System Modeling Using the Parallel DEVS
Formalism and the Modelica Language

Victorino Sanz !, Alfonso Urquia?, Sebastian Dormido ®

aDpto. de Informdtica y Automdtica, ETSI Informdtica, UNED,
Juan del Rosal 16, 28040, Madrid, Spain.

Francois E. Cellier”

bDept. of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland.

Abstract

The analysis and identification of the requirements needed to describe P-DEVS
models using the Modelica language are discussed in this manuscript. A new free
Modelica package, named DEVSLib, is presented. It facilitates the description of
discrete-event models according to the Parallel DEVS formalism and provides com-
ponents to interface with continuous-time models, which can be composed us-
ing other Modelica libraries. In addition, DEVSLib contains models implementing
Quantized State System (QSS) integration methods. The model definition capabil-
ities provided by DEVSLib are similar to the ones in the simulation environments
specifically designed for supporting the DEVS formalism. The main additional ad-
vantage of DEVSLib is that it can be used together with other Modelica libraries
in order to compose multi-domain and multi-formalism hybrid models. DEVSLib is
included in the DESLib Modelica library, which is freely available for download at
http://www.euclides.dia.uned.es.

Key words: Parallel DEVS, Modelica, discrete event, hybrid systems modeling

Email addresses: vsanz@dia.uned.es (Victorino Sanz), aurquia@dia.uned.es
(Alfonso Urquia), sdormido@dia.uned.es (Sebastian Dormido),
francois.cellier@inf.ethz.ch (Frangois E. Cellier).

! This work has been supported by the Spanish CICYT under DPI2007-61068
grant.

Preprint submitted to Elsevier 24 September 2019

1 Introduction

The Parallel DEVS (Discrete EVent Systems specification) formalism, first
introduced by Chow and Zeigler [1], allows the modular and hierarchical spec-
ification of discrete-event systems.

Several simulation environments support the Parallel DEVS (P-DEVS) for-
malism, including DEVS-C++ [2], adevs [3], DEVSJAVA [4] and CD++ [5].

Some common characteristics of these environments are the following:

(1) As they are specifically designed for supporting the DEVS formalism,
they do not facilitate the model description by combining different mod-
eling formalisms. In particular, the continuous-time part of hybrid models
has to be described applying DEVS-based techniques (e.g., integration al-
gorithms based on state quantization techniques).

(2) The model is described using a programming language (i.e., C++ or
Java).

On the other hand, the general-purpose, object-oriented modeling languages
support the multi-formalism modeling of multi-domain hybrid systems. In par-
ticular, the Modelica language [6] facilitates the object-oriented description of
hybrid systems. It supports a declarative description of the continuous-time
part of the model (i.e., equation-oriented modeling) and provides language
expressions for describing the occurrence of discrete-time events [7]. Models
are mathematically described by differential, algebraic and discrete equations.
These features have facilitated the development of Modelica libraries [8] sup-
porting several modeling formalisms (e.g., State Graphs [9], Petri nets [10]
and bond graphs [11]) and describing phenomena in different domains (e.g.,
electrical, mechanical, thermo-hydraulic, chemical and process control). Also,
model reusability is supported, reducing the costs and difficulty of new model
development [12].

The Modelica language could be a vehicle for combining the use of the DEVS
formalism with other modeling formalisms and techniques. The feasibility of
describing atomic DEVS models in Modelica was demonstrated in [13]. Also,
a Modelica library, called ModelicaDEVS [14,15], was developed for modeling
continuous-time systems using the DEVS formalism and the Quantized State
System (QSS) integration algorithms [16,17].

The analysis and identification of the requirements needed to describe P-DEVS
models using the Modelica language are discussed in this manuscript. A new
Modelica package intended to facilitate the application of the P-DEVS formal-
ism is presented. This package, named DEVSLib, can be freely downloaded
from [18], as a part of the DESLib Modelica library [19]. It facilitates the
description of discrete-event models according to the P-DEVS formalism and

provides components to interface with continuous-time models, which can be
composed using other Modelica libraries. In addition, DEVSLib contains mod-
els implementing some of the QSS integration methods, which allow describing
continuous-time models using DEVS-based techniques.

The description of an atomic DEVS model using DEVSLib is very close to
its formal specification — i.e., it is performed by describing each element of
the tuple. The transition, output and time-advance functions are specified
using Modelica functions. This facilitates the model description and the un-
derstanding of the developed models. The description of coupled DEVS models
with DEVSLib also matches completely with its formal specification. It is per-
formed simply by connecting the corresponding ports of the component DEVS
models.

In consequence, the model definition capabilities provided by DEVSLib are
similar to the ones in the previously mentioned DEVS simulation environ-
ments, which are based on the use of programming languages such as C+-+
and Java. The main additional advantage of DEVSLib is that it can be used
together with other Modelica libraries in order to compose multi-domain and
multi-formalism hybrid models.

The manuscript has been structured in the following sections. Some funda-
mentals of the P-DEVS formalism and the Modelica language are briefly dis-
cussed in Sections 2 and 3. The requirements to describe P-DEVS models in
equation-based object-oriented (EOO) modeling languages, and particularly
in Modelica, are discussed in Section 4. An overview of the library is given in
Section 5, presenting its general architecture of the library and main compo-
nents. Sections 6, 7 and 8 are devoted to discuss the functionalities included
in the DEVSLib package in order to support the communication of P-DEVS
models in Modelica, and the description of atomic and coupled P-DEVS mod-
els in Modelica. Sections 9, 10 and 11, are devoted to discussing case studies
the purpose of which is to illustrate the modeling capabilities of DEVSLib:

— The discrete-event model of an automatic teller machine described in [20] is
employed to illustrate the development of atomic and coupled DEV'S models
using DEVSLib.

— The Lotka-Volterra model of predator-prey interactions [21,22] is described
using the QSS methods for numerical integration supported by DEVSLib
(i.e., QSS1, QSS2 and QSS3). The results and performance of the sim-
ulations are compared with the ones obtained using two different tools,
PowerDEVS [23] and the ModelicaDEVS library [14,15].

— The tank system described in [24] is modeled using DEVSLib. This hybrid
model illustrates the use of the DEVSLib interfaces between DEVS models
and continuous-time models. The simulation results are compared with the
ones obtained using the StateGraphs Modelica library [9].

The simulation of these case studies, and the development and validation of
DEVSLib have been performed using Dymola [25].

2 Parallel DEVS Formalism

The P-DEVS formalism is briefly introduced in this section. Models in P-
DEVS can be described behaviorally (named atomic) or structurally (named
coupled).

2.1 Atomic P-DEVS Models

According to the P-DEVS formalism, an atomic model is the smallest com-
ponent that can be used to describe the behavior a system. It is defined by a
tuple of eight elements [26,27]:

M = (XMa S; YM; (5int7 5e:rt7 50071,7 /\7 t(l)
where:

Xy =A{(p,v)|p € [Ports,v € X,,} Set of input ports and values.
S Set of sequential states.

Yu ={(p,v)|p € OPorts,v € Y,} Set of output ports and values.
Oimt = 9 — S Internal transition function.

Sewt 1 Q x X, — S External transition function, where
Q = {(s,e)|s € 5,0 < e < ta(s)} is
the total state set and e is the time
elapsed since the last transition.

Seon : Q x Xb, — S Confluent transition function.
NS — Y Output function.
ta:S — §R5foo Time advance function.

An atomic model remains in the state s € S, for a time interval t; = ta(s).
After t, is elapsed, an internal event is triggered and the state is changed
t0 Spew = Oint(s). Before that, an output can be generated using the output
function and the state prior to the event (output = \(s)).

A new internal event is scheduled to occur at time instant t,c, = ta(Spew) +
time, where time is the current time, i.e., the time instant of the current

event, and ta(Sy,ey) is the duration until the next internal event scheduled as
a consequence of the current event. The duration ta(s,ey) is a function of the
new state Speq-

Multiple inputs can be received simultaneously through one or several ports:

— If any input is received at time t.,; and t.,; < t5 (so the inputs are received
before the next internal event), an external event is triggered. As a conse-
quence of the external event, the state is changed t0 Spewa = Oert (S, €, bag),
where s is the current state, e is the elapsed time since the last transition
(text — tiast) and bag C Xy is the set of received input messages.

— If the external input is received at time t.,; and t.,; = t,, the external and
the internal events are triggered simultaneously. This situation triggers a
confluent event (that substitutes the external and internal events), and the
state is changed t0 Spews = deon(S, €, bag), being s the current state, e the
elapsed time, and bag C X the set of received inputs (similarly to the e,
function). Also, similarly to the internal events, an output can be generated
as output = \(s) before executing the confluent transition function.

New internal events are also scheduled after the external and confluent transi-
tions using ta(). Note that the time advance function can return a zero value,
generating an immediate internal event.

2.2 Coupled P-DEVS Models

The P-DEVS formalism supports the hierarchical and modular description of
the model. Every model has an interface to communicate with other models.

A coupled P-DEVS model is a model composed of several interconnected
atomic or coupled models, that communicate externally using the input and
output ports of the coupled model interface. It is described by the following
tuple [27]:

M = (X,Y,D,{M,|d € D}, EIC, EOC,IC)
where:

X ={(p,v)|p € IPorts,v € X,} Set of input ports and values.
Y ={(p,v)|p € OPorts,v € Y,,} Set of output ports and values.

D Set of the component names.

My DEVS model, for each d € D.

EIC Ezxternal Input Coupling: connections
between the inputs of the coupled
model and its internal components.

EOC Ezxternal Output Coupling: connections
between the internal components and
the outputs of the coupled model.

e Internal Coupling: connections be-
tween the internal components.

The connection of P-DEVS models implies the establishment of an informa-
tion transmission mechanism between the connected models. P-DEVS models
follow a message passing communication mechanism. A model generates mes-
sages as outputs, using its output function, which are received by other models
as external inputs. Messages can be received simultaneously through one or
multiple ports. Connections between models can be in the form of 1-to-1, 1-
to-many and many-to-1. Each message can transport an arbitrarily complex
amount of information, depending on the particular application or experiment
being studied.

3 The Modelica Language

Modelica [6] is a free modeling language mainly designed to describe mathe-
matical models of physical systems. Modelica is developed and maintained by
the Modelica Association.The development of the language includes several
characteristics from previous languages like ALLAN [28], Dymola [29], NMF
[30], ObjectMath [31], Omola [32], SIDOPS+ [33] and Smile [34]. Multiple
free and commercial tools support the Modelica language such as CATIA [35],
Dymola [25], LMS Imagine.Lab AMESim [36], MapleSim [37], MathModelica
[38], SimulationX [39], OpenModelica [40] and Scicos [41].

Multiple Modelica libraries have been developed to facilitate the description of
models using different formalisms and in multiple domains [8]. The possibility
of reusing components from different libraries strengthens the Modelica mod-
eling capabilities. The main Modelica library is the Modelica Standard Library
(MSL) [42], which is developed and supported by the Modelica Association.

3.1 Characteristics of Modelica

A detailed description of the characteristics of the language can be found in the
specification of the language [6]. Some of the characteristics of the Modelica

language used for the development of the DEVSLib library are:

— Description of models using acausal equations. The causality is automati-
cally assigned by the modeling environment by performing symbolic manip-
ulations to the equations.

— Combined use of equations and algorithms to define models. The algorithms
are executed imperatively, facilitating the description of behaviors with a
fixed causality.

— Reusable algorithm descriptions, as functions. These allow to describe algo-
rithmic operations as functions with parameters, and reuse them by simply
calling the defined function using the appropriate parameters.

— Information encapsulation, that allows to hide information contained in a
class that may not be relevant for outer classes or users. This functional-
ity helps to structure the information contained in a model, and to avoid
erroneous assignments or misuse of the internal components of a class.

— Multiple class inheritance and definition of partial classes, which include
general properties of a class but cannot be instantiated. Classes may inherit
information or characteristics from one or multiple classes, using the extends
clause. This facilitates the description of common characteristics that are
shared by several models or classes.

— Class parametrization of the defined objects. Using the replaceable and re-
declare constructs it is possible to modify the class of an object, even when
already defined in a model. It simplifies the experimentation with the model.
The modeler is allowed to modify the class of a defined object instead of
having to re-describe the model and its components.

— Provides language constructs to describe the trigger conditions of time and
state events, and also the actions associated to the events [43,7,44]. These
actions can be: (1) update the value of discrete-time variables; (2) reini-
tialize continuous-time state variables, using when clauses; and (3) change
the mathematical description of equations and assignments, using the if
statement.

— Model annotations, that may contain additional information of the model
(i.e., the graphical representation, icon representation, environment-dependent
information, version, documentation, etc.).

— FExternal function interface with C' and Fortran, which facilitates the inclu-
sion of C and Fortran code into Modelica, extending the functionalities of
Modelica with those of these general programming languages.

A model in Modelica may include the following components: (1) parameters/-
constants that represent entities the values of which remain constant during
the simulation; (2) variables that represent entities with values that may vary
during the simulation; (3) algorithm sections to describe algorithmic behavior
(i.e., imperatively described and sequentially executed); (4) equation sections
for the description of the relations between the variables of the model (alge-
braic and differential variables); and (5) initial algorithms/equations used to

initialize the state of the model.

A model in Modelica has to comply with the single-assignment rule. This
means that the number of unknown variables and equations in the model has
to be equal, and that the number of equations in each branch of a conditional
equation must also be equal. Otherwise, the model is incorrect.

Equations in Modelica follow the synchronous data flow principle, meaning
that at each time instant the active equations express relations between vari-
ables that have to be satisfied concurrently [44]. The set of active equations
can be composed of: only continuous equations, during continuous integration,
or mixed continuous and discrete equations, if an event has been triggered and
needs to be evaluated. The order in which the equations are evaluated is auto-
matically determined by data flow analysis of the system of equations, leading
to unique computations of the unknown variables [45]. Both, continuous and
discrete, equations have to be considered during the sorting procedure in order
to obtain the correct evaluation order for the possible sets of active equations.

The connections between models in EOO languages are based on the energy-
balance principle. Modelica provides the connector class, to describe the model
interface, and the connect sentence, to describe the interactions (or connec-
tions) between models. Variables in the connectors can be either across or
through. Variables in Modelica connectors are described by default as across,
and the flow modifier is provided to describe through variables. Across vari-
ables in a node (i.e., a connection point) assume the same value, while the
through values are summed up and the sum is set equal to zero.

3.2 Simulation of Modelica Models

Models in Modelica are described following the EOO modeling methodology.
They are later translated by the modeling environment into a hybrid DAE
form, in order to simulate and analyze the system. Hybrid DAE models may
include discontinuities, variable structure and/or discrete-events [6].

The simulation is performed as follows [6]: (1) the continuous-time part is
solved using a numerical integration algorithm; (2) if any of the event con-
ditions is met during integration, the integration algorithm is halted and the
event instant is determined; (3) at the event instant the set of algebraic and
discrete equations are solved; and (4) once the event has been treated, the
event conditions are checked again. If a new event is triggered, it is immedi-
ately executed (i.e., event iteration). Otherwise, the integration is restarted.

4 Integrating the P-DEVS Formalism into EOO Languages

In this section, the requirements needed to describe P-DEVS models using an
EOO modeling approach are discussed. These requirements meet the neces-
sity to describe atomic and coupled P-DEVS models, and the possibility to
combine discrete-event and continuous-time models. The description of these
requirements is particularly applied to the case of the Modelica language. The
identification and analysis of the additional Modelica functionalities required
to describe models following the P-DEV'S formalism constitute the foundations
of the work presented.

4.1 Discrete-Event Model Behavior

P-DEVS models, as discrete-event models, have a fixed causality. The ac-
tions associated with the events are described algorithmically using functions.
Discrete-time and event management constructs are required to describe the
behavior of a P-DEVS model in EOO languages. The discrete part of the
model can be described in different ways, depending on the functionalities
provided by the language itself (i.e., algorithm sections [46], concurrent pro-
gramming language statements [47], operating procedures [48] or event-driven
processes [49,50]).

In general, EOO languages provide functionalities to manage discrete events.
These functionalities have to be combined to reproduce the semantics of P-
DEVS models (i.e., event detection, management and execution of transition
functions), in order to facilitate the description of P-DEVS models in EOO
languages.

Modelica provides language constructs to describe the trigger conditions of
time and state events, and also the actions associated to the events [7]. These
functionalities have been previously used to describe models following multiple
formalisms, like State Charts, Petri Nets, State Graphs and Classic DEVS. The
same functionalities can be used to describe the behavior of P-DEVS models.
To this end, the detection of internal, external and confluent events has to
be defined. Also, the actions associated with each type of event have to be
managed (i.e., the execution of transition functions).

4.2 Model Communication Mechanism

Each P-DEVS model, atomic or coupled, has an interface to communicate
with other models. These interfaces allow the composition of modular and

hierarchical models, in order to construct more complex models. EOO models
also contain model interfaces that allow the connection of multiple components
in a similar fashion, to construct more complex models. However, the concepts
underneath both model interfaces and their connections are different.

As previously described, model communication in P-DEVS follows a message
passing mechanism. On the other hand, the connections between models in
EOO languages are based on the energy-balance principle, establishing re-
lationships between across and through variables. However, these language
constructs are not enough to describe the required P-DEVS message commu-
nication mechanism, because:

— They do not allow the simultaneous transmission of messages from one port
to another, due to the single-assignment rule.

— They do not allow to connect multiple output ports to the same model and
transmit simultaneous messages, also due to the single-assignment rule.

— The amount of information transmitted by the connector is fixed by the
number of variables in it.

— The structure of the information transmitted with the connection is also
fixed due to the variables defined in the connector.

In order to allow the description of P-DEVS models in Modelica, a message
passing mechanism has to be implemented. Ideally, this message passing mech-
anism should be transparent to the user, in order to facilitate the integration
of both formalisms without increasing the complexity of model development.

4.8 Interfacing P-DEVS and Other Modeling Formalisms

The idea is to combine models described using P-DEVS with models defined
using other formalisms for continuous-time modeling (i.e., the physical mod-
eling paradigm), using EOO languages. This combination facilitates the de-
scription of multi-formalism hybrid systems.

Two approaches for communicating P-DEVS models with other formalisms
are proposed:

— Translated Interface Connections: Connecting the output of a P-DEVS
model to the input of a continuous-time model, or vice-versa. Due to the
mentioned differences in the model communication mechanism, it is required
to define interface models that translate messages into discrete-time signals,
and both continuous-time and discrete-time signals into messages. These
interface models allow to couple discrete-event and continuous-time compo-
nents together in the hierarchy of models that compose a hybrid system.

— Direct Interface Connections: Allowing to describe the behavior of a discrete-

10

event model which is influenced by the state of a continuous-time model.
P-DEVS models could receive continuous-time or discrete-time signals as
inputs to its transition functions. In order to maintain the modularity in
the model construction, these inputs must be connected using the model in-
terfaces. These connections are similar to the interactions described in the
DEV&DESS formalism between the discrete-event and the continuous-time
parts of a hybrid model [27].

To combine P-DEVS models with models from other Modelica libraries, two
types of model communication have to be supported:

— Interface models have to be constructed to translate messages, as described
above, into discrete-time signals. Also, continuous-time and discrete-time
signals from the Modelica models have to be translated into messages.

— The direct connections from Modelica to P-DEVS models can be supported
by allowing continuous-time inputs for the transition functions. The value
of the continuous-time signal connected to one of these inputs is used as an
input for the transition function.

5 DEVSLib Architecture

In order to facilitate the understanding and use of DEVSLib, it can be con-
sidered that its models are classified into two groups: the “user’s area” and
the “developer’s area”. The top level of the hierarchy is shown in Fig. 1a. The
“user’s area” consists of the User’s Guide, the atomicDraft package, the cou-
pledDraft model, the AuzModels package and the examples provided within
the Fxamples package. The “developer’s area” consists of a single package, the
SRC package.

5.1 User’s Area

The “user’s area” contains all models intended to be used directly by the li-
brary user, in particular, those needed to develop atomic and coupled P-DEVS
models, to interface with continuous-time models and also the models imple-
menting the QSS integration methods. The documentation of these packages
addresses those users who wish to use the library but do not need to under-
stand its internal design and implementation.

The structure of the “user’s area” is shown with more detail in Fig. 1b. The

atomicDraft package and the coupledDraft model are used to define new atomic
and coupled P-DEVS models. Both will be detailed in Section 7 and 8. The

11

AuzModels package contains some useful auxiliary models that are usually
needed. It includes the following models:

— Generator and Display are models that can be used as source and sink of

messages, respectively.

— DUP and DUP3 are models that duplicate each incoming message and in-
stantaneously send a copy of it through all its output ports (two in the
case of DUP, and three in DUP3). The use of these models is detailed in

Section 6.

— Select is a model that sends each received message through one of its two

(CJDEVSLb

— WU zers Guide
EBParall=l DEYS
EdMew Atomic DEVS models
EdMew Coupled DEYS models
ﬂH_I,II:uriu:I modelz developrent

= [T] atomicDraft
+] atomic
Con
irk
et
ot
ta
==k
irnitzt
v coupledDraft
* [T] AusModels
* [T] Examples

(JSRC
a)

= [CJDEVYSLib

+ €U zers Guide
* [T atomicDraft

+coupledDraft
=[] Austodels

[LZ} Generator

] Drizplay

k DUP

& DUP2

£ Select

w BreakLloop

{Ioico
{JDiEn
E!uantizer
e CrossDOwWN
En:nssUF'
{42551
{7jass2
ERJPEEE
B |j Examples

E |j Sirmplet odels

£ ﬁ AT

*] Clock2

* [T] CarFactony

x |j HybridOMNaC

E |j @55 Integration

* [T] CortrolledT anks

= (JsRC
-1 B Developers Guide
Ed2tomicDEYS Model
B M odel Communication
EdHybrid Models
EB05S Integrators
= AtarnicDEWS

==] State
= @ Interfaces

W inFort
= outPort
EH stdEvent
Ee stdState
zendEvent
gendE ventLIFO
zendE ventLWF
sendE ventHVF
readk vent
getE vent
nurmE wents
queLieSize
eventOrder
Createl]ueus
+ ﬁ DupE vent
w hreakloop
*[TJ 5elect
* [T Hybrid
*C]ass

c)

Fig. 1. DEVSLIb library architecture: a) general architecture; b) user’s area; and c)

developer’s area.

12

output ports, depending on a given boolean condition.

— BreakLoop is used to break algebraic loops in coupled models. Its use is

detailed in Section &.

— DiCO, DIBO, Quantizer, CrossUP and CrossDOWN are the interface mod-

els used to combine DEVSLib models with models from other Modelica
libraries. Their use is detailed in Section 11.

— QSS1, QSS2 and QSS3 are models that implement the first, second and

third order QSS integration methods. They are detailed in Section 10.

The Examples package contains several models that can help the user to learn

and understand the use of the library. The models included are:

— SimpleModels includes simple atomic and coupled DEVSLib models. The

implementations of the Generator and Display are included, as well as a
Processor, Switch, Pipe, and other examples described in [27].

ATM includes the model of an Automatic Teller Machine. The specification
of this model can be found in [20], and its implementation using DEVSLib
is detailed in Section 9.

Clock?2 includes the model of a pendulum clock. It is modeled as a hybrid
system, with the pendulum represented by a continuous-time model and the
rest of the clock by a P-DEVS model. The specification of the model can
be found in [51].

CarFactory includes a model of a simple car production factory [52].
HybridONoC includes a hybrid model of an optoelectrical communication
system. Detailed information about the model can be found in [53].
QSSIntegration includes a differential equation, the Lotka-Volterra (detailed
in Section 10) and a flyback-converter model implemented using QSS inte-
gration methods. Other required models such as adder, multiplier, gain,
square-root, step, constant, and switch, are also included.

ControlledTanks includes the model of a two-tank hybrid system with dis-
crete controller. This system is detailed in Section 11.

PetriNetsExamples includes the model of an MM1 queue system, in order
to compare it with its implementation included in the Extended PetriNet
Modelica library.

5.2 Developer’s Area

In contrast, the “developer’s area” contains data structures and partial models
that the library user does not need to use directly. The documentation of this
area addresses library developers.

The “developer’s area” is shown in Fig. 1c. The AtomicDEVS model contains
the Modelica implementation of the general behavior of an atomic P-DEVS

13

model. This model is inherited by the atomicDraft package of the “user’s
area”. In the AtomicDEVS model, a data structure (i.e., a record) represents
the model state and Modelica functions describe the P-DEVS functions (i.e.,
state-initialization, transition, output and time-advance functions).

In addition, the “developer’s area” contains the implementation of input and
output ports, functions supporting the message passing mechanism needed to
communicate the DEVS models, the implementation of the event-duplicator
model (DUP), the model to break algebraic loops (BreakLoop), the imple-
mentation of the Select model, the interfaces to combine DEVSLib with other
libraries, and the QSS integration methods.

6 DEVSLib Model Communication

This section discusses the description of the communication mechanism in-
cluded in DEVSLib, in order to facilitate the description of P-DEVS models
in Modelica. The different approaches analyzed to develop the communica-
tion mechanism, as well as the description of the elements to perform the
communication between models are discussed.

6.1 Message Passing Communication in DEVSLib

A message passing mechanism has been included in DEVSLib. In order to
implement the message transmission between DEVSLib models, three different
approaches have been programmed and evaluated [54]:

— Direct transmission, including in the connector the variables required to de-
scribe the message. This approach does not allow the simultaneous reception
of several messages through the same input port.

— Teat file storage, using a text file as intermediate storage space for the
received messages. The performance of this approach is very poor due to
the high amount of I/O operations needed to use the text files.

— Dynamic memory storage, substituting the text file with dynamically man-
aged memory space. This approach improves the performance and offers
better flexibility to manage the information of the messages, so it is the
approach implemented in DEVSLib.

The dynamic memory storage approach has been implemented in C and con-
nected with DEVSLib using the external function interface provided by Mod-
elica. At the user level, the communication among DEVSLib models is de-
fined by connecting the output ports of some models to the input ports of

14

other models. The message passing mechanism is transparent to the modeler,
and thus only standard Modelica connect sentences are used to describe the
communication channels between DEVSLib models.

DEVSLib allows the user to define the type of information of each message.
Messages are implemented as Modelica records. The default message type
contains the following information: Type, represented by an integer value, and
Value, which is represented by a real value. The message also includes a Port
value, that represents the port the message has been received through, but
this value is managed by the receiver model and not by the user. As several
messages can be simultaneously sent through an output port, this type of
message can be used to transmit arbitrarily complex information.

6.2 Connections between DEVSLib Models

The messages are transmitted through the model connections and received by
the models connected to the output ports. Each receiver model collects the
arrived messages and decides which transition to execute. The simultaneous
occurrence of internal and external events (i.e. a confluent event) is detected
using equations and mutually exclusive boolean conditions. The event detec-
tion and management mechanism is detailed in Section 7.

The DEVSLib implementation of the input and output P-DEVS ports are
the inPort and outPort connectors (see Fig. 1c¢). These two connectors are
composed of one across variable, named queue, and one through variable,
named event. An example of the communication between models in DEVSLib,
using the inPort and outPort connectors, is shown in Fig. 2.

The event variable represents a counter of the received messages in an input
port. Every time a message is sent through an output port, the event value
of that port is increased. As event is a through variable, all the values of the
event variables from the output ports connected to an input port are summed,
giving the final number of messages received at that input port.

The queue variable represents the reference to the dynamic memory space
used to temporarily store the received messages until the model executes its
external transition. The messages are read, and deleted, from the memory
by the external transition function. However, in order to facilitate the man-
agement of simultaneous messages, messages can be read arbitrarily — i.e.
non-sequentially, using an index — without deleting them from memory.

15

A h evert

[+ I= 0]

A event + B.event = C.event

™ erent u C

| CJUEUE

External Transition

T

‘ |
External & functions

B e Dynamic
Memaory
Storage

Fig. 2. Example of DEVSLib models communication scheme.

6.3 1-to-Many Connections

Using the implemented message passing communication mechanism is not
possible to perform 1-to-many connections between models. This limitation
arises because each input port has a queue for storing incoming messages.
An output port of a model connected to the input port of another model
receives the reference to that queue, used to write the transmitted messages.
Each output port can send messages only to one input port, because the queue
variable in the connector cannot be assigned with several values (corresponding
to the references of the queues that will have to receive the message).

A possible solution is the inclusion of an intermediate model to duplicate
the received message and simultaneously send copies of it to several receivers.
This model should have several output ports, each one connected to a receiver,
that will be used to send copies of the message. Several output ports can send
messages simultaneously to the same input port, because all of them share the
reference to the same queue (as shown in Fig. 2). DEVSLib includes the DUP
model to facilitate the 1-to-many connections. The DUP model is described
in Section 8.1.

16

7 Atomic P-DEVS Models in DEVSLib

This section describes the implementation of the behavior of a general atomic
P-DEVS model in DEVSLib, and the development of new atomic P-DEVS
models using the implemented behavior. The functionalities provided by Mod-
elica to describe abstract classes, replaceable objects and functions, as well as
the functionalities for event management, have been used in this implementa-
tion.

7.1 Atomic P-DEVS Behavior in DEVSLib

DEVSLib includes an abstract model, named AtomicDEVS (see Fig. 1c), that
implements the basic behavior for the atomic P-DEVS model. DEVSLib al-
lows direct interface connections, as described in Section 4.3, by including
continuous-time inputs for the transition functions to facilitate the combina-
tion of DEVSLib models with models from other Modelica libraries. The value
of the continuous-time signal is read and can be used during the execution of
the transition function.

The AtomicDEVS model includes the management for the internal, external
and confluent events, the generation of the bag of output messages, and the se-
quence of actions performed during any event. Since DEVSLib has been devel-
oped under Dymola, DEVSLib uses the provided time and event management
mechanisms to describe the model behavior. Only the triggering conditions for
time events (usually internal events where ¢z = t +), the management
of the messages between models, and the occurrence of simultaneous events
needed to be taken into account for the development of the library.

The event detection and transition execution process performed by the Atom-
icDEVS model is shown in Fig. 3. The AtomicDEVS model triggers an external
event when the event variable of any of the input ports (iEventfi/) changes
its value. Notice that the number of input ports is defined by the modeler,
and thus a condition must be set for each port separately. Internal events are
triggered when the simulation time reaches the scheduled time for the next
internal transition. Confluent events are triggered as the simultaneous occur-
rence of both situations. Mutually exclusive boolean conditions decide which
transition should be executed at each event.

During an external transition, the AtomicDEVS model updates the value of
the variable that stores the elapsed time and executes the Fext (d.,¢) function,
with the current state, the elapsed time and the bag of received events as
parameters. After that, the state of the model is updated using the output of
Fext. During internal transitions, the AtomicDEVS model executes the output

17

any input port external && internal? extemal? internal?

received messages?
extemal = false extemnal = true ¥ -
Fout Fext Fout
L] ¥
stenclrj update si-nclTE
outpu outpu
time >= timeNextinternalEvent? P state p
Fta
X
internal = false internal = true update External Transition update
state state
Fta Fta
Confluent Transition Intemal Transition

Fig. 3. Event detection and transition execution diagram of the AtomicDEVS model.

function Fout (\) using the current state, which is later updated using the
output of Fint (0;n)-

During the execution of Fout, output messages are sent using the external
function sendEvent(). The AtomicDEVS model checks the queues of the out-
put ports (represented by the array oQueuefi/) to find if any message has been
sent through them during the execution of Fout. If any message has been sent,
the AtomicDEVS notifies the transmission of the message by increasing the
value of the event variable of each port (oEventfi/) by the number of messages
sent through it.

In a confluent transition, the AtomicDEVS model generates an output exe-
cuting the Fout function, using the current state. After that, it updates the
variable that stores the elapsed time, executes the Fcon (.0,) function, and
updates the state of the model with its output.

A new internal transition is scheduled using F'ta (ta) after each transition. The
output of the Fta function can be any real number, including zero (negative
numbers are considered as zero). In this way, immediate internal transitions
can be scheduled. Immediate internal transitions after external or confluent
events are detected by the condition described in Fig. 3. Immediate internal
transitions after internal events are detected checking the value returned by
Fta inside a while loop (because the condition described above will not detect
the new internal transition, since it is the same for every internal event).

The simulation time is advanced from one internal event to the next, following
the calendar of scheduled events. External events are induced by the outputs

18

generated at internal events. Dymola manages the events in the calendar based
on the conditions set for the internal events, following the procedure described
in Section 3.2.

7.2 Construction of New Atomic Models

The description of atomic models using DEVSLib follows its formal P-DEVS
specification. The user can define the state variables of the model and their
initialization. The user also has to describe the actions performed by the tran-
sition functions, in order to update the state of the model after an event, as
well as the time advance and output functions.

In order to construct a new atomic model, the user can duplicate the atom-
icDraft model (shown in Fig. 1a) and use it as a skeleton for the new model.
The steps required to develop the new model are:

(1) Define the interface of the model: including the required input and output
ports, as instances of the DEVSLib inPort and outPort connectors, and
setting the value of the numlIn and numQut parameters to the number of
included input and output ports. The atomicDraft model includes by de-
fault one input and one output port. The included ports have to be linked
with the iEvent, iQueue, oFvent and oQueue arrays of the AtomicDEVS
model, in order to allow the correct reception and transmission of mes-
sages. This link is performed by assigning to the positions of these arrays
the values of the event and queue variables of the ports. An example of
these assignments is shown in Listing 1.

(2) Redefine the state: including in the st record the required variables to
describe the state of the new model (i.e. number of customers in queue,
processing units, etc.). By default, the atomicDraft includes two variables,
phase (used to represent the current phase of the model) and sigma (used
to schedule the next internal event).

(3) Redefine the initialization of the defined state: including in the initst func-
tion the initial values for the variables in st. The initst function receives

parameter Integer numIn = 2 "number of input ports";
parameter Integer numOut = 1 "number of output ports";
inPort inl "first input port";
inPort in2 "second input port";
outPort outl "first output port";

equations

inl.event = iEvent[1];
inl.queue = iQueue[1];
in2.event = iEvent [2];
in2.queue = iQueue[2];
outl.event = oQueuel[1];
outl.queue = oEvent[1];

Listing 1. Assignments between interface ports and AtomicDEVS variables.

19

the st record as input and returns the initialized st record.

(4) Redefine the transition functions: including in the Fext, Fint and Fcon
functions the Modelica code that describes the actions performed during
transitions. By default, the confluent transition function executes first the
internal transition and then the external event. The internal and external
transition functions return the same state by default.

(5) Redefine the output function: including in the Fout function the Mod-
elica code that generates output messages (i.e. calling the sendEvent()
function). The default function does not generate any message.

(6) Redefine the time advance function: modifying the Fta function to return
the time for the next internal transition, depending on the current state.
By default it returns the value of the sigma variable of the state, that
should have been previously assigned with a value during the execution
of the transition function.

8 Coupled P-DEVS Models in DEVSLib

Coupled DEVSLib models are described following their P-DEVS specification.
A coupled model is composed of: an interface, that allows the connection of the
coupled model with other models; its internal components, which are a com-
bination of atomic or coupled models and; the coupling connections between
the interface and the internal components, and between internal components
themselves.

The interface of a DEVSLib coupled model is described using input and output
ports (see Fig. 1c), which are Modelica connectors. The internal components
of a DEVSLib coupled model are defined instantiating objects from other al-
ready available atomic or coupled DEVSLib models. Since the message passing
mechanism used to communicate DEVSLib models is transparent to the user,
the coupling connections between ports and components are defined using
Modelica connect sentences between input and output ports.

The coupledDraft model included in DEVSLib provides a simple way to start
the development of a new coupled DEVSLib model. It can be duplicated and
the new copy adapted to the behavior of a new coupled model. New input and
output ports can be included, by inserting new instances the DEVSLib inPort
and outPort connectors. The components of the model can be included in the
same fashion, instantiating the required components that have been previously
developed. The coupling connections are defined by including Modelica con-
nect sentences between input and output ports, either between the interface
and the internal components or among the internal components themselves.
Dymola offers functionalities to perform these procedures using drag and drop
and is able to graphically define connections between ports.

20

8.1 Additional Characteristics Included in DEVSLib

The following additional characteristics have been included in DEVSLib to
improve the construction of coupled models:

— The first characteristic concerns the simultaneous connections between the
output port of one model with multiple input ports (i.e., 1-to-many connec-
tions). This problem has been described in Section 6.3. DEVSLib includes a
model, named DUP, to reproduce 1-to-many connections. The DUP model
contains one input port, used to receive messages, and two output ports,
used to send copies of the received message to multiple receivers. The DUP3
model is similar to the DUP model, but has three output ports. Also, sev-
eral DUP model can be serially connected if more that three copies of the
message are required.

— The second characteristic concerns the generation of algebraic loops while
connecting model components. An algebraic loop is generated when the
output of a model is connected to the input of another model, directly or
indirectly connected to the former, creating a loop between both models. As
Modelica follows the synchronous data flow principle, this situation cannot
be solved automatically by the simulator (it cannot find the correct causality
assignment for the models in the loop) and produces an error. Similarly to
the previous case, DEVSLib includes a model, named BreakLoop, aimed at
avoiding this situation.

The BreakLoop model defines the causality and breaks the algebraic loop
by inserting a pre() operator in the detection of its external events. At event
instants, the pre() operator returns the “left limit” of a variable after the
last event iteration. This functionality can be used to decide which value
of the variable has to be used in the calculations during the treatment of
events, and to define the causality in the connections.

Consider the model shown in Fig. 4. The connections between the “proc”
and “switch” models generate an algebraic loop, since input and output
ports are internally related in both models. The BreakLoop model includes
a pre() operator in the variable used to detect external events, and thus

proc

Switch

gen = s display

L]

Fig. 4. Use of BreakLoop model.

21

breaks the loop between “proc” and “switch”.

— The third characteristic is the possibility to connect the output of a model
to the input of the same model (i.e., self-connections). This behavior is not
allowed in P-DEVS, but cannot be restricted in the Modelica environment.
The modeler has to describe the model avoiding this type of connections.

9 Discrete-Event System Modeling with DEVSLib

The modeling of a discrete-event system using DEVSLib is discussed in this
section. The model described represents an ATM system (Automatic Teller
Machine) that is composed of a card reader, an operation authorization sub-
system and the cash dispenser. The behavior of the system is described in the
state diagram shown in Fig. 5, and the DEVS specification of the system can
be found in [20].

The user inserts a card in the ATM. The system recognizes the new insertion
and asks the user to enter his PIN number. In case of an incorrect PIN number,
the system asks the user again to enter the correct PIN. If the user fails thrice
to enter the correct PIN, the system ejects the card. When the correct PIN is
entered, the system asks the user to enter the amount of cash to withdraw. If
the balance in the account of the user is insufficient, the system asks the user
for a new amount. When the balance is correct, the system gives the cash to
the user and ejects the card. While the system is busy, any new card insertion
is ignored.

The ATM system constructed using DEVSLib is shown in Fig. 6 (notice the
required DUP and BreakLoop models). The BreakLoop models are required
to define the causality in the loops. The card reader and the cash dispenser
are simple atomic DEVSLib models. The operation authorization mechanism
is modeled using a coupled model, as shown in Fig. 6. It is composed of three
atomic models: the user interface, the balance verifier and the PIN verifier.
The interactions between the system and the user, in order to obtain the PIN
number and the amount of cash, have been modeled statistically generating the
data from random uniform distributions. The correctness of the PIN number
and the balance in the user account has also been modeled using uniform
random numbers.

The correspondence between the model shown in Fig. 6 and the diagram
shown in Fig. 5 is as follows. The card reader performs the CARD_IN ac-
tion. The GET_PIN and the GET_AMOUNT actions are performed by the
user interface. The PIN_.VERIFY and the BALANCE_VERIFY actions are
performed by the pin verifier and balance verifier models, respectively. Fi-
nally, the GIVE_CASH action is performed by the cash dispenser. The CASH

22

new card

BALANCE
WVERIFY

states).

Fig. 5. State diagram of the ATM system (the system generates outputs at encircled

dRead . .
W_':“' e a| Authorization
o
/ i
-l \
Vi cashDispenser
/ =
a) #* 8
o5
balance\erifier i
|
——a
-
|—m|userinterface
pinyerifier
oh
b) o
authorization subsystem.

Cardinsertion S phase

1 ‘ ‘ ‘

T T
CashOuwt.S phase

Fig. 6. ATM system modeled using DEVSLib: a) top-level components and; b)

T | — T T
25
CashOut.S value
1000

T
00

-500

Fig. 7. Simulation results for the DEVSLib ATM model, obtained using Dymola.
23

and EJECT_CARD outputs represent the output messages that arrive at the
output ports in Fig. 6a.

The simulation results are shown in Fig. 7. The card insertions are shown at
the top. In the center the end time of the operations, and below the amount of
cash withdrawn by the user in each operation are also shown. It can be noticed
that since the insertions of the card are modeled at a constant rate, some of
the insertions (in this case the third one) are ignored because the system is
still busy with the previous insertion.

10 Continuous-Time System Modeling with DEVSLib

Most numerical integration methods used in computer simulation (e.g., Euler,
Runge-Kutta, DASSL, etc.) are based on time discretization. The QSS meth-
ods quantize the values of the state variables and observe the variations in
their values. The quantization function used in QSS can be defined as:

Qm ift=to

Qe if x(t) =Qrsy1 Nqt7)=Qr Nk <
Qraifxt)=Qr—eNqgt7)=Qr Nk >0
q(t™) otherwise

and:

0if z(to) < Qo
m=14rif w(te) > Q, (2)
Jif Q; <x(ty) < Qj+

where @); are the quantization levels, Q; € {Qo, @1, ..., @}, usually defined
using a constant quantum (Qgy1 — Q). The width of the hysteresis is defined
by e.

Using this quantization function with hysteresis, a QSS system can be defined
as follows. Having the following system:

(3)

24

Its associated quantized state system is defined as:

(4)

where ¢(t) is related to z(t) using the quantization function with hysteresis
described above [17].

QSS systems can be described as DEVS models, combining static functions
with hysteretic quantized integrators. These integrators can be described as
atomic DEVS models, considering the variations in the input values as input
events and generating new values as output events. The use of a quantization
function with hysteresis allows to define legitimate DEVS models, avoiding
problems with infinite numbers of events in a finite time interval [17,27].

10.1 QSS Methods in DEVSLib

Three QSS methods have been implemented as atomic DEVSLib models: the
first (QSS1), second (QSS2) and third (QSS3) order algorithms. The QSS2 and
QSS3 methods need to communicate the first and second derivative together
with the state value. Since the default message type transmits only one real
value, several messages are simultaneously sent in QSS2 and QSS3. The Type
variable is used to identify whether the transmitted value corresponds to the
state (Type=1), its first derivative (Type=2) or its second derivative (Type=3).

10.2 Case Study

The Lotka-Volterra model of the predator-prey interaction [21,22] is used to
illustrate the continuous-time system modeling with DEVSLib. The equations
of the Lotka-Volterra model are the following:

d
d—f:xa—xyﬁ
dy
—=- J
o yy +zy

where y is the number of predators, x is the number of preys, and «, 3,
and § are parameters that represent the interaction between both species (in
this case study the value &« = f = = 6 = 0.1 has been used). The predator

25

and the prey populations are inversely related: the growth of one of the species
reduces the growth rate of the other, and vice-versa. The result is an oscillatory
behavior in the population of both species.

The model described using DEVSLib QSS algorithms is shown in Fig. 8, using
the first order integrator (QSS1). The QSS1 model could be substituted with
either the QSS2 or QSS3 models to apply other integrator. The multiplier
and adder modules are also DEVSLib atomic models. Three DUP models are
required to divide the flow of messages at the output of the integrators and the
multiplier. Also, three BreakLoop models are included to break the algebraic
loops between the adder, the multiplier and the integrators.

In order to compare the simulation results and performance, the Lotka-Volterra
model has also been developed using the PowerDEVS software tool and the
ModelicaDEVS library. The simulation results obtained by using DEVSLib,
PowerDEVS and ModelicaDEVS are shown in Fig. 9. The model has been sim-
ulated using the QSS1 (Fig. 9a), QSS2 (Fig. 9b) and QSS3 (Fig. 9¢) methods.
The results using QSS1 in the three implementations almost overlap (see the
left side of Fig. 9a). The results using QSS2 and QSS3 in the PowerDEVS and
DEVSLib models are also very similar (see the left side of Figs. 9b and 9c¢).
The results obtained with the ModelicaDEVS model using QSS2 and QSS3
are different from the other models. The most likely cause of these differences
is a programming error in the ModelicaDEVS integrator, which has not been
detected in previous evaluations using other models.

The relative errors, in percentages, between the DEVSLib and the PowerDEV'S
models are shown at the right side of Figs. 9a, 9b and 9c¢. The errors show the
differences between the outputs of each integrator (i.e., QSS1, QSS2 and QSS3,
for predators and preys). These differences remain similar when increasing
the order of the integrator. The differences concerning the ModelicaDEVS
implementation have not been calculated due to the aforementioned error in

the implementation.
01 Qg5
+
01

¥ ["

01 QSS1
Vﬂ%%
-0

- -

Fig. 8. Lotka-Volterra model composed using DEVSLib.

26

The simulation performance of the Lotka-Volterra model, using QSS1, QSS2
and QSS3, has been compared. The obtained results are shown in Table 1.
The performance indicators are the mean execution time, calculated from six
simulation runs, and the number of events. The simulated time is 100 seconds.

The best performance is obtained using PowerDEV'S, as also stated in the com-
parison performed in [14], because it is designed for simulating discrete-event
systems following the DEVS simulator described in [27]. Dymola is designed
to efficiently simulate continuous-time systems, and includes algorithms to de-
tect and treat discrete-events. This leads to a robust hybrid system simulation

PowerDEYS prey — DESLibprey ModelicaDEVS prey
PowerDEVS. predator DESLib predator —s—ModelicaDEWS predator

Prey.stror Predator.error

PFopulation
in
1

04

Relative error

a 20 40 G0 a0 100

a)
PowerDEWS.prey ——DESLibiprey ModelicaDEVS prey
PowerDEYS.predator DESLib.predator —s«—ModelicaDEY S predatar 0a Prey stror Predator srror
2
0.2
2.0
0.1
1 g I
5 £
z % 00 it (i il | .".'m AT e
g 5 [R L AT
&£y
4
014
0.5 a2
[. T . T . T T T : 03 T T T T T T T T T
0 20 40 60 80 100 0 20 40 &0 &0 100
PowerDEVSprey ——DESLib prey MadelicaDEVS.prey
25 — 3 PowerDEV S predator DESLib predator ModelicaDEY 5 predator . Prey.eror Predator error
0.4
20+
0.2
5 0.0
515 L
E 202
N E
“ o4
064
0.5
054
0o 10
il 20 40 60 80 100 0 20 40 60 80 100

Fig. 9. Simulation of the Lotka-Volterra model developed using DEVSLib, Pow-
erDEVS and ModelicaDEVS (relative errors between the PowerDEVS and DEVS-
Lib models at the right). Integration method: a) QSS1; b) QSS2; and ¢) QSS3.

27

approach. However, these algorithms unnecessarily degrade the performance
while simulating pure discrete-event systems.

ModelicaDEVS has been specifically designed for modeling of continuous-time
systems using the QSS integration methods. In contrast, DEVSLib has been
designed to support the P-DEVS formalism and the QSS methods have been
developed by applying the facilities provided by DEVSLib to describe general-
purpose atomic P-DEVS models. As observed in the simulation results, the
performance of both libraries is similar.

QSS1 | QSS2 | QSS3

Execution Time (s) | 2.19 | 0.078 | 0.031
DEVSLib
Number of Events | 17366 | 509 153
Execution Time (s) | 1.19 | 0.022 | 0.0047
PowerDEVS
Number of Events 5238 172 47
Execution Time (s) | 1.26 | 0.071 | 0.047
ModelicaDEVS

Number of Events | 15538 | 490 152

Table 1
Comparison of simulation performance based on the Lotka-Volterra model.

11 Hybrid System Modeling with DEVSLib

DEVSLib provides interfaces to combine continuous-time models and P-DEVS
models, which translate continuous-time signals into event trajectories (i.e.,
series of messages), and vice-versa. These interface models allow combining
the use of P-DEVS models developed with DEVSLib and hybrid models de-
veloped using other Modelica libraries. It has to be noticed that these interface
models are designed for the type of message defined by-default in DEVSLib
(see Section 6). Similar interfaces can be developed for messages containing
other types of information. Additional information about this procedure is
provided in the library documentation.

The signal-to-message interfaces translate continuous-time signals into event
trajectories, where each event corresponds with the transmission of a mes-
sage. Two different implementations of this interface are included in DEVS-
Lib: quantization and value-crossing interfaces (see Quantizer, CrossUP and
CrossDOWN models in Fig. 1b). The quantization interface generates an event
(i.e., a message) for every change in the continuous-time signal bigger than
a given quantum value. The value-crossing interface generates an event every
time the continuous signal crosses a given threshold in one direction, upwards
or downwards.

28

The message-to-signal interface translates the received message values (i.e.,
the Value variable of received messages) into a piecewise-constant real signal.
A boolean output is also included, together with the real signal output, in
order to notify the reception instant of the messages. This boolean output may
be useful when the received messages have the same value and consequently
the reception instants cannot be inferred from the real signal output. This
interface is implemented by the DICO model (see Fig. 1b).

11.1 Case Study

An example provided in the StateGraph Modelica library [9] will be employed
to illustrate the use of the DEVSLib interfaces and to compare the performance
of these two libraries (i.e., StateGraph and DEVSLib). Other examples of
hybrid systems modeled using DEVSLib are described in [53,55].

The model consists of two tanks interconnected with valves, which are ma-
nipulated by a discrete-event controller. One of the valves is connected to the
input flow of the first tank. The output of the first tank is connected to the
input of the second tank, with a valve in between to control the flow between
both tanks. The third valve is connected to the output of the second tank. The
discrete controller receives the level of each tank and controls the positions of
the valves (i.e. open/close), in order to fill or empty them.

The normal operation of the system is as follows (summarized in the state
diagram shown in Fig. 10):

(1) Valve 1 is opened and tank 1 is filled (the system changes from IDLE to
FILL1 state).
(2) When tank 1 reaches its limit, valve 1 is closed (changing from FILL1 to

Fig. 10. State diagram of the controlled two-tank system.

29

WAIT1).

(3) After a waiting time, valve 2 is opened and the fluid flows from tank 1
into tank 2 (changing from WAIT1 to FILL2).

(4) When tank 1 reaches its limit, valve 2 is closed (changing from FILL2 to
WAIT?2).

(5) After a waiting time, valve 2 is opened and the fluid flows out of tank 2
(changing from WAIT2 to EMPTY).

(6) When tank 2 is empty, valve 3 is closed (going back to IDLE again).

Three buttons allow starting, resuming, stopping or aborting the normal op-
eration procedure:

— Start, starts the process (leaving the IDLE state). When it is pressed after
“stop” or “shut” the process continues (changing the state from STOP to its
previous state, or restarting the normal operation procedure, respectively).

— Stop, stops the process by closing all valves (changing to the corresponding
STOP state). The controller waits for further input (“start” or “shut”).

— Shut, is used to shutdown the process, by emptying at once both tanks
(changing to the SHUT state, and when empty changing to IDLE). After
emptying the system goes to the start configuration and waits.

The diagrams of the models developed using DEVSLib and StateGraphs are
shown in Figs. 11a and 12a. The continuous-time part (i.e., the tanks and
valves) is the same in both models. Its components (source, valves and tanks)
were developed using plain Modelica code, and can be later interconnected to
describe the structure of the system.

The internal structure of the controllers is shown in Figs. 11b and 12b. The
StateGraph controller implements the states and the transitions needed to
achieve the desired plant operation. The controller implemented with DE-
VSLib includes the models to translate the continuous-time signals from the
tanks, L1 and L2, into trajectories of events. The level of tank 1 is translated
with two cross value models, one for detecting the full level (set to 0.98m) and
another for the empty level (set to 0.001m). Tank 2 only needs the detection
of the empty level. Also, the controller outputs are translated into boolean
signals (V1, V2 and V3), that control the state of the valves. These discrete-
to-boolean models behave exactly like the described discrete-to-continuous
models, but generating a boolean signal instead of a real signal.

The controller itself is a P-DEVS coupled model, shown in Fig. 13 (all the
required DUP models have been removed from the figure to improve its read-
ability), that implements the described logic using small P-DEVS atomic op-
erations included in the library (ifType, storage, setValue, etc...). Also, the
DEVSLib controller can be implemented as a P-DEV'S atomic model including
the control algorithm in the transition functions. The P-DEVS specification

30

source

Y1

,,,,,,,,,,,, P e Y2
»

== tankController

8 TankController va

a)

£eARA

b)

Fig. 11. Tank system modeled using DEVSLib: a) system and; b) controller.

e walTime = it =
- setvaivel
- 3 LS
Source L _3 | o= | makeProduct filTanki sctive =
s
e start
5 = alve
A< makeProduct >
o Bl start level2 < 0.001
i [—’Auspe eeeeee 2
start - 7 tank
tapkController tank1
o e stop =
5 op alve2
Lplstart valvet X5 > g @ =] -
o
stop | pstop valve2 - o
shut valve3
T i 52 5 emptyTanks T8
shut levell,
~ 0 0
SN R B shut 3
49 = I I atves
’ shut ovell + level2 < 0.001
setvalve?
makeFroduct AlTankz sctive or emptyTanks.active o=l
<
&)
P empty or mpt active ﬁ
@ -
@ S
a) b) - ~ A

Fig. 12. Tank system modeled using StateGraphs: a) system and; b) controller.

of these models is detailed in the documentation of the model included in the
library. The simulation results of both models are identical (see Fig. 14).

The simulation performance of the models composed using DEVSLib and
StateGraphs has been evaluated. Two different DEVSLib implementations of
the controller have been considered: first implementing the controller as an
atomic P-DEVS model and second implementing it as a coupled P-DEVS
model. The models have been configured to continue with the normal opera-
tion process during the whole simulation time, because the initial configuration
stops the normal operation around time 24 s. Again, the performance indi-
cators are the mean execution time, calculated from six simulation runs, and
the number of events. The simulated time is 1000 seconds. The performance
comparison is shown in Table 2.

31

i_fEMPTY r_EMPT‘M

.TanMJ . L’_"_:Tank2>| . LF ‘ 1

Lt wraltt 1 }
= 0

IF_Full
TF LI

B
)) 1 .
THEY m

Fig. 13. Internal structure of the tank controller implemented using a coupled DE-
VSLib model.

1.0

084

TankiLevel

06 tanki JevelSensor

Tank2Level
tank2.levelSensor
04

0z

oo

-0.2

T T T T T T T T T T T T T T T
o 4 g 12 16 20 24 28 32

Fig. 14. Simulation results of the tank filling/emptying system (DEVSLib and State-
Graph results overlap).

It can be noticed that the DEVSLib model with the atomic controller and
the StateGraph model have similar execution times. The simulation of the
coupled DEVSLib controller consumes more time than the simulation of the
atomic DEVSLib controller. This difference in performance, even having sim-
ilar number of events, is mainly due to the amount of operations performed
during each event. The coupled controller activates multiple algorithms while
the atomic controller has only one. However, the coupled DEVSLib controller
is easier to understand than the atomic DEVSLib controller.

32

Execution Time (s) 0.313
DEVSLib (coupled)

Number of Events | 170 (time) + 448 (state)

Execution Time (s) 0.078
DEVSLib (atomic)

Number of Events | 168 (time) + 446 (state)

Execution Time (s) 0.094

StateGraphs

Number of Events | 168 (time) + 447 (state)

Table 2
Performance comparison based on the tank system.

12 Conclusions

A free Modelica library for discrete-event system modeling, using the P-DEVS
formalism, has been presented. The description of an atomic P-DEVS model
using DEVSLib is very close to its formal specification — i.e., it is performed
by describing each element of the tuple. This facilitates the model description
and the understanding of the developed models.

The description of a coupled P-DEVS model with DEVSLib also corresponds
completely with its formal specification. It is performed simply by connecting
the ports of the component P-DEVS models. The communication mechanism
(i.e., the message passing mechanism) between models is transparent to the
user. As the P-DEVS model connection is conceptually different from the
model connection in the Modelica language, it has been necessary to propose
and implement the message transmission mechanism between P-DEVS mod-
els. Different alternatives have been evaluated in terms of their flexibility and
performance. The implemented solution is based on storing the transmitted
messages in dynamic memory.

The user is allowed to define the type of information transmitted in the mes-
sages. A default type of message is defined in DEVSLib, which allows transmit-
ting arbitrarily complex information between P-DEVS models. For this type
of message, DEVSLib provides interfaces between DEVS and continuous-time
models. In addition, DEVSLib includes models implementing QSS integra-
tion methods (i.e., QSS1, QSS2 and QSS3), which can be used to simulate

continuous-time models.

The modeling capabilities of DEVSLib have been illustrated by means of three
application examples. Firstly, the discrete-event model of an Automatic Teller
Machine (ATM) has been employed to illustrate the development of atomic
and coupled DEVS models using DEVSLib.

Secondly, the Lotka-Volterra model of predator-prey interactions has been
described using the QSS integration methods supported by DEVSLib. This

33

model has also been developed using PowerDEVS and ModelicaDEVS, and
the simulation performance of the three models has been compared. Pow-
erDEVS performs better than the Modelica-based implementations, because
it is specially designed to simulate DEVS models. The ModelicaDEVS imple-
mentations of QSS methods are equivalent in performance to the DEVSLib
implementations. The main advantage of DEVSLib is that the QSS methods
have been implemented as P-DEVS models, which facilitates their understand-
ing and modification.

Finally, the hybrid model of a two-tank system controlled by a discrete-event
controller has been employed to illustrate the use of the DEVSLib inter-
faces. Three different implementations of the discrete-event controller have
been compared: an atomic P-DEVS model, a coupled P-DEVS model and a
stategraph model. The P-DEVS models have been developed using DEVSLib
and the stategraph model using the StateGraph Modelica library. The exe-
cution time of the atomic DEVS and the stategraph implementations of the
controller are similar. The coupled P-DEVS controller runs four times slower.
This performance difference is due to the activation and execution of multi-
ple components in the coupled controller during each event, while the atomic
controller only executes one algorithm.

The capabilities provided by DEVSLib to define P-DEVS models are simi-
lar to the ones in the simulation environments specifically designed for sup-
porting the P-DEVS formalism. However, these environments do not facili-
tate the model description by combining different modeling formalisms, and
the continuous-time part of the hybrid models has to be described applying
DEVS-based techniques. The main advantage of DEVSLib is that it can be
used together with other Modelica libraries in order to compose multi-domain
and multi-formalism hybrid models. In particular, the continuous-time part of
hybrid models can be described using the Modelica state-of-the-art capabili-
ties and the complete model can be simulated using any of the state-of-the-art
Modelica environments (e.g., Dymola).

References

[1] A. C. H. Chow, B. P. Zeigler, Parallel DEVS: a parallel, hierarchical, modular,
modeling formalism, in: Proceedings of the 26" Winter Simulation Conference,
San Diego, CA, USA, 1994, pp. 716-722.

[2] B. P. Zeigler, Y. Moon, D. Kim, J. G. Kim, DEVS-C++: A high performance
modelling and simulation environment, in: Proceedings of the 29" Annual
Hawaii International Conference on System Sciences, Maui, HI, USA, 1996,
pp. 350-359.

34

[3] J. Nutaro, Adevs - a discrete event system simulator, Arizona Center for
Integrative Modeling & Simulation (ACIMS), University of Arizona, Tucson.
http://www.ece.arizona.edu/ nutaro/index.php. (1999).

[4] B. P. Zeigler, H. S. Sarjoughian, Introduction to DEVS modeling &
simulation with JAVA: Developing component-based simulation models,
http://www.acims.arizona.edu/PUBLICATIONS/ (2003).

[5] Q. Liu, G. Wainer, Parallel environment for DEVS and Cell-DEVS models,
SIMULATION 86 (6) (2007) 449-471.

[6] Modelica Language Specification 3.1, http://www.modelica.org/documents
(2009).

[7] S. E. Mattsson, M. Otter, H. Elmqvist, Modelica hybrid modeling and efficient
simulation, in: Proceedings of the 38" IEEE Conference on Decision and
Control, Phoenix, AZ, USA, 1999, pp. 3502-3507.

[8] Modelica free and comercial libraries, http://www.modelica.org/libraries
(2009).

[9] M. Otter, K.-E. Arzén, 1. Dressler, StateGraph - a Modelica library for
hierarchical state machines, in: Proceedings of the 4" International Modelica
Conference, Hamburg, Germany, 2005, pp. 569-578.

[10] P. J. Mosterman, M. Otter, H. Elmqvist, Modelling Petri Nets as local
constraint equations for hybrid systems using Modelica, in: Proceedings of the
Summer Computer Simulation Conference, Reno, NV, USA, 1998, pp. 314-319.

[11] F. E. Cellier, A. Nebot, The modelica bond graph library, in: Proceedings of
the 4" International Modelica Conference, Vol. 1, Hamburg, Germany, 2005,
pp. 57-65.

[12] S. Robinson, R. E. Nance, R. J. Paul, M. Pidd, S. J. Taylor, Simulation model
reuse: definitions, benefits and obstacles, Simulation Modelling Practice and
Theory 12 (7-8) (2004) 479 — 494.

[13] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1, Wiley-IEEE Computer Society Pr, 2003.

[14] T. Beltrame, F. E. Cellier, Quantised state system simulation in
Dymola/Modelica using the DEVS formalism, in: Proceedings of the 5
International Modelica Conference, Vienna, Austria, 2006, pp. 73-82.

[15] T. Beltrame, Design and development of a Dymola/Modelica library for discrete
event-oriented systems using DEVS methodology, Master’s thesis, ETH Ziirich
(March 2006).

[16] E. Kofman, Discrete event simulation of hybrid systems, SIAM Journal on
Scientific Computing 25 (5) (2004) 1771-1797.

[17] F. E. Cellier, E. Kofman, Continuous System Simulation, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

35

[18] Euclides web-site, http://www.euclides.dia.uned.es/ (2008).

[19] V. Sanz, A. Urquia, S. Dormido, Parallel DEVS and process-oriented modeling
in Modelica, in: Proceedings of the 7" International Modelica Conference,
Como, Italy, 2009, pp. 96-107.

[20] H. Saadawi, Sysc-5807 methodological aspects of modeling and simulation:
Assignment 1,
http://www.sce.carleton.ca/faculty /wainer /wbgraf/samplesmain_1.htm
(2004).

[21] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore,
1925.

[22] V. Volterra, Variations and fluctuations of the numbers of individuals in animal
species living together, in: R. Chapman (Ed.), Animal Ecology, McGraw-Hill,
New York, 1931, pp. 409—448.

[23] E. Kofman, M. Lapadula, E. Pagliero, PowerDEVS: A DEVS-based
Environment for Hybrid System Modeling and Simulation, Tech. rep., LSD0306,
LSD, UNR (2003).

[24] I. Dressler, Code generation from JGraphchart to Modelica, Master’s thesis,
Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden
(March 2004).

[25] Dynasim AB, Dymola dynamic modeling laboratory user’s manual,
http://www.dymola.com/ (2006).

[26] A. C. H. Chow, Parallel DEVS: a parallel, hierarchical, modular modeling
formalism and its distributed simulator, Transactions of the Society for
Computer Simulation International 13 (2) (1996) 55-67.

[27] B. P. Zeigler, T. G. Kim, H. Praehofer, Theory of Modeling and Simulation,
Academic Press, Inc., Orlando, FL, USA, 2000.

[28] A. Jeandel, F. Boudaud., E. Larivire, ALLAN Simulation release 3.1
description, M.DGIMA.GSA1887. GAZ DE FRANCE, DR, Saint Denis La
plaine, France, 1997.

[29] H. Elmqvist, A structured model language for large continuous systems, Ph.D.
thesis, Department of Automatic Control, Lunk Institute of Technology, Lund,
Sweden (1978).

[30] P. Sahlin, A. Brign, E. F. Sowell, The neutral model format for building
simulation (v. 3.02), Tech. rep., Dept. of Building Sciences, The Royal Institute
of Technology, Stockholm, Sweden (1996).

[31] P. Fritzson, L. Viklund, D. Fritzson, J. Herber, High-level mathematical
modelling and programming, IEEE Software 12 (4) (1995) 77-87.

[32] M. Andersson, Omola - an object-oriented language for model representation,
Tech. rep., TFRT 7417, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden (1989).

36

[33] A. P. J. Breuneuse, J. F. Broenink, Modeling mechatronic systems using the
SIDOPS+ language, Simulation Series 29 (1) (1997) 301-306.

[34] M. Kloas, V. Friesen, M. Simons, Smile - a simulation environment for energy
sytems, System Analysis Modelling Simulation 18-19 (1995) 503-506.

[35] Dassault Systemes, Computer aided three dimensional interactive application,
http://www.catia.com/ (2009).

[36] LMS International, Imagine.Lab AMESim, http://www.lmsintl.com/imagine-
amesim-intro (2009).

[37] Maplesoft, MapleSim, http://www.maplesoft.com/products/maplesim/ (2009).

[38] MathCore Engineering AB, MathModelica System Designer,
http://www.mathcore.com/products/mathmodelica/ (2009).

[39] ITI GmbH, SimulationX, http://www.simulationx.com/ (2009).

[40] P. Fritzson, P. Aronsson, P. Bunus, V. Engelson, L. Saldamli, H. Johansson,
A. Karstrm, The open source Modelica project, in: Proceedings of the 27¢

International Modelica Conference, Oberpfaffenhofen, Germany, 2002, pp. 297—
306.

[41] S. L. Campbell, J.-P. Chancelier, R. Nikoukhah (Eds.), Modeling and simulation
in Scilab\Scicos, Springer, New York, NY, USA, 2006.

[42] Modelica, Modelica standard library,
http://www.modelica.org/libraries/Modelica (November 2008).

[43] H. Elmqvist, F. E. Cellier, M. Otter, Object-oriented modeling of hybrid
systems, in: Proceedings of the European Simulation Symposium, Delft, The
Netherlands, 1993.

[44] M. Otter, H. Elmqvist, S. E. Mattsson, Hybrid Modeling in Modelica Based
on the Synchronous Data Flow Principle, in: Proceedings of the 10" IEEE
International Symposium on Computer Aided Control System Design, Kohala
Coast, HI, USA, 1999, pp. 151-157.

[45] F. E. Cellier, H. Elmqvist, Automated formula manipulation supports object-
oriented continuous-system modeling, IEEE Control Systems 13 (2) (1993) 28—
38.

[46] H. Elmqvist, S. E. Mattsson, M. Otter, Modelica — the new object-
oriented modeling language, in: Proceedings of the 12! European Simulation
Multiconference, Manchester, UK, 1998, pp. 127-131.

[47] D. A. van Beek, J. E. Rooda, Languages and applications in hybrid modelling
and simulation: Positioning of Chi, Control Engineering Practice 8 (1) (2000)
81-91.

[48] P. L. Barton, C. C. Pantelides, Modeling of combined discrete/continuous
processes, AIChE Journal 40 (6) (1994) 966-979.

37

[49] IEEE, Standard VHDL analog and mixed-signal extensions, Tech. Rep. 1076.1,
IEEE (1997).

[50] P. Frey, D. O’Riordan, Verilog-AMS: Mixed-signal simulation and cross domain
connect modules, in: Proceedings of the 2000 IEEE/ACM International
Workshop on Behavioral Modeling and Simulation, Washington, DC, USA,
2000, pp. 103-108.

[61] J. Kriger, Trabajo practico 1: Antiguo reloj despertador,
http://www.sce.carleton.ca/faculty /wainer /wbgraf/samplesmain_1.htm.

[52] W. Sun, DEVS model representing a simple automobile factory,
http://www.sce.carleton.ca/faculty /wainer /wbgraf/samplesmain_1.htm
(2001).

[53] M. Briere, L. Carrel, T. Michalke, F. Mieyeville, I. O’Connor, F. Gaffiot,
Design and behavioral modeling tools for optical network-on-chip, in: DATE
'04: Proceedings of the conference on Design, automation and test in Europe,
IEEE Computer Society, Washington, DC, USA, 2004, p. 10738.

[54] V. Sanz, A. Urquia, S. Dormido, Introducing messages in Modelica for
facilitating discrete-event system modeling, in: Proceedings of the 27¢
International Workshop on Equation-Based Object-Oriented Languages and
Tools, Paphos, Cyprus, 2008, pp. 83-94.

[65] V. Sanz, F. E. Cellier, A. Urquia, S. Dormido, Modeling of the ARGESIM
”crane and embedded controller” system using the DEVSLib Modelica library,
in: Proceedings of the 3" IFAC Conference on Analysis and Design of Hybrid
Systems, Zaragoza, Spain, 2009.

38

