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Abstract:
DEVSLib is a free Modelica library, developed by the authors, that supports the Parallel DEVS
formalism. The library is mainly designed to model discrete-event systems. It also includes
interfaces to communicate the DEVSLib models with the rest of the Modelica libraries. Thus, the
library can be used in the development of multi-domain and multi-formalism hybrid models. This
manuscript discusses the modeling of the system “Crane and Embedded Controller,” proposed
by ARGESIM, using Modelica and DEVSLib. The crane system is composed of a car that moves
along a rail and a load connected to the car by a cable. A discrete controller controls the position
of the car and its movement. The crane system is implemented in Modelica as a continuous-time
model and the discrete controller is constructed using DEVSLib. The communication between
the continuous-time and the discrete-event parts is performed using the DEVSLib interfaces.
DEVSLib is freely available for download at http://www.euclides.dia.uned.es.
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1. INTRODUCTION

This manuscript discusses the implementation of the AR-
GESIM comparison “Crane and Embedded Controller”.
ARGESIM is a non profit working group providing the
infrastructure and administration for dissemination of in-
formation on M&S in Europe (ARGESIM, 2009).

The system consists in a crane controlled by a discrete
controller. The crane is composed of a car that moves along
a horizontal rail and a load connected to the car by a cable.
This system was proposed by ARGESIM as a comparison
for different tools that support hybrid modeling.

Various authors implemented this system using different
tools or languages. Some implementations were based
on the original definition of the system (Scheikl et al.,
2002). These implementations were developed using Mat-
lab (Scheikl, 2001; Schachinger, 2002; Wöckl and Breite-
necker, 2003; Weidinger and Breitenecker, 2003), Anylogic
(Garifullin, 2003) and VHDL-AMS (Wang and Kazmier-
ski, 2005). Another implementation, based on the revised
definition of the system (Schiftner et al., 2006), uses Mod-
elica/Dymola (Schiftner, 2006).

The original and revised definitions of the system differ in
the design of the controller. In the original definition, the

? This work has been supported by the Spanish CICYT under
DPI2007-61068 grant.

controller receives as inputs the angle of the load and the
position of the car. In the revised definition, only the latter
variable is received. Also, the equations of the controller
and its parameters are improved in the revised definition.

DEVSLib is a free Modelica library that supports the Par-
allel DEVS formalism (Chow, 1996; Zeigler et al., 2000).
Additionally, it includes interface models to transform
DEVS events into continuous-time signals and vice-versa.
Thus, DEVSLib is compatible with the other Modelica
libraries. The goal of this paper is to demonstrate, with a
case study, the hybrid modeling capabilities of the DEVS-
Lib library together with other Modelica libraries.

The implementation described in this manuscript follows
the revised definition of the system. The crane system
has been described as a continuous-time model using
the Modelica language. The controller has been modeled
in part using the DEVSLib library and in part using
the Modelica Standard Library (MSL). Both parts are
interconnected using the DEVSLib interface models.

The DEVSLib library has been developed by the authors
of this manuscript and is freely available on the web (Eu-
clidesWebSite, 2009). The library and the work discussed
in this paper have been developed using the Dymola sim-
ulation environment (DynasimAB, 2006).

The document is organized as follows. The DEVSLib li-
brary is briefly described in the next section including its



interfaces for hybrid system modeling. The crane system
and its implementation in Modelica as a continuous-time
model are described in Section 3. The discrete controller
and its components, including their specification and im-
plementation, are described in Section 4. The results ob-
tained from the developed model, after simulating the
tasks described in the definition, are presented in Section 5.
The paper ends with some conclusions.

2. DEVSLIB MODELICA LIBRARY

The general architecture of DEVSLib is shown in Fig. 1.
The basic model components that can be defined using
DEVSLib are called “atomic” models. An atomic model is
specified in the Parallel DEVS formalism with the tuple
M = (X,S, Y, δext, δint, δcon, λ, ta), where X is the set of
input ports, Y is the set of output ports, S is the set of
states, δext, δint and δcon are the transition functions, λ is
the output function and ta is the time advance function.

The behavior of an atomic model is guided by two types
of events: external and internal. The external events are
received through the input ports and trigger external tran-
sitions, managed by the external transition function (δext).
An internal event occurs when no external events are re-
ceived for a given period of time, calculated using the time
advance function (ta). This triggers the internal transition
(δint). The confluent transition function (δcon) is used to
manage confluent events, which occur when an external
and an internal event are received simultaneously. Before
executing the internal transition function, the model can
generate output events using the output function (λ).

Atomic models in DEVSLib (see model “atomicDraft” in
Fig. 1) can be described similarly to their formal specifica-
tion (M). The interfaces of the model are defined including
the required input and output ports. The state is repre-
sented as the Modelica record “st” and can be initialized
defining the “initst” function. The transition, output, and

Fig. 1. DEVSLib library architecture

time advance functions can be defined be means of the
“int,” “ext,” “con,” “out,” and “ta” functions.

External events transport information between models.
The transmitted information is called “message”. Mes-
sages are created by the output function and are deleted
upon reception by the external transition function like in
a message passing mechanism.

The model communication mechanism in Modelica is
based in the definition of ports, called “connectors,” and
connections between ports, using “connect-equations”.
Variables defined in two connected connectors are either
set equal, or are summed up with the sum being set equal
to zero.

The Modelica model communication and the DEVS mes-
sage passing mechanisms are conceptually different. The
former relates values of variables, while the latter trans-
ports information between models. Several approaches
were studied and developed in order to implement a suit-
able message passing mechanism in Modelica.

A direct implementation of a message passing mechanism
in DEVSLib using Modelica connectors was studied. How-
ever, connectors do not allow the simultaneous reception
of messages, because their variables cannot be assigned
with several values at the same time. Also, Modelica does
not allow a variable number of objects in a model, so the
message transmission cannot be directly implemented.

Other approaches for developing the message passing
mechanism in DEVSLib, based in an intermediate stor-
age of the transmitted messages, were studied and imple-
mented. The first approach was to use a text file to store
the messages, so the sender writes the message to the file
and notifies this to the receiver, that subsequently reads it.
This approach allows simultaneous reception of messages,
because several messages can be written to the file, but
its performance and versatility are poor. The other ap-
proach substitutes the text files by dynamic memory space.
This increases the performance and the versatility of the
mechanism, allowing to manage different types of messages
without redefining the message management operations.

The dynamic memory approach for message passing is
the mechanism implemented in DEVSLib. This approach
is combined with the standard Modelica connectors to
provide a transparent communication mechanism to the
user. DEVSLib models are topologically connected using
standard Modelica connectors and connect-equations.

DEVSLib models can be aggregated and connected to
compose “coupled” models. Coupled model components
can be either atomic or other coupled models, thus the
coupled models can be arranged hierarchically. A coupled
model is specified in the Parallel DEVS formalism with the
tuple M = (X,Y,D, {Md|d ∈ D}, EIC,EOC, IC), where
X is the set of input ports, Y is the set of output ports,
D is the set of component names, Md is the set of DEVS
components, EIC is the set of connections between input
ports and components, EOC is the set of connections
between components and output ports and IC is the set
of internal connections between components.

The development of coupled models with DEVSLib also
follows its formal specification. Using the object-oriented



modeling capabilities of Modelica, coupled models are
constructed connecting previously developed components
and including the required input/output ports.

2.1 DEVSLib Interfaces to Other Modelica Libraries

DEVSLib includes models to translate the content of
the messages into continuous-time signals, and vice-versa.
There are two mechanisms used in the continuous-to-
discrete translation: the cross-functions and the quanti-
zation. The former translates the value of a continuous-
time signal into a message every time the signal crosses a
given threshold in one direction (upwards or downwards).
The models “crossUP” and “crossDOWN” implement this
behavior in DEVSLib. The quantization mechanism is im-
plemented by the “quantizer” model. This model generates
a message every time the value of the continuous-time
signal changes by a predefined quantum, similarly to the
behavior of the QSS first-order method (Kofman, 2004).

On the other hand, the discrete-to-continuous transla-
tion is performed generating a piecewise-constant signal
whose value is the one of the last message received. The
model “DICO” (DIscrete-to-COntinuous) implements this
behavior in DEVSLib.

These interface models are implemented to manage the
standard DEVSLib message type. However, the message
type in DEVSLib can be redefined by the user and the
interface models adapted to the new message type.

3. CRANE SYSTEM MODEL

The crane system is composed of the car, the cable, and
the load (see Fig 2). The discrete controller controls the
position of the car to reach the desired position, specified
by the user. A detailed description of the system is given
in (Schiftner et al., 2006).

Fig. 2. Scheme of the crane system (Schiftner et al., 2006)

The car moves along the track in accordance with a
force fc, provided by a motor. The force of the motor is
calculated using the following first-order ODE (Ordinary
Differential Equation) (Schiftner et al., 2006):

ḟc = −4(fc − fdesired
c ) (1)

Where fdesired
c is the signal generated by the discrete con-

troller. The car can also be stopped using a brake, whose

Table 1. Model variables

Symbol Description Unit

α angle of the cable rad
fc motor force N
fd load disturbances N
xc position of the car m
xl position of the load m

Table 2. Model parameters

Symbol Description Value

dc friction coefficient of the car 0.5 kg/s
dbrake

c friction coefficient of the car with
activated brake

105 kg/s

dl friction coefficient of the load 0.01 kg/s
g gravity 9.81 m/s2

mc mass of the car 10 kg
ml mass of the load 100 kg

PosCarMax maximum position of the car 5 m
PosCarMin minimum position of the car −5 m

r length of the cable 5 m

activation conditions will be detailed below. The move-
ment of the car is restricted to the values PosCarMax
and PosCarMin. The load hangs from the car by a cable.
Similarly to the car, the load is influenced by a force fd,
that represents some disturbances.

Three sensors are used to observe the state of the system:

(1) The position of the car (named PosCar).
(2) The maximum position limit (named SwPosCarMax,

is activated when PosCar > PosCarMax).
(3) The minimum position limit (named SwPosCarMin,

is activated when PosCar < PosCarMin).

If either the SwPosCarMax or the SwPosCarMin sen-
sor is active, the system enters EmergencyMode, which
causes an emergency stop.

The equations (Schiftner et al., 2006) that describe the
dynamics of the crane system are the following (variables
and parameters are detailed in Tables 1 and 2):

ẍc

[
mc +ml sin2(α)

]
= −dcẋc + fc + fd sin2(α)

+ml sin(α)
[
rα̇2 + g cos(α)

]
− dlẋc sin2(α)

(2a)

r2α̈
[
mc +ml sin2(α)

]
=

[
fd
mc

ml
− fc + dcẋc

]
r cos(α)

−
[
g(mc +ml) +mlrα̇

2 cos(α)
]
r sin(α)

−dl

[
mc

ml
(ẋcr cos(α) + r2α̇) + r2α̇ sin2(α)

]
(2b)

xl = xc + r sin(α) (2c)

Equations (2a), (2b), and (2c) can be linearized (Föllinger,
1985) to obtain the following linear model, in order to
simplify the model and allow a comparison with the non-
liner model:

ẍc =
fc

mc
+ g

ml

mc
α− dc

mc
ẋc (3a)

rα̈ = −g(1 +
ml

mc
)α+ (

dc

mc
− dl

ml
)ẋc − r

dl

ml
α̇− fc

mc
+
fd

ml
(3b)

xl = xc + rα (3c)



The model equations have been directly programmed in
Modelica using equations (3a),(3b), and (3c) for the linear
model, and (2a),(2b), and (2c) for the non-linear model.
Both cases include (1), that models the motor. Dymola can
internally handle the implicit equations of the non-linear
model.

4. DISCRETE CONTROLLER MODEL

The complete system is shown in Fig. 3a. It corresponds to
the discrete controller connected to the non-linear model
of the crane system. The generators for the desired car
positions and the load disturbances are also shown. The
non-linear model can be substituted by the linear model.
The controller, generators, and connections are compatible
in both cases.

The controller is implemented as a cycle-based controller
(Schiftner et al., 2006). It is composed of three parts: the
state-space observer, the regulator, and the diagnosis mod-
ule. The state-space observer calculates five “fictitious”
states (q), and the regulator generates a control signal
based on the observed states. Additionally, the diagnosis
module manages the conditions for the EmergencyMode
and the activation of the brake. The structure of the
implemented controller is shown in Fig. 3b

4.1 Position Controller

The state-space observer and the regulator have been
implemented with DEVSLib, as an atomic DEVS model.
This model corresponds to the “PositionController” in
Fig. 3b, and its Parallel DEVS specification is the follow-
ing:

M = (XM , S, YM , δint, δext, δcon, λ, ta)

where:

XM = ∅
S = {<5 ×<}
YM = <
δint(qn, un) = (qn+1, un+1)

where
{

qn+1 = (M− dcT )qn + dPosCar + bfdesired
c

un+1 = V PosDesired− hT qn+1

δext(q, u, e,X) = nothing since XM = ∅
δcon(q, u, e,X) = nothing since XM = ∅
λ(q, u) = max(min(u, ForceMax),−ForceMax)
ta(q, u) = cycle

M, d, c, and b are the parameters of the observer, and
V and h are the parameters of the regulator. PosCar
and PosDesired are continuous-time inputs to the δint

function, similarly to the description of the internal transi-
tion function in the DEV&DESS formalism (Zeigler et al.,
2000).

The “PositionController” executes an internal transition
at each controller cycle. The internal transition function
calculates the new state of the observer (qn+1), and up-
dates the control signal (un+1). The output function (λ)
uses the parameter ForceMax to saturate the control
signal and generate the output that will be sent to the
crane system.

The implementation of the “PositionController” is directly
extracted from its specification, translating the actions

Fig. 3. “Crane and Embedded Controller” system: a)
non-linear system with discrete controller; b) discrete
controller implemented with DEVSLib and the MSL;
and c) diagnosis module of the controller

performed by each transition function into Modelica func-
tions. The output port (YM ) is defined using a Modelica
connector of the class “outPort”, included in DEVSLib.
The input parameters, PosDesired and PosCar, are de-
fined using connectors from the MSL. Finally, the variables
that define the state (S) has to be declared inside the
Modelica record that represents the state of an atomic
model in DEVSLib.

4.2 Interface Model

The output of the position controller is generated as a mes-
sage. It contains the value of the control signal (fcdesired),
which has to be translated into a continuous-time sig-
nal in order to be checked by the diagnosis module (see



Fig. 3b). The translation is performed by the “controlSig-
nal” model, which is implemented using the mentioned
DICO (DIscrete-to-COntinuous) interface model.

4.3 Diagnosis Module

The diagnosis module monitors the value of the control sig-
nal and the sensors SwPosCarMax and SwPosCarMin.
If any of the sensors becomes active, the controller enters
EmergencyMode and activates the brake. The brake is
also activated when |fdesired

c | < BrakeCondition for more
than 3 seconds (where BrakeCondition is a parameter of
the controller).

This module (cf. Figs. 3b and 3c) has been implemented
using components from the MSL (MSL, 2009). This
demonstrates the compatibility between DEVSLib and
previously developed Modelica Libraries (2009).

5. SIMULATION RESULTS AND DISCUSSION

Three tasks (A, B, and C), described in the definition of
the system (Schiftner et al., 2006), have been performed
in order to compare this implementation with previous
results.

5.1 Task A

This task compares the implementation of the linear and
the non-linear models without the controller and the
brake. The input of the plant (fdesired

c ) is set to 160 N
during 15 s, and then to 0 N. The load disturbances
initially start at 0 N (fd = 0). At time = 4 s, fd = Dest
for 3 s. The Dest values are -750 N, -800 N, and -850 N.
The system is simulated for each Dest value during 2000 s,
to reach the steady-state, and the position of the load in
each model is compared. The results are shown in Table 3.

Table 3. Task A results

Dest Linear Non-Linear Difference

-750 N 294.081 m 294.059 m 0.022 m
-800 N -0.0048651 m -0.0325238 m 0.0276587 m
-850 N -294.091 m -294.18 m 0.089 m

The results obtained are very similar to the ones reported
in Schiftner (2006). The differences between the two mod-
els are -0.034 m, 0.013 m, and -0.016 m. The slight dif-
ferences between the two implementations are explained
by the different implementation of the non-linear model –
using the MultiBody library (Otter et al., 2003) instead
of plain equations. The use of the DEVS formalism to de-
scribe the discrete controller facilitates its understanding
and development, in comparison with its description in
plain Modelica code.

5.2 Task B

The next task describes how the non-linear model and the
discrete controller work together. The desired positions for
the car are 3 m at time 0 s, -0.5 m at time 16 s, and 3.8 m
at time 36 s. The load disturbance is set to -200 N at time
42 s during 1 s. The results include the position of the car,
the position of the load, the angle, and the activation of
the brake over time. The system is simulated for 60 s. The
results are shown in Fig. 4, comparing the implementation
with DEVSLib with the one presented in Schiftner (2006).

a)

b)

Fig. 4. Task B results in: a) DEVSLib; and b) Schiftner
(2006)

5.3 Task C

The last task evaluates the response of the system in case
of an emergency stop. The scenario is the same as in the
task B, but the value of the load disturbance is 200 N
instead of -200 N. The results shown also include the
position of the car, the position of the load, the angle,
and the state of the brake over the simulation time. The
system is simulated for 60 s. The simulation results are
shown in Fig. 5, also comparing the two implementations.

The emergency stop event is detected when the car reaches
its maximum movement limit (PosCarMax). After that,
the car stops and the load oscillates.

In this case there is a slight difference just before the
emergency stop. This difference is due to the parameters
of the experiment, because in the latter case the load
disturbances are set to -200 N at time 42 s and to 200 N at
time 46 s resulting in the observed delay of the emergency
stop.

Similar comparisons can be performed with the results
obtained in previous implementations (Wöckl and Breite-
necker, 2003; Schachinger, 2002; Scheikl, 2001; Weidinger
and Breitenecker, 2003; Wang and Kazmierski, 2005; Gar-
ifullin, 2003). Their results are equivalent to the ones



a)

b)

Fig. 5. Task C results in: a) DEVSLib; and b) Schiftner
(2006)

presented in this manuscript. However, these previous im-
plementations are based on the original definition of the
model. Thus, their results are slightly different mainly due
to the inclusion of the angle sensor as an additional input
to the controller and the different design of the control.

6. CONCLUSIONS

The system described in the ARGESIM comparison “crane
and embedded controller” has been implemented using
Modelica and the DEVSLib library. The simulation results
obtained with this implementation are equivalent to the
ones obtained by previous implementations of the same
system, using different tools. Other tools used to model
this system describe the discrete behavior of the controller
using formalisms like Finite State Automata, StateCharts,
or Petri Nets.

The DEVSLib library allows to define Modelica models in
accordance with the Parallel DEVS formalism. The DE-
VSLib library is compatible with other Modelica libraries.
The implementation of models with DEVSLib is analogous
to its DEVS specification using functions to describe its
behavior.
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