
Hybrid System Modeling using the SIMANLib

and ARENALib Modelica Libraries

Victorino Sanz a,1,∗, Alfonso Urquia a, Sebastian Dormido a

aDpto. Informática y Automática, UNED, Juan del Rosal 16, 28040 Madrid, Spain

François E. Cellier b

bDept. Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland

Abstract

The ARENALib and SIMANLib Modelica libraries replicate the basic functionality
of the Arena simulation environment and the SIMAN language. These libraries facil-
itate describing discrete-event models using the Arena modeling methodology. ARE-
NALib and SIMANLib models can be combined with other Modelica models in order
to describe complex hybrid systems (i.e., combined continuous-time and discrete-
event systems). The implementation and design of SIMANLib and ARENALib is
discussed. The ARENALib components have been built in a modular fashion us-
ing SIMANLib. The SIMANLib components have been described as Parallel DEVS
models and implemented using DEVSLib, a Modelica library previously developed
by the authors to support the Parallel DEVS formalism. The use of Parallel DEVS
as underlying mathematical formalism has facilitated the development and mainte-
nance of SIMANLib. The modeling of two hybrid systems is discussed to illustrate
the features and use of SIMANLib and ARENALib: firstly, a soaking-pit furnace;
secondly, the malaria spread and an emergency hospital. DEVSLib, SIMANLib and
ARENALib can be freely downloaded from http://www.euclides.dia.uned.es/

Key words:
Modelica, Object-oriented modeling, Hybrid systems, Arena, SIMAN, Parallel
DEVS

∗ Corresponding author. Tel: +34 91 3989469.
Email addresses: vsanz@dia.uned.es (Victorino Sanz), aurquia@dia.uned.es

(Alfonso Urquia), sdormido@dia.uned.es (Sebastian Dormido),
francois.cellier@inf.ethz.ch (François E. Cellier).
1 This work has been supported by the Spanish CICYT under DPI2007-61068
grant.

Preprint submitted to Elsevier 4 May 2013

1 Introduction

The Arena simulation environment uses a flowchart-based modeling method-
ology that facilitates the description of discrete-event systems (Kelton et al.,
2007; Law, 2007). Systems are described using Arena from the point of view
of the entities that flow through them using the available resources. Arena
models are structured in a hierarchical and modular way. They are defined by
means of a flowchart diagram and static data.

The flowchart diagram is composed by instantiating and connecting predefined
components named flowchart modules. Each flowchart module has an interface
and an internal behavior. The interface is used to connect with other modules,
thus describing the path for the entities. The internal behavior describes the
actions performed by the entities while in the component, e.g., delay a certain
amount of time, seize and release resources, and record statistics. The simula-
tion results are usually presented in the form of statistical indicators that are
calculated during the simulation.

The static data allow to specify component characteristics, such as for in-
stance, the characteristics of the entity arrival processes, resources and queues.
The static data are described using the data modules provided to this end by
Arena.

The Arena flowchart and data modules are arranged into panels. The main
Arena panel is named BasicProcess. This panel includes the Create, Dispose,
Process, Decide, Batch, Separate, Assign and Record flowchart modules, and
the Entity, Queue, Resource, Variable, Schedule and Set data modules (Kel-
ton et al., 2007). Other Arena panels are AdvanceProcess, AdvanceTransfer,
AgentUtil, FlowProcess and Packaging (Kelton et al., 2007).

Arena is based on the SIMAN simulation language (Pegden et al., 1995). Arena
modules are high-level constructs whose functionality is equivalent to sets of
SIMAN blocks and elements. Arena predefined modules are internally built
using SIMAN blocks and elements, which represent lower-level actions. SIMAN
and Arena components can be combined in the same model, provided that
they have compatible interfaces and manage the same types of information.
Arena provides two panels, named Blocks and Elements, that correspond to
the components of the SIMAN language.

Arena provides limited support to the description of continuous-time models
(Kelton et al., 2007). The linear models whose state-variable derivatives re-
main constant between discrete events can be described using the Levels and
Rates SIMAN blocks, following the System Dynamics approach (Forrester,
1969). A general-purpose programming language (e.g., C, FORTRAN and Vi-
sual Basic) needs to be used to describe other types of continuous-time models

2

and their connection to the Arena discrete-event model.

Other tools support different approaches to hybrid system modeling. For in-
stance, Anylogic facilitates describing continuous-time models using System
Dynamics (Forrester, 1969), similarly to Arena. Ptolemy II provides function-
ality to describe the continuous-time model using block diagrams, similarly
to Matlab/Simulink. Based on Ptolemy II, the Building Controls Virtual Test
Bed (BCVTB) is a software environment that allows the co-simulation between
different simulation programs, including the Modelica modeling environment
Dymola among others (Wetter, 2011).

The general-purpose, object-oriented modeling languages support the phys-
ical modeling paradigm (Åström et al., 1998). In particular, the Modelica
language (Modelica Association, 2012) facilitates the object-oriented descrip-
tion of DAE-hybrid models, i.e., models composed of differential and algebraic
equations, and discrete-time events. Modelica supports a declarative descrip-
tion of the continuous-time part of the model (i.e., equation-oriented mod-
eling) and provides language expressions for describing discrete-time events.
These features have facilitated the development of Modelica libraries sup-
porting several modeling formalisms and describing phenomena in different
physical domains (Modelica Libraries, 2012). Modelica facilitates the reuse of
models and model components, which contribute to reduce the cost of new
model development (Robinson et al., 2004).

A number of Modelica libraries have been developed for supporting discrete-
event modeling formalisms, including StateCharts (Ferreira and de Oliveira,
1999), state graphs (Otter et al., 2005), hybrid automata (Pulecchi and Casella,
2008), Petri Nets (Mosterman et al., 1998), extended Petri Nets (Fabricius and
Badreddin, 2002) and Parallel DEVS (Sanz et al., 2010). The description of
operation management models using Modelica is analyzed in Mikler and En-
gelson (2003) and the model of an inventory system is presented.

The Arena modeling methodology is supported by the SIMANLib and ARE-
NALib Modelica libraries (Sanz, 2010). These libraries facilitate the descrip-
tion of discrete-event logistic models in Modelica, such as manufacturing and
packaging processes, supply chains, health care systems, and transport and
distribution networks among others. The physical modeling paradigm sup-
ported by Modelica can be combined with the Arena modeling methodology
in order to describe complex hybrid systems. This combination is not cur-
rently supported by other modeling and simulation environments. SIMANLib
and ARENALib include components to interface with other Modelica models.
These components facilitate connecting models composed using SIMANLib
and ARENALib to Modelica models developed using other methodologies,
e.g., continuous-time models described using the physical modeling paradigm.

3

The implementation of SIMANLib and ARENALib, and their use for hybrid
system modeling are discussed in this manuscript. Remarks on the SIMANLib
and ARENALib implementation are provided in Section 2. The architecture
and most relevant features of SIMANLib and ARENALib are described in
Sections 3 and 4, respectively. The SIMANLib and ARENALib components for
interfacing with models developed using other Modelica libraries are described
in Section 5. Finally, two case studies are used to illustrate the SIMANLib
and ARENALib capabilities for hybrid system modeling. The modeling of a
soaking pit furnace and an emergency hospital are discussed in Sections 6 and
7, respectively. These case studies illustrate the capabilities for hybrid system
modeling included in the libraries (i.e., external processes and generation of
entities on demand).

2 Remarks on the SIMANLib and ARENALib Implementation

The behavior of the SIMANLib components has been formally described in
terms of atomic Parallel DEVS models (Zeigler et al., 2000). The use of Par-
allel DEVS as a base to describe the behavior of SIMANLib components has
facilitated the development, maintenance and reuse of the models. The formal
specification of the SIMANLib components in Parallel DEVS can be found
in Sanz (2010). The SIMANLib components have been developed using DE-
VSLib (Sanz et al., 2010), a Modelica library that facilitates the description
of Parallel DEVS models in Modelica. As discussed in Section 2.2, the use
of DEVSLib in the implementation of SIMANLib is based on the similarities
between the Parallel DEVS formalism and the Arena modeling methodology.

The SIMANLib library has been used to develop the ARENALib components
in a modular fashion. ARENALib components are constructed as a combi-
nation of interconnected SIMANLib components. The same structure can be
observed in the Arena environment, whose flowchart modules are constructed
using the SIMAN language. The behavior of ARENALib components is for-
mally described as coupled Parallel DEVS models, since SIMANLib compo-
nents are described as atomic Parallel DEVS models.

2.1 Simulation of Hybrid Models in Modelica

The Modelica libraries and models presented in this manuscript have been
edited and simulated using Dymola 6.1 (Dynasim AB, 2006). This state-
of-the-art modeling environment automatically translates the object-oriented
description of the Modelica model into executable code. The model manip-
ulations performed by Dymola include model flattening, index reduction (if

4

required), solving and sorting of the equations, and tearing of the algebraic
loops. A detailed description of these manipulations can be found in Cellier
and Kofman (2006).

The simulation algorithm implemented by Dymola has been conceived for sim-
ulating DAE-hybrid models. The simulation algorithm is basically as follows
(Cellier and Kofman, 2006):

(1) The continuous-time part is solved using a numerical integration algo-
rithm. Dymola 6.1 allows the user to choose between several supported
algorithms that include Lsodar, Dassl, Euler, Rkfix (order 2, 3 and 4),
Radau IIa (order 5 stiff), Esdirk (order 3, 4 and 5 stiff), Dopri (order 5
and 8), Sdirk (order 4 stiff) and Cerk (order 3, 4 and 5).

(2) If any of the event conditions is met during integration, the integration
algorithm is halted and the event instant is determined.

(3) At the event instant, the set of algebraic and discrete equations are solved.
(4) Once the event has been treated, the event conditions are checked again.

If a new event is triggered, it is immediately executed. Otherwise, the
integration is restarted.

2.2 Application of DEVSLib for developing ARENALib and SIMANLib

Parallel DEVS and the Arena modeling methodology have some characteristics
in common, including the following:

• Both facilitate the modular and hierarchical model description.
• Each model component has an internal description and an interface that

is composed of input and output ports. The interaction among the model
components is described by connecting their ports.

• The interaction consists in the exchange of information at the event instants.
The information sent by an output port is instantaneously received by the
input port connected to it. This information is named message in Parallel
DEVS and entity in Arena.

• Components have discrete-event behavior. The component state changes
only at event instants.

A discussion on the requirements needed to describe Parallel DEVS mod-
els using equation-based, object-oriented modeling languages in general, and
Modelica in particular, is provided in Sanz et al. (2010). The communication
mechanism among model components is the main difference between Paral-
lel DEVS and the DAE-hybrid modeling formalism supported by Modelica.
Model communication in Parallel DEVS follows a message passing mecha-
nism, whereas model connection in Modelica is based on the energy-balance
principle.

5

DEVSLib is a full-fledged Modelica library that facilitates the description
of discrete-event models according to Parallel DEVS. DEVSLib supports a
message passing mechanism for communicating Parallel DEVS models. Input
and output port classes are provided in DEVSLib. The Parallel DEVS model
interfaces can be built by defining as many port instances as required. The
connection among DEVSLib models is defined by connecting the output ports
to the corresponding input ports, using the Modelica connect sentences.

DEVSLib allows the user to define the type of information of each message.
The default message type contains the following two pieces of information:
Type (represented by an integer value) and Value (represented by a real value).
The message also includes a Port value that represents the port the message
has been received through, but this value is managed by the receiver model
and not by the user. As several messages can be simultaneously sent through
an output port, this type of message can be used to transmit arbitrarily com-
plex information. In particular, the message passing mechanism supported by
DEVSLib has been used for implementing the entity transfer in ARENALib
and SIMANLib.

Since SIMANLib and ARENALib are described using the Parallel DEVS for-
malism, multiple entities can be simultaneously transferred between model
components. In this case, the action performed by the component is applied
to each received entity at the same time. In components without time delay
for the entities, i.e., assignments, statistical indicators, etc., the simultaneous
entities will arrive and leave the component at the same time. For components
with a time delay, each received entity is inserted in the waiting queue at the
same time but their departure will be calculated using the delay time, which
is usually random.

The interface of DEVSLib, SIMANLib and ARENALib models is described
using the inPort and outPort models included in the DEVSLib library. These
interface models can also be used to describe the interface of coupled models.
Thus, models can be hierarchically described as a combination of DEVSLib,
SIMANLib and ARENALib components.

On the other hand, DEVSLib provides interface components to connect the
output of a Parallel DEVS model with the input of a continuous-time model,
or vice-versa. Since ARENALib and SIMANLib components are constructed
using the DEVSLib library, these interfaces have also been used to combine
the models composed using ARENALIb and SIMANLib with other Modelica
models. This topic will be addressed in Section 5.

6

2.3 Additional functionality

As discussed previously, DEVSLib has been used to describe the discrete-event
behavior of the ARENALib and SIMANLib components. Also, the DEVS-
Lib communication mechanism among Parallel DEVS models has served as
a basis for implementing the communication (i.e., the entity transfer) among
ARENALib/SIMANLib components. Finally, the DEVSLib interface compo-
nents, intended to communicate the Parallel DEVS models with other Mod-
elica models, have been used for connecting ARENALib/SIMANLib mod-
els to other Modelica models. Nevertheless, the development of SIMANLib
and ARENALib has required implementing additional functionality. Some
SIMANLib/ARENALib features not supported by DEVSLib are discussed
below. In particular, those related with the management of the entities and
the estimation of the statistical indicators.

According to the Arena modeling methodology, entities flow through the
flowchart modules transporting information. A part of this information is com-
mon to all entities. Another part contains user-defined pieces of information,
named attributes in Arena terminology, that are specific to each entity. Models
may contain different entity types.

Entities have been implemented in SIMANLib and ARENALib using Mod-
elica records. The entity information is stored in the Modelica record fields.
An external library coded in C, named entities.c, has been programmed to
manage the records. This C library allows to store the records in C structs al-
located in dynamic memory, and to read and modify the structs. The message
passing mechanism of DEVSLib is used for transferring the entities. To this
end, the DEVSLib messages transport in their Value variable a reference to
the C struct of the corresponding entities. The resulting mechanism for entity
transfer is transparent to the user. The implementation details can be found
in Sanz (2010).

A temporal storage for entities is implemented and used in some SIMAN
blocks, for instance, in those blocks representing processes that delay the en-
tities. Since the value of the delay time is usually random, the order of the
arrived entities could not correspond to the order of the entities leaving the
process. These processes have to include a temporal storage for the entities
that are being delayed. Some SIMANLib models include an internal queue,
similar to the one used to receive messages from other models, that can be
used as a temporal storage for delayed entities. Entities in this temporal queue
can be ordered depending on their arrival time, or the time they will finish
the delay. In the latter case, the first entity in the queue will be the first to
leave the process. If multiple entities have the same finishing time, all of them
are removed simultaneously from the queue and leave the process.

7

Simulation results are usually reported using statistical indicators. Some of
these statistical indicators have to be calculated during the simulation and
some others at the end. The amount of data that has to be stored to calculate
some of these indicators changes depending on the length of the simulation.
Therefore, a structure to store dynamic information in Modelica needs to be
developed, giving the possibility to increase or decrease the size of the stored
data during the simulation run. This storage structure has to be accessible
from multiple points in the model, in order to facilitate the insertion and
removal of data. This behavior is currently prevented in Modelica by the
single assignment rule, that forces each variable to be assigned only once in the
model (Modelica Association, 2012). An information storage structure, named
dynamic object, has been developed and used to describe special attributes of
the entities, global variables of the model and to store statistical indicators.

A dynamic object is a two-dimensional variable (i.e., a matrix) of real type
that is stored in dynamic memory. An external library coded in C, named
objects.c, has been programmed to manage dynamic objects. Dynamic ob-
jects are represented in Modelica using an Integer variable that stores a ref-
erence to the object in memory. It is similar to the entity record described
previously, but in this case the C struct stores a two-dimensional matrix of
real numbers and the size of each dimension. The objects.c library also sup-
ports the description of lists of dynamic objects. These are dynamic lists whose
length can be modified during the simulation run, depending on the insertion
and removal of objects in the list. Further details are discussed in Sanz (2010).

3 The SIMANLib Modelica Library

The SIMANLib Modelica library provides a subset of the modeling function-
ality found in the SIMAN language. The top-level architecture of SIMANLib
is shown in Fig. 1a. The library is divided in two areas: a user’s area and a
developer’s area. This division helps the user to focus on the components ori-
ented for either developing new models or extending the functionality of the
library with new components. The developer’s area is encapsulated in the SRC
package, and contains the developer-oriented documentation and the internal
implementation of the components of the library. The user’s area is composed
of the following top-level classes:

• The User’s Guide, that includes the user-oriented documentation.
• Components in SIMANLib are divided, as well as in the SIMAN language, in

two groups: blocks and elements. The Blocks package (see Fig. 1b) contains
components to describe the flowchart diagram of the model. The Elements
package (see Fig. 1c) contains components to specify the static informa-
tion of the model and the characteristics of its flowchart diagram blocks.

8

a) b) c)

Fig. 1. The SIMANLib Modelica library: a) top-level packages; b) Blocks package;
and c) Elements package.

This information corresponds to the entity types, the characteristics of the
queues and resources, the global variables, the attributes and the statistical
indicators.

• The Draft model, that is used as starting point for constructing new models
using SIMANLib.

• The BookExamples package, that contains several case studies described in
Pegden et al. (1995). These examples facilitate the understanding and use
of the library. They have been used to validate SIMANLib, comparing them
with equivalent models developed using SIMAN/Arena.

The Elements package contains classes to represent static information of the
model (see Fig. 1c). These elements are implemented using Modelica records
and a set of functions to manage the record information. The records contain
the variables required to store the element information. Some remarks are
given below.

Resource represents the available resources that can be used to process the
entities. Each resource is divided into resource units that can be individually
seized by the entities. Multiple processes can share the same resources. The
Resource element has been implemented as an atomic Parallel DEVS model.
It receives, seizes and releases petitions for the represented resources, and
sends confirmations for the captured resources. In this way, multiple Seize and
Release blocks could be connected to the same Resource element (representing
processes that share a resource).

9

The Variable and Attribute elements represent global variables and user-
defined attributes, respectively. These elements have been designed using dy-
namic objects. The Modelica record used to represent them includes a variable,
named P, that contains a reference (a pointer) to the dynamic object used to
store the actual value of the element. Two functions, get and set, are provided
to read and modify the value of the dynamic object during the simulation.

The elements used to store statistical indicators (Counter, Tally and DStat)
have also been designed using dynamic objects. The Counter behaves simi-
larly to the Variable and Attribute elements, using a dynamic object to store
the value of the counter. Since the Tally and DStat elements automatically
calculate the required statistical indicator, they include four dynamic objects
to store the maximum, minimum, average and last observed values. At the
end of the simulation, the final values for each indicator are written into a
text file. The Tally and DStat elements also include a list of dynamic objects.
This list is used to store the observations performed during the simulation,
and allow the calculation of the confidence interval for the observed indicator.

4 The ARENALib Modelica Library

ARENALib reproduces most of the modeling functionality of the Arena Basic
Process panel. The top-level classes of ARENALib are shown in Fig. 2a. The
library is also divided into two areas: a user’s area and a developer’s area.
The developer’s area is encapsulated into the SRC package and contains the
internal implementation of the library modules. The user’s area is composed
of the following Modelica classes:

• The User’s Guide model contains the user-oriented documentation of the
library.

• The Draft model is used to create new models.
• The BasicProcess package (see Fig. 2b) contains flowchart and data modules

that can be used to construct models.
• The Examples package contains several models of discrete-event systems.
• The BookExamples package contains models of systems described in Kelton

et al. (2007).

ARENALib flowchart modules are similar to SIMANLib blocks. However,
ARENALib flowchart modules perform more complex actions than SIMANLib
blocks and include the calculation of several statistical indicators. ARENALib
flowchart modules are described as coupled Parallel DEVS models, and imple-
mented using a combination of SIMANLib blocks and elements. Some char-
acteristics of the ARENALib flowchart modules are discussed below. Their
internal structure is shown in Fig. 3.

10

• The Create module (see Fig. 3a) represents a source of entities in the system.
Entities are created periodically, following the selected inter-arrival time
(Interval time), and sent through the flowchart diagram. The module has
an input port, named IN, to receive external petitions of entity creation. If
this input port is connected, the Create module creates entities on demand.
New batches of entities are created when a new message is received, instead
of every Interval time. This module automatically calculates the number of
entities created during the simulation run.

• The Dispose module represents an end point for entities in the system.
Entities are removed (i.e., deleted from the simulation) when they reach
this module. It automatically calculates the number of disposed entities.

• The Process module represents any action that can be performed by the
entities in the system. Processes can be of the following types:
– Delay represents a time delay for the entities, like the Delay block.
– Seize-delay forces the entity to capture a resource before being delayed.
– Delay-release forces a delay for the entity and the release of a previously

seized resource.
– Seize-delay-release represents an entity seizing a resource, being delayed

and at the end releasing the resource.
The process type is selected using one of the parameters of the module.

a) b)

Fig. 2. The ARENALib Modelica library: a) top-level classes; and b) classes within
the BasicProcess package.

11

a) Create b) Dispose

c) Process

d) Decide e) Record

Fig. 3. Internal structure of the ARENALib flowchart modules.

12

Notice that two Select models, from the DEVSLib library, are used to se-
lect the type of process to perform (see Fig. 3c). This module includes the
Queue element required for the Seize block, and the elements required to
automatically calculate the following statistical indicators:
– The number of entities that entered and left the module.
– A Tally indicator for the time the entities are processed.
– A Tally indicator for the time spent waiting in queue.
– A DStat indicator for the number of entities waiting in queue.

• The Decide module represents a division in the flow of entities following
certain conditions or probabilities. It is constructed using a Branch and a
BRule block, so only one condition can be checked in the Decide module. In
order to allow multiple conditions, ARENALib includes the Rule module,
which is equivalent to the BRule block. Additional Rule modules can be
connected to the Out2 port of the Decide module.

• The Record module represents a point in the flowchart diagram to record
statistical time-dependent information. This module is composed of a Tally
and a Counter block, which are conditionally declared depending on a pa-
rameter, named Type, of the module. If the Type parameter of the module
has value 1, the Record behaves as a Counter block and so the Tally block
is not declared. On the other hand, if the Type parameter has value 2,
the Record behaves as a Tally block and the Counter is not declared. The
module also includes the required Tally and Counter elements (see Fig. 3e).

The ARENALib data modules are also included in the BasicProcess package
(see Fig. 2b). These modules, which are equivalent to some of the SIMANLib
elements, facilitate describing certain model static properties. The purpose of
the data modules included in ARENALib is discussed below.

• Entity is equivalent to the EntityType element in SIMANLib. It describes
the characteristics associated with a type of entities in the system. Multiple
Entity modules can be included in the same model to represent different
types of entities.

• Queue is equivalent to the Queue element in SIMANLib. The use of this data
module is not required since it is already included in the Process module.

• Resource is equivalent to the Resource element in SIMANLib. Each Re-
source module describes a type of resource in the system, and has to be
connected with the Process modules in the model. Several Process modules
can be connected to the same Resource, if resource sharing is required.

• Variable is equivalent to the Variable element in SIMANLib. It describes
user-defined global variables in the model.

• Attribute is equivalent to the Attribute element in SIMANLib. It describes
user-defined attributes for the entities in the model.

The BasicProcess package also includes three functions, named eget(), vget()
and aget() (see Fig. 2b), which can be used to read the variable values of an

13

Entity (eget), a Variable (vget) or an Attribute (aget). In this way, the values
of the variables defined in Entities, Variables or Attributes can be used to
configure the parameters of the flowchart modules. For instance, an attribute
can be assigned with the time of creation for the entity, and its value used
as a parameter to calculate the duration of a process or as a condition for a
Decide module.

5 Interfacing with other Modelica Models

The Parallel DEVS models described using DEVSLib can communicate with
other Modelica models in two ways (Sanz et al., 2010): through direct connec-
tions and using the interface models included in DEVSLib.

• Direct connections. Variables of other Modelica models can be inputs to the
transition functions of the DEVSLib Parallel DEVS models. These connec-
tions are similar to the interactions described in the DEV&DESS formalism
between the discrete-event and the continuous-time parts of a hybrid model
(Zeigler et al., 2000).

• Interface models. The communication among DEVSLib Parallel DEVS mod-
els takes place exchanging messages. Messages are sent through the output
ports and received through the input ports of the Parallel DEVS models.
The interface models of DEVSLib can be used to translate messages into
discrete-time signals and the other way around, i.e., to translate continuous-
time and discrete-time signals into messages. The functionality of the follow-
ing interface models is explained below: Quantizer, CrossUP, CrossDOWN
and DICO.
– The signal-to-message interfaces translate continuous-time signals into

event trajectories, where each event corresponds to the transmission of
a message. Two different implementations of this interface are included in
DEVSLib: quantization (Quantizer model) and value-crossing (CrossUP
and CrossDOWN models) interfaces. The quantization interface generates
an event (i.e., a message) for every change in the continuous-time signal
bigger than a given quantum value. The value-crossing interface generates
an event every time the continuous signal crosses a given threshold in one
direction, upwards or downwards.

– The message-to-signal interface translates the received message values
(i.e., the Value variable of received messages) into a piecewise-constant
real signal. A boolean output is also included, together with the real sig-
nal output, in order to notify the reception instant of the messages. This
boolean output may be useful when the received messages have the same
value and consequently the reception instants cannot be inferred from the
real signal output. This interface is implemented by the DICO model.

14

The signal-to-message interface models of DEVSLib can be used to describe
the interaction between continuous-time models and the flowchart diagrams
composed using SIMANLib/ARENALib. An example is shown in Section 7,
where the entity inter-arrival time in the hospital model is calculated from the
continuous-time model of the malaria spread. To this end, a Quantizer model
is connected to the IN port of the SIMANLib Create block that describes the
entity source (infected people arriving to the hospital).

In addition, SIMANLib and ARENALib contain models that describe the
interaction between the flowchart diagram and other Modelica models. Two
of these interface models are described below: the ExternalAssign block of
SIMANLib and the ExternalProcess module of ARENALib. ARENALib pro-
vides a module, named Assign, that is equivalent to the ExternalAssign block.

5.1 The ExternalAssign block of SIMANLib

The ExternalAssign block has the same functionality as the Assign block: it
sets the value of an entity attribute or a model variable. In addition, External-
Assign communicates the assigned value through its interface. The internal
structure of ExternalAssign is shown in Fig. 4. It is composed of a SIMANLib
Assign block and three DEVSLib components: DUP, SetValue and DICO. The
interface of ExternalAssign is composed of the IN and OUT ports, used to re-
ceive and send entities, and the Y (of Real type) and CHANGE (of Boolean
type) variables. When the value of an attribute or variable is set in Exter-
nalAssign, this value is also assigned to Y, and CHANGE is switched from
true to false or vice-versa. In this way, changes in the value of attributes or
variables can be observed by checking the values of Y and CHANGE. The
behavior of this block is presented in Listing 1 in the form of an abstract sim-
ulator. As shown in the abstract simulator, the actions performed by the block
are applied to all the received entities, in the case of simultaneous reception
of several entities.

when new entities arrive at IN port then
for each entity in bag loop

if assignVariable then
variable := newValue;

else
entity.attribute := newValue;

end if;
duplicate(entity) to create auxMessage;
send(entity) to next block through the OUT port;
auxmessage.Value = newValue;
y = auxmessage.Value;
change = not change;

end for;
end when;

Listing 1. Abstract simulator of the ExternalAssign block.

15

Fig. 4. Internal structure of the SIMANLib ExternalAssign block.

5.2 The ExternalProcess module of ARENALib

The ExternalProcess module represents a process whose delay time is exter-
nally modeled. The module structure is shown in Fig. 5. ExternalProcess is
similar to the Process module (see Fig. 3c), where the Delay block has been
replaced by four models (DICO, Quantizer, RealToInteger and IntegerToReal)
and two additional interface variables (entityStart and entityEnd). DICO and

Fig. 5. Internal structure of the ARENALib ExternalProcess module.

16

Quantizer are defined in DEVSLib, and RealToInteger and IntegerToReal in
the Modelica Standard Library. The entityStart and entityEnd interface vari-
ables are intended to communicate with the model that describes the delay
action.

The DICO and RealToInteger models translate the message representing the
entity into an Integer value that is assigned to the entityStart variable. Since
this entity identification value is different for each entity (it is the memory
address where the entity is stored), the change in the entityStart value means
that a new entity is ready to be processed in the delay action. The Modelica
model that describes the delay action has to be connected to entityStart and
entityEnd. Once the delay time for the entity is elapsed, this model should
set the value of the entityEnd variable to the entity identification value. This
value is translated by the IntegerToReal and Quantizer models into a message
representing the entity, which continues through the flowchart diagram. The
behavior of this module is presented in Listing 2 in the form of an abstract
simulator.

The management of simultaneous entities is analogous to the ExternalAssign
block. Each received entity is either inserted in the queue or its identification
value is assigned to the entityStart variable. The latter case will generate
several changes at the same time in the value of the entityStart variable,
that have to be properly managed by the model that represents the external
process.

when new entities arrive at IN port then
for each entity in bag loop

record statistics;
if process requires to seize resource then

insert entity in queue to wait for idle resource;
else

entityStart := pointer to entity;
end if;

end for;
end when;

when resource idle and queue not empty then
seize resource for waiting entity;
remove entity from queue;
entityStart := pointer to entity;

end when;

when entityEnd value changes then
recover entity using entityEnd value;
if process requires to release resource then

release resource;
end if;
record statistics;
send(entity) to next block through OUT port;

end when;

Listing 2. Abstract simulator of the ExternalProcess module.

17

6 Soaking-Pit Furnace

The soaking-pit furnace described in Kelton et al. (2007) is modeled using
ARENALib. The use of the Modelica language and the ARENALib Modelica
library facilitates the model description. Instead of using Levels and Rates
from the SIMAN language to describe the continuous-time equations of the
furnace, as performed in Kelton et al. (2007), Modelica allows to directly code
these equations (cf. lines 19 to 25 in Listing 3), which will be automatically
handled and translated into executable code by the Dymola modeling environ-
ment. The ExternalProcess module (see Section 5.2) is employed to interface
between the flowchart diagram and the continuous-time model.

The furnace has nine slots for heating ingots. The ingots arrive, one at a time,
with exponential inter-arrival time and are positioned, one ingot per slot, in
the available slots. If there is no available slot, the ingot must wait in a FIFO
queue. When an ingot reaches its optimal temperature, it is removed from the
slot, which gets ready to be occupied by another ingot.

The furnace temperature (T) and the temperatures of the ingots placed inside
the furnace (τi with i : 1, . . . , 9) are described by Eqs. (1) and (2). Tempera-
tures are expressed in degrees Fahrenheit.

dT

dt
= 2 · (2600 − T) (1)

dτi
dt

= 0.15 · (T − τi) with i : 1, . . . , 9 (2)

When a new ingot with τnew temperature enters into the furnace, the furnace
temperature changes abruptly from T to T − (T − τnew)/ingots, where ingots
is the number of ingots in the furnace.

Fig. 6. Soaking-pit furnace system modeled using ARENALib.

18

The flowchart diagram of the system is shown in Fig. 6. Ingots arrive at the
Create module, seize an available slot, are heated and finally leave the sys-
tem. The heating process is represented using an ExternalProcess module from
ARENALib. This discrete-event module represents the operation for seizing
a free slot in the furnace and releasing it when finished. The diagram is con-
structed by drag-and-dropping the required elements from the ARENALib
BasicProcess package into the model.

The furnace is described by Eqs. (1) and (2), and the abrupt changes in the
furnace temperature triggered when new ingots enter the furnace. A detail of
the Modelica code of the furnace model is shown in Listing 3. The reception
of new ingots, the re-initialization of slot and furnace temperatures, and the
management of the heating for each slot are shown.

1 algorithm
2 when IN <> pre(IN) then // new ingot received
3 while Posfree[i] > 0 loop // find free slot
4 i := mod(i,numFurnacePos)+1;
5 end while;
6 Posfree[i] := 1;// assign free slot
7 ingot[i] := IN;// record value of input ingot
8 // used to update furnace temp
9 newingot := newingot +1;

10 end when;
11 for i in 1: numFurnacePos loop // finished ingots?
12 when itemp[i] >= 2200 then
13 Posfree[i] := 0;
14 OUT := ingot[i];
15 end when;
16 end for;
17
18 equation
19 ftrate = der(ftemp);
20 ftrate = 2 * (2600 - ftemp); // furnace temp
21 for i in 1: numFurnacePos loop // temp of slots
22 itrate[i] = der(itemp[i]);
23 itrate[i] = if Posfree[i] == 0 then 0
24 else 0.15 *(ftemp - itemp[i]);
25 end for;
26 // update furnace temp
27 when newingot <> pre(newingot) then
28 reinit(itemp[i],u);
29 reinit(ftemp ,(ftemp -(ftemp -u)/sum(Posfree)));
30 end when;

Listing 3. Detail of Modelica code of furnace model.

The system has been simulated during 100 hours using Dymola 6.1. The time
evolution of the furnace temperature (above) and the ingot temperatures (be-
low) are shown in Fig. 7. The temperature of the furnace increases up to its
maximum temperature (2600 0F), and decreases abruptly when a new ingot
is inserted in a free slot. The temperatures of the ingots also increase up to
the desired temperature (2200 0F). After that, the ingot leaves the slot but
the temperature shown remains constant until a new ingot is inserted in the
free slot. Slots are usually occupied sequentially, as it can be observed in the
figure.

19

7 Emergency Hospital

This hybrid model is composed of two parts (see Fig. 8): the malaria spread
model and the emergency hospital model. The former allows to estimate the
malaria infection rate. The later is used to evaluate the use of the resources
required to treat the infected people. In this case study, the continuous-time
model of the malaria spread serves as input for the discrete-time model of the
emergency hospital. The connection is performed using the Create module
from the ARENALib library. This combination can be also described using
Arena/SIMAN (i.e., using the DETECT SIMAN block). However, the de-
scription of the continuous-time model using Arena/SIMAN requires to use
a general-purpose programming language, such as Visual Basic, C or FOR-
TRAN, while Modelica provides all the required functionality.

7.1 Malaria Spread Model

The malaria spread process is described as a continuous-time model composed
of the following equations (Chitnis et al., 2006):

Fig. 7. Soaking-pit furnace system: furnace (above) and ingot (below) temperatures
expressed in degrees Fahrenheit.

20

Fig. 8. Connection between the malaria spread model and the emergency hospital
model.

dSh

dt
= Λh + ψh ·Nh + ρh ·Rh − λh(t) · Sh − fh(Nh) · Sh (3)

dEh

dt
= λh(t) · Sh − νh · Eh − fh(Nh) · Eh, (4)

dIh
dt

= νh · Eh − γh · Ih − fh(Nh) · Ih − δh · Ih (5)

dRh

dt
= γh · Ih − ρh ·Rh − fh(Nh) ·Rh (6)

dSv

dt
= ψv ·Nv − λv(t) · Sv − fv(Nv) · Sv (7)

(8)

dEv

dt
= λv(t) · Sv − νv · Ev − fv(Nv) · Ev (9)

dIv
dt

= νv · Ev − fv(Nv) · Iv (10)

where fh(Nh) = µ1h + µ2h ·Nh is the per capita density-dependent death and
emigration rate for humans and fv(Nv) = µ1v + µ2v · Nv is the per capita
density-dependent death rate for mosquitoes. The descriptions of the state
variables and the parameters for the model are shown in Tables 1 and 2,
respectively.

The total population rates are

Nh = Sh + Eh + Ih +Rh (11)

Nv = Sv + Ev + Iv (12)

The infection rates are

λh = bh(Nh, Nv) · βhv ·
Iv
Nv

(13)

λv = bv(Nh, Nv) · (βvh + β̃vh ·
Rh

Nh

) (14)

where λh is the force of infection from mosquitoes to humans and λv is the force
of infection from humans to mosquitoes. In these equations, bh = b(Nh, Nv)/Nh

21

Name Description

Sh: Number of susceptible humans.

Eh: Number of exposed humans.

Ih: Number of infectious humans.

Rh: Number of recovered (immune and asymptomatic, but slightly infec-
tious) humans.

Sv: Number of susceptible mosquitoes.

Ev: Number of exposed mosquitoes.

Iv: Number of infectious mosquitoes.

Nh: Total human population.

Nv: Total mosquito population.

Table 1
State variables of the malaria spread model (Chitnis et al., 2006).

describes the number of mosquito bites that one human can have per unit time,
and bv = b(Nh, Nv)/Nv describes the number of human bites one mosquito can
have per unit time, with b(Nh, Nv) that defines the total number of mosquito
bites on humans, as:

b = b(Nh, Nv) =
σv · σh

σv(Nv/Nh) + σh
·Nv (15)

Eqs. (3)–(15) can be directly translated into the Modelica code shown in
Listing 4. Note that the translation of these equations to Modelica, given
that the Modelica operator der() describes the time derivative of a variable,
is straight forward.

der(Sh) = Ah+Psih*Nh+Rhoh*Rh-Lambdah*Sh-Fh*Sh;
der(Eh) = Lambdah*Sh - Vh*Eh - Fh*Eh;
der(Ih) = Vh*Eh - Gammah*Ih - Fh*Ih - Deltah*Ih;
der(Rh) = Gammah*Ih - Rhoh*Rh - Fh*Rh;
der(Sv) = Psiv*Nv - Lambdav*Sv - Fv*Sv;
der(Ev) = Lambdav*Sv - Vv*Ev - Fv*Ev;
der(Iv) = Vv*Ev - Fv*Iv;
Fh = Mu1h + Mu2h*Nh;
Fv = Mu1v + Mu2v*Nv;
Nh = Sh + Eh + Ih + Rh;
Nv = Sv + Ev + Iv;
Lambdah = bh*Betahv *(Iv/Nv);
Lambdav = bv*(Betavh *(Ih/Nh)+ Betatildevh *(Rh/Nh));
bh = b/Nh;
bv = b/Nv;
b = (Sigmav*Sigmah /(Sigmav *(Nv/Nh) + Sigmah))*Nv;

Listing 4. Modelica code for malaria spread model.

22

Name Description

Λh: Immigration rate of humans. (Humans× Time−1)

ψh: Per capita birth rate of humans. (Time−1)

ψv: Per capita birth rate of mosquitoes. (Time−1)

σv: Number of times one mosquito would want to bite humans per unit
time, if humans were freely available. This is a function of the mosquito’s
gonotrophic cycle (the amount of time a mosquito requires to produce eggs)
and its anthropophilic rate (its preference for human blood). (Time−1)

σh: The maximum number of mosquito bites a human can have per unit time.
This is a function of the human’s exposed surface area. (Time−1)

βhv: Probability of transmission of infection from an infectious mosquito to a
susceptible human, given that a contact between the two occurs. (Unitless)

βvh: Probability of transmission of infection from an infectious human to a sus-
ceptible mosquito, given that a contact between the two occurs. (Unitless)

β̃vh: Probability of transmission of infection from a recovered (asymptomatic
carrier) human to a susceptible mosquito, given that a contact between the
two occurs. (Unitless)

νh: Per capita rate of progression of humans from the exposed state to the
infectious state. 1/νh is the average duration of the latent period. (Time−1)

νv: Per capita rate of progression of mosquitoes from the exposed state to the
infectious state. 1/νv is the average duration of the latent period. (Time−1)

γh: Per capita recovery rate for humans from the infectious state to the recov-
ered state. 1/γh is the average duration of the infectious period. (Time−1)

δh: Per capita disease-induced death rate for humans. (Time−1)

ρh: Per capita rate of loss of immunity for humans. 1/ρh is the average duration
of the immune period. (Time−1)

µ1h: Density-independent part of the death (and emigration) rate for humans.
(Time−1)

µ2h: Density-dependent part of the death (and emigration) rate for humans.
(Humans−1 × Time−1)

µ1v: Density-independent part of the death rate for mosquitoes. (Time−1)

µ2v: Density-dependent part of the death rate for mosquitoes. (Mosquitoes−1×
Time−1)

Table 2
Parameters of the malaria model and their units (Chitnis et al., 2006).

23

7.2 Hospital Model

The emergency hospital has been modeled using ARENALib. The model is
based in the hospital model included as an example in the Arena simulation
environment. The flowchart diagram of the model, shown in Fig. 9a, is de-
scribed below.

The number of infected people calculated using the malaria spread model
corresponds to the value of the port named Infected. The value of that variable
is quantized using the quantizerUP model from the DEVSLib library, which
generates a message every time the Infected variable increases in one unit (i.e.,
a new person is infected). A create block, from the SIMANLib library, is used
to generate an entity that corresponds to the newly infected person.

After that, patients are randomly distributed between different types: excel-
lent (20%), good (35%), fair (30%), serious (10%) and critical (5%). Critical
patients include those with severe malaria symptoms and those who need par-
enteral administration of anti-malarian drugs (WHO, 2010). These patients
are directly transferred to the ICU area, where dedicated beds are available.
The treatment of critical patients requires a dedicated nurse and supervision
by a doctor, and the duration changes from one to three days. Other patients
have to go through the admission procedure before being treated. Once a
bed is assigned to the patient, he is attended by a doctor and after that a
nurse teaches him how to self-administrate the drugs. When the treatment is
finished, the bed is released and the patient leaves the hospital. This model
automatically records statistics for the type of patients that arrive, the uti-
lization of resources and the time spent by the patients in the hospital.

7.3 Validation and Simulation

The Modelica model of the malaria spread has been compared with the model
developed in Chitnis et al. (2006). The simulation results of both models are
equivalent, using the initial values and parameters shown in Tables 3 and 4,
and are shown in Fig. 10.

Sh = 400 humans Sv = 1000 mosquitoes

Eh = 10 humans Ev = 100 mosquitoes

Ih = 30 humans Iv = 50 mosquitoes

Rh = 0 humans

Table 3
Initial values for the malaria spread model (Chitnis et al., 2006).

24

a)

b)

Fig. 9. Emergency department of a hospital modeled using: a) ARENALib; and b)
Arena.

Fig. 10. Simulation results for malaria spread model using the initial values and
parameters in Tables 3 and 4: a) model from Chitnis et al. (2006); and b) Modelica
model.

The validation of the emergency hospital model has been performed by com-
paring the developed ARENALib model with an equivalent model developed
using Arena, shown in Fig. 9b. A Create module has been used in both models
as a source of patients (substituting the Infected port, the quantizerUP model
and the SIMANLib create block, shown in Fig. 9a), since this comparison
does not involve the developed malaria spread model. Both models have been
simulated during 8000 time units to observe the system in steady-state. Some

25

Name and Value Unit

Λh = 3.285 × 10−2 humans × time−1

ψh = 7.666 × 10−5 ψv = 0.4000 time−1

βvh = 0.8333 βhv = 2.000 × 10−2 unitless

β̃vh = 8.333 × 10−2 unitless

σh = 0.6000 × 10−2 σv = 18.00 time−1

νh = 8.333 × 10−2 νv = 0.1000 time−1

γh = 3.704 × 10−3 time−1

δh = 3.454 × 10−4 time−1

ρh = 1.460 × 10−2 time−1

µ1h = 4.212 × 10−5 µ1v = 0.1429 time−1

µ2h = 1.000 × 10−7 humans−1 × time−1

µ2v = 2.279 × 10−4 mosquitoes−1 × time−1

Table 4
Parameters of the malaria spread model (Chitnis et al., 2006).

statistical indicators, regarding the total time spent in the system, the waiting
time in the queues and the utilization of resources, calculated in both models
are shown in Table 5. The simulation results obtained from the ARENALib
model are always in the range of the half-width interval calculated by Arena.

Indicator Arena Half-width ARENALib Unit

Patient Total Time 0.2534 0.0034 0.2501 time

Patient Total ICU time 2.1514 0.0627 2.1884 time

Seize ICU bed.WaitingTime 0.1057 0.0381 0.1276 time

TriageEval.WaitingTime 0.0058 0.0005 0.0053 time

Nurse.NumberBusy 0.2214 0.0095 0.2138 %

Doctor.NumberBusy 0.0397 0.0014 0.0396 %

AdmStaff.NumberBusy 0.0189 0.0004 0.0189 %

TriageNurse.NumberBusy 0.0872 0.0025 0.0856 %

Bed.NumberBusy 0.1253 0.0044 0.1225 %

ICUBed.NumberBusy 0.1066 0.0098 0.1012 %

Table 5
Simulation results from the comparison of the emergency hospital models.

Finally, the complete system, combining the malaria spread model and the

26

Sh = 40000 humans Sv = 100000 mosquitoes

Eh = 1000 humans Ev = 10000 mosquitoes

Ih = 0 humans Iv = 5000 mosquitoes

Rh = 0 humans

Table 6
Initial values for the epidemic simulation in the malaria spread model.

emergency hospital, has been simulated during 100 time units. In order to
simulate an epidemic situation in the malaria model, the initial values shown
in Table 6 have been used. In this situation the number of infected humans
increases rapidly, thus creating a saturation in the hospital. This saturation
can be observed in the number of patients waiting for a bed, specially ICU
beds, whose evolution is shown in Fig. 11.

Fig. 11. Evolution of the number of infected people and the number of patients
waiting for a bed.

8 Conclusions

The SIMANLib and ARENALib Modelica libraries facilitate the application
of the Arena modeling methodology in Modelica. These libraries reproduce
some modeling functionality of SIMAN and Arena, providing Modelica com-
ponents to describe the flowchart diagram and the static information of the
model. ARENALib reproduces most of the modeling functionality of the Ba-

27

sic Process panel of Arena. The SIMAN blocks supported by SIMANLib in-
clude: Create, Dispose, Queue, Seize, Delay, Release, Branch, Count, Assign
and Tally. Some SIMAN elements supported by SIMANLib are: EntityType,
Queue, Resource, Attribute, Variable, Counter, DStat and Tally. In addition,
ARENALib and SIMANLib provide components describing the connection
between the discrete-event models composed using these libraries, and mod-
els composed using other Modelica models. This feature facilitates combining
ARENALib/SIMANLib models with models developed applying other mod-
eling methodologies supported by Modelica (e.g., DAE-hybrid models).

The following tasks have been completed for developing SIMANLib and ARE-
NALib:

(1) The behavior of the supported modules, blocks and elements has been
described using Parallel DEVS. In particular, the SIMANLib blocks have
been described as atomic Parallel DEVS models and the ARENALib
modules as coupled Parallel DEVS models.

(2) The functionality of the components required to communicate ARENAL-
ib/SIMANLib models with other Modelica models has been specified.

(3) The libraries have been programmed in Modelica. The translation of the
model formal description into Modelica code has been facilitated by the
use of the DEVSLib Modelica library. The description of an atomic Par-
allel DEVS model using DEVSLib is very close to its formal specification
i.e., it is performed by describing each element of the tuple. The tran-
sition, output and time-advance functions are specified using Modelica
functions. This facilitates the model description and the understanding
of the developed models. The description of coupled Parallel DEVS mod-
els with DEVSLib also matches completely with its formal specification.
It is performed simply by connecting the corresponding ports of the com-
ponent Parallel DEVS models.

The following additional functionality was required to support the
Arena modeling methodology in Modelica: a) management of the infor-
mation that describes the entities in the system; and b) description of an
information storage structure to facilitate the management of variable-
size data generated during the simulation run (i.e., statistical indicators,
global variables and user-defined attributes for the entities). Two exter-
nal libraries written in C code have been programmed to support these
requirements.

(4) The libraries have been validated by comparing the simulation results
of the developed models with the ones obtained using equivalent models
developed using Arena/SIMAN. SIMANLib and ARENALib include a
package named “BookExamples” that includes the implementation of
some models described in Pegden et al. (1995) and Kelton et al. (2007),
respectively.

28

The implementation and design of SIMANLib and ARENALib have been dis-
cussed in this manuscript. Two case studies have been presented to illustrate
the library use for describing hybrid models. The soaking-pit furnace system
illustrates the use of the ExternalProcess module included in ARENALib. This
module can be used to describe the integration of external processes, described
using other Modelica libraries, with ARENALib models. An emergency hos-
pital is modeled to present the possible interactions between continuous-time
and ARENALib/SIMANLib models, where the generation of entities depends
on the evolution of the continuous-time model. The simulation of these mod-
els has been compared with equivalent existing models, or models constructed
using SIMAN and Arena. The results obtained are equivalent.

References

Åström, K. J., Elmqvist, H., Mattsson, S. E., 1998. Evolution of continuous-
time modeling and simulation. In: Proceedings of the 12th European Simu-
lation Multiconference (ESM’98). Manchester, UK, pp. 9–18.

Cellier, F. E., Kofman, E., 2006. Continuous System Simulation. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Chitnis, N., Cushing, J. M., Hyman, J. M., 2006. Bifurcation analysis of a
mathematical model for malaria transmission. SIAM Journal of Applied
Mathematics 67, 24–45.

Dynasim AB, 2006. Dymola, Dynamic Modeling Laboratory. User’s manual.
URL http://www.dymola.com/

Fabricius, S. M., Badreddin, E., 2002. Hybrid dynamic plant performance
analysis supported by extensions to the Petri Net library in Modelica. In:
Proceedings of the 4th Asian control Conference (ASCC). Singapore, pp.
41–50.

Ferreira, J., de Oliveira, J. E., 1999. Modelling hybrid systems using State-
Charts and Modelica. In: Proceedings of the 7th IEEE International Con-
ference on Emerging Technologies and Factory Automation. pp. 1063–1069.

Forrester, J. W., 1969. Principles of Systems. Waltham, MA, USA.
Kelton, W. D., Sadowski, R. P., Sturrock, D. T., 2007. Simulation with Arena,

4th Edition. McGraw-Hill, Inc., New York, NY, USA.
Law, A. M., 2007. Simulation Modelling and Analysis, 4th Edition. McGraw-

Hill, New York, NY, USA.
Mikler, J., Engelson, V., 2003. Simulation for operation management: Object

oriented approach using Modelica. In: Proceedings of the 3rd International
Modelica Conference. Linköping, Sweden, pp. 207–214.

Modelica Association, 2012. Modelica - An unified object-oriented language
for physical systems modeling. Language specification version 3.1.
URL http://www.modelica.org/documents

Modelica Libraries, 2012. Modelica free and comercial libraries.

29

URL http://www.modelica.org/libraries

Mosterman, P. J., Otter, M., Elmqvist, H., 1998. Modelling Petri Nets as local
constraint equations for hybrid systems using Modelica. In: Proceedings of
the Summer Computer Simulation Conference. pp. 314–319.

Otter, M., Årzén, K.-E., Dressler, I., 2005. StateGraph - a Modelica library for
hierarchical state machines. In: Proceedings of the 4th International Model-
ica Conference. Hamburg, Germany, pp. 569–578.

Pegden, C. D., Sadowski, R. P., Shannon, R. E., 1995. Introduction to Simu-
lation Using SIMAN. McGraw-Hill, Inc., New York, NY, USA.

Pulecchi, T., Casella, F., 2008. HyAuLib: modelling hybrid automata in Mod-
elica. In: Proceedings of the 6th International Modelica Conference. Biele-
feld, Germany, pp. 239–246.

Robinson, S., Nance, R. E., Paul, R. J., Pidd, M., Taylor, S. J., 2004. Simula-
tion model reuse: definitions, benefits and obstacles. Simulation Modelling
Practice and Theory 12 (7-8), 479 – 494, simulation in Operational Research.

Sanz, V., 2010. Hybrid system modeling using the Parallel DEVS formal-
ism and the Modelica language. Ph.D. thesis, E.T.S.I. Informtica, UNED,
Madrid, Spain.

Sanz, V., Urquia, A., Cellier, F. E., Dormido, S., 2010. System modeling us-
ing the Parallel DEVS formalism and the Modelica language. Simulation
Modeling Practice and Theory 18 (7), 998–1018.

Wetter, M., 2011. Co-simulation of building energy and control systems with
the building controls virtual test bed. Journal of Building Performance Sim-
ulation 4, 185–203.

WHO, 2010. World health organization guidelines for the treatment of malaria.
Zeigler, B. P., Kim, T. G., Prähofer, H., 2000. Theory of Modeling and Sim-

ulation. Academic Press, Inc., Orlando, FL, USA.

30

