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CellularAutomataLib is a library developed by the authors to facilitate the descrip-
tion of Cellular Automata (CA) models in Modelica. It supports the description of
1D and 2D CA and their combination with other Modelica models. Modeling versa-
tility and scalability are the main focus in the design. The internal behavior of CA
models is programmed in C, that is consequently hidden to the modeling tool and not
considered in the causalization and manipulation of the model. A new version, named
CellularAutomataLib2, is presented in this manuscript. The library has been extended
to improve the simulation performance, by only evaluating active cells, and to support
Lattice Gas Cellular Automata (LGCA) models. The library design and use are dis-
cussed. Two models, forest fire spread and the ARGESIM C17 “SIR-type Epidemic
Spread”, are used to illustrate the functionality of the library. CellularAutomataLib2

is freely available at http://www.euclides.dia.uned.es (under the Modelica License 2).
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1. Introduction

Modelica [1] is a general-purpose, object-oriented modeling language designed to
facilitate the application of the physical modeling paradigm, allowing significant
reduction in the time and effort required for model development and maintenance,
promoting model reuse, and reducing consequently the modeling costs [2]. Modelica
models can be described using a combination of two approaches: behaviorally, by
declaratively describing their mathematical behavior using equations, and; struc-
turally, as a combination of multiple interconnected components. This functionality
facilitates the development of modular and hierarchical models to describe complex
systems and subsystems. Models are usually arranged into libraries of components,
each library focused on a specific domain (e.g., electrical, multibody, thermodynami-
cal, etc.) or formalism (e.g., Statecharts, PetriNets, System Dynamics, DEVS, Bond
Graphs, etc.), thus supporting the development of multidomain and multiformalism
hybrid models.
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Models described in Modelica are composed of differential and algebraic equations,
algorithms and events. This type of models, named hybrid-DAE models, describe
dynamic systems with time as the only independent variable. However, the study
of diverse phenomena, such as flexible bodies, sound, heat, fluid flows, etc., usually
involves dependencies on spatial dimensions that are often modeled in terms of
partial differential equations (PDE). The dependence on the spatial coordinates has
to be considered when modeling these phenomena. As Modelica does not support
the description of PDEs, Modelica use in describing models with dependence on
the spatial coordinates is an open research topic. The benefit of using Modelica
to describe spatially dependent models is the use of the object-oriented modeling
functionality, already supported by the language, to describe different parts of the
model in combination with the spatially dependent parts. Different approaches to
describe such models in Modelica, such as PDE discretization, Modelica extensions,
co-simulation and Cellular Automata, are discussed next.
PDEs can be discretized with respect to the spatial coordinates in order to repre-

sent them as equations in a hybrid DAE model. Modelica provides several features
that can be used to describe the sets of equations with regular structure obtained
from this spatial discretization: 1) describe the discretized equations by means of
matrix equations and for clauses combined with the use of vector and matrix data
types and; 2) the modular and hierarchical modeling using arrays of components
and multiple connect sentences in a loop. This functionality has been used to apply
different discretization methods, such as the Method of Lines (MOL) [3, 4], Finite
Elements (FE) [5, 6] or Finite Volumes (FV) [7, 8]. However, the description of PDE
models using these features presents the limitations discussed below.
Modelica models require analyses and symbolic manipulations of the equations

(e.g., removal of alias variables and trivial equations, index reduction, causalization,
automatic formula manipulation, algebraic-loop detection and tearing) in order to
be simulated efficiently. Modelica tools, such as Dymola [9] and OpenModelica [10],
translate the Modelica code into a flat hybrid-DAE model, perform these analyses
and manipulations automatically, generate simulation code written in a program-
ming language (e.g., Dymola and OpenModelica generate C code) and compile it
into an executable file. Detailed descriptions of these manipulations can be found
in [3] and [11].
Modelica tools are designed to efficiently handle models involving a number of

equations in the order of up to hundreds of thousands. Using a space discretiza-
tion approach to describe realistic PDE models (i.e., where the space domain is
discretized into a large number of divisions) usually leads to systems with a higher
number of equations, typically in the order of millions and tens of millions of equa-
tions. The execution by the Modelica tools of the algorithms to translate the Mo-
delica code into executable code is time consuming when applied to models with
so large number of equations. The procedure for translating the Modelica code into
executable code becomes slow and the generated code is very large. These issues
are discussed in detail in Section 2.
On the other hand, some extensions to the Modelica language have been pro-

posed for describing PDE models [12]. However, these extensions are not currently
supported by any Modelica simulation tool.
Another approach that can be found in the literature is the use of an specialized

tool to describe the PDE model, and combine it with Modelica. The combination
can be performed by means of: simulating the PDE model with the external tool and
using the results as parameters or inputs for the Modelica model or; co-simulation,
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where multiple tools are simultaneously synchronized to execute the simulation. In
these approaches, the modeler needs to understand, use and combine different tools
and methodologies to develop the model, which increases the complexity of the
development. Also, in co-simulation the overall simulation becomes more complex
because the time advance and data exchange between different algorithms (i.e.,
tools) have to be synchronized. The Functional Mock-up Interface (FMI) constitutes
an effort to facilitate the model exchange and co-simulation between different tools
[13].
An alternative approach is the use of discrete-event formalisms to describe the

spatially dependent model. In particular, Cellular Automata (CA) are simple dis-
crete models represented by a set of cells arranged into a lattice structure, that can
be in any number of finite dimensions [14]. Each cell represents a region of the space
with a particular state, that dynamically changes during the simulation.
Formally, CA can be defined as a tuple [15]:

CA : < T,X,Ω, S, δ, Y, λ >

where T is the time base (isomorphic with N); X is the input set; Ω is the set of all
input segments ω (an input segment may be restricted to a domain T , ω : T → X);
S is the state that is the same for all cells because the cellular space is homogeneous;
δ : Ω×S → S is the global transition function used to update the state of each cell
(δ(ω, si) → δl(Ni), δl is the uniform local transition function, si is the state of the
i-th cell of the grid and Ni is the set of states that correspond to the neighborhood
of the i-th cell, usually defined as a set of offsets from i); Y is the output set; and
λ : S → Y is the output function used to observe the state of the automata.
An extension of CA models, named LGCA, has been applied to the study of

fluid flows. LGCA models have been also extended into Lattice Boltzmann Models
(LBM) that are used as a microscopic approach for the study of fluid dynamics [16].
The application of CA in the study of systems is broad and diverse, mainly due to
the simplicity of describing these kind of models (i.e., by describing the state of the
cell, the initial state of the space and the transition rule) and the computational
efficiency of their simulation.
The objective of the work performed by the authors is to facilitate the description

of CA in Modelica, in order to use them as an alternative approach to model in Mo-
delica dynamic systems with spatial-dependent behavior. The development of CA
models using Modelica and the encountered difficulties will be detailed in the next
section. Briefly, the authors developed the CellularPDEVS library to describe CA
models in Modelica using the Parallel DEVS (Discrete EVent System specification)
formalism [17] to model the automata. However, the performance of the simula-
tion was not satisfactory as it will be discussed. As an alternative approach for CA
modeling and simulation with Modelica, the authors developed the first version of
CellularAutomataLib [18].
In this manuscript a new version of the library, named CellularAutomataLib2, is

presented. The features included in this new version are: a) the use of Modelica ex-
ternal objects to describe CA models in order to avoid possible platform-dependent
problems; b) improvement of the simulation performance; and c) support of hexago-
nal lattice structures and the description of Lattice Gas Cellular Automata (LGCA)
models.
The manuscript is structured as follows. A discussion about the previous work

on the development of CA models using Modelica is given in Section 2. The new
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library, CellularAutomataLib2, is presented in Section 3, including its design, use
and combination with other Modelica models. Two case studies, CA and LGCA
models, are included to demonstrate the functionality of the library. A fire spread
cellular automaton model is presented in Section 4. The ARGESIM C17 benchmark
comparison “Temporal and Spatial Evolution of a SIR-type Epidemic” [19] is pre-
sented in Section 5. Finally, some conclusions and future work ideas are given in
Section 6.

2. Related Work: Cellular Automata in Modelica

Different alternative implementations have been developed to describe CA using
Modelica. In this section three CA implementations are presented and discussed:
first, a custom implementation directly programmed in Modelica; second, a CA
library described using the DEVS formalism, and; third, an implementation using
external functions combined with Modelica.

2.1. Custom Implementation

A custom implementation is described in [11] that demonstrates the feasibility of
describing CA models using Modelica. The Game of Life is implemented using a
two-dimensional matrix of integer numbers to describe the cellular space, the initial
conditions are set using a vector that contains the coordinates of initially active
cells and the simulation algorithm is implemented using periodical time events to
update the state of the cells iterating the whole matrix using two nested for loops.
In this model, the description of the automaton and its simulation are coupled (i.e.,
the description of the cellular space and the evaluations of the transition function
in each cell are combined in the same code), difficulting its reutilization to describe
other automata.
The custom implementation of CA models in Modelica leads to an additional

problem. The automatic translation performed to Modelica models with so large
number of equations (when even possible) is time consuming and huge executable
files are generated. As an example, the CA model presented in [11], initialized with
a glider structure (i.e., 5 active cells), is translated using Dymola 2015 into a C
code of 64.9KB for N = 10, 6.9MB for N = 100, 28.2MB for N = 200, 65.4MB for
N = 300 and 117.3MB for N = 400, where N2 is the size of the two-dimensional
space. The redundancy in the structure of CA models is not efficiently managed
and leads to decreasing performance during the translation procedure when the
size of the model is increased. Since the translation of the model is automatically
performed by the Modelica tool, the modeler cannot modify it, and thus, has to use
the features provided by Modelica to include any scalability improvement directly
in the model (i.e., the modeler can not modify the translation procedure to improve
the scalability of the simulation).

2.2. DEVS-based Implementation

An approach to describe CA models in Modelica was performed by the authors [20].
The CellularPDEVS package, distributed with the DESLib library [21, 22], supports
the description of CA using the Parallel DEVS formalism [17, 23]. The cellular space
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is represented by a coupled Parallel DEVS model of interconnected cells, and each
cell is described as an atomic Parallel DEVS model. CellularPDEVS allows the
user to focus on describing the behavior of the cell and the characteristics of the
cellular space. Cell states and transition rules are represented using Modelica data
structures and algorithms, while the CA simulation algorithm remains transparent
to the modeler. CellularPDEVS also facilitates the combination of CA models with
other Modelica models.
However, the performance and the scalability of CellularPDEVS are not satisfac-

tory. Firstly, due to the large size of CA models (i.e. the quadratic or cubic growth
of the number of cells in 2D and 3D) and, as mentioned above, that Modelica tools
have not been conceived to efficiently manage models with millions of equations.
Secondly, due to the occurrence of long chains of events during their simulation,
because of the interactions between neighboring cells.
The performance of the simulation is affected by the way the events are managed.

Event conditions are checked during the simulation and if any event is triggered,
the solution of the DAE system is halted and the event is managed. After each
event, consistent restart values for the variables of the hybrid DAE model have
to be found before resuming the numerical integration. The management of the
event may change some variables that change the value of some event condition,
which immediately triggers a new event. This procedure is called event iteration,
and stops when no additional events are triggered. During the event iteration, after
handling each event, the entire model is re-evaluated. A similar approach is used in
the OpenModelica compiler [24].
Following the event iteration procedure described above, unnecessary evaluations

of some model equations may be performed, which may significantly degrade simu-
lation performance. In the case of CA described using DEVS, a change in the state
of a cell generates one additional event for each of its neighbors, that receive input
messages with the updated state. The whole model is re-evaluated after each event,
even when the events only affect the neighboring cells. Also, in the case of CA com-
bined with other Modelica continuous-time models, the management of an event
in the automaton may not involve any change in the continuous-time part of the
model, and so that part should not be involved in the event iteration. The authors
have proposed an improvement for the event iteration procedure [25], however this
proposal has still not been implemented in any tool.

2.3. External Implementation

In order to provide a workaround for the problems described above, the Cellula-
rAutomataLib library was designed and developed by the authors using Dymola
[18]. The CellularAutomataLib library was designed along the following principles:

(1) Scalability and performance: The main objective of the library was to improve
the scalability and performance problems described above, when describing
CA using Modelica. The CA simulation algorithm (i.e., the computation of
the states of the cells at each time step) was implemented using external C
functions. Also, the description of the automaton (i.e., the cell state and the
transition function) was performed using external C functions. The C code
is compiled with the rest of the C code generated by the Modelica tool, as a
result of the automatic translation procedure described above. In this way the
description and simulation of the automaton is not involved in the translation
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procedure. This approach has three advantages: (1) reduces the time spent by
the Modelica tool in the automatic translation procedure; (2) the generated
C code is smaller; and (3) the simulation is more efficient.

(2) Transparent to the user : the CA simulation algorithm included in the library
and the description of the automaton (i.e., state and transition rule) are sep-
arated in order to allow the user to focus on description of the behavior of
the model and not the simulation algorithm. Different CA can be described
without modifying the simulation algorithm.

(3) Flexibility : the library facilitates the description of multiple CA behaviors by
allowing to describe the state of the cell and the transition function using
arbitrarily complex data structures and algorithms.

(4) Graphical visualization of the simulation: the simulation of the CA model is
displayed using a graphical animation that is automatically generated using
Gnuplot [26].

(5) Interface with other Modelica models: interface models that facilitate the con-
nection of CA with other Modelica models were included in the library. These
interface models can be used to combine CA either with other CA or with
other Modelica models. The interface models use user-defined external func-
tions to translate the state of the cell into a standard Modelica data type that
can be used in other models, and vice-versa.

(6) Open-source: the library was freely distributed and can be downloaded from
http://www.euclides.dia.uned.es.

3. CellularAutomataLib2

Following the design principles of CellularAutomataLib, a new version of the library
has been developed. In this section, the design of the new library, its use to describe
new CA models and the combination of CA models with other Modelica models are
presented. The library has been developed using Dymola FD1 2015, configured to
use the Clang 3.4.2 compiler, on an Intel(R) Core(TM) i7-4720HQ 2.6GHz machine
with 16GB of RAM and running Linux 3.16 x86 64.

3.1. Library Design

While the general architecture, design and use of the library remains the same, the
following improvements have been introduced in the new version:

• CellularAutomataLib2 makes use of Modelica external objects (cf. page 156 of
[1]) in order to avoid possible problems depending on the platform used and
the implementation of the Modelica tool.

• The simulation performance has been improved by considering only active cells
(i.e., cells whose state is subject to change during the current step) in each
simulation step. This improvement reduces the amount of memory used during
the simulation and the execution time, specially for models with a reduced
number of active cells spanning over a large spatial domain (e.g., a glider
structure in the Game of Life model). Thus, the performance of the simulation
does not depend on the size of the cellular space but only on the number
of active cells. A comparison between simulation performances is shown in
Table 1. Note that the simulation time shown does not include the time spent
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in the compilation of the generated C code. The Custom model corresponds
to the Game of Life model described in [11], initialized with a glider structure.
This model could not be compiled and simulated with N = 400 due to memory
allocation problems (the compilation needed more than the 16GB of memory
installed in the computer). The Glider and Random models correspond to
the Game of Life model described using CellularAutomataLib2, the former
initialized with the same glider structure and the latter randomly activating
the half of the cells of the whole space. Finally, the Furnace model represents
a simple model of a heat diffusion included in the library, with the top row
of cells set initially active. The size of the C code generated by Dymola is
also included in the table to illustrate the effect in the generated code of using
external functions to describe the CA model. Note that the size of the code for
CellularAutomataLib2 models is dependent on the number of initially active
cells. It is easy to observe in the table that the simulation time for the Glider
model is almost constant, since the glider is a repetitive structure and the
number of active cells is almost constant. The scalability of the Random and

Table 1. Simulation time and size of C code generated by Dymola for
Modelica CA models (N2 is the number of cells in a 2D space).

Model
N

10 100 200 300 400

Custom
64.9KB 6.9MB 28.2MB 65.4MB 117.3MB
0.00464s 0.222s 1.079s 2.24s -

Glider
14.9KB 14.9KB 14.9KB 14.9KB 14.9KB
0.00291s 0.00314s 0.00313s 0.00334s 0.00324s

Random
14.3KB 14.3KB 14.3KB 14.3KB 14.3KB
0.00322s 0.048s 0.221s 0.947s 2.21s

Furnace
15.8KB 32.9KB 52.4KB 71.9KB 91.5KB
0.00476 0.0383s 0.0744s 0.111s 0.152s

Figure 1. Scalability of Random and Furnace models.
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Furnace models is also almost linear (cf. Fig. 1). The performance of these
models is dependent on the size of the space because of its initialization (i.e.,
the bigger the space, the more initially active cells).

• Also, the new version of the library supports hexagonal lattice structures,
that facilitates the description of some LGCA models. An example is shown
in Section 5.

3.2. CA Modeling

Following the formal description of the automata, a model in CellularAutomataLib2
is composed of a cellular space, that represents the 1D or 2D grid of cells, including
their state (S) and the transition function (δ), and some models, named interface
models (i.e., inputs X,Ω, and outputs Y, λ), used as interface between different
cellular spaces, or between cellular spaces and other models.
CellularAutomataLib2 models are composed of a combination of Modelica code

and C code. Modelica provides an external function interface that can be used to call
external functions written in the C language from Modelica functions [27]. Cellular
spaces and interface models are described using Modelica. However, the behavior
of cellular spaces and interfaces, and the CA simulation algorithm are implemented
using external C functions that are related to their corresponding Modelica models
using the mentioned external function interface. The external C code is not involved
in the automatic translation of the Modelica model, which improves the scalability
and the performance of the simulations.
The relationship between the external C code and the Modelica code is summa-

rized in Fig. 2. The file CellularAutomataLib.c contains C code used to describe
general data structures (e.g., cellular spaces and cells) and functions to implement
the CA simulation algorithm. These data structures and functions are common to
all CA and should not be modified by the user. The behavior of the model is defined
in another file (e.g., Model.c), where the user has to implement the data structure
used to describe the state of the cells, its default and initial values and the transition

CellularAutomataLib.c

C

Modelica

Cellular

Space
Interface

Models

CA Model

Model.c

#include

Call external 

C functions 

Instantiate

Figure 2. Relationship between Modelica and C code in CellularAutomataLib2.
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rule. CellularAutomataLib.c has to be included in Model.c in order to use the
basic functionality of the library. Once the behavior of the automaton is described
in C, the user can describe the cellular spaces and their interfaces using Modelica
and relate them with the behavior defined in C. Finally, cellular spaces and interface
models can be combined, by means of instances, to describe more complex CA mod-
els (e.g., that may include multiple inter-connected cellular spaces and interfaces).
A detailed description of the procedure to construct new CA models is included in
the documentation of the library.

3.3. Interfacing with Other Modelica Models

CellularAutomataLib2 includes several interface models that facilitate the combi-
nation of CA with other Modelica models. The inputs of the CA model (X,Ω) are
described using the Input Region and External Input Region models. The Input
Region model allows to use the state of a region of cells from an automaton as
inputs for the transition function of another region of cells of another automaton.
Similarly, the External Input Region model allows to use a Real value, generated
in another Modelica model, as an input for the transition function of a region of
cells of an automaton. The outputs of the CA model (Y, λ) are described using the
Output Region model. This model allows to observe the state of the automaton in
different ways and use the observed state as an input for another Modelica model.
The technical details about the behavior of these interface models and their im-

plementation are described in the documentation of the library. However, in order to
illustrate the use of these models, and example is shown in Fig. 3. In this example,
the following interface models are used:

• Model extInitRegion is used to initialize the state of the cells in the rows 1 to
4 (and columns 1 to 5) with the value of its input const1 (i.e., 0).

• Model ExtInputRegion, connected to CASpace, is used to set the state of the
cells in the fifth row of the cellular space to the value of its input const (i.e.,
5). The values of the states of the cells are graphically represented at the right
of the figure.

Figure 3. Example of behavior of external input region, external init region and output region models.
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• Model outputRegion is used to calculate the maximum value (i.e., Output type

= MAX) among the states of the cells in the first column of the space. In the
case shown in the figure, the output port y of outputRegion is set to 5.

4. Application Example 1: Forest Fire Spread Model

This model describes the evolution of a fire in a two dimensional space that rep-
resents a forest. Modeling fire spread in wild-lands provides useful information in
order to fight against it, e.g., if the simulations are used when the fire has already
started, or to design appropriate preemptive actions, such as evacuation plans, dis-
tribution of fire suppression resources and strategies. Cellular automata have been
previously applied to model fire spread [28–30]
The model implemented using CellularAutomataLib2 is shown in Fig. 4. The

forest model, named Forest, is connected to three external input regions that are
used to set the changes in the direction (WindDir model) and speed (WindSpeed
model) of the wind during the simulation and also the fire suppression actions
(Water model). The forest model is connected to an output region (FireSize model),
that is used to observe the evolution of the fire. The details of these models are
discussed next.

Figure 4. Fire spread model implemented using CellularAutomataLib2.

4.1. Forest Model

The Forest model has been described as a 2D cellular space using the CellSpace2D
model from the library. Each cell represents a uniform section of the forest of 15m×

15m. The parameters of the model are shown in Table 2.
As detailed above, the behavior of the model has to be described using external

C functions that are used in the Modelica model. These functions are included in
the file forest.c. The state of the cell is described using the following variables:
fuelmodel (type of fuel bed), b (data corresponding to the fuel model), s (cell
phase: unburned, burning or burned), wet (if the forest in the cell is wet or not),
windspeed (wind speed) and winddir (the direction the wind is blowing from). By
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Table 2. Parameters of the Forest cellular space.

Name Value Description

ncols 50 Number of columns
nrows 50 Number of rows

lattice 0 Square space
neighborhood [-1,-1; -1,0; -1,1; 0,1; 1,1; 1,0; 1,-1; 0,-1] Moore’s

n inputs 3 Three external input regions connected
wrapped borders 0 No wrapped borders

Tstep 1 One step per simulated second
initial step 0 Initialization time

plot animation 1 Animation active
plot range 2 Max value displayed in the animation
init cells [40,25] Initial cell

name ”Forest”

Unburned

+

dry

Burning

+

dry
Burned

Unburned

+

wet

Burning

+

wet

Fire spread 

from neighbor

water water

All neighbors

burning

Initial cell

Figure 5. Diagram that describes the behavior of the cell and its phase transitions.

default, all the cells are dry and unburned, and the wind blows from the S (180◦) at
8 km/h. The characteristics of the fuel are defined by the fuel model used. The fuel
models defined by the National Forest Fire Laboratory (NFFL) have been used, in
particular the model NFFL-4 named Chaparral [31].
The behavior of the cell is described by the diagram shown in Fig. 5. Fire starts

burning in the cells indicated in init cells. The fire will spread to the neighboring
dry cells at the calculated rate of spread (ros), depending on the type of fuel and
the weather conditions (wind speed and direction). When all the neighbors of a
burning cell become burning, the fuel in the cell is supposed to be depleted and it
becomes burned.
The ros is calculated using the Java implementation, named BEHAVE, of the

Rothermel surface fire spread model [32] developed by Andreas Bachmann [33]. In
this case, the Java code has been translated into C in order to combine it with the
external C functions used in CellularAutomataLib2. A similar approach is adopted
in [30] by combining the BEHAVE model with a DEVS-based forest fire spread
model implemented using DEVSJAVA.
The calculated ros is uniform in the absence of wind and the propagation of

the fire has a circular shape. The fire will spread to the N, S, W and E neighbors
(i.e., those neighbors in the vertical and horizontal axis) in 15/ros minutes and
to the NE, NW, SE and SW neighbors (i.e., those neighbors in the diagonals) in
21.2132/ros minutes, because diagonals suppose longer distances. In the presence
of wind, the propagation of the fire has an elliptical shape following the direction
of the wind. The BEHAVE model calculates the direction of maximum spread, the
rate of spread in that direction and the eccentricity of the ellipsis. These values are
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used to calculate the effective rate of spread in the direction of each neighbor, and
thus the time that will take to spread the fire to each neighbor.
If water is poured in a cell, for example due to a firefighting action, the cell becomes

wet. Unburned and wet cells remain in that state and fire cannot propagate across
them. A burning cell that becomes wet is set to the burned state, because the fire
is suppressed but some fuel was already burned.

4.2. Interface Models

As mentioned above, four interface models are included. Three external input re-
gions are used to describe the variations in the environmental conditions (i.e., di-
rection and speed of the wind), and the firefighting actions performed (i.e., pouring
water on the forest). An output region is used to observe the evolution of the fire
by measuring its size (i.e., the sum of burning and already burned cells).
The inputs to the external input region are described using three Step models

from the Modelica Standard Library [34]. However, more complex Modelica models
could be used and connected as inputs to the external input regions for representing
the environmental conditions and the firefighting actions. Similarly, the output of
the FireSize model could be connected to another Modelica model in order to make
use of the information provided by the forest fire model (e.g., using the size of
the fire as an input for a firefighting resources management model). In this way,
CellularAutomataLib2 facilitates the connection of CA models with other Modelica
models for describing complex hybrid models.

4.3. Simulation Results

The model parameters have been set to the values shown in Table 2. A cellular
space of 50x50 is used to facilitate the visualization of the simulation results. Cel-
lularAutomataLib2 includes the same example with a cellular space of 500x500 in
order to demonstrate that larger CA models can be simulated. It can be remarked
that both, the 50x50 and the 500x500 forest fire models, generate a source code of
35.8KB because the structure of the automaton is coded using external C functions
and thus they are not handled by the Modelica tool. Similarly, the Game of Life
model simulated using CellularAutomataLib2 with a size of 500x500 generates a
source code of 10.6KB.
The external input regions are configured as follows:

• Wind speed changes when time equals 50 min from 8km/h to 3 km/h.
• Wind direction changes when time equals 50 min from 180◦ (i.e., blowing from

the S) to 270◦ (i.e., blowing from the W).
• Firefighters pour water when time equals 70 min over the cells in the region

defined between rows 30 and 50 and columns 30 and 50.

The simulation is run for 120 min of simulated time, and is executed in 1.6s using
Dymola 2015. The evolution of the fire is shown in Fig. 6. The results obtained
are equivalent to those obtained in [29] and [30], where the Rothermel fire spread
model is also used. Note the change in the wind direction and speed when time
equals 50 min, that makes the fire to spread towards E and at a lower rate. Also
note the firefighting action of pouring water when time equals 70 min, that prevents
the fire to spread across the poured region. Cells that were already burning inside
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the poured region remain burned. The evolution of the size of the fire is shown in
Fig. 7. It can be observed that the growing rate of the fire decreases since time
equals 70 min due to the firefighting action.

(a) Time = 15 min (b) Time = 30 min (c) Time = 45 min (d) Time = 60 min

(e) Time = 75 min (f) Time = 90 min (g) Time = 105 min (h) Time = 120 min

Figure 6. Evolution of the fire across the cellular space.

Figure 7. Evolution of the fire size.

4.4. Scalability

In order to analyze the scalability of the simulation, experiments with an increasing
simulated time have been performed. The model is configured with a 1000x1000
cellular space and unwrapped boundaries. The cell [900,500] is the only one initially
set active. The model has been simulated from 100 min to 1900 min, with increments
of 200 min (each simulated step in the automata represents 1 min). In this situation,
the number of active cells in the automaton grows with the simulated time, as the
fire is spread across the forest. The execution time for each experiment is shown in
Table 3, and also graphically in Fig. 8. The execution time depends on the number of
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active cells in each simulation step. The execution time for each simulation step has
been computed and is shown in Fig. 9, together with the evolution of the number of
active cells. Note that the execution time for each step grows almost linearly with
the number of active cells in the space.

Table 3. Execution time for the forest fire spread experiments with increasing simulated time.

Sim. Time 100 300 500 700 900 1100 1300 1500 1700 1900
Exec. Time 0.00616s 0.0379s 0.102s 0.219s 0.411s 0.677s 0.977s 1.41s 1.89s 2.48s

Figure 8. Execution time of forest fire spread experiments with increasing size of simulated time.

Figure 9. Evolution of the step execution time compared with the number of active cells.
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5. Application Example 2: SIR-type Epidemic Spread (C17
ARGESIM Benchmark)

The following model represents a Susceptible-Infected-Recovered (SIR) system used
to evaluate the spread of an epidemic across a population of individuals. This model
was proposed by ARGESIM as a benchmark for comparing simulation results be-
tween ODE and LGCA models [19]. It serves as a demonstration of the Cellular-
AutomataLib2 functionality to describe LGCA models.
The SIR model is defined by the following equations:

∂S(t)

∂t
= −r · S(t) · I(t)

∂I(t)

∂t
= r · S(t) · I(t)− a · I(t)

∂R(t)

∂t
= a · I(t)

(1)

where r is the infection rate, a is the recovery rate, S(t) represents the number
of individuals susceptible of being infected, I(t) represents the number of infected
individuals and R(t) represents the number or individuals recovered from the illness,
and therefore are considered immune. These equations suppose a simplified version
of the model, where the population size is considered constant (e.g., no births or
deaths), the incubation time of the infectious agent is zero and the infectivity time
is equal to the duration of the disease.
The benchmark proposes to compare the ODE model with two LGCA models:

the HPP [35] and the FHP [36]. The HPP model is a lattice gas cellular automaton
represented over a square lattice using the von Neumann neighborhood (i.e., four
adjacent cells). The state of each cell is represented by at most four particles, each
one oriented in the direction of a different neighbor. The transition rule is defined in
two phases: propagation, where each particle moves to the neighbor in the direction
of its orientation; and collision, if and only if two particles collide in the same cell
from opposing directions their orientation is changed by 90.
The FHP model is a lattice gas cellular automaton represented over an hexagonal

lattice using the Moore’s neighborhood (i.e., the six closest neighbors). The state
of the cell is now represented by at most six particles, each one also oriented in
the direction of a different neighbor. The transition rule is analogous to the HPP
model, but in this case the collision involves more possibilities. The FHP-I collision
rules are used, meaning that:

(1) Two particles that collide from opposing directions will change their orien-
tation by 60, either clockwise or counter clockwise but the same for both
particles.

(2) Three particles that collide from opposite directions, each one separated by
120, will change their orientation by 60, also clockwise or counter clockwise
but equal for the three.

In order to represent the SIR model, each particle in the LGCA model represents
an individual of a given type (i.e., susceptible, infected or recovered).
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5.1. HPP and FHP Models using CellularAutomataLib2

The behavior of the HPP and FHP models has been included in the
files c17hpp.c and c17fhp.c, respectively. The corresponding Modelica mod-
els are included in CellularAutomataLib2 as examples of 2D CA (i.e.
CellularAutomataLib2.Examples2D.C17 and .C19). The development of the C
code and the Modelica model are described next.
The implementation of the HPP model uses four integer variables to describe the

particles, each oriented to one direction (N, S, E and W). A positive value of these
variables identifies the existence of the particle in the cell, and the value represents
the type of individual represented (1 susceptible, 2 infected and 3 recovered). The
default state function sets the cell state as empty (i.e., all particles with value 0).
The initial state function is used to uniformly distribute a pre-defined number of
each type of individual in the cellular space. The transition function implements
the propagation and collision of particles in the automaton, as well as the infection
and recovery of susceptible and infected individuals, respectively, following Eq.(1).
The implementation of the FHP model uses an array of six integers to describe

the particles, as an alternative to use individual variables for each particle like in
the HPP model. The default and initial state functions are equivalent to the HPP
model. The transition function is also equivalent but including the additional two-
and three-particle collision cases.

Table 4. Parameters of the HPP and FHP cellular spaces.

Name
Value

HPP FHP

ncols 100 100
nrows 100 100
lattice 0 1
neighborhood [-1,0; 0,1; 1,0; 0,-1] Moore’s
n inputs 0 0
wrapped borders 3 3
Tstep 1 1
initial step 0 0
plot animation 1 1
plot range 3 3
init cells [nrows,ncols] [nrows,ncols]
name ”HPP” ”FHP”

Once the behavior of the HPP and FHP models is implemented in C, this code
has to be linked with Modelica. Both Modelica models extend the cellular space

Figure 10. FHP cellular space and output region models.
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model CellSpace2D and are configured using the parameters shown in Table 4. The
Default, Initial and Rule functions of the cellular space are redeclared with new
functions that call the defined C functions. In order to observe the evolution of
the number of each type of individuals, three output region models are connected
to the cellular space. Each output region is configured to sum the values of each
type of individual in the whole automaton (i.e., S, I and R, respectively). The final
structure of the FHP model, including the output regions, is shown in Fig. 10.

5.2. Simulation Results

Three simulation experiments, described as “tasks” in the benchmark, have been
performed. The results obtained using CellularAutomataLib2 are analogous to pre-
vious solutions of the same model [37].
Task A compares the results of the ODE model and the LGCA models using

the initial conditions shown in Table 5. The comparison of the simulation results
(number of susceptible, infected and recovered individuals) is shown in Fig. 11. The
results from the ODE model are shown at the top, the FHP model in the middle
and the HPP model at the bottom. Note that the propagation of the epidemic
is slower in the LGCA models due to the influence of the spatial distribution of
infected individuals, which is not considered in the ODE model. The propagation
dynamics in the HPP model is actually slower than the FHP because of the smaller
neighborhood used, that reduces the probability of infection (i.e., contact between
susceptible and infected individuals).

Table 5. Initial conditions
and parameters for Task A.

Name Value

S(t = 0)=S0 16000
I(t = 0)=I0 100
R(t = 0)=R0 0
Infection rate r 0.6 · 104

Recovery rate a 0.2

Task B is used to evaluate the influence of vaccination strategies in the CA mod-
els. In this case, the infected individuals are distributed across the half of the cellular
space. The benchmark proposes the comparison of three vaccination strategies: a)
full, uniformly distribute vaccinated individuals in the whole space; b) half, uni-
formly distribute vaccinated individuals in the half occupied by infected ones; and
c) border, distribute the vaccinated individuals in the border of the half occupied by
infected ones (i.e., surrounding the infected). The number of vaccinated individuals
is 4000, that will be simulated as initially recovered individuals because for practical
uses both are considered immune. The initial distribution of vaccinated individuals
is shown in Fig. 12.
The comparison of the simulation results (number of infected individuals for each

vaccination strategy) is shown in Fig. 13. Note that while the full and half vac-
cination strategies offer similar results, the border strategy reduces the maximum
number of infected individuals but increases the duration of the disease. In the
border strategy the infection is contained by the line of vaccinated individuals but
when it crosses the vaccination line it spreads in across the whole space, increasing
the duration of the disease.
A final Task, C, is proposed as an experiment to approximate the solutions of the
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Figure 11. Task A simulation results.

Figure 12. Initial distribution of vaccinated individuals: left) full distribution; center) half distribution; and
right) border distribution.

ODE and the FHP models. The spatial distribution of the individuals of the FHP
model delays the spread of the infection. A uniform re-arrange of the population in
the FHP model after each step in the simulation is proposed to avoid the influence
of the spatial distribution. Each individual in the space, of either type, is randomly
re-distributed to another position in the space. This re-distribution is implemented

Table 6. Initial conditions
and parameters for Task C.

Name Value

S(t = 0)=S0 40000
I(t = 0)=I0 1000
R(t = 0)=R0 0
Infection rate r 0.3 · 104

Recovery rate a 0.2
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Figure 13. Task B simulation results. Number of infected individuals for each vaccination strategy.

Figure 14. Task C simulation results. Number of infected individuals for the ODE, Diff. Eqs., re-arranged
and normal FHP models.

by modifying the C function that is used to re-declare the Rule function of the FHP
cellular space. Also the parameters of the model are modified, as shown in Table 6.
The simulation results are shown in Fig. 14. Observe that the spread of the infec-

tion is faster when the population is randomly re-arranged than in the normal FHP
model, with values closer to the ODE result. The difference equation SIR model
described in [19] is also compared, because its solution serves as an upper bound
for the automaton [37].

5.3. Scalability

In order to analyze the scalability of the simulation, experiments with an increasing
size of the cellular space have been performed. The initial individuals are randomly
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Table 7. Execution time and initial values for the FHP experiments (N is the size of the space).

N 104 4× 104 1.6× 105 2.5× 105 4.9× 105 6.4× 105 8.1× 105 106 1.44 × 106 1.96× 106

Exec. Time 0.286s 1.9s 10.5s 17.9s 25.4s 33.1s 47.9s 62.3s 109s 150s

Initial S 16 × 104 16× 105 16× 106

Initial I 103 104 105

Figure 15. Execution time of FHP experiments with increasing size of cellular space.

distributed over the cellular space, and so, the number of active cells depends on
the size of the space. In order to ensure that the number of active cells matches
the size of the space, the initial number of individuals has been increased as shown
in Table 7. Each experiment has been simulated for 100 time units. The size of
the cellular space ranges from 104 to 1.96 × 106 cells. The execution time for each
experiment is shown in Table 7. Also, the same values are graphically represented
in Fig. 15. Note that the execution time grows almost linearly with the number of
cells in the space.

6. Conclusions

Cellular Automata (CA) models can be helpful in several simulation problems, and
since most of these problems are multi-physical and benefit from a component-based,
object-oriented approach, the integration of CA models in languages like Modelica
is an interesting and promising topic. Along this reasoning path, and building on
previous preliminary research results, the CellularAutomataLib2 library, developed
to facilitate the description of CA models, was presented here. The functionality
of this new library is focused on the description of the behavior of the model,
while the CA simulation algorithm remains transparent to the user – an important
characteristic indeed for somebody who is more an expert of the addressed modeling
domain than of simulation techniques.
The library has been implemented as a combination of Modelica code, that is

used to describe the model and its interface with other Modelica models, and ex-
ternal C code, that is used to describe the state and behavior of the automaton
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and the data translation performed in the interface. The use of external C code
to describe models improves the scalability and simulation performance of the li-
brary. The scalability is improved because the external code is not involved in the
automatic translation procedure of the Modelica code, reducing the size and com-
plexity of the generated code, and the time spent in the translation of the model.
The simulation performance is improved because: 1) the simulation of the CA is
performed using a custom algorithm included in CellularAutomataLib2, reducing
the number of events managed by the Modelica simulation algorithm and thus the
number of event iterations performed; and 2) the number of equations involved in
the event iteration is reduced due to the use of C code to describe the behavior of
the automaton. The functionality of the library has been demonstrated by means
of a fire spread model and a SIR-type epidemic spread model.
Some future work ideas are: to support the description of 3D models and addi-

tional extended CA formalisms, such as CA on graphs; to improve the generation
of the graphical animation using graphical libraries instead of Gnuplot; to develop
a graphical interface to define the initial conditions of the CA model; and to auto-
matically parallelize the simulation of the CA in order to improve the performance.
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