Each table is for two persons, so several tables may be needed for

each group. When seated, the group is served and eats. At the end, the group

pays the check to the cashier and leaves. The restaurant receives customers from

5 p.m. to 9 p.m., and, after that, waits until all the customers leave.

The flowchart diagram of the constructed model is shown in Fig. 10.5. The

arrival of customers has been described using a Create block. This block generates

entities, that represent groups of customers, following an exponential distribution.

The maximum number of batches generated by this block is set to the value of

a global variable named Door, and defined using a Variable element. The initial

value of Door is set to infinity.

Each generated group of customers arrives to a Branch block, with two BRule

blocks, used to represent the door of the restaurant. The first BRule checks if

181

Chapter 10 The SIMANLib Library

the simulation time is lower than or equal to 240 minutes (that represent the four

opening hours of the restaurant). If so, the entity goes to the Assign block where

a new attribute is assigned, named PartySizeAttr, that represents the size of the

group (randomly selected from 2 to 5). Otherwise, the entity goes to the Assign

block that sets the value of the Door variable to 0 and after that is disposed.

The change in the value of the Door variable is used to represent the clousure of

the restaurant, and prevents from creating more groups of customers because the

maximum number of batches in the Create block is also set to 0.

Once a group has entered the restaurant and its size has been assigned, they

wait in the Queue block for an available table. If there are already five entities

in the queue, the new entity is balked. Balked entities are counted using a Count

block, and disposed from the system. The Seize block associated to the Queue

calculates the number of tables to seize depending on the size of the arrived

group, and sends the resource petition to the Resource element that represents

the tables (a resource with 50 available units). Once the tables are seized, the

Seize element extracts the group from the queue and sends it to the Delay block

that represents the ordering and eating process.

When the group has finished eating, they leave the tables (releasing them

using a Release block connected to the Resource element), and go to pay the check.

A new Queue is included to represent the groups waiting for paying at the cashier.

The cashier is represented using a Resource element with only one available unit.

Groups have to seize the cashier (using a Seize block), pay (represented using a

Delay), leave the cashier (releasing the seized resource in a Resource block) and

finally leave the restaurant. A Counter block is used to account the number of

groups served during the day. Four DSTat elements are used to record statistics

for the number of groups waiting for tables, the utilization of the tables, the

number of groups waiting for the cashier, and the utilization of the cashier.

In order to analyze the system, 30 independent simulation runs, each of 480

minutes, have been performed. Each run records statistics about the number of

customers served, the number of busy tables, the number of waiting customers,

the number of groups that left without entering and the utilization of the cashier.

182

10.7 Conclusions

Table 10.2: Restaurant simulation results, comparing SIMANLib and
SIMAN (in average values).

Indicator (avg.) SIMANLib SIMAN
groups served 136.13 135.43
groups lost 15.83 14.00
busy tables 24.49 24.25
groups waiting 0.62 0.72
cashier util.(%) 42.51 41.94

The simulation results after the simulation of the system using SIMANLib and

SIMAN are equivalent. These results are shown in Table 10.2. They show a poor

utilitation of the resources of the restaurant, where only the half of the tables

are used (in average) and the cashier is also idle the half of the time. However,

there are still some groups lost, due to the restriction in the queue for waiting an

available table (a maximum of five groups can wait in the queue).

10.7 Conclusions

A new library, named SIMANLib, for process-oriented modeling in Modelica has

been designed and developed. This library reproduces some of the functionalities

for process-oriented modeling found in the SIMAN language. It includes the

Create, Dispose, Queue, Seize, Delay, Release, Assign, Branch, Count and Tally

blocks, as well as the EntityType, Resource, Queue, Variable, Attribute, Counter,

Tally, and DStat elements.

The design of the library has been performed using the P-DEVS formalism

to describe the behavior of its components. The use of a mathematical formal-

ism to describe the behavior of the components facilitate the development and

maintenance of the library. The implementation of these components has been

performed using the DEVSLib library. Thus, SIMANLib models communicate

using the developed message passing mechanism.

183

11
The ARENALib Library

11.1 Introduction

ARENALib provides high-level functionalities for modeling systems following the

process-oriented approach. It reproduces some of the modeling functionalities of

the Basic Process panel of the Arena simulation environment. The development

of the included components, their characteristics and use are detailed in this

chapter.

Similarly to Arena, ARENALib is constructed using a combination of the

functionalities provided by the SIMANLib library. Components in ARENALib,

named modules, are described as coupled P-DEVS models and implemented using

SIMANLib blocks and elements. The use of the P-DEVS formalism facilitates

the development, maintenance, reuse and extension of both libraries.

11.2 Library Architecture

The general architecture of the library is shown in Fig. 11.1a. Analogously to

SIMANLib, ARENALib is divided in two areas: user’s area and developer’s area.

The user’s area is composed of the User’s Guide (that contains the user-oriented

documentation of the library), the Draft model (used to create new models),

the BasicProcess package (that contains the modules, used as components to

Chapter 11 The ARENALib Library

construct process-oriented models), the Examples package (that contains some

discrete-event system examples) and the BookExamples package (that contains

models of systems described in Kelton et al. [2007]). The developer’s area is

encapsulated into the SRC package and contains the internal implementation of

the library modules.

ARENALib models are described using a flowchart diagram and some addi-

tional information associated to the processes of the diagram. Flowchart diagrams

are composed using flowchart modules, which are similar to SIMANLib blocks.

However, in ARENALib the flowchart modules perform more complex actions

than SIMANLib blocks and already include the calculation of several statistical

indicators. The static information of the model is described using data modules,

which are equivalent to some of the SIMANLib elements. The structure of the

BasicProcess package, that contains the flowchart and data modules is shown in

Fig. 11.1b.

(a) (b)

Figure 11.1: ARENALib library: a) general architecture; b) detail of the
BasicProcess package.

186

11.3 Flowchart Modules

11.3 Flowchart Modules

The internal description of each flowchart module included in ARENALib is in-

cluded in this section.

11.3.1 Create

The Create module represents, like the SIMANLib Create block, the starting

point for the flow of entities in the system. Thus, it is constructed using a Create

block and a counter that records the number of entities created by the module.

The internal implementation of the module is shown in Fig. 11.2.

Figure 11.2: ARENALib Create module.

11.3.2 Dispose

Similar to the Create module, the Dispose module is equivalent to the SIMANLib

Dispose block. It represents the final point for the flow of entities in the system.

The Dispose module is constructed using a Dispose block and a counter that

records the number of entities disposed by the module. The internal implemen-

tation of the module is shown in Fig. 11.3.

Figure 11.3: ARENALib Dispose module.

187

Chapter 11 The ARENALib Library

11.3.3 Process

The Process module represents any process that can be applied to the entities in

the system. Processes can be of the following types: (1) delay (that represents a

time delay for the entities, like the Delay block), (2) seize-delay (that forces the

entity to capture a resource and be delayed), (3) delay-release (forces a delay for

the entity and the release of a previously seized resource), and (4) seize-delay-

release (represents an entity seizing a resource, being delayed and at the end

releasing the resource). The type of process to perform is selected using one of

the parameters of the module. The duration of the delay is calculated using a

probability distribution function from the RandomLib library.

Figure 11.4: ARENALib Process module.

The internal implementation of the module is shown in Fig. 11.4. It can be

observed that multiple SIMANLib blocks are required to represent the behavior

of the process. The module also includes the Queue element required for the

Seize block, and the elements required to automatically calculate the following

statistical indicators:

– The number of entities that entered and left the module.

188

11.3 Flowchart Modules

– A Tally indicator for the time the entities are processed.

– A Tally indicator for the time spent waiting in queue.

– A DStat indicator for the number of entities waiting in queue.

Also notice that two Select models, from the DEVSLib library, are used to select

the type of process to perform.

11.3.4 ExternalProcess

The ExternalProcess represents a process applied to the entity, whose duration

(i.e., the delay time) is externally modeled instead of calculated using a probabil-

ity distribution. The ExternalProcess is equivalent to the Process module, where

the Delay block is substituted by an external model.

The internal implementation of the module is shown in Fig. 11.5. Notice that

the Delay block in the middle of the Process (see Fig. 11.4) has been substituted

by four models and two additional ports: the DICO, RealToInteger, IntegerTo-

Real and Quantizer models, and the entityStart and entityEnd ports.

Figure 11.5: ARENALib ExternalProcess module.

189

Chapter 11 The ARENALib Library

When an entity has to be delayed in an ExternalProcess module, the DICO

and RealToInteger models translate the message that represents the entity into

an Integer value, which is the reference to the memory where the entity is stored

(i.e., a pointer). That value is assigned to the entityStart port, which should be

connected to an input port of the model that represents the external process.

Since the value assigned to the entityStart port is different for each entity, the

external process should recognize the change in the value meaning that a new

entity is ready to be processed.

The external process should also have an output port connected to the en-

tityEnd port of the ExternalProcess module. After processing the entity, the

external process should set the value of the entityEnd port of the ExternalPro-

cess module with the reference (i.e., the pointer) previously received. In case of

simultaneous processing of multiple entities, the external process should have a

method to record the reference to the entities being processed and identify the

beginning and end of the process for each entity individually.

The reference received through the entityEnd port is translated by the In-

tegerToReal and Quantizer models into a message that represents the processed

entity, which continues through the flowchart diagram. An example of the use of

this module is described in Chapter 12.

11.3.5 Decide

The Decide module represents a division in the flow of entities following certain

conditions or probabilities. Its internal implementation is shown in Fig. 11.6. It is

constructed using a Branch block and a BRule block, so only one condition can be

checked in the Decide module. In order to allow multiple conditions, ARENALib

includes the Rule module, which is equivalent to the BRule block. Additional

Rule modules can be connected to the Out2 port of the Decide module.

190

11.3 Flowchart Modules

Figure 11.6: ARENALib Decide module.

11.3.6 Assign

The Assign module is equivalent to the ExternalAssign block of the SIMANLib

library. It can be used to assign or modify the values of the user-defined attributes

or global variables included in the model.

11.3.7 Record

The Record module represents a point in the flowchart diagram to record statisti-

cal time-dependent information. Its internal implementation is shown in Fig. 11.7.

This module is composed of a Tally and a Counter blocks, which are conditionally

declared depending on a parameter, named Type, of the module. If the Type of

the module is 1, the Record behaves as a Counter block and so the Tally block

is not declared. If the Type is 2, the Record behaves as a Tally block and the

Counter is not declared. The module also includes the required Tally and Counter

elements.

Figure 11.7: ARENALib Record module.

191

Chapter 11 The ARENALib Library

11.4 Data Modules

The additional information required by the flowchart modules is included in its

internal implementation. However, models could also include other information

that has to be described using data modules. Also, some of the included infor-

mation can be shared between multiple processes and so, it has to be included

separately.

The data modules included in ARENALib are (also see Fig. 11.1b):

– Entity, is equivalent to the EntityType element in SIMANLib. It describes

the characteristics associated with a type of entities in the system.

– Queue, is equivalent to the Queue element in SIMANLib. The use of this

data module is not required since it is already included in the Process and

ExternalProcess modules.

– Resource, is equivalent to the Resource element in SIMANLib. Each Re-

source module describes a type of resource in the system, and has to be con-

nected with the Process or ExternalProcess modules in the system. Several

Process or ExternalProcess modules can be connected to the same Resource,

if resource sharing is required.

– Variable, is equivalent to the Variable element in SIMANLib. It describes

user-defined global variables in the system.

– Attribute, is equivalent to the Attribute element in SIMANLib. It describes

user-defined attributes for the entities in the system.

The BasicProcess package also includes three functions, named eget(), vget()

and aget(), that can be used to read the values of the variables of an Entity

(eget), a Variable (vget) or an Attribute (aget). In this way, the values of the

variables defined in Entities, Variables or Attributes can be used to configure the

parameters of the flowchart modules (e.g., an attribute can be assigned with the

time of creation for the entity, and its value used as a parameter to calculate the

duration of a process or as a condition for a Decide module).

192

11.5 System Modeling Using ARENALib

11.5 System Modeling Using ARENALib

The procedure to construct new process-oriented models using ARENALib is

equivalent to the SIMANLib procedure. First, the Draft model has to be used to

create the new“empty”model. Second, the flowchart diagram has to be described

using flowchart modules. Third, the required data modules have to be included.

Finally, the parameters of the modules have to be configured to represent the

desired experiment.

Figure 11.8: Bank teller system modeled using ARENALib.

Table 11.1: Bank teller system simulation results using SIMANLib, ARE-
NALib, Arena and SIMAN.

Model Avg. in Queue Half-Width
SIMANLib 3.3073 -
ARENALib 3.1212 -
Arena 3.2089 0.22
SIMAN 3.2089 0.22

The model of the bank teller system, previously modeled using SIMANLib,

constructed using ARENALib is shown in Fig. 11.8. A Create, Process and

Dispose modules have been included to represent the flowchart diagram. A Re-

source module, to represent the teller, and an Entity module, to represent the

customers, have also been used. Notice that since ARENALib modules provide

more functionalities than SIMANLib blocks, less modules are required to repre-

sent the same system. The simulation results are equivalent to the ones obtained

using SIMANLib, SIMAN and Arena (see Table 11.1). The results obtained using

193

Chapter 11 The ARENALib Library

SIMAN and Arena are equal because Arena uses the same random seed for both

models.

11.6 Electronic Factory Model

The electronic assembly and test system described in Kelton et al. [2007] has

been composed using ARENALib. The behavior of the system is as follows. Two

types of electronic parts (A and B) are received, pre-processed and sealed. Each

type has different pre-processing and sealing times. After that, the quality of the

the sealed parts is inspected. Correct parts are shipped, and the rest need to be

reworked. After the rework process, they are inspected again and classified into

salvaged and scrapped.

The flowchart diagram of the developed model is shown in Fig. 11.9. Two

Create modules have been used to represent the arrival of each type of part. After

the arrival, two attributes are assigned to each entity: “sealer time” and “arrival

time”. The “sealer time” corresponds to the duration of the sealer process for

that entity, and follows a triangular distribution for parts of type A and a weibull

distribution for parts of type B. The “arrival time” is recorded to be used in the

calculations of the statistics about the time spent in the system when the entity

is disposed.

Each part arrives separately to the pre-processing operation, represented with

two different Process modules, each one connected to its corresponding Resource

data module. When the pre-processing is finished, the parts arrive to the sealing

Figure 11.9: Electronic assembly system modeled using ARENALib.

194

11.6 Electronic Factory Model

process, which is again represented using a Process module connected to a Re-

source. The duration of this process is calculated using the value of the “sealer

time” attribute of each entity.

The quality inspection after the sealing process is represented using a Decide

block. In this block, the 91% of the entities are considered correct and are dis-

posed in the Shipped module. The rest of the entities go to the rework process.

After being reworked, a new quality inspection is applied to the entities. In this

case, the 80% are considered salvaged and the rest is scrapped. Before disposing

each entity, three Record modules calculate tally statistics about the time spent

in the system for each class of processed part (shipped, salvaged and scrapped).

The system has been simulated during 50000 time units, in order to evaluate

its steady-state behavior. Multiple statistical indicators are automatically cal-

culated by ARENALib. Some of the calculated statistical indicators are shown

in Table 11.2 and compared with the results obtained with Arena, including the

half-width (H-W) interval. These results show that the bottleneck of the system

is the rework process, due to its long duration and waiting times.

Table 11.2: Electronic factory simulation results, comparing ARENALib and
Arena (in average values).

Indicator (avg.) ARENALib Arena H-W
Time for Shipped 18.650 19.774 2.273
Time for Salvaged 89.348 81.522 8.715
Time for Scrapped 88.564 78.125 (Insuf)
Sealer.WaitTime 0.447 0.453 0.035
Sealer.ProcessTime 2.609 2.617 (Corr)
Sealer.Utilization 0.601 0.605 0.011
Sealer.NumberInQueue 0.103 0.105 0.007
Rework.WaitTime 40.272 32.974 8.020
Rework.ProcessTime 30.033 28.452 1.823
Rework.Utilization 0.622 0.583 0.043
Rework.NumberInQueue 0.834 0.675 0.180

195

Chapter 11 The ARENALib Library

11.7 Conclusions

The ARENALib library includes high-level functionalities for process-oriented

modeling in Modelica. These functionalities replicate some of the functionalities

found in the BasicProcess panel of the Arena simulation environment. The con-

struction of models using ARENALib is also similar to Arena, using the drag and

drop functionalities provided by Dymola.

ARENALib components have been described as P-DEVS coupled models,

and constructed using the SIMANLib library. Thus, SIMANLib and ARENALib

components can be hierarchically ordered and combined to construct models at

different abstraction levels. The use of a mathematical formalism to describe

models facilitates their comprehension, development and maintenance.

ARENALib has been used to construct process-oriented models of a bank

teller and an electronic factory. The simulation of these models has been com-

pared with equivalent models constructed using Arena. The results obtained,

represented by statistical indicators automatically calculated during the simula-

tion, are equivalent.

196

12
Hybrid Process-Oriented Modeling

12.1 Introduction

One of the strenghts of the SIMANLib and ARENALib libraries is the possibility

to combine process-oriented models with the rest of the available Modelica li-

braries. This combination facilitates the description of large hybrid multi-domain

systems.

This chapter includes a presentation of the functionalities of SIMANLib and

ARENALib to interact with other models in Modelica. This presentation is

performed by means of three case studies, because these functionalities have been

already described in the previous chapters.

12.2 Orange Juice Canning Factory

This model represents an orange juice canning factory. Trucks carrying orange

juice arrive to the factory with an exponential inter-arrival time. The juice is

pumped into the factory tank, that feeds the canning system. Each truck has to

wait for a position in the dock to unload the juice into the factory tank. The

docking operation takes around 1 to 2 minutes (uniformly distributed). Once

docked, the truck pumps the juice into the tank. If the tank gets full, the truck

Chapter 12 Hybrid Process-Oriented Modeling

must wait for free volume in the tank. When empty, the truck leaves the dock

free for another waiting truck.

When the factory tank is not empty, the canning system produces pallets of

canned juice. If the tank gets empty, the canning operation stops until new juice

is available in the tank.

In this model, the flow of juice from the truck into the tank, and from the

tank into the canner have been described as continuous-time model. The amount

of juice in the truck is represented using a variable named truckLevel, and its

variation is represented by the truckRate variable. The amount of juice in the

tank is represented by the tankLevel variable, and its variation by the tankRate

variable. The amount of juice in the canner is represented by the cannerLevel

variable, and its variation by the cannerRate variable. The Modelica equations

that describe the relations between these variables are shown in Listing 12.1.

truckRate = der(truckLevel);
tankRate = der(tankLevel);
cannerRate = der(cannerLevel);

Listing 12.1: Modelica equations for the orange juice factory.

The entities from the process-oriented part, that represent the trucks and

the cans, interact with the equations that represent flows of juice in the system.

The system also includes six Variable elements (see Fig. 12.1) that represent the

previously mentioned variables. When an entity assigns a new value to a variable,

using an ExternalAssign block, the value of the continuous-time variables is also

modified. The assignments used to change the truckRate depending on the flow

of entities crossing the ExternalAssign block are shown in Listing 12.2.

when change(truckR1.change) then
truckRate := -200;

elsewhen change(truckR2.change) then
truckRate := 0;

elsewhen change(truckR3.change) then
truckRate := 0;

elsewhen change(truckR4.change) then
truckRate := -200;

end when;

Listing 12.2: Detection of ARENALib external assignments using Modelica code.

198

12.2 Orange Juice Canning Factory

When an entity crosses the truckR1 Assign module its “change” port switches

its value. That event is detected by the when statement, setting the value of

truckRate to -200. The same operation is performed with the rest of Assign

modules. A similar structure of assignments is used for the other variables.

The flowchart diagram for this system, constructed using SIMANLib, is shown

in Fig. 12.1. The figure also includes the required SIMANLib elements, associated

with the blocks and to calculate statistics (DStat model named WaitingTrucks).

Figure 12.1: Orange juice canning factory modeled using SIMANLib.

The top of the diagram corresponds to the truck docking/undocking oper-

ation. When truck is created, seizes the dock, performs the docking operation

and assigns new values for the mentioned Variables (the continuous-time vari-

ables are also assigned). The time spent unloading the truck is calculated by the

continuous-time part, depending on the value of the truckRate variable.

The event of an empty truck is modeled using a CrossDOWN model, from the

DEVSLib library, which generates a TruckEmtpy entity due to its connection to

199

Chapter 12 Hybrid Process-Oriented Modeling

the input port of a Create block. This entity modifies the values of the variables,

using ExternalAssign blocks, and forces the truck being unloaded to finish the

operation and release the dock (using the Done resource).

The management of the level of the tank (full, empty or available space) is

performed similarly to the truck level. Two CrossDOWN and one CrossUP mod-

els are used to detect when the tank is empty, has available space to continue

being filled or becomes full, respectively. These events produce other variable as-

signments that also affect the continuous-time variables. The level of the canner,

and the production of pallets, is controlled in the same way.

The system has been simulated during 100 minutes. The evolution of the

truck, tank and canner levels are shown in Fig. 12.2. Notice that the level of

juice in the tank increases while the truck level is decreasing. Also, when the

tank level is positive, the canner produces pallets, but when it reaches zero, the

canner stops its operation.

Figure 12.2: Simulation results of the orange juice canning factory.

200

12.3 Tank-level Control System

12.3 Tank-level Control System

This hybrid model represents the level of a tank that is filled at a constant rate of

10l · s−1, and when the volume reaches 100l, the tank is emptied also at constant

rate. Its behavior is very similar to the previous system (the orange juice factory),

but in this case the system is modeled using ARENALib. Two approaches are

studied.

In the first approach, the level of the tank has been modeled using a continuous-

time variable. This variable is controlled by the entities in the discrete-event part

of the model. Initially the flow rate to fill the tank is 10l · s−1, so the tank starts

getting filled. When an entity is created, it is delayed for 10s, while waiting the

tank level to reach 100l. After that delay, the tank is full and the entity changes

the flow rate to −10l ·s−1. The tank starts emptying. After another 10s, the tank

is empty and the entity re-sets the flow rate to 10l · s−1, to restart the process.

The flowchart diagram for this model is shown in Fig. 12.3. Notice the Break-

Loop model included from the DEVSLib library. The Modelica code for the

continuous-time part is shown in Listing 12.3.

algorithm
when change(SetFlowRate.change) then
tankFlowRate := SetFlowRate.y;

elsewhen change(SetFlowRate2.change) then
tankFlowRate := SetFlowRate2.y;

end when;
equation
tankFlowRate = der(tankLevel);

Listing 12.3: Detection of external assignments to the flow rate in the tank level system.

Figure 12.3: Tank-level control system modeled using ARENALib (first
approach).

201

Chapter 12 Hybrid Process-Oriented Modeling

In the second approach, the level of the tank is checked using CrossUP and

CrossDOWN models that detect when the tank gets full or empty. Depending on

the event detected, the flow rate is changed to −10l ·s−1 or 10l ·s−1, respectively.

The flowchart diagram for the second approach is shown in Fig. 12.4. In this

case, the Process and Resource modules used to calculate the fill/empty time can

be removed from the flowchart diagram. That time is calculated using the equa-

tion that relates the level of the tank with its first derivative (see Listing 12.3).

Figure 12.4: Tank-level control system modeled using ARENALib (second
approach).

The simulation results for both systems are equivalent. The evolution of the

tank level after 100 is shown in Fig. 12.5

Figure 12.5: Evolution of the tank level for the Tank-level control system.

12.4 Soaking-Pit Furnace System

The soaking-pit furnace system described in Kelton et al. [2007] has been mod-

eled using ARENALib. This system represents a furnace that has 9 slots for

heating ingots. Ingots arrive to the system at an exponential arrival time, and

are positioned in one of the available slots of the furnace. If there is no available

202

12.4 Soaking-Pit Furnace System

slot, the ingot must wait. When each ingot reaches its optimal temperature, it is

removed from the slot and another ingot enters the furnace.

The behavior of the furnace has been described using a continuous-time model.

The equations that describe the temperature of the furnace and the ingots are

the following:

Ṫ = 2 · s(2600− T) (12.1)

ṫi = 0.15 · s(T − ti) (12.2)

where T is the temperature in degrees of the furnace and ti is the temperature

of the ith ingot in the furnace.

When a new cold ingot arrives to the furnace, its temperature decreases fol-

lowing Eq. (12.3),

Tnew = T · s(T − tnew)
ingots

(12.3)

where Tnew is the new temperature of the furnace, tnew is the temperature of the

new ingot and ingots is the number of ingots in the furnace.

Figure 12.6: Soaking-pit furnace system modeled using ARENALib.

The flowchart diagram of the system is shown in Fig. 12.6. Ingots arrive

at the Create module, seize an available slot, are heated and finally leave the

system. The heating process is represented using an ExternalProcess module

from ARENALib. The discrete-event module represents the operation for seizing

a free slot in the furnace, and releasing it when finished. The furnace is modeled

using a continuous-time model that includes the Eqs. (12.1), (12.2) and (12.3).

A detail of the Modelica code of the furnace model is shown in Listing 12.4. The

203

Chapter 12 Hybrid Process-Oriented Modeling

reception of new ingots, the re-initialization of slot and furnace temperatures,

and the management of the heating for each slot are shown.

algorithm
when IN <> pre(IN) then // new ingot received
while Posfree[i] > 0 loop // find free slot
i := mod(i,numFurnacePos)+1;

end while;
Posfree[i] := 1; // assign free slot
ingot[i] := IN; // record value of input ingot
newingot := newingot+1; // used to update furnace temp

end when;
for i in 1:numFurnacePos loop // check finished ingots
when itemp[i] >= 2200 then
Posfree[i] := 0;
OUT := ingot[i];

end when;
end for;

equation
ftrate = der(ftemp);
ftrate = 2 * (2600 - ftemp); // furnace temperature
for i in 1:numFurnacePos loop // slots temperatures
itrate[i] = der(itemp[i]);
itrate[i] = if Posfree[i] == 0 then 0 else 0.15 *(ftemp - itemp[i]);

end for;
when newingot <> pre(newingot) then // update furnace temperature
reinit(itemp[i],u);
reinit(ftemp,(ftemp-(ftemp - u)/sum(Posfree)));

end when;

Listing 12.4: Detail of Modelica code of furnace model.

The soaking-pit furnace system with 9 slots has been simulated during 100

hours. The evolution of the temperatures in the furnace (above) and in each of

the slots (below) are shown in Fig. 12.7.

Figure 12.7: Evolution of temperatures in the soaking-pit furnace system.

204

12.5 Conclusions

12.5 Conclusions

SIMANLib and ARENALib include functionalities to construct hybrid process-

oriented models in combination with other Modelica models. These functionali-

ties include:

– The detection and communication of the changes performed to some of the

variables described in the process-oriented model, using the ExternalAssign

block in SIMANLib or the Assign module in ARENALib.

– The detection of event conditions using the functionalities included in DE-

VSLib, and the generation of entities based on these events using the input

port of the Create block.

– The integration of external processes with process-oriented models using

the ExternalProcess module included in ARENALib.

DEVSLib, SIMANLib and ARENALib components are compatible (i.e., use the

same model communication mechanism), and the functionalities provided by the

three libraries can be combined to enhance the description of models.

205

13
The RandomLib Library

13.1 Introduction

Process-oriented models are sometimes described stochastically [Law, 2007]. A

key point in stochastic simulation is the random number generation. Good simu-

lation results depend on a good source for random numbers, that allow to generate

statistically good random variates [L’Ecuyer, 2001].

Previous works with Modelica use random number generators (RNGs) [Fritz-

son and Bunus, 2002; Mikler and Engelson, 2003; Aiordachioaie et al., 2006;

Fabricius, 2003; Rubio et al., 2006; Lundvall and Fritzson, 2003]. Most of these

authors use their own custom implementation of an RNG.

The RandomLib package is used in conjunction with DEVSLib, SIMANLib

and ARENALib to model discrete-event and process-oriented stochastic models

of logistic systems. RandomLib contains a Modelica implementation of the Com-

bined Multiple Recursive Generator (CMRG) which is used in Arena [L’Ecuyer

et al., 2002]. This helps to validate the models developed using SIMANLib and

ARENALib, in comparison with equivalent models constructed using Arena.

RandomLib includes a package for uniform random number generation, called

CMRG, and another for random variate generation, called Variates. It also in-

cludes several examples that help to understand its use and integration with other

Chapter 13 The RandomLib Library

libraries. These packages, their structure and functionalities are described in this

chapter.

13.2 The CMRG package

The CMRG package contains an implementation of the Combined Multiple Re-

cursive Generator described in [L’Ecuyer et al., 2002] and [L’Ecuyer, 1999]. Al-

though available in C, provided by L’Ecuyer [2007], this generator has been imple-

mented in Modelica in order to facilitate its use, comprehension and reutilization

in other Modelica libraries. The C implementation has been used for validating

the programmed Modelica generator.

The implemented RNG provides the possibility of creating multiple random

streams, and sub-streams, that can be considered as independent RNGs [L’Ecuyer

et al., 2002]. An brief introduction to this generator has been performed in

(a) (b)

Figure 13.1: RandomLib structure: a) CMRG package; and b) Variates
package.

208

13.2 The CMRG package

Section 2.7.3, and a detailed description can be found in L’Ecuyer [2001]. The

period of the generator is close to 2191, and can be divided into disjoint streams of

length 2127. At the same time, each stream can also be divided into 251 adjacent

sub-streams, each of length 276. Each random variable can be assigned with a

different stream, thus facilitating the execution of independent replications or the

application of variance reduction techniques [Law and Kelton, 2000].

The architecture of the package is shown in Fig. 13.1a. The CMRG package is

composed of: a) user’s guide; b) developer package, named Src; and c) RngStream

and a set of functions to manage it.

The main class in the CMRG package is the RngStream (see Fig. 13.1a). It

represents a single stream of sequential random numbers. As mentioned above, an

RngStream is divided into adjacent sub-streams. It is described using a Modelica

record that contains the components described in Table 13.1 (which correspond

to some of the generator states described in Section 2.7.3).

The CMRG package includes several functions to manage the RngStream.

The CreateStream function is used to initialize a new RngStream, using the cur-

rent seed. In RandomLib, the seed is automatically managed. It is stored is

a text-file, named “CMRGSeed.txt”. The CreateStream function reads the seed

from that file to initialize the new RngStream. After initializing the stream, the

Table 13.1: Components of the RngStream record.

Cg Indicates the current position in the stream. It is used to
generate the next random number, and updated after the
generation.

Bg Indicates the start of the current stream. It can be used
to reinit the state of the stream to its initial position, and
repeat the sequence of random numbers.

Ig Indicates the position of the next sub-stream in the current
stream.

Anti Boolean flag used to generate antithetic random numbers
(1− u, instead of u).

IncPrec Also a boolean flag to generate random numbers in increased
precision. Since Modelica only have one precision for Real
numbers, this flag only makes the CMRG to generate alter-
nate random numbers from the ones in the stream.

209

Chapter 13 The RandomLib Library

function updates the seed in the CMRGSeed.txt file. Thus, each call to the Creat-

eStream function provides a new initial random stream. If the file is not found, the

function creates it with the default seed ({12345,12345,12345,12345,12345,12345}),

and initializes the RngStream with it. The user can specify a particular seed using

the SetPackageSeed and SetSeed functions.

The ResetStartStream, ResetNextSubstream and ResetStartSubstream func-

tions can be used to reset the state of the RngStream to the beginning of the

current stream, the beginning of the next sub-stream or the beginning of the

current sub-stream, respectively. The AdvanceState function can be used to ar-

bitrarily change the state of the RngStream, independently from the stream and

sub-stream division of the generator. GetState returns the current state of the

RngStream. SetAntithetic and IncreasedPrecis change the value of the Anti and

IncPrec flags.

Finally, RandU01 and RandInt can be used to generate uniform random num-

bers (inside the (0,1) interval) and integer random numbers, respectively. A more

detailed description of these functions and its parameters can be found in the doc-

umentation of the library.

The developer package contains the internal implementation of the CMRG.

This package includes constants and functions to perform the required calcula-

tions to manage the state of the RngStreams, generate uniform random numbers

and manage the seed. This implementation follows the structure of the C code

provided by L’Ecuyer, and it has no utility for an standard user.

13.2.1 Uniform Random Number Generation

The steps required to generate uniform random numbers using RandomLib and

the CMRG generator are:

1. Declare an RngStream that will be the source of random numbers.

2. Initialize the declared RngStream using the CreateStream function.

3. Generate random numbers using the declared RngStream and the RandU01

or RandInt functions.

210

13.2 The CMRG package

The Examples package, included in RandomLib, contains several examples

of random uniform and random variates generation in order to facilitate the use

of the library. One of the included examples, named “CMRGSimple”, is shown

in Listing 13.1. In this example, a RngStream (g) is created and initialized

using the CreateStream function. The init variable is used to execute the Creat-

eStream function only once, because Dymola may execute the statements around

the initial() condition several times during the initialization of the model. After

that, when the simulation time reaches 1, the RandU01(g) function is used to

generate five different uniform random numbers that are stored in the indexed

positions of the vector u. Notice that the RandU01 function returns two values:

the uniform random number, and the updated state of the stream, that has to

be stored in the RngStream g in order to generate future random numbers.

model CMRGSimple "generates 5 random numbers from an RngStream"
CMRG.RngStream g "RngStream";
Real u[5] "vector of random numbers";
Boolean init(start = false);

algorithm
// initialization of the RngStream
when initial() and not init then
g := CMRG.CreateStream();
init := true;

end when;
when time <= 1 then
// generation of uniform random numbers.
for i in 1:5 loop
(u[i],g) := CMRG.RandU01(g);

end for;
end when;

end CMRGSimple;

// Results:
// u = {0.988831,0.760616,0.855857,0.546418,0.868702}

Listing 13.1: Uniform random number generation using RandomLib.

Another example of uniform random numbers is shown in Listing 13.2. In

this case, two different RngStreams are declared (g1 and g2). However, during

the initialization both RngStreams are equaled and represent the same stream

(both will provide the same random numbers). Six uniform random numbers

are generated from g1 and stored in u1. On the other hand, only three uniform

random numbers are generated from g2 (and stored in u2), which is then reset

to the start of the sub-stream before generating another three uniform random

211

Chapter 13 The RandomLib Library

numbers (also stored in u2). Notice that u2 contains the same three uniform

random numbers, due to the reset of the state of g2 to the start of the sub-

stream. Also notice that u1 and u2 contain the same three first uniform random

numbers, due to the equal initialization of both RngStreams.

model usingCMRG
// declaration of the streams
RandomLib.CMRG.RngStream g1,g2;
Real u1[6],u2[6];

algorithm
// stream initialization
when initial() then
g1:= RandomLib.CMRG.CreateStream();
g2:= g1; // g1 and g2 represent the same stream

end when;
when time <= 0 then
// generation of random numbers from g1
for i in 1:6 loop
(u1[i],g1):= RandomLib.CMRG.RandU01(g1);

end for;
// generation of random numbers from g2
for i in 1:3 loop
(u2[i],g2):= RandomLib.CMRG.RandU01(g2);

end for;
// reset g2 to the start of the sub-stream
g2:= RandomLib.CMRG.ResetStartSubstream(g2);
// Given that g2 was reset,
// the same numbers are generated
for i in 4:6 loop
(u2[i],g2) := RandomLib.CMRG.RandU01(g2);

end for;
end when;

end usingCMRG;

// Results:
// u1 = {0.171491, 0.853403, 0.0237293, 0.501558, 0.179811, 0.252283}
// u2 = {0.171491, 0.853403, 0.0237293, 0.171491, 0.853403, 0.0237293}

Listing 13.2: Use of several RngStreams to generate uniform random numbers.

13.3 The Variates Package

The Variates package includes functionalities to generate random variates from

continuous and discrete probability distributions. The structure of the package

is shown in Fig. 13.1b. The package is composed of:

– The Generator record, that represents the source of uniform random num-

bers that will be used to generate variates. It is assigned by default to the

RngStream record of the CMRG package.

212

13.3 The Variates Package

– The initGenerator function is used to initialize the uniform random number

generator (by default, assigned to the CreateStream function of the CMRG

package). The initGeneratorWrap function performs the same action, re-

turning the components of the RngStream (see Table 13.1) separately, in-

stead of as a Modelica record.

– The U01 function is used to obtain a uniform random number from a de-

clared generator. It is assigned by default to the RandU01 function of the

CMRG package.

– The Var function is the prototype (i.e., abstract function) for the variate

generation functions, contained in the Continuous and Discrete packages.

– The GenerateVariate and GenerateVariateWrap functions help to generate

random variates. They return a random variate from a probability distri-

bution, selected using one of the parameters of the function.

– The Constant function simply generates a constant value.

– The Continuous and Discrete packages contain the functions to generate

random variates. The included probability distribution functions are shown

in Fig. 13.2.

(a) (b)

Figure 13.2: Discrete and continuous probability distribution functions in-
cluded in RandomLib.

213

Chapter 13 The RandomLib Library

13.3.1 Random Variates Generation

Each random variate generation function extends the Var function. Each function

receives as inputs a declared Generator (as source for uniform random numbers),

and from one to four parameters depending on the probability distribution func-

tion (e.g., the exponential distribution function receives one parameter, and the

triangular distribution function receives three). The algorithms used in the im-

plementation of each function are described in the documentation included in the

library. A method used to validate these functions has been to fit the generated

variates with their distributions by using Arena Input Analyzer.

The generation of random variates using RandomLib is similar to the gener-

ation of uniform random numbers. The following steps have to be performed:

1. Declare a Generator, that will be used as source for uniform random num-

bers.

2. Initialize the declared Generator using the initGenerator function.

3. Generate random variates either using the GenerateVariate function, or di-

rectly calling the functions contained in the Continuous and Discrete pack-

ages.

model VariatesSimple "5 random variates with Expo(5) distrib."
Variates.Generator g "RNG";
Real u[5] "vector of random variates";

algorithm
// initialization of the RngStream
when initial() then
g := Variates.initGenerator();

end when;
when time <= 0 then
for i in 1:5 loop
// generation of variates.
(u[i],g) := Variates.Continuous.Exponential(g,5);

end for;
end when;

end VariatesSimple;

// Results:
// u = {6.99771, 4.23703, 1.83142, 6.94764, 1.45234}

Listing 13.3: Random variates generation using RandomLib.

214

13.3 The Variates Package

An example of random variates generation is shown in Listing 13.3. This

model generates five random variates that follow the exponential probability dis-

tribution with mean 5. The declared generator is called g, and initialized using

the initGenerator function within the initial() condition in Dymola. After that,

five variates are generated using a for loop. Each iteration of the loop gener-

ates one variate by calling the Exponential(g, 5) function (notice that the second

parameter represents the mean), that also updates the state of the generator in

order to generate future variates.

model VariatesSimple2 "A discrete variate of each distribution"
Variates.Generator g "RNG";
Real ConstantVariate;
Real Bernoulli;
Real DiscreteUniform;
Real Binomial;
Real Geometric;
Real NegativeBinomial;
Real Poisson;
Real Uniform;
Real Exponential;
Real Erlang;
Real Gamma;
Real Weibull;
Real Normal;
Real LogNormal;
Real Beta;
Real Johnson;
Real Triangular;

algorithm
// initialization of the RngStream
when initial() then
g := Variates.initGenerator();

end when;
(ConstantVariate,g) := Variates.GenerateVariate(1,g,0.4);
(Bernoulli,g) := Variates.GenerateVariate(2,g,0.4);
(DiscreteUniform,g) := Variates.GenerateVariate(3,g,2,4);
(Binomial,g) := Variates.GenerateVariate(4,g,4,0.3);
(Geometric,g) := Variates.GenerateVariate(5,g,0.5);
(NegativeBinomial,g) := Variates.GenerateVariate(6,g,6,0.2);
(Poisson,g) := Variates.GenerateVariate(7,g,4.5);
(Uniform,g) := Variates.GenerateVariate(8,g,2,4);
(Exponential,g) := Variates.GenerateVariate(9,g,0.4);
(Erlang,g) := Variates.GenerateVariate(10,g,0.5,4);
(Gamma,g) := Variates.GenerateVariate(11,g,0.4,0.7);
(Weibull,g) := Variates.GenerateVariate(12,g,0.4,0.8);
(Normal,g) := Variates.GenerateVariate(13,g,0,1);
(LogNormal,g) := Variates.GenerateVariate(14,g,0,1);
(Beta,g) := Variates.GenerateVariate(15,g,0.6,0.4);
(Johnson,g) := Variates.GenerateVariate(16,g,0.1,0.5,1,4);
(Triangular,g) := Variates.GenerateVariate(17,g,1,3,6);

end VariatesSimple2;

Listing 13.4: Another example of random variates generation using RandomLib.

215

(a)

(b)

Figure 13.3: Some random variates generated by model VariatesSimple2,
using RandomLib: a) continuous distributions and; b) discrete distributions.

216

13.3 The Variates Package

Another example of random variate generation is shown in Listing 13.4. In

this case, the GenerateVariate function is used to generate variates following

multiple probability distributions. The first parameter of this function indicates,

using an integer number, the probability distribution.

Notice that only one Generator (g) is used to generate all the variates. The

evolution of the variates generated following the distributions Exponential(0.4),

Normal(0,1) and Triangular(1,3,6) is shown in Fig. 13.3a. Also, the evolution

of the variates generated following the distributions Bernoulli(0.4), DiscreteUni-

form(2,4) and Geometric(0.5) is shown in Fig. 13.3b.

13.3.2 Use of Another RNG

The included variate generation functions use by default the CMRG generator

as source of uniform random numbers. However, any other Modelica library for

uniform random number generation can be used.

The procedure to configure the Variates package in order to use another RNG

is the following:

1. Redeclare the record that represents the generic generator (Generator). The

record must include the data required to describe the state of the generator.

For instance, a generator that reads random numbers from a text file could

describe its state with the name of the file and the index of the next number

to generate.

2. Redeclare the generator initialization function (initGenerator). The rede-

clared initGenerator function must return as output a Modelica record of

the previously redeclared Generator class.

3. Redeclare the generic uniform random number generation function (U01).

The redeclared U01 function must receive as input a Modelica record of the

Generator class, and return as outputs a Real number (i.e., the generated

uniform random number) and the updated state of the generator (i.e., a

Modelica record of the Generator class).

217

Chapter 13 The RandomLib Library

13.4 Conclusions

The RandomLib library provides functionalities to generate random uniform num-

bers and random variates in Modelica. It can be used in combination with the DE-

VSLib, SIMANLib and ARENALib libraries to describe discrete-event stochastic

models. It can also be used together with any other Modelica library.

The random number generator included in the library is the Combined Mul-

tiple Recursive Generator proposed by Pierre L’Ecuyer, and included in Arena

as a source for uniform random numbers. RandomLib uses this RNG to generate

random variates. Functions for discrete and continuous probability distributions

are included. Any other RNG can also be adapted to be used with RandomLib.

218

14
Conclusions and Future Research

The conclusions of this dissertation, as well as some ideas for future research are

presented in this chapter.

14.1 Conclusions

The conclusions reached in the development of this dissertation are the following:

– The combination of the P-DEVS formalism and the process-oriented mod-

eling approach with the object-oriented modeling methodology facilitates

the description of hybrid dynamic systems. The use of a mathematical for-

malism to describe the behavior of the discrete-event part of hybrid models

facilitates their development, maintenance and reuse.

– The requirements needed to describe P-DEVS and process-oriented models

using EOO languages, and particularly the Modelica language, have been

analyzed and identified. The first requirement concerns the description

of discrete-event model behavior. The second requirement concerns the de-

scription of model communications following a message passing mechanism.

Finally, the third requirement concerns the description of model interfaces

to combine discrete-event models with models from other Modelica libraries.

Chapter 14 Conclusions and Future Research

– The differences between the model communication mechanisms in P-DEVS

and EOO languages have been analyzed. A message passing mechanism to

be used in EOO languages has been proposed, specified and designed.

The proposed message passing mechanism has been partially implemented

using the current Modelica functionalities. Three alternatives to describe

the communication mechanism have been evaluated and developed. A

model of the semaphore synchronization method has been developed in

Modelica, during the study of these alternatives. The approach selected

for the final implementation uses dynamic memory to transmit messages

between models. The developed message commmunication mechanism in-

cludes a default message type and the operations required to manage it.

The developed mechanism has been used to describe the P-DEVS model

communication in Modelica. It will facilitate the description of P-DEVS

and process-oriented models.

– A new Modelica library, named DEVSLib, has been designed and developed

to support the P-DEVS formalism. DEVSLib includes functionalities to

describe atomic and coupled P-DEVS models. It also includes interface

models to combine P-DEVS models with models developed using other

Modelica libraries. DEVSLib models also support continuous-time inputs

for the transition functions, in order to facilitate the combination with

continuous-time models. Thus, DEVSLib can be used to describe discrete-

event, continuous-time (using the QSS integration methods) and hybrid

models.

The construction of models using DEVSLib is close to their P-DEVS for-

mal specification. It is performed by describing the elements of the tuple.

The communication between DEVSLib models is performed using the im-

plemented message passing mechanism.

– The application of the functionalities included in DEVSLib for describing

hybrid control systems have been analyzed. DEVSLib can be used to de-

scribe event-based sensors and actuators. The library can be also used to

220

14.1 Conclusions

describe discrete-time and discrete-event controllers, represented as atomic

or coupled P-DEVS models. These functionalities, when combined with the

continuous-time modeling functionalities included in Modelica, facilitate the

description of hybrid control systems.

– The requirements to describe process-oriented models in Modelica have been

analyzed. Model communication between process-oriented models is similar

to the communication between P-DEVS models, and so, the developed mes-

sage passing mechanism can be used to facilitate their description. However,

additional functionalities are required, like the description of the entities in

the system and the management of variable-size data structures, used to

store user-defined information and statistical indicators. These functionali-

ties have been implemented in Modelica by means of two additional external

libraries, named“entities.c”and“objects.c”. The former has been developed

to manage the information required to describe the entities and their flow

through the system. The latter has been developed to manage dynamic

objects, that describe variable-size matrices and lists of matrices stored in

dynamic memory.

– Two new Modelica libraries, named SIMANLib and ARENALib, have been

designed and developed to support the description of models following the

process-oriented approach. These new libraries reproduce some of the func-

tionalities provided by the SIMAN language and the Arena simulation en-

vironment.

The description of the components of both libraries has been performed

using the P-DEVS formalism. The use of a mathematical formalism to

describe models facilitate their comprehension, development and mainte-

nance.

The development of SIMANLib has been performed using the DEVSLib li-

brary, since SIMANLib components are defined as atomic P-DEVS models.

The development of ARENALib has been performed using the SIMAN-

Lib library, similarly to how Arena components are described by means

221

Chapter 14 Conclusions and Future Research

of SIMAN constructs. Thus, SIMANLib and ARENALib components can

be hierarchically ordered and combined to construct models at different

abstraction levels.

– The functionalities included in the SIMANLib and ARENALib libraries

have been extended to facilitate the description of hybrid process-oriented

models. The Create and ExternalAssign blocks from SIMANLib, and the

Assign and ExternalProcess modules from ARENALib can be used to com-

bine process-oriented models with other Modelica models.

– Another new Modelica library, named RandomLib, has been developed to

provide uniform random numbers and random variates generation func-

tionalities. RandomLib, in combination with DEVSLib, SIMANLib and

ARENALib, can be used to describe stochastic models of logistic systems.

RandomLib includes an implementation of the CMRG random number gen-

erator, also used in Arena, in order to facilitate the validation of the devel-

oped models by comparison with equivalent models constructed using Arena

or SIMAN. RandomLib also includes random variates generation functions,

from multiple discrete and continuous probability distributions.

– Finally, several case studies have been developed to present the function-

alities and use of the implemented libraries. Models of an automatic teller

machine, a predator-prey system, an opto-electical communication system,

a supermarket refrigeration system, a crane and embedded controller sys-

tem, a restaurant, an electronic assembly factory, an orange juice canning

factory, a tank level controller system and a soaking-pit furnace system have

been described.

14.2 Future Research

Some ideas for future research work could be:

– The improvement of the simulation performance of discrete-event and hy-

brid models in Modelica, described using the P-DEVS formalism.

222

14.2 Future Research

– The analysis and definition of an standard language to describe P-DEVS

models. Such a language should be independent from any programming

language or simulation tool, and could be used to share and reuse mod-

els in different environments. The combination and integration of models

described using this new language with EOO languages has also to be an-

alyzed and defined. A first approach could be the automatic translation of

its models into DEVSLib models, that could be simulated using Dymola.

Another approach could be the description of this new language as a subset

of Modelica.

– The extension of the functionalities included in SIMANLib and ARENALib,

by developing additional components.

– The graphical representation of the execution of process-oriented models

in Modelica, to allow a better understanding of the behavior of the model

during the simulation.

223

Bibliography

Agrawal, G. P. [1997], Fiber-Optic Communication Systems, 2nd edn, Wiley-

Interscience, New York, NY, USA.

Aiordachioaie, D., Nicolau, V., Munteanu, M. and Sirbu, G. [2006], On the noise

modelling and simulation, in ‘Proceedings of the 5th International Modelica

Conference’, Vienna, Austria, pp. 369–375.

Andersson, M. [1989], Omola - an object-oriented language for model representa-

tion, Technical report, TFRT 7417, Dept. of Automatic Control, Lund Institute

of Technology, Lund, Sweden.

Andersson, M. [1994], Object-Oriented Modeling and Simulation of Hybrid Sys-

tems, PhD thesis, Dept. of Automatic Control, Lund Institute of Technology,

Lund, Sweden.

Andreasson, J. [2003], VehicleDynamics library, in ‘Proceedings of the 3rd Inter-

national Modelica Conference’, Linköping, Sweden, pp. 11–18.

ARGESIM [2009], ‘ARGE simulation news group website’.

URL: http://www.argesim.org

ARS Lab [2010], ‘ARS Lab - advanced real-time simulation laboratory’, Dept. of

Systems and Computer Engineering, Carleton University, Ottawa, Canada.

Bibliography

Åström, K. J., Elmqvist, H. and Mattsson, S. E. [1998], Evolution of continuous-

time modeling and simulation, in ‘Proceedings of the 12th European Simulation

Multiconference (ESM’98)’, Manchester, UK, pp. 9–18.

Atkinson, K. E. [1989], An Introduction to Numerical Analysis, 2nd edn, John-

Wiley & Sons, New York, NY, USA.

Augustin, D. C., Fineberg, M. S., Johnson, B. B., Linebarger, R. N., Sansom,

F. J. and Strauss, J. C. [1967], ‘The SCi continuous system simulation language

(CSSL)’, Simulation 9, 281–303.

Banks, J., Carson, J. S. and Nelson, B. L. [1996], Discrete-Event System Simula-

tion, 2nd edn, Prentice Hall.

Barros, F. J. [1995], Dynamic structure discrete event system specification: a new

formalism for dynamic structure modeling and simulation, in ‘Proceedings of

the 27th Conference on Winter simulation’, Arlington, VA, USA, pp. 781–785.

Barros, F. J. [2002a], ‘Modeling and simulation of dynamic structure heteroge-

neous flow systems’, SIMULATION: Transactions of The Society for Modeling

and Simulation International 78(1), 18–27.

Barros, F. J. [2002b], ‘Towards a theory of continuous flow models’, International

Journal of General Systems 31(1), 29–39.

Barros, F. J. [2003], ‘Dynamic structure multi-paradigm modeling and simula-

tion’, ACM Transactions on Modeling and Computer Simulation 13(3), 259–

275.

Barton, P. L. and Pantelides, C. C. [1994], ‘Modeling of combined discrete/con-

tinuous processes’, AIChE Journal 40, 966–979.

Beltrame, T. [2006], Design and development of a Dymola/Modelica library

for discrete event-oriented systems using DEVS methodology, Master’s thesis,

ETH Zürich.

226

Bibliography

Beltrame, T. and Cellier, F. E. [2006], Quantised state system simulation in

Dymola/Modelica using the DEVS formalism, in ‘Proceedings of the 5th Inter-

national Modelica Conference’, Vienna, Austria, pp. 73–82.

Biere, M., Gheorghe, L., Nicolescu, G., O’Connor, I. and Wainer, G. [2007], To-

wards the high-level design of optical networks-on-chip. formalization of opto-

electrical interfaces, in ‘Proceedings of the 14th IEEE International Confer-

ence on Electronics, Circuits and Systems (ICECS 2007)’, Marrakesh, Morocco,

pp. 427–430.

Brenan, K. E., Campbell, S. L. and Petzold, L. R. [1989], Numerical Solution

of Initial-Value Problems in Differential-Algebraic Equations, North-Holland,

New York, NY, USA.

Breuneuse, A. P. J. and Broenink, J. F. [1997], ‘Modeling mechatronic systems

using the SIDOPS+ language’, Simulation Series 29(1), 301–306.

Brière, M., Carrel, L., Michalke, T., Mieyeville, F., O’Connor, I. and Gaffiot,

F. [2004], Design and behavioral modeling tools for optical network-on-chip,

in ‘Proceedings of the Conference on Design, Automation and Test in Europe

(DATE’04)’, IEEE Computer Society, Washington, DC, USA, p. 10738.

Brière, M., Drouard, E., Mieyeville, F., Navarro, D., O’Connor, I. and Gaffiot,

F. [2005], Heterogeneous modelling of an optical network-on-chip with Sys-

temC, in ‘Proceedings of the 16th IEEE International Workshop on Rapid Sys-

tem Prototyping (RSP’05)’, IEEE Computer Society, Washington, DC, USA,

pp. 10–16.

Brière, M., Girodias, B., Bouchebaba, Y., Nicolescu, G., Mieyeville, F., Gaffiot,

F. and O’Connor, I. [2007], System level assessment of an optical NoC in an

MPSoC platform, in ‘Proceedings of the Conference on Design, Automation

and Test in Europe (DATE’07)’, Nice, France, pp. 1084–1089.

Bush, V. [1931], ‘The differential analyzer: A new machine for solving differential

equations’, Journal of the Franklin Institute 212, 447–488.

227

Bibliography

Butcher, J. C. [2003], Numerical Methods for Ordinary Differential Equations,

2nd edn, Wiley, Chichester, UK.

Campbell, S. L., Chancelier, J.-P. and Nikoukhah, R. [2006], Modeling and sim-

ulation in Scilab\Scicos, Springer, New York, NY, USA.

Casella, F. and Leva, A. [2003], Modelica open library for power plant simulation:

Design and experimental validation, in ‘Proceedings of the 3rd International

Modelica Conference’, Linköping, Sweden, pp. 41–50.

Casella, F. and Richter, C. [2008], Externalmedia: A library for easy re-use of ex-

ternal fluid property code in Modelica, in ‘Proceedings of the 6th International

Modelica Conference’, Bielefeld, Germany, pp. 157–161.

Cassandras, C. G. and Lafortune, S. [1999], Introduction to Discrete Event Sys-

tems, Kluwer Academic Publishers, Norwell, MA, USA.

Cellier, F. E. [1979], Combined Continuous/Discrete System simulation by Use of

Digital Computers: Techniques and Tools, PhD thesis, ETH Zurich, Switzer-

land.

Cellier, F. E. [1996], Object-oriented modeling: Means for dealing with system

complexity, in ‘Proceedings of the 15th Benelux Meeting on Systems and Con-

trol’, Mierly, The Netherlands, pp. 53–64.

Cellier, F. E. [2008], World3 in Modelica: Creating System Dynamics models

in the Modelica framework, in ‘Proceedings of the 6th International Modelica

Conference’, Bielefeld, Germany, pp. 393–400.

Cellier, F. E., Clauss, C. and Urquia, A. [2007], Electronic circuit modeling and

simulation in Modelica, in ‘Proceedings of the 6th Eurosim Congress on Mod-

elling and Simulation’, Ljubljana, Slovenia, pp. 1–10.

Cellier, F. E., Elmqvist, H. and Otter, M. [1996], Modeling from physical prin-

ciples, in W. Levine, ed., ‘The Control Handbook’, CRC Press, Boca Raton,

FL, USA.

228

Bibliography

Cellier, F. E., Elmqvist, H., Otter, M. and Taylor, J. H. [1993], Guidelines for

modeling and simulation of hybrid systems, in ‘Proceedings of the IFAC World

Congress’, Sydney, Australia.

Cellier, F. E. and Greifeneder, J. [2008], ThermoBondLib - a new Modelica library

for modeling convective flows, in ‘Proceedings of the 6th International Modelica

Conference’, Vol. 1, Bielefeld, Germany, pp. 163–172.

Cellier, F. E. and Kofman, E. [2006], Continuous System Simulation, Springer-

Verlag New York, Inc., Secaucus, NJ, USA.

Cellier, F. E. and Nebot, A. [2005], The Modelica bond graph library, in ‘Proceed-

ings of the 4th International Modelica Conference’, Vol. 1, Hamburg, Germany,

pp. 57–65.

Chow, A. C. H. [1996], ‘Parallel DEVS: A parallel, hierarchical, modular mod-

eling formalism and its distributed simulator’, Transactions of the Society for

Computer Simulation International 13(2), 55–67.

Codecà, F. and Casella, F. [2006], Neural network library in Modelica, in

‘Proceedings of the 5th International Modelica Conference’, Vienna, Austria,

pp. 549–557.

D’Abreu, M. C. and Wainer, G. A. [2005], M/CD++: Modeling continuous sys-

tems using Modelica and DEVS, in ‘Proceedings of the 13th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems’, pp. 229–236.

Darnell, P. A. and Kolk, R. A. [1990], An interactive simulation and control design

environment, in ‘Proceedings of the 1990 European Simulation Symposium’,

Ghent, Belgium, pp. 56–60.

Dassault Systemes [2009], ‘Computer aided three dimensional interactive appli-

cation’.

URL: http://www.catia.com

229

Bibliography

David, R. and Alla, H. [2001], ‘On hybrid Petri Nets’, Discrete Event Dynamic

Systems 11(1-2), 9–40.

Dijkstra, E. W. [1965], Over seinpalen (ewd74). circulated privately.

URL: http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD74.PDF

Donida, F., Ferretti, G., Savaresi, S. M., Schiavo, F. and Tanelli, M. [2006], Mo-

torcycle dynamics library in Modelica, in ‘Proceedings of the 5th International

Modelica Conference’, Vienna, Austria, pp. 157–166.

Dynasim AB [2006], ‘Dymola, dynamic modeling laboratory. user’s manual’.

URL: http://www.dymola.com/

EA International [2010], ‘EcosimPro - EL modeling language’.

URL: http://www.ecosimpro.com

Elmqvist, H. [1978], A Structured Model Language for Large Continuous Systems,

PhD thesis, Dept. of Automatic Control, Lund Institute of Technology, Lund,

Sweden.

Elmqvist, H., Cellier, F. E. and Otter, M. [1993], Object-oriented modeling of

hybrid systems, in ‘Proceedings of the European Simulation Symposium’, Delft,

The Netherlands.

Elmqvist, H., Cellier, F. E. and Otter, M. [1994], Object-oriented modeling of

power-electronic circuits using Dymola, in ‘Proceedings of the CISS - First

Joint Conference of International Simulation Societies’, Zurich, Switzerland.

Elmqvist, H., Mattsson, S. E. and Otter, M. [1998], Modelica – the new object-

oriented modeling language, in ‘Proceedings of the 12th European Simulation

Multiconference’, Manchester, UK, pp. 127–131.

Elmqvist, H. and Otter, M. [1994], Methods for tearing systems of equations in

object-oriented modeling, in ‘Proceedings of the European Simulation Multi-

conference (ESM’94)’, Barcelona, Spain, pp. 326–332.

Euc [2009], ‘Euclides web-site’.

URL: http://www.euclides.dia.uned.es/

230

Bibliography

Fabricius, S. [2003], Modeling and Simulation for Plant Performability Assess-

ment with Application to Maintenance in the Process Industry, PhD thesis,

ETH Zurich, Switzerland.

Fabricius, S. M. and Badreddin, E. [2002a], Hybrid dynamic plant performance

analysis supported by extensions to the Petri Net library in Modelica, in ‘Pro-

ceedings of the 4th Asian control Conference (ASCC)’, Singapore, pp. 41–50.

Fabricius, S. M. and Badreddin, E. [2002b], Modelica library for hybrid simula-

tion of mass flow in process plantes, in ‘Proceedings of the 2nd International

Modelica Conference’, Oberpfaffenhofen, Germany, pp. 225–234.

Felgner, F., Agustina, S., Bohigas, R. C., Merz, R. and Litz, L. [2002], Sim-

ulation of thermal building behavior in Modelica, in ‘Proceedings of the 2nd

International Modelica Conference’, Oberpfaffenhofen, Germany, pp. 147–154.

Ferreira, J. and de Oliveira, J. E. [1999], Modelling hybrid systems using State-

Charts and Modelica, in ‘Proceedings of the 7th IEEE International Conference

on Emerging Technologies and Factory Automation’, pp. 1063–1069.

Fishman, G. S. [2001], Discrete-Event Simulation: Modeling, Programming, and

Analysis, Springer, New York, NY, USA.

Föllinger, O. [1985], Regelungstechnik (5. Auflage), Hüthig, Heidelberg.

Frey, P. and O’Riordan, D. [2000], Verilog-AMS: Mixed-signal simulation and

cross domain connect modules, in ‘Proceedings of the 2000 IEEE/ACM Inter-

national Workshop on Behavioral Modeling and Simulation’, Washington, DC,

USA, pp. 103–108.

Fritzson, P. [2003], Principles of Object-Oriented Modeling and Simulation with

Modelica 2.1, Wiley-IEEE Computer Society Pr.

Fritzson, P., Aronsson, P., Bunus, P., Engelson, V., Saldamli, L., Johansson, H.

and Karström, A. [2002], The open source Modelica project, in ‘Proceedings

of the 2nd International Modelica Conference’, Oberpfaffenhofen, Germany,

pp. 297–306.

231

Bibliography

Fritzson, P. and Bunus, P. [2002], Modelica – a general object-oriented language

for continuous and discrete-event system modeling, in ‘Proceedings of the 35th

Annual Simulation Symposium’, pp. 14–18.

Fritzson, P., Viklund, L., Fritzson, D. and Herber, J. [1995], ‘High-level mathe-

matical modelling and programming’, IEEE Software 12(4), 77–87.

Garifullin, M. [2003], ‘An object-oriented hybrid approach to ARGESIM com-

parison ’C13 Crane and Embedded Control’ with AnyLogic’, Simulation News

Europe 37, 29.

Giambiasi, N. and Carmona, J. C. [2006], ‘Generalized discrete event abstraction

of continuous systems: GDEVS formalism’, Simulation Modelling Practice and

Theory 14(1), 47 – 70.

Grace, A. C. W. [1991], SIMULAB, an integrated environment for simulation and

control, in ‘Proceedings of the 1991 American Control Conference’, Boston,

MA, USA, pp. 1015–1020.

Himmelspach, J. and Uhrmacher, A. M. [2009], The JAMES II framework for

modeling and simulation, in ‘Proceedings of the 2009 International Workshop

on High Performance Computational Systems Biology’, Trento, Italy, pp. 101–

102.

Hong, J. S., Song, H.-S., Kim, T. G. and Park, K. H. [1997], ‘A real-time discrete

event system specification formalism for seamless real-time software develop-

ment’, Discrete Event Dynamic Systems 7, 355–375.

Hrúz, B. and Zhou, M. [2007], Modeling and Control of Discrete-Event Dynamic

Systems, Springer, London, UK.

IEEE [1997], Standard VHDL analog and mixed-signal extensions, Technical Re-

port 1076.1, IEEE.

Ioannou, P. G. and Martinez, J. C. [1999], Who serves whom? dynamic resource

matching in an activity-scanning simulation system, in ‘Proceedings of the 1999

Winter Simulation Conference’, Phoenix, AZ, USA, pp. 963–970.

232

Bibliography

ITI GmbH [2009], ‘SimulationX’.

URL: http://www.simulationx.com/

Jackson, A. S. [1960], Analog Computation, McGraw-Hill, New York, NY, USA.

Jacobs, P. H., Lang, N. A. and Verbraeck, A. [2002], D-SOL; a distributed Java

based discrete event simulation architecture, in ‘Proceedings of the 2002 Winter

Simulation Conference’, San Diego, CA, USA, pp. 793–800.

Jeandel, A., Boudaud., F. and Larivière, E. [1997], ALLAN Simulation release

3.1 description, M.DéGIMA.GSA1887. GAZ DE FRANCE, DR, Saint Denis

La plaine, France.

Kelton, W. D., Sadowski, R. P. and Sturrock, D. T. [2007], Simulation with Arena,

4th edn, McGraw-Hill, Inc., New York, NY, USA.

Kiviat, P. J. [1969], Digital computer simulation: Computer programming lan-

guages, Technical report, RAND Memo RM-5883-PR. RAND Corporation.

Santa Monica, California.

Kloas, M., Friesen, V. and Simons, M. [1995], ‘Smile - a simulation environment

for energy sytems’, System Analysis Modelling Simulation 18–19, 503–506.

Kofman, E. [2004], ‘Discrete event simulation of hybrid systems’, SIAM Journal

on Scientific Computing 25(5), 1771–1797.

Kofman, E. and Junco, S. [2001], ‘Quantized-state systems: a DEVS approach

for continuous system simulation’, Transactions of the Society for Computer

Simulation International 18(3), 123–132.

Kofman, E., Lee, J. and Zeigler, B. P. [2001], DEVS representation of differential

equation systems: Review of recent advances, in ‘Proceedings of 2001 European

Simulation Symposium’, Marseille, France.

Kriger, J. [2002], ‘A very simple alarm clock with a pendulum in CD++’.

URL: http://www.sce.carleton.ca/faculty/wainer/wbgraf/samplesmain 1.htm

233

Bibliography

Kwon, Y. W., Park, H. C., Jung, S. H. and Kim, T. G. [1996], Fuzzy-DEVS for-

malism: concepts, realization and applications, in ‘Proceedings of the AIS’96’,

pp. 227–234.

Lackner, M. R. [1962], Toward a general simulation capability, in ‘Proceedings of

the Spring Joint Computer Conference’, San Francisco, CA, USA, pp. 1–14.

Larsen, L. F. S., Izadi-Zamanabadi, R. and Wisniewski, R. [2007], Supermarket

refrigeration system - benchmark for hybrid system control, in ‘Proceedings of

the European Control Conference’, Kos, Greece, pp. 113–120.

Larsson, M. [2000], ObjectStab - a Modelica library for power system stabil-

ity studies, in ‘Proceedings of the Modelica Workshop 2000’, Lund, Sweden,

pp. 13–22.

Law, A. M. [2007], Simulation Modelling and Analysis, 4th edn, McGraw-Hill,

New York, NY, USA.

Law, A. M. and Kelton, W. D. [2000], Simulation Modelling and Analysis, 3rd

edn, McGraw-Hill Education - Europe.

L’Ecuyer, P. [1999], ‘Good parameters and implementations for combined multi-

ple recursive random number generators’, Oper. Res. 47(1), 159–164.

L’Ecuyer, P. [2001], Software for uniform random number generation: distinguish-

ing the good and the bad, in ‘Proceedings of the 33rd Conference on Winter

Simulation (WSC’01)’, pp. 95–105.

L’Ecuyer, P. [2007], ‘CMRG source code web page’.

URL: http://www.iro.umontreal.ca/ lecuyer/myftp/streams00/

L’Ecuyer, P., Simard, R., Chen, E. J. and Kelton, W. D. [2002], ‘An object-

oriented random-number package with many long streams and substreams’,

Oper. Res. 50(6), 1073–1075.

Liu, Q. and Wainer, G. [2007], ‘Parallel environment for DEVS and Cell-DEVS

models’, SIMULATION 86(6), 449–471.

234

Bibliography

LMS International [2009], ‘Imagine.Lab AMESim’.

URL: http://www.lmsintl.com/imagine-amesim-intro

Lotka, A. J. [1925], Elements of Physical Biology, Williams and Wilkins, Balti-

more.

Lundvall, H. and Fritzson, P. [2003], Modelling concurrent activities and resource

sharing in Modelica, in ‘Proceedings of the 44th Conference on Simulation and

Modeling (SIMS 2003)’.

Lynch, N., Segala, R. and Vaandrager, F. [2003], ‘Hybrid I/O autamata’, Infor-

mation and Computation 180(1), 103–157.

Maplesoft [2009], ‘MapleSim’.

URL: http://www.maplesoft.com/products/maplesim/

Martin-Villalba, C., Urquia, A. and Dormido, S. [2008], ‘An approach to virtual-

lab implementation using Modelica’, Mathematical and Computer Modelling of

Dynamical Systems 14(4), 341–360.

Martinez, J. C. and Ioannou, P. G. [1995], Advantages of the activity scanning

approach in the modeling of complex construction processes, in ‘Proceedings of

the 1995 Winter Simulation Conference’, Arlington, VA, USA, pp. 1024–1031.

MathCore Engineering AB [2009], ‘MathModelica System Designer’.

URL: http://www.mathcore.com/products/mathmodelica/

Mattsson, S. E., Elmqvist, H. and Broenink, J. [1998], ‘Modelica – an inter-

national effort to design the next generation modeling language’, Journal A,

Benelux Quarterly Journal on Automatic Control 38(3), 16–19.

Mattsson, S. E., Otter, M. and Elmqvist, H. [1999], Modelica hybrid modeling and

efficient simulation, in ‘Proceedings of the 38th IEEE Conference on Decision

and Control’, pp. 3502–3507.

Mieyeville, F., Brière, M., O’Connor, I., Gaffiot, F. and Jacquemod, G. [2004],

‘A VHDL-AMS library of hierarchical optoelectronic device models’, Languages

235

Bibliography

for system specification: Selected contributions on UML, SystemC, system Ver-

ilog, mixed-signal systems, and property specification from FDL’03 pp. 183–199.

Mikler, J. and Engelson, V. [2003], Simulation for operation management: Ob-

ject oriented approach using Modelica, in ‘Proceedings of the 3rd International

Modelica Conference’, Linköping, Sweden, pp. 207–214.

Mitchell, E. E. L. and Gauthier, J. S. [1976], ‘Advanced continuous simulation

language (ACSL)’, Simulation 26(3), 72–78.

Modelica [2010], ‘Modelica web site’.

URL: http://www.modelica.org

Modelica Association [2009], ‘Modelica - a unified object-oriented language for

physical systems modeling. language specification (v. 3.1)’.

URL: http://www.modelica.org/documents

Modelica Libraries [2010], ‘Modelica free and comercial libraries’.

URL: http://www.modelica.org/libraries

Mosterman, P. J., Otter, M. and Elmqvist, H. [1998], Modelling Petri Nets as

local constraint equations for hybrid systems using Modelica, in ‘Proceedings

of the Summer Computer Simulation Conference’, pp. 314–319.

MSL [2010], ‘Modelica standard library’.

URL: http://www.modelica.org/libraries/Modelica

Nance, R. E. [1993], ‘A history of discrete event simulation programming lan-

guages’, ACM SIGPLAN Notices 28(3), 149–175.

Nance, R. E. and Sargent, R. E. [2002], ‘Perspectives on the evolution of simula-

tion’, Operations Research 50(1), 161–172.

Nikoukhah, R. [2007], Hybrid dynamics in Modelica: Should all events be

considered synchronous, in ‘Proceedings of the 1st International Workshop

on Equation-Based Object-Oriented Languages and Tools’, Berlin, Germany,

pp. 37–48.

236

Bibliography

Nikoukhah, R. and Furic, S. [2008], Synchronous and asynchronous events in

Modelica: proposal for an improved hybrid model, in ‘Proceedings of the 6th

International Modelica Conference’, Bielefeld, Germany, pp. 677–678.

Nutaro, J. [1999], ‘ADEVS - a discrete event system simulator’, Arizona Center

for Integrative Modeling & Simulation (ACIMS), University of Arizona, Tuc-

son.

URL: http://www.ece.arizona.edu/ nutaro/index.php.

O’Connor, I. [2004], Optical solutions for system-level interconnect, in ‘Proceed-

ings of the 2004 International Workshop on System Level Interconnect Predic-

tion (SLIP’04)’, Paris, France, pp. 79–88.

O’Connor, I., Tissafi-Drissi, F., Navarro, D., Mieyeville, F., Gaffiot, F., Dambre,

J., de Wilde, M., Stroobandt, D. and Briere, M. [2006], ‘Integrated optical

interconnect for on-chip data transport’, Circuits and Systems, 2006 IEEE

North-East Workshop on pp. 209–209.

Olsson, H. [2005], External interface to Modelica in Dymola, in ‘Proceedings of

the 4th International Modelica Conference’, Hamburg, Germany, pp. 603–611.

Otter, M., Årzén, K.-E. and Dressler, I. [2005], StateGraph - a Modelica library

for hierarchical state machines, in ‘Proceedings of the 4th International Mod-

elica Conference’, Hamburg, Germany, pp. 569–578.

Otter, M. and Elmqvist, H. [1995], The DSblock model interface for exchang-

ing model components, in ‘Proceedings of the 1995 EUROSIM Conference’,

Vienna, Austria, pp. 505–510.

Otter, M., Elmqvist, H. and Mattsson, S. E. [1999], Hybrid modeling in Model-

ica based on the synchronous data flow principle, in ‘Proceedings of the 10th

IEEE International Symposium on Computer Aided Control System Design’,

pp. 151–157.

237

Bibliography

Otter, M., Elmqvist, H. and Mattsson, S. E. [2003], The new Modelica Multi-

Body library, in ‘Proceedings of the 3rd International Modelica Conference’,

Linköping, Sweden, pp. 311–330.

Page, E. H. [1994], Simulation Modeling Methodology: Principles and Etiology

of Decision Support, PhD thesis, Virginia Polytechnic Institute and State Uni-

versity, Virginia, USA.

Pantelides, C. C. [1988], ‘The consistent initialization of differential-algebraic

systems’, SIAM J. SCI. STAT. COMPUT. 9(2), 213–231.

Pegden, C. D., Sadowski, R. P. and Shannon, R. E. [1995], Introduction to Sim-

ulation Using SIMAN, McGraw-Hill, Inc., New York, NY, USA.

Petzold, L. R. [1983], A description of DASSL: A differential-algebraic system

solver, in R. S. Stepleman, ed., ‘Scientific Computing’, North-Holland, Ams-

terdam, pp. 65–68.

Pidd, M. [2004], Computer Simulation in Management Science, 5th edn, John

Wiley & Sons, Chichester, West Sussex, UK.

Prähofer, H. [1991], ‘System theoretic formalisms for combined discrete-

continuous system simulation’, International Journal of General Systems

19(3), 219–240.

Quesnel, G., Duboz, R. and Ramat, E. [2008], ‘The Virtual Laboratory Environ-

ment - an operational framework for multi-modelling, simulation and analy-

sis of complex dynamical systems’, Simulation Modelling Practice and Theory

17(4), 641–653.

Ragazzini, J. R., Randall, R. H. and Russell, F. A. [1964], ‘Analysis of problems

in dynamics by electronic circuits’, Simulation 3(3), 54–65.

Razavi, B. [2002], Design of Integrated Circuits for Optical Communications,

McGraw-Hill, New York, NY, USA.

238

Bibliography

Reichl, G. [2003], WasteWater - a library for modeling and simulation of wastew-

ater treatment plants, in ‘Proceedings of the 3rd International Modelica Con-

ference’, Linköping, Sweden, pp. 1–10.

Remelhe, M. A. P. [2002], Combining discrete event models and Modelica - gen-

eral thoughts and a special modeling environment, in ‘Proceedings of the 2nd

International Modelica Conference’, Oberpfaffenhofen, Germany, pp. 203–207.

Rimvall, M. and Cellier, F. E. [1986], ‘Evolution and perspectives of simulation

languages following the CSSL standard’, Modeling, Identification and Control

6, 181–199.

Robinson, S. [2005], ‘Discrete-event simulation : from the pioneers to the present,

what next?’, Journal of the Operation Research Society 56(6), 619–629.

Robinson, S., Nance, R. E., Paul, R. J., Pidd, M. and Taylor, S. J. [2004], ‘Sim-

ulation model reuse: definitions, benefits and obstacles’, Simulation Modelling

Practice and Theory 12(7-8), 479 – 494. Simulation in Operational Research.

Rubio, M. A., Urquia, A., Gonzalez, L., Guinea, D. and Dormido, S. [2005],

FuelCellLib - a Modelica library for modeling of fuel cells, in ‘Proceedings of

the 4th International Modelica Conference’, Vol. 1, Hamburg, Germany, pp. 75–

82.

Rubio, M. A., Urquia, A., Gonzalez, L., Guinea, D. and Dormido, S. [2006],

GAPILib - a Modelica library for model parameter identification using genetic

algorithms, in ‘Proceedings of the 5th International Modelica Conference’, Vi-

enna, Austria, pp. 335–341.

Saadawi, H. [2004], ‘An automatic teller machine (atm) in cd++’.

URL: http://www.sce.carleton.ca/faculty/wainer/wbgraf/samplesmain 1.htm

Sahlin, P., Brign, A. and Sowell, E. F. [1996], The neutral model format for

building simulation (v. 3.02), Technical report, Dept. of Building Sciences,

The Royal Institute of Technology, Stockholm, Sweden.

239

Bibliography

Sanz, V., Cellier, F. E., Urquia, A. and Dormido, S. [2009], Modeling of the AR-

GESIM ”Crane and Embedded Controller” system using the DEVSLib Model-

ica library, in ‘Proceedings of the 3rd IFAC Conference on Analysis and Design

of Hybrid Systems’, Zaragoza, Spain.

Sanz, V., Jafer, S., Wainer, G., Nicolescu, G., Urquia, A. and Dormido, S. [2009],

Hybrid modeling of opto-electrical interfaces using DEVS and Modelica, in

‘Proceedings of the DEVS Integrative M&S Symposium, Spring Simulation

Multiconference’, San Diego, CA, USA.

Sanz, V., Urquia, A. and Dormido, S. [2006], ARENALib: A Modelica library

for discrete-event system simulation, in ‘Proceedings of the 5th International

Modelica Conference’, Vienna, Austria, pp. 539–548.

Sanz, V., Urquia, A. and Dormido, S. [2007], DEVS specification and implemen-

tation of SIMAN blocks using Modelica language, in ‘Proceedings of the Winter

Simulation Conference 2007’, Washington, D.C., USA, pp. 2374–2374.

Sarabia, D., Capraro, F., Larsen, L. F. and de Prada, C. [2009], ‘Hybrid NMPC

of supermarket display cases’, Control Engineering Practice 17(4), 428–441.

Schachinge, D. [2002], ‘’C13 Crane and Embedded Control’ MATLAB hybrid

approach’, Simulation News Europe 35/36.

Scheikl, J. [2001], ‘’C13 Crane and Embedded Control’ - MATLAB numerical

simulation event-oriented model’, Simulation News Europe 31.

Scheikl, J., Breitenecker, F. and Bausch-Gall, I. [2002], ‘Comparison c13 crane

and embedded control – definition’, Simulation News Europe 35/36, 69 – 71.

Schiftner, A. [2006], ‘A Modelica approach to ARGESIM comparison ’Crane and

Embedded Control’ (c13 rev.) using the simulator Dymola’, Simulation News

Europe 16(1), 30.

Schiftner, A., Breitenecker, F. and Ecker, H. [2006], ‘’Crane and Embedded Con-

trol’ – definition of an ARGESIM benchmark with implicit modelling, digital

240

Bibliography

control and sensor action. revised definition – comparison 13revised’, Simula-

tion News Europe 16(1), 27 – 29.

Shacham, A., Bergman, K. and Carloni, L. [2007], On the design of a pho-

tonic network-on-chip, in ‘Proceedings of the First International Symposium

on Networks-on-Chip (NOCS 2007)’, Princeton, NJ, USA, pp. 53–64.

Shah, S. C., Floyd, M. A. and Lehman, L. L. [1985], MATRIXX : Control design

and model building CAE capability, in M. Jamshidi and C. J. Herget, eds,

‘Computer-Aided Control Systems Engineering’, Elsevier, Amsterdam, The

Netherlands.

Stallings, W. [2000], Operating Systems: Internals and Design Principles, 4th

edn, Prentice Hall, Englewood Cliffs, NJ, USA.

Steinmann, W. and Zunft, S. [2002], Techthermo – a library for Modelica appli-

cations in technical thermodynamics, in ‘Proceedings of the 2nd International

Modelica Conference’, Oberpfaffenhofen, Germany, pp. 217–224.

Sun, W. [2001], ‘DEVS model representing a simple automobile factory’.

URL: http://www.sce.carleton.ca/faculty/wainer/wbgraf/samplesmain 1.htm

Tanenbaum, A. S. [2001], Modern Operating Systems, 2nd edn, Prentice Hall,

Englewood Cliffs, NJ, USA.

Tarjan, R. [1972], ‘Depth-first search and linear graph algorithms’, SIAM Journal

on Computing 1(2), 146–160.

Tocher, K. D. and Owen, D. G. [1960], The automatic programming of simula-

tions, in ‘Proceedings of the Second International Conference on Operational

Research’, Aix-en-Provence, France, pp. 50–68.

Urquia, A. [2000], Modelado Orientado a Objetos y Simulación de Sistemas Hı́bri-

dos en el Ámbito del Control de Procesos Qúımicos, PhD thesis, Facultad de

Ciencias, UNED, Madrid, Spain.

241

Bibliography

Urquia, A., Martin, C. and Dormido, S. [2005], ‘Design of SPICELib: a Mod-

elica library for modeling and analysis of electric circuits’, Mathematical and

Computer Modelling of Dynamical Systems 11(1), 43–60.

van Beek, D. A. and Rooda, J. E. [2000], ‘Languages and applications in hybrid

modelling and simulation: Positioning of Chi’, Control Engineering Practice

8(1), 81–91.

Vangheluwe, H. L. M. [2000], DEVS as a common denominator for multi-

formalism hybrid systems modelling, in ‘Proceedings of the IEEE International

Symposium on Computer-Aided Control System Design’, IEEE Computer So-

ciety Press, pp. 129–134.

Volterra, V. [1931], Variations and fluctuations of the numbers of individuals in

animal species living together, in R. Chapman, ed., ‘Animal Ecology’, McGraw-

Hill, New York, pp. 409–448.

Wainer, G. [2002], ‘CD++: A toolkit to develop DEVS models’, Software: Prac-

tice and Experience 32(13), 1261–1306.

Wainer, G. and Giambiasi, N. [2001], Timed Cell-DEVS: modelling and simula-

tion of cell spaces, in H. S. Sarjoughian and F. E. Cellier, eds, ‘Discrete Event

Modeling and Simulation Technologies: A Tapestry of Systems and AI-Based

Theories and Methodologies’, Springer Verlag, New York, NY, USA.

Wang, L. and Kazmierski, T. [2005], ‘VHDL-AMS - based hybrid approach to

ARGESIM comparison ’C13 Crane and Embedded Control’ with SystemVi-

sion’, Simulation News Europe 43, 30.

Weidinger, W. and Breitenecker, F. [2003], ‘A classic CNS - solution to ARGESIM

comparison ’C13 Crane and Embedded Control’ using MATLAB’, Simulation

News Europe 38/39.

Wetter, M. [2009], A Modelica-based model library for building energy and control

systems, in ‘Proceedings of the Eleventh International IBPSA Conference’,

Glasgow, Scotland, pp. 652–659.

242

Bibliography

Wöckl, J. and Breitenecker, F. [2003], ‘A directly programmed solution to AR-

GESIM comparison ’C13 Crane and Embedded Control’ with MATLAB’, Sim-

ulation News Europe 37.

Zeigler, B. P. [1976], Theory of Modelling and Simulation, John Wiley & Sons,

Inc.

Zeigler, B. P. [1989], ‘DEVS representation of dynamical systems: Event-based

intelligent control’, Proceedings of the IEEE 77(1), 72–80.

Zeigler, B. P. [2006], Embedding DEV&DESS in DEVS, in ‘Proceedings of the

DEVS Integrative M&S Symposium’, Huntsville, AL, USA.

Zeigler, B. P., Kim, T. G. and Prähofer, H. [2000], Theory of Modeling and

Simulation, Academic Press, Inc., Orlando, FL, USA.

Zeigler, B. P. and Lee, J. [1998], Theory of quantized systems: Formal basis

for DEVS/HLA distributed simulation environment, in ‘Proceedings of SPIE’,

pp. 49–58.

Zeigler, B. P., Moon, Y., Kim, D. and Kim, J. G. [1996], DEVS-C++: A high

performance modelling and simulation environment, in ‘Proceedings of the 29th

Annual Hawaii International Conference on System Sciences’, pp. 350–359.

Zeigler, B. P. and Sarjoughian, H. S. [2003], ‘Introduction to DEVS modeling &

simulation with JAVA: Developing component-based simulation models’.

URL: http://www.acims.arizona.edu/PUBLICATIONS/

Zimmer, D. [2006], A Modelica library for multibond graphs and its application

in 3D-mechanics, Master’s thesis, ETH Zürich.

243

A
Semaphores in Modelica

A.1 Introduction

Previous works describing Classic DEVS models in Modelica are Fritzson [2003]

and Beltrame and Cellier [2006]. These works define the transmission of a DEVS

message as a change in the value of a boolean variable. Thus, only one message

can be transferred at a given time instant between two models using the same

port. The behavior of Classic DEVS formalism is different from the P-DEVS for-

malism, where several messages can be transmitted at the same time instant (i.e.,

simultaneously) using the same ports. Also, several messages can be transfered

using different ports.

The synchronization of message transmission, similarly to the mechanism used

in TCP/IP communication, facilitates the transmission of simultaneous messages

between ports. Modelica itself does not provide any method or feature for solving

synchronization problems. A mutex mechanism was implemented in Modelica by

Lundvall and Fritzson [2003], and was applied to the dining philosophers prob-

lem. Several methods have been described in the literature to solve synchroniza-

tion problems, such us mutex, semaphores, monitors and message queues. The

analysis and development of a Modelica model that implements the semaphore

synchronization mechanism is discussed in this appendix.

Appendix A Semaphores in Modelica

The semaphore mechanism was proposed by Dijkstra in 1965 [Dijkstra, 1965].

It is a widely spread method for process synchronization in operating systems

[Stallings, 2000; Tanenbaum, 2001] and general purpose programming languages

(like C, C++ or Java). Semaphores have been chosen due to its simplicity and

ease of use.

The developed semaphore model has been used to synchronize the message

transmission between P-DEVS models in the DEVSLib library. The development

of this mechanism is based on the mentioned work on mutex synchronization in

Modelica [Lundvall and Fritzson, 2003]. However, due to the poor performance

obtained with the use of this method, it was not selected for the final implemen-

tation of the message passing mechanism in DEVSLib.

A.2 Semaphore Mechanism Description

A semaphore is represented by an integer variable. There are two types of

semaphores: 1) binary, whose value can only be 0 or 1; and 2) general, which can

get any positive integer value (including 0).

A semaphore can not be accessed directly. There are two operations to access

a semaphore: a) P (wait); and b) V (signal) [Dijkstra, 1965]. These operations

are atomic. The execution of one of these operations restricts the access to the

semaphore to any other operation, even if they were executed simultaneously.

The P operation decreases the value of the semaphore in a given quantity

(1 for binary semaphores and a user-defined quantity for general ones). If the

current value of the semaphore is greater or equal to that quantity, then the

value is decreased and the semaphore is captured by the model that executed

the operation. Otherwise, the model is blocked and it must wait until the value

increases.

The V operation is the opposite to the previous one. It increases the value

of the semaphore in a given quantity. If the value is greater than zero (i.e., there

are no models waiting), the value of the semaphore is increased by that quantity.

Otherwise, there is at least one model waiting and then the semaphore is obtained

246

A.3 Modelica Semaphore Model

by the first model waiting for an available quantity of semaphore value. In the case

of binary semaphores, the first waiting model will always obtain the semaphore.

Once the access to the semaphore is obtained (after a P operation), the re-

quired actions with the shared resources protected by the semaphore are per-

formed (i.e., the critical section). When the critical section is finished, the

semaphore is released (performing a V operation).

A.3 Modelica Semaphore Model

The Modelica implementation of the semaphore mechanism is composed of two

components included in a Modelica package named Semaphores: 1) the semaphore

model Sem; and 2) the connector SemPort (see source code in Section A.5).

The SemPort connector contains four variables: p, v, okp and okv. The first

two represent the previously described semaphore operations P and V. The other

correspond to boolean variables used to notify the successful end of the executed

operation.

The Sem model has two parameters, n and initValue, that correspond to

the number of models connected to the semaphore and its initial value. Each

semaphore has an array of n public connectors (i.e., SemPorts) for connecting

with the models.

A model has to include a SemPort, in order to connect with one of the public

SemPorts of the semaphore model. To access the semaphore, the p and v values

of the SemPort included by the model have to be used.

The execution of a P operation is performed setting the value of the p variable

of the connector to the number of semaphore units to capture. In a boolean

semaphore, that value is always set to 1. The value of the v variable has to be

set to 0 at the same time. If the operation is not performed immediately, due

to unavailable semaphore units, the semaphore inserts the operation in the list

of waiting processes. When the P operation is performed, and the semaphore is

captured, it sets to “true” the okp variable of the connector.

247

Appendix A Semaphores in Modelica

The execution of a V operation is analogous to the P operation. The value of

the v variable of the connector is set to the number of semaphore units to release.

Also, the value of the p variable has to be set to 0. If any model is waiting for

the released semaphore, it captures the semaphore and leaves the waiting queue.

When the V operation is finished, the semaphore sets to “true” the okv variable

of the connector.

A.3.1 Mutual Exclusion

The behavior of the developed model is described using an example of mutual

exclusion between two processes. The processes are defined as Modelica models

(their code is shown in Listing A.1).

model process
parameter Integer num = 1;
parameter Real timeInCS = 10;
Semaphores.SemPort sem;
Real timeNA(start = Modelica.Constants.inf);
Boolean criticalSection;
Boolean idle(start = true);
Boolean nextAction(start = false);
Boolean waiting(start = false);

algorithm
when idle then // ready for next critical section
idle := false;
waiting := true;
sem.p := 1; sem.v := 0; // P operation

end when;
when pre(sem.okp) then // semaphore available, enter critical section
waiting := false;
criticalSection := true;
timeNA := time + timeInCS;

end when;
when pre(nextAction) then // end of critical section, free semaphore
criticalSection := false;
idle := true;
sem.v := 1; sem.p := 0; // V operation

end when;
equation
nextAction = time >= timeNA;

end process;

Listing A.1: Modelica code of a process in the mutualExclusion model.

The two processes, P1 and P2, want to access simultaneously to a shared

resource. It is necessary to use a semaphore S to synchronize the correct access

to the resource in mutual exclusion. First of all, it is necessary to initialize

the semaphore with the value 1, indicating that the resource is accessible. Both

248

A.3 Modelica Semaphore Model

Figure A.1: Access to shared resource in mutual exclusion using semaphores.

processes will start simultaneously trying to get the semaphore. They perform a P

operation with the semaphore. Only one of them, say P2, will get the semaphore,

decreasing its value to 0. The other one, P1, will be blocked and starts waiting.

P2 will be signaled with a true value in its okp variable of the connector. At this

moment, P2 captures the semaphore and can execute its critical section (i.e., using

the shared resource exclusively). In this case, the critical section is represented

with a waiting time of 10 seconds (the value of the “timeInCS” parameter). After

the critical section, P2 has to free the semaphore performing a V operation.

The semaphore will detect the V operation, so it will wake up P1, which is still

waiting. P1 receives the okp value thought the connector, indicating that now it

has captured the semaphore and starts its critical section. When finished, P1 also

has to free the semaphore. This behavior is graphically represented in Fig. A.1.

model mutualExclusion
process p1;
process p2(num=2);
Sem s(initValue = 1);

equation
connect(p1.sem,s.port[1]);
connect(p2.sem,s.port[2]);

end mutualExclusion;

Listing A.2: Mutual exclusion model using a binary semaphore in Modelica.

249

Appendix A Semaphores in Modelica

The system has been modeled as shown in Listing A.2. The two processes

are connected to a single semaphore, which represents the shared resource that

has to be accessed in mutual exclusion. The model has been simulated during

100 seconds and the results are shown in Fig. A.2. Both processes alternate their

state in the critical section, due to the use of the semaphore.

Figure A.2: Results of mutual exclusion model (processes alternate their
critical sections).

A.3.2 Dining Philosophers

The dining philosophers represents a classic problem on concurrent activities and

synchronization. It was proposed by E. J. Dijkstra in 1965.

The description of the problem is as follows. Five philosophers sitting at a

table are doing one of two things: eating or thinking. While eating, they are

not thinking, and while thinking, they are not eating. The five philosophers sit

at a circular table with a large bowl of spaghetti in the center. A fork is placed

in between each pair of adjacent philosophers, and so, each philosopher has one

fork to his left and one fork to his right. As spaghetti is difficult to serve and eat

with a single fork, it is assumed that a philosopher must eat with two forks. Each

250

A.3 Modelica Semaphore Model

philosopher can only use the forks on his immediate left and immediate right. The

philosophers never speak to each other, which creates a dangerous possibility of

deadlock when every philosopher holds a left fork and waits perpetually for a

right fork (or vice-versa). Starvation might also occur independently of deadlock,

if a philosopher is unable to acquire both forks because of a timing problem.

The problem has been modeled using Modelica and the developed semaphore

model. A diagram of the model is shown in Fig. A.3a. Using the object-oriented

functionalities provided by Modelica, the system can be easily adapted to other

configurations. A model of a table with nine philosophers is shown in Fig. A.3b.

(a) (b)

Figure A.3: Dining philosophers problem modeled using Modelica: a) five
philosophers; and b) nine philosophers.

The model is composed of five “philosopher” models, and five “fork” models,

connected as described before (see Fig. A.3a). Each philosopher is connected

to the forks at his left and right hands. The connector, named Hand, contains

three variables: P, of type SemPort, used to connect to the semaphores in the

forks; mine, of type Integer, that represents the state of the philosopher; and

his, of type Integer, that represents the state of the closest philosopher to this

hand. The model of the fork is composed of: a semaphore, named sem, that

represents the resource (i.e., the fork) that has to be captured (with start value

of 1); and two connectors of type Hand, to connect with the philosophers adjacent

251

Appendix A Semaphores in Modelica

to the fork. The model of the philosopher is composed of: two connectors of type

Hand, to connect with the adjacent forks; parameters and variables, to manage

its state; and the code required to represent its behavior. The Modelica code for

a philosopher is shown in Listing A.3.

model Philosopher
parameter Integer num; // philosopher number
parameter Real eatDelay = 1;
parameter Real thinkDelay = 1;
Integer state(start = 1); //(1 = thinking, 2= hungry, 3 = eating)

protected
Real finishEating(start = Modelica.Constants.inf);
Real finishThinking(start = 1);
Boolean think, ishungry;
constant Integer thinking = 1;
constant Integer hungry = 2;
constant Integer eating = 3;

public
Hand Right;
Hand Left;

algorithm
when pre(ishungry) then // HUNGRY
state := hungry;
if mod(num,2) == 0 then
Right.P.p := 1; Right.P.v := 0; // capture right fork first
Left.P.p := 1; Left.P.v := 0; // capture left fork

else
Left.P.p := 1; Left.P.v := 0; // capture left fork first
Right.P.p := 1; Right.P.v := 0; // capture right fork

end if;
end when;
when pre(Right.P.okp) and pre(Left.P.okp) then // EATING
state := eating;
finishEating := time + (RandomUniform(time) + eatDelay);

end when;
when pre(think) then
if mod(num,2) == 0 then
Right.P.v := 1; Right.P.p := 0; // leave right fork first
Left.P.v := 1; Left.P.p := 0; // leave left fork

else
Left.P.v := 1; Left.P.p := 0; // leave left fork first
Right.P.v := 1;Right.P.p := 0; // leave right fork

end if;
end when;
when pre(Right.P.okv) and pre(Left.P.okv) then // THINKING
state := thinking;
finishThinking := time + (RandomUniform(time) + thinkDelay);
finishEating := Modelica.Constants.inf;

end when;
end Philosopher;

Listing A.3: Philosopher model.

Each philosopher starts thinking. After a period of time (thinkDelay) the

philosopher becomes hungry and tries to capture the forks. Each philosopher has

a number assigned, that decides which fork has to capture first (in order to avoid

252

A.4 Synchronization of DEVS Message Communication Using Semaphores

deadlocks) using a P operation. After capturing the first fork, the philosopher

captures the other fork. If any fork is not captured, the philosopher will wait in

the queue of the corresponding semaphore until it becomes available. When the

philosopher captures both forks, he starts eating for a randomly defined period

of time. After eating, the philosopher leaves the forks (using V operations) and

starts thinking. After thinking, he will become hungry again.

The model has been simulated during 100 time units. The evolution of the

state of each philosopher is shown in Fig. A.4. No deadlock nor starvation prob-

lems appear in the proposed solution. The results for the table with nine philoso-

phers are equivalent to the ones obtained with five philosophers.

Figure A.4: Simulation results for the dining philosophers problem modeled
using Modelica.

A.4 Synchronization of DEVS Message Communication

Using Semaphores

The communication among AtomicDEVS (see Section 5.3) models has been im-

plemented using the previously described Modelica semaphores. Input and Out-

put ports in AtomicDEVS are composed of two SemPorts (sync and ack) and

253

Appendix A Semaphores in Modelica

the transmitted message (event). The structure of the communication using

semaphores and the ports of the AtomicDEVS model is shown in Figure A.5.

Figure A.5: Internal structure of the AtomicDEVS model.

Two general semaphores, SYNC and ACK, are used to synchronize the com-

munication of messages among AtomicDEVS models. The sync and ack SemPorts

declared in each input port are connected to these semaphores. The sender and

the receiver must use the SYNC and ACK semaphores for signaling the message

transmission and its successful reception. This mechanism is similar to the mu-

tual exclusion problem previously described, and corresponds to a synchronous

communication mechanism implemented using asynchronous methods (i.e., the

semaphores).

The value of the SYNC semaphore represents the number of messages re-

ceived. The ACK semaphore is only used to signal the correct reception of the

messages. Initially, both semaphores have value 0.

The receiver performs a P operation over the SYNC semaphore to receive

messages. If any message is available (value greater than 0) the receiver will read

the message. Otherwise, it will wait in the queue of the semaphore until any

message is received. When a message arrives, the receiver will: (1) decrease the

value of the SYNC semaphore in one unit, (2) increase the value of the ACK

semaphore (using a V operation) to signal the correct reception of the message;

and (3) when ready to read more messages, decrease the value of the SYNC

semaphore to receive more messages (using another P operation). If simultaneous

254

A.4 Synchronization of DEVS Message Communication Using Semaphores

messages are received, they will be read using sequential P operations over the

SYNC semaphore.

Every time the sender needs to send a message, it has to perform a V operation

over the SYNC semaphore, increasing its value, to communicate the transmission

of the new message. Simultaneously, it has to perform a P operation over the

ACK semaphore, and wait for the confirmation of the correct reception of the

message. When the confirmation is received (the sender leaves the waiting queue

of the ACK semaphore), it becomes ready to send more messages.

A simple example of this kind of communication mechanism is shown in List-

ing A.4. The model is composed of three senders and one receiver, whose com-

munication is synchronized using the described mechanism. In the example, the

SYNC semaphore is named “sr”. The source code of the receiver and sender is

shown in Listing A.5.

model SenderReceiver
sender s1(i=1);
sender s2(i=2,delay=2);
sender s3(i=3,delay=3);
receiver r;
Sem sr(n=4);
Sem ack(n=4);

equation
connect(s1.send,sr.port[1]);
connect(s2.send,sr.port[2]);
connect(s3.send,sr.port[3]);
connect(r.receive,sr.port[4]);
connect(s1.ack,ack.port[1]);
connect(s2.ack,ack.port[2]);
connect(s3.ack,ack.port[3]);
connect(r.ack,ack.port[4]);

end SenderReceiver;

Listing A.4: SenderReceiver model communication using semaphores in Modelica.

The SenderReceiver model has been simulated during 10 seconds. The first

sender (s1), sends a message every second. The second sender (s2), sends a

message every two seconds. The third sender (s3), sends a message every three

seconds. The evolution of the number of messages sent and received by each

model is shown in Fig. A.6. Notice that simultaneous messages are transmitted

and received correctly (e.g., three messages are received at time 6).

255

model sender
parameter Integer i;
parameter Integer delay = 1;
SemPort send;
SemPort ack;
Boolean ini(start = true);
Real x;
Real nextsend(start = 1000000);

algorithm
when ini then // send new message
send.v := 1; ack.p := 1;
ini := false;
x := x + 1;

end when;
when pre(ack.okp) then // ACK received
send.v :=0; ack.p :=0;
nextsend := time +delay;

end when;
when pre(nextsend) <= time then // wait to send next message
ini := true;

end when;
equation
send.p = 0;
ack.v = 0;

end sender;

model receiver
SemPort receive;
SemPort ack;
Real x(start = 1);
Boolean ini(start = true);

algorithm
when ini then // receive messages
receive.p := 1; ack.v := 0;
ini := false;

end when;
when pre(receive.okp) then // confirm reception
ack.v := 1; receive.p :=0;
x := x + 1;
ini := true;

end when;
equation
receive.v = 0;
ack.p = 0;

end receiver;

Listing A.5: Sender and receiver models.

256

A.5 Semaphore Model Source Code

Figure A.6: Simulation results for the SenderReceiver model.

A.5 Semaphore Model Source Code

This section includes the Modelica source code for the Sem (semaphore) and

semPort (connector) models.

model Sem "model of an IPC semaphore"
parameter Integer num = 1;
parameter Integer n = 2 "number of connections to the semaphore";
parameter Integer initValue = 0 "initial value for the semaphore";
Integer value(start = initValue) "current semaphore value";
SemPort port[n] "connection ports";
Integer releasesSem "last port that releases the semaphore";
Integer getsSem "last port that gets the semaphore";

protected
Integer p[n];
Integer v[n];
Boolean okp[n];
Boolean okv[n];
Integer waiting[n]

"processes waiting on the semaphore for a number of resources";
Integer waitorder[n] "order for the processes waiting";
Integer waitpos(start = 1);
Integer j;

equation
p = port.p;
v = port.v;
okp = port.okp;
okv = port.okv;

algorithm
for i in 1:n loop
// ***** SIGNAL (V)
when pre(v[i]) > 0 then
releasesSem := i;
value := value + pre(v[i]);
// find first process waiting in the queue
j := 1;
while j < waitpos loop

257

Appendix A Semaphores in Modelica

if (waiting[waitorder[j]] <= value) and
(waiting[waitorder[j]] > 0) then
value := value - waiting[waitorder[j]];
waiting[waitorder[j]] := 0;
okp[waitorder[j]] := true;
getsSem := waitorder[j];
for k in j:waitpos-1 loop
if k < n then
waitorder[k] := waitorder[k+1];

else
waitorder[k] := 0;

end if;
end for;
waitpos := waitpos -1;
j := waitpos;

else
getsSem := 0;
okp[waitorder[j]] := false;
j := j +1;

end if;
end while;
okv[i] := true;

end when;
// ***** WAIT (P)
when p[i] > 0 then
if value == 0 then

waiting[i] := p[i];
waitorder[waitpos] := i;
waitpos := waitpos +1;
okp[i] := false;

else
getsSem := i;
value := value - p[i];
waiting[i] := 0;
okp[i] := true;

end if;
end when;
// ***** restore OK signal
when {p[i] == 0 and (pre(p[i]) > 0) and value == pre(value),

v[i] == 0 and (pre(v[i]) > 0) and value == pre(value)} then
okp[i] := false;
okv[i] := false;

end when;
end for;

end Sem;

connector SemPort
Integer p;
Integer v;
Boolean okp(start = false);
Boolean okv(start = false);

end SemPort;

Listing A.6: Modelica source code of the Sem and SemPort models.

258

	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction, Objectives and Structure
	1.1 Introduction
	1.2 Objectives
	1.3 Document Structure
	1.4 Publications
	1.5 Research Projects

	2 Hybrid System Modeling and Simulation
	2.1 Introduction
	2.2 Continuous-time Modeling
	2.2.1 Evolution of Continuous-time Modeling
	2.2.2 Graphical Block-Diagram Modeling
	2.2.3 The Physical Modeling Paradigm
	2.2.4 The Object-Oriented Modeling Methodology
	2.2.5 Object-Oriented Modeling Environments

	2.3 The Modelica Language
	2.3.1 Characteristics of Modelica
	2.3.2 Modelica Classes
	2.3.3 Modelica Libraries
	2.3.4 Simulation of Modelica Models

	2.4 Discrete-Event System Modeling
	2.5 Discrete-Event System Simulation
	2.6 The Parallel DEVS Formalism
	2.6.1 Atomic P-DEVS Models
	2.6.2 Coupled P-DEVS Models
	2.6.3 DEVS-based Approaches for Hybrid System Modeling

	2.7 The Arena Simulation Environment
	2.7.1 Arena Panels
	2.7.2 SIMAN Language
	2.7.3 Random Number Generation in Arena
	2.7.4 Random Variates Generation in Arena

	2.8 Conclusions

	3 Integrating the P-DEVS Formalism in EOO Languages
	3.1 Introduction
	3.2 Identification of Requirements
	3.2.1 Discrete-Event Model Behavior
	3.2.2 Model Communication Mechanism
	3.2.3 Interfacing P-DEVS and Other Modeling Formalisms

	3.3 Requirements Applied to Modelica
	3.3.1 Atomic P-DEVS Models
	3.3.2 Modular P-DEVS Models
	3.3.3 Interface Between P-DEVS Models and Models Described Using Other Formalisms in Modelica

	3.4 Conclusions

	4 Message Passing Mechanism in Modelica
	4.1 Introduction
	4.2 Definition of the Problem
	4.3 Required Functionalities of the Message Passing Mechanism
	4.4 Specification and Design of a Message Passing Mechanism for EOO Languages
	4.4.1 Messages and Mailboxes
	4.4.2 Communication Using Messages and Mailboxes
	4.4.3 Example of Model Communication Using Messages

	4.5 Analysis of Alternative Implementations of Message Passing Communication in Modelica
	4.5.1 Direct Transmission
	4.5.2 Text File Storage
	4.5.3 Dynamic Memory Storage

	4.6 Implemented Message Passing Mechanism in Modelica
	4.6.1 Default Message Type
	4.6.2 Functions to Manage the Default Message Type
	4.6.3 Defining Other Types of Messages

	4.7 P-DEVS Model Communication in Modelica
	4.7.1 1-to-Many Connections

	4.8 Conclusions

	5 The DEVSLib Library
	5.1 Introduction
	5.2 DEVSLib Architecture
	5.2.1 User's Area
	5.2.2 Developer's Area

	5.3 Atomic P-DEVS Models in DEVSLib
	5.3.1 Components of the AtomicDEVS Model
	5.3.2 Definition of the State and its Initialization
	5.3.3 Interface of the AtomicDEVS Model
	5.3.4 Definition of the Transition, Output and Time Advance Functions
	5.3.5 Event Detection and Execution of Transitions

	5.4 Coupled P-DEVS Models in DEVSLib
	5.5 Additional Characteristics Included in DEVSLib
	5.6 Conclusions

	6 Construction of Discrete-Event Models Using DEVSLib
	6.1 Introduction
	6.2 Construction of New Atomic Models
	6.2.1 Processor Model Constructed Using DEVSLib

	6.3 Construction of Coupled P-DEVS Models
	6.4 Modeling an Automatic Teller Machine
	6.5 Quantized State Systems in DEVSLib
	6.5.1 QSS Methods in DEVSLib
	6.5.2 Lotka-Volterra System

	6.6 Conclusions

	7 Hybrid System Modeling Using DEVSLib
	7.1 Introduction
	7.2 Interfaces between DEVSLib and Other Modelica Libraries
	7.2.1 Signals to Messages
	7.2.2 Messages to Signals

	7.3 Controlled Tanks System
	7.4 Opto-Electrical Communication System
	7.4.1 Communication Between the Opto-Electrical Interfaces
	7.4.2 Modelica/DEVSLib Model
	7.4.3 Experiment and Results

	7.5 Conclusions

	8 Modeling of Hybrid Control Systems Using DEVSLib
	8.1 Introduction
	8.2 Modeling of Hybrid Control Systems Using DEVSLib
	8.2.1 Sensors and Actuators
	8.2.2 Controllers

	8.3 Supermarket Refrigeration System
	8.3.1 Display Case
	8.3.2 Suction Manifold
	8.3.3 Compressor Rack
	8.3.4 Experiment Setup and Simulation Results

	8.4 Crane and Embedded Controller System
	8.4.1 Crane System Model
	8.4.2 Discrete Controller Model
	8.4.3 Simulation Results and Discussion

	8.5 Conclusions

	9 Process-Oriented Modeling in Modelica
	9.1 Introduction
	9.2 Additional Required Functionalities
	9.3 Entity Management
	9.4 Dynamic Object Management
	9.5 Conclusions

	10 The SIMANLib Library
	10.1 Introduction
	10.2 Library Architecture
	10.3 Blocks
	10.3.1 Create
	10.3.2 Dispose
	10.3.3 Queue
	10.3.4 Seize
	10.3.5 Delay
	10.3.6 Release
	10.3.7 Branch and BranchRule
	10.3.8 Assign and ExternalAssign
	10.3.9 Count
	10.3.10 Tally

	10.4 Elements
	10.4.1 EntityType
	10.4.2 Queue
	10.4.3 Resource
	10.4.4 Objects, Attributes and Variables
	10.4.5 Counter
	10.4.6 DStat
	10.4.7 Tally

	10.5 Model Construction Using SIMANLib
	10.6 Modeling a Restaurant Using SIMANLib
	10.7 Conclusions

	11 The ARENALib Library
	11.1 Introduction
	11.2 Library Architecture
	11.3 Flowchart Modules
	11.3.1 Create
	11.3.2 Dispose
	11.3.3 Process
	11.3.4 ExternalProcess
	11.3.5 Decide
	11.3.6 Assign
	11.3.7 Record

	11.4 Data Modules
	11.5 System Modeling Using ARENALib
	11.6 Electronic Factory Model
	11.7 Conclusions

	12 Hybrid Process-Oriented Modeling
	12.1 Introduction
	12.2 Orange Juice Canning Factory
	12.3 Tank-level Control System
	12.4 Soaking-Pit Furnace System
	12.5 Conclusions

	13 The RandomLib Library
	13.1 Introduction
	13.2 The CMRG package
	13.2.1 Uniform Random Number Generation

	13.3 The Variates Package
	13.3.1 Random Variates Generation
	13.3.2 Use of Another RNG

	13.4 Conclusions

	14 Conclusions and Future Research
	14.1 Conclusions
	14.2 Future Research

	Bibliography
	APPENDIX
	A Semaphores in Modelica
	A.1 Introduction
	A.2 Semaphore Mechanism Description
	A.3 Modelica Semaphore Model
	A.3.1 Mutual Exclusion
	A.3.2 Dining Philosophers

	A.4 Synchronization of DEVS Message Communication Using Semaphores
	A.5 Semaphore Model Source Code

