7.8
MONTE CARLO ESTIMATION OF PI |
<< previous | next
>> |
|
||||||||||||||||||||||
System description | ||||||||||||||||||||||
The goal of this virtual-lab is to estimate the value of PI using a Monte Carlo method. The method is as follows: | ||||||||||||||||||||||
Suppose that we are throwing a dart over a square surface of side 2 m. There is a circle of radius 1 m. inscribed in the square. Assuming that the probability is uniformly distributed, the probability of hitting inside the circle is equal to PI/4. Dividing the number of hits by the number of throws, it is obtained an approximation of PI. |
||||||||||||||||||||||
The larger the number of throws is, the better the estimation is. This virtual-lab allows the user to select the number of throws and provides the corresponding estimation of the PI value. | ||||||||||||||||||||||
Introduction | ||||||||||||||||||||||
The introduction of the virtual-lab is shown in Fig. 7.33. | ||||||||||||||||||||||
Fig.
7.33: Introduction. |
||||||||||||||||||||||
Model | ||||||||||||||||||||||
The Java method that estimates PI has been defined in the Custom panel (see Fig 7.34). The coordinates of the throws are stored in the arrays Pointx and Pointy.When the user changes the number of throws, this method is executed: a new set of throws is generated and a new estimation of PI is obtained. Every estimation of PI uses a different seed and, consequently, a different sequence of random variates. | ||||||||||||||||||||||
Fig.
7.34: Method to estimate the value of PI. |
||||||||||||||||||||||
View | ||||||||||||||||||||||
The tree of elements is shown in Fig. 7.35. The properties of the Puntos element (i.e., the set of points representing the throws) is shown in Fig. 7.36. | ||||||||||||||||||||||
Fig.
7.35: Tree of elements. |
||||||||||||||||||||||
Fig.
7.36: Properties of the set of points representing the throws. |
||||||||||||||||||||||
<< previous | next
>> |